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A CALCULUS FOR BELNAP’S LOGIC IN WHICH EACH PROOF
CONSISTS OF TWO TREES

STEFAN WINTEIN AND REINHARD MUSKENS∗

Abstract
In this paper we introduce a Gentzen calculus for (a functionally
complete variant of) Belnap’s logic in which establishing the prov-
ability of a sequent in general requirestwo proof trees, one estab-
lishing that whenever all premises are true some conclusionis true
and one that guarantees the falsity of at least one premise ifall con-
clusions are false. The calculus can also be put to use in proving
that one statementnecessarily approximatesanother, where neces-
sary approximation is a natural dual of entailment. The calculus,
and its tableau variant, not only capture the classical connectives,
but also the ‘information’ connectives of four-valued Belnap logics.
This answers a question by Avron.

1. Introduction

In logics based on Belnap’s [5, 6] well-known bilatticeFOUR(see Figure 1)
everything gets doubled. The two truth values of classical logic are replaced
by their four possible combinations (we writet for ‘true and not false’,f
for ‘false and not true’,n for ‘neither true nor false’, andb for ‘both true
and false’),1 and there are two natural orderings on these values instead of
the single classical ordering on {true, false}. One of theseorderings,≤t,
depicted in the Hasse diagram for the logical lattice L4 in Figure 1, is con-
nected to thedegree of trutha statement may assume; the other,≤k, the
ordering in the approximation lattice A4, to itsdegree of definedness.2 Four
values bring more truth functions with them than two do and this leads to a

∗We wish to thank the anonymous referees for excellent feedback.
1Wintein [15] gives an alternative reading of Belnap’s four values in terms of theassert-

ibility anddeniabilityof statements.
2Ginzberg [10] considers a general theory of bilattices, butwe will stick to the logic

based on Belnap’sFOURhere. For general information about bilattices, see Fitting’s papers,
e.g. [9].
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doubling of logical operators.3 The classical¬, ∧ and∨ are now naturally
complemented with duals− (‘conflation’), ⊗ (‘consensus’) and⊕ (‘gulli-
bility’), and in a predicate logical setting the quantifiers∀ and∃ moreover
come with cousinsΠ andΣ.4 Also, while in classical logic one can define
entailment either as transmission of truth or, completely equivalently, trans-
mission of non-falsity (‘if the conclusion is false one of the premises must
be’), these two notions come apart in the four-valued setting, since there is
transmission of truth but not of non-falsity fromt to b, for example. Entail-
ment is naturally defined by stipulating thatϕ |= ψ if and only if the values
of ϕ andψ are in the≤t ordering in every model (for every assignment) and
this boils down to requiring that both forms of transmissionmust hold from
ϕ toψ.5

The doublings do not stop here. Entailment itself also obtains a natural
dual, for, replacing≤t in the above definition by≤k, we can say thatϕ nec-
essarily approximatesψ, ϕ |≈ ψ, if and only if the values ofϕ andψ are

3 In Belnap [5, 6] only the classical operators are considered.
4 See Fitting [9] for further motivation of these operators. One possible application of⊗

and⊕ that Fitting mentions is that they could be part of a logic programming language de-
signed for distributed implementation, a suggestion that is quite in line with Belnap’s original
motivation.

5 This is the notion of entailment considered in Belnap [5, 6],but not that of Arieli
& Avron [1], