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A CALCULUS FOR BELNAP’S LOGIC IN WHICH EACH PROOF
CONSISTS OF TWO TREES

STEFAN WINTEIN AND REINHARD MUSKENS

Abstract

In this paper we introduce a Gentzen calculus for (a funetlgn
complete variant of) Belnap’s logic in which establishiig frov-
ability of a sequent in general requirego proof trees, one estab-
lishing that whenever all premises are true some conclusitmie
and one that guarantees the falsity of at least one premadiecifn-
clusions are false. The calculus can also be put to use inngov
that one statememtecessarily approximatesnother, where neces-
sary approximation is a natural dual of entailment. Theudak;
and its tableau variant, not only capture the classical edtives,
but also the ‘information’ connectives of four-valued Batrlogics.
This answers a question by Avron.

1. Introduction

In logics based on Belnap’s [5, 6] well-known bilattiE©UR (see Figure 1)
everything gets doubled. The two truth values of classmgiklare replaced

by their four possible combinations (we writfor ‘true and not false’f

for ‘false and not true’n for ‘neither true nor false’, and for ‘both true

and false’)! and there are two natural orderings on these values insfead o
the single classical ordering on {true, false}. One of thes#erings,<;,
depicted in the Hasse diagram for the logical lattice L4 iguFé 1, is con-
nected to thedegree of trutha statement may assume; the oth€y, the
ordering in the approximation lattice A4, to iiegree of definedne$sFour
values bring more truth functions with them than two do ans ligads to a

*We wish to thank the anonymous referees for excellent fegdba

LWintein [15] gives an alternative reading of Belnap’s foatues in terms of thassert-
ibility anddeniability of statements.

2Ginzberg [10] considers a general theory of bilattices, eetwill stick to the logic
based on BelnapBOURNhere. For general information about bilattices, see Ej&ipapers,
e.g. [9].
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644 STEFAN WINTEIN AND REINHARD MUSKENS

doubling of logical operators. The classical, A andV are now naturally
complemented with duals (‘conflation’), ® (‘consensus’) andd (‘gulli-
bility’), and in a predicate logical setting the quantifi&t@nd 4 moreover
come with cousingl andX.* Also, while in classical logic one can define
entailment either as transmission of truth or, completelyivalently, trans-
mission of non-falsity ('if the conclusion is false one o&tpremises must
be’), these two notions come apart in the four-valued ggtince there is
transmission of truth but not of non-falsity froto b, for example. Entail-
ment is naturally defined by stipulating that= « if and only if the values
of ¢ andvy are in the<; ordering in every model (for every assignment) and
this boils down to requiring that both forms of transmissioast hold from
pto.®

The doublings do not stop here. Entailment itself also oista natural
dual, for, replacing<; in the above definition by, we can say thap nec-
essarily approximates, ¢ R 1, if and only if the values ofp and are

3In Belnap [5, 6] only the classical operators are considered

4See Fitting [9] for further motivation of these operatorsie@ossible application of
and® that Fitting mentions is that they could be part of a logicgueanming language de-
signed for distributed implementation, a suggestion thetiite in line with Belnap’s original
motivation.

5This is the notion of entailment considered in Belnap [5, 8]t not that of Arieli
& Avron [1], who use a single-barrelled notion. The two nosoof entailment are co-
extensional on sets of formulas based on classical commsctinly, but not on formulas
based on a functionally complete set of connectives or on af @®nnectives that expresses
all <x-monotone functions. Belnap [5, page 43] is quite clear albis views on the
connection between entailment and the lattice L4. Conisigethe question when an
argument in his logic is a good one, he writes:

The abstract answer relies on thgical lattice we took so much time to develop.

It is: entailment goes uphill. That is, given any senterdicand B (compounded
from variables by negation, conjunction and disjunctiong will say that A
entailsor implies B just in case for each assignment of one of the four values to
the variables, the value of does not exceed (is less-than-or-equal-to) the value
of B.

On the same page Belnap refers to Dunn [8], who shows thaema®n of truth and
preservation of non-falsity coincide for classical sent but he nevertheless insists on
defining entailment as preservation of tratid non-falsity:

But | agree with the spirit of a remark of Dunn’s, which suggekhat the False
really is on all fours with the True, so that it is profoundlgtaral to state our
account of “valid” or “acceptable” inference in a way whighmieutral with respect
to the two.
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Figure 1. Belnap’s bilatticEOUR depicted in terms of its
constituting lattices L4 and A4.

in the <; ordering in every model. We feel that this notion of necessar
proximation carries some interest given the pivotal rolthefapproximation
(or ‘knowledge”) ordering in the semantics of programmiagduages.

The main purpose of this paper is a simple one. We want to aedrame
doubling to the ones mentioned already by giving a proofesysfor four-
valued predicate logic in which each proof consistdvad Gentzen proof
trees, one establishing transmission of truth, the otla@smission of non-
falsity. The system can also be used to show that necessprgxapation
holds. In that case one proof tree again corresponds taniasi®n of truth
but the other to transmission of falsity, not non-falsityhM# Muskens [13]
presents a Gentzen calculus in which only one proof treeadexto estab-
lish provability, and while one tree may be thought to be inihan two, this
advantage is offset by the fact that the system of [13] is @isly biased
towards the L4 ordering, as its sequent rules/Aotv, V and3 are natural
and familiar, while those for, @, II andX come out rather convoluted.
The present calculus is more natural, with sequent ruldseiisécond group
completely dual to those in the first. It is also more natunghie sense that
the ‘structural elements’ of [13] can be done away with (withgiving up
analiticity).

Naturalness is also our defense against the objection ket tare now
uniform methods by which signed (analytic) proof systemsfiigite val-
ued logics can be obtained (see e.g. Baaz et al. [4]). Whigeishclearly
an important general result, the proof systems that areénastan particu-
lar cases are sometimes unnecessarily complicated angdsiieersgenerated
for Belnap’s logic using the method of [4] is a case in pointeTbinary
connectives, for instance, are provided with tableau rthles have up to
four disjunctive clauses, while these clauses themsehmsaonsist of sets
of signed statements rather than of single signed statsm@unsider, for
example, the tableau rules for ¢ Ay andf : p A obtained in this manner.
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b:pAY froAY
t:o,b:Y|bipt:| b b fro|f:|n:pb:e

The proof system of the present paper exploits the factttHanh andb are

best thought of as combinations of truth values. We choosdoou signs

to capture the “underlying” values of (non-)truth and (néedsity and, in

doing so we arrive at a proof system that is tailor made fon8gek logic. In

the tableau variant of our system, a signed tableau rule himaxy connec-
tive is either of disjunctive or conjunctive type and alwayglves exactly
two immediate descendants. In this sense, our system résethb tableau
calculus for first order logic of Smullyan [14].

The remainder of the paper is organized as follows. The regtian gives
the syntax and semantics of Belnap’s logic; section 3 iniced the ‘two
trees’ proof system; section 4 answers a guestion by Avrodifgussing
a tableau variant of this proof system which extends thatvwdA [3]; and
section 5 is a conclusion. An appendix gives a series of @antales for
defined operators.

2. L4: Syntax and Semantics

In setting up the four-valued predicate logig we will by and large follow
Muskens [13], and refer to this paper for discussion of thcepts involved.
The set offormulasof L, is defined just as it is done in standard predicate
logic, except that- and® are added to the familias, A, V and=. A model

is apair(D,Z) whereD # () andZ is a function with as domain the language
(set of non-logical constants), such thatZ( f) is ann-ary function onD if

f € L is ann-ary function symbol and (R) is apair of n-ary relations
onDif R € L is ann-ary relation symbol. We denote the first element
of this pair asZ*(R), the second element &s (R). We usea to denote a
(variable) assignment ang; to denote the assignment that is likeexcept
for assigningi to x. The value of a termin a modelM under an assignment
a is defined in the usual way and written [a$"*¢, or [t]™ if ¢ is closed.

Definition 1 We define the three-place relationd = ¢[a| (formula o is
truein model M under assignment) and M = ¢[a] (¢ is falsein M under
a) as follows.

1. M |= Rty .. .t,[a] < ([ta]Me, ... [t
M= Rty .. tyla] & ([a]M9, .. [t]M9) € I-(R);
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The following definition gives the connection between trarents oFOUR
and combinations of truth and falsity.

Definition 2 The value of a formul@ in a modelM under an assignment
a, [¢]™?, is defined as follows.

[l =t
[ = f
[p]* =
[l = b

-M#wMaMM#WM,
M £ ¢ld] [
M [~ pla] and M A ]
M E ¢la] and M = ¢la

a a

aj,

]
I
]
J

In this paper we will restrict all discussion to sentencdss@d formulas)
and all mention of assignment functions will be dropped.

Definition 3 With = and© sets of sentences df, we define the following

relations.

—_
o -

[v

= [I]

= [I]

=" @ iff, for all models M, [¢]™ € {t,b} for all ¢ € = implies
€ {t,b} for somey € ©

’;

I

F”f O iff, for all models M, [o]M
Y]M € {t,n} for somey € ©

Ff o iff, for all models M, [¢]™ € {f,b} for all p € = implies
Y]M € {f,b} for somey) € ©

€ {t,n} forall ¢ € =implies
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648 STEFAN WINTEIN AND REINHARD MUSKENS

e == 0iff Z " © and= "/ ©
e ZROIiff Z " ©andZ =/ 6

Entailment ) and necessary approximatiop:) are the two relations of
primary interest in this paper. Their relations to the oirmlgs <, and <
were discussed in the introduction. They are derived miatiin the sense
that = is defined as the preservation of truth and non-falsity, evkil is
defined as preservation of truth and falsity. A syntacticrabi@risation of
= can therefore be obtained by laying down proof rules comedimg to
=" and ="/, while one forl~ can be given by establishing proof rules
corresponding t¢="" and}=/. We will do so in our ‘two trees’ formalism,
to be discussed in the next section.

As usual, the language will be extended with abbreviationsia fact all
truth-functions are expressible sin¢e, —, A, =} is functionally complete
(see Muskens [12] for a proof). We will defineandd in the standard way.
The following abbreviations may also be used.

Definition 4. We will write

n for —p® —p (wherep is some fixed O-place relation symbol);
b for —n;

f for bAnR;

t for —f;

@y for —(—p@—v);

p@qy for (pAb)V (¢ An);
@/ for (pAY) @ (=p V),
IMzp  for Vzp Q Jxy; and
Yxp  for dxp Q V.

The first four zero-place connectives have the obvious @toot The con-
nectives is the natural dual of and denotes join in A4. A sentence of the
form ¢ @ ¢ is true iff ¢ is true and false iff) is false;p / 1 is related to
Blamey’s [7]transplicationand can be read ag, presupposingo’. This

formula has the value af if ¢ is true, but is neither true nor false otherwise.

Thell andX quantifiers are the duals gfandd and correspond to arbitrary
meet and join in the approximation lattice A4. The operafoid andX will
play no further role in this paper, but are interesting irirtbevn right.

The proof system of the next section will be based on the $ied se-
guents that were used in [13], following an idea describddhimgholm [11].
Here is a pictorial representation of such a sequent.
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' [ Ay
'y | Ay

We linearise notation by attaching tveigns: andj to formulas. i can be
n (north) or s (south) j can bee (east)or w (west) The sequent displayed
above will be written as

{"" el u{p™ |pec A1} U{e™ | o el U{p™ | pec A}

The arrow in the picture is meant to signify transmissiomfrieft to right,
meaning that whenever a model verifies all sentencéy iand falsifies all
sentences i’y it must also either verify a sentence 4y, or falsify a sen-
tence inA,. If this is not the case we say that the sequenefated™ by
some model, a notion we define as follows.

Definition 5. A model M refutes™ a sequent’ if

e el = [¢]M € {t,b}
el = [p]M € {f.n}
e el = [g]™ € {f b}
pel = [o e {t,n}

The dual notion is transmission from right to left, i.e. wheer a model
falsifies all sentences iA; and verifies all sentences ih, it also falsifies
a sentence im'; or verifies a sentence ifi,. The corresponding notion of
refutatiort— can be defined directly, but also in the following way.

Definition 6. LetI" be a sequent. We define tteal of I", dual(T"), to be the
sequent which results froin by simultaneously replacing every superscript
n in I" by s, everys by n, everyw by e, and everye by w. A model M
refutes” a sequent’ if M refutes™ dualT"). M refutesT if M either
refutes or refutes T.

= =1 © iff there is no model refuting {¢™% | p € Z} U {p™¢ | ¢ € O},
while = =" © iff no model refutes {o™" | p € Z} U {¢™€ | ¢ € B},
i.e. iff no model refutes {p*° | ¢ € Z}U{p*>" | ¢ € O}. Lastly, we have
that= |=/ © iff no model refutes™ {¢*% | ¢ € E} U {p*° | p € O}.
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3. Proofs
Definition 7. A sequenthas a proof treef it follows in the usual way from
the following sequent rules. (We letn = s, —s =n,—e = w, —w = e.)
R) T v e
F7 (lpzvj
(_') I
L=
1—" (’DZJ
(=) o =
F7_30 n
L™ T,9t
(/\?5) - - Whel'6<2,j> 6 {<n7 e>7 <S7 w>}
L, (e Ay)™
F? (lpi7j7 wl’]
(N5e')  ————— where(i, j) € {(n,w),(s,e)}
L, (e Ay)™
F, (pi,e F, wi,e
(®%) ——————
L (e®¢)"°
L, gt
(®%) ——————
L, (e ®@y)"
I'lc/x & . .
(Ve & wherec is notinI" or ¢ and(z, j) € {(n,e), (s,w)}
I, Vaeph?
I, [t/x]p™
ey T heredi, ) € {(n, ), (5,¢))
I, Vap*!
(id) g where(i, j) € {{n,¢), (s, w)}
T, |ty/x "’
® 2170 where(i,j) € {(n,w), (5.6},
F7 t1 = t2l7]7 [tl/w](pl 7
This calculus can be used to define several notions of ergatlm
O
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Definition 8 We will write

e ZHT OIff {™ | ¢ € E} U {¢™° | ¢ € O} has a proof tree;

o 2 Qiff {p3° | p cZYU{p>™ | p € O} has a proof tree;

o ZHF Qiff {5 | p € E} U{p®° | ¢ € O} has a proof tree;

e =+ Oiff =" © and= -/ ©;

e ZhOiff ZF" © and=Z +H ©.
In order to check thaE  © it must clearly be shown thgty™™ | ¢ €
ZHU{p™® | ¢ € ©}anditsduakp® | ¢ € Z}U{p>" | p € O} have proof

trees. Here, for example, is one half of the proof thé&p / ) - ¢ / =
(for all rules for defined symbols, see the Appendix):

n,w S, w s,e (R)
A A U =)
(pn,w’ ¢s,w’ (pn,e (pn,w’ ¢s,w’ _npn,e
(/™)

e, P (o [ )™,

(o /)™, (¢ /)™

(e /)™, (e [ )™
And here is the other haff:

(/)
(=)

(R)
(/")

e e o )
™ P, Y Pl et ™
(@ [ )™e, ™, ™Y -
(@ [ )™e, ™, ™ (/)
(@ /)™, (¢ / —~)>" =)
(e /), (¢ [ )™

This proof method, with each proof consisting of two proefels instead of
the usual single tree, is complete.

8in many cases it may not be necessary to expand a second peofFor example, if
all formulas under consideration are classical, in theesémat they are built up using, A, V
and= only, the second tree will be isomorphic to the first, as casilyehe shown. Addition
of — will not change this; but addition @b or any of its ilk does.

!
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652 STEFAN WINTEIN AND REINHARD MUSKENS

Theorem 1 For all sets of sentences and ©:

1.EHr 0« EZE"0
22O —=EZE"Y 0
3EHe«—=z=zE0
4 ZFO«=ZE06
5,EpO<«—E=ZRO

Proof. The proof rests upon the completeness proof given in [13ht Pha-
per considers sequent calculi for a language containingptheal operators
{n,=,—,—, A, V}. Here,n is a O-place operator with the expected interpre-
tation and{n, -, —, A, }, just as{—, A, —, ®}, is functionally complete. In
[13], a sequent is defined as a set of signed (as in this papenufae to-
gether with any subset of the setsifuctural element§-~, ¥~-}. The main
sequent calculus that is considered ([13, Definition 6]}aims three sequent
rules involving structural elements. However, [13, Remaud defines an
alternative sequent calculus, called thealculus which is closely related
to that of the present paper and which does away with straicélements.
The tr-calculus consists of the following rules that areogisesent in the
calculus of this papet: (R), (=), (=), A€, ATW yne ynw - (id), and (L).

Besides these familiar rules, the tr-calculus containgat@wing rule forn:

(n) T, nbw

First note that a sequent (in the sense of our paper) has &tpeeaf and
only if it is tr-provable since ) is a derivable rule in our calculus and all
rules in our calculus are at least admissible in the tr-dascut then follows
by the results of [13] that a sequdnhas a proof tree iff no model refutés
it. The statements 1-5 follow easily from this. d

Remark 1 As Remark 5.4 in [13] explains, the use of structural eleimen
in that paper makes it possible to formulate rulesdoand® without any
violation of the subformula property. The present papemnshihat a move
to a ‘two trees’ system makes it possible to have the subftarmroperty
without structural elements.

"In [13], (R) and (L) were restricted to atomic formulae, while in the presenepaiis
atomicity constraint is lifted.
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4. Answer to a Question by Avron

In [3], Arnon Avron develops a unified tableau system, expigifour signs,
in terms of which sound and complete proof systems can beetkefor
various logics. One of the logics considered is an extensi@elnap’s four
valued logic with an appropriate implication connectivéjet is denoted as
D and defined as follows.

o WIMa, i [e]Me € {t,b)
[o > wl™ = { E : :f HM‘* ¢ {t,b}

Here, M, is a four valued model (sentences take valueg&ifi, b, n}) for a
propositional language;,., in the connectiveg—, A, Vv, D}. With the defi-
nition of O just given, the definition of such a model can be left to theleea
The semantic consequence relationfqrthat is considered by Avron is the
preservation of truth (i.e., the valuesandb are designated) as measured
by M4 models; we denote this relation ly!". Avron’s tableau system is
shown to be sound and complete with respec¢t{b.

However, the connectives of the languagig {—, A, V, D}, are, in con-
trast to the connectives—, A, —, ®} that were considered in this papeqt
truth functionally complete with respect fa,f,b,n}. About the relation
between his tableau system and connectives such aisd ®, Avron asks
the following question:

For the Belnap logic, there is a second set of connectivasigha
sometimes considered (the knowledge / information onesan C
these be captured by tableau rules too? (Avron [3, page 14])

Due to the close relation between sequent calculi and taldgstems, the
results of this paper answer this question affirmativelyldd gives tableau
expansion rules for the connectives—, A and® that correspond closely to
the Gentzen rules that were given before, but use Avronsggjtion. Avron
usesT™, T—, F* andF~ in order to sign sentences; hefrecorresponds to
ourn, —tos, T tow, andF to e.

Together with the obvious closure condition (a branch isetbif it con-
tains either{T+y, Fty} or {T~ ¢, F~p}) this readily gives characterisa-
tions of =", ="/, =7/, k=, and k on the propositional fragment of the
language (rules for the quantifiers can easily be added).rderdo check
whether= =" ©, for example, atableau fdiT ¢ | p e Z} U{FT ¢ | ¢ €
O} should be expanded, while checking whetBe="/ © requires expan-
sionof{F~¢ | p € E} U{T ¢ | ¢ € ©} and checking whethet |= O in
general requires both.
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654 STEFAN WINTEIN AND REINHARD MUSKENS
T+—|(,D T —p F+—|(,D F™ =

T T Fro Fro
T T —¢ Ft—o FmF—op

Fo Fro T ¢ T

Ttony T oAy Frondy  F oAy
Tre, Tty T o | T ¢ Fro|Fry Fp, Fo
Ttoey T ey Floey Fey
Tre, Tty T o, T Fro|Fry Fo|F oy

Table 1. Expansion rules for propositional connectives.

The tableau system given here properly extends Avron’sctérals it be-
cause the rules for and A given here correspond to Avron’s rules, Avron’s
rules forV are derivable, and his rules far are derivable once O ¢ is
taken to be an abbreviation ef(p @ — ) v 4.2 The extension is proper,
as{—,\,—,®} are functional complete while [2, Theorem 14] shows that
{—,A,V,D}is not.

While our tableau system characterisigg’” thus extends Avron’s system
characterising='", we feel that the entailment relation that correctly cap-
tures the spirit of Belnap’s logic, the one in which entailtheorresponds
with <;, is =, not|=!" (see also footnote 5).

5. Conclusion

We have shown how Belnap’s logic can be provided with an aicgBentzen
calculus that is completely natural. The price is that, inegal, every proof
now comes withtwo proof trees instead of one. While this idea may seem
strange at first, it fits well with the observation that donglof concepts is a
general phenomenon in Belnap’s logic.

Tilburg Center for Logic and Philosophy of Science
The Netherlands
E-mail: {s.wi ntein, r.a.nuskens}@vt. nl

8Note that this formula has the right semanticsa® — ¢ gets the value if ¢ has a
value in{t, b} and gets the valukotherwise.
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Appendix Gentzen Rules for

(n) 1—\’ ni,’w
L, T,y" o
(v?ew - Where<2,j> € {(TL, w>7 <S7 €>}
L, (e V)
F? (‘Dihj’ wl"j . .
(\/25) S | Where<17]> € {(TL, €>, <37 U)>}
L, (V)
T, b . .
(Fw m wherec is notinT" or ¢ and (i, j) € {(n,w), (s,e)}
I, Jze*’
T, [t/x])e™
@y DY nerei, € {(n.e). (s}
I, 3z’
T, (p”’j T, wS,j
@) ———— @x) ———
L, (p @)™ L, (p @)™
P, i,e’ i,e F, 7,W P, R
oy LA e 2 DV
L, (p@)” L, (@)
L Iy L™ Ty
(/™) — (/)
Ly (e /)™ L(p /)
F7 ¢n7w7 ¢n7w Pa Qon7w7 ¢S’w
(/™) o e (/**) o o sw
Ly (e /)™ Ly (e /)®
F, i€ F, t 7,W
(117 LW (e ﬂ
I, zp™© T, ze™®
(cnotinT or )
F, t i,e F, 7,W
sy D/ sy Dlelele
I, Yxe"° I, Yze"®

Defined Operators

(cnotinT or )
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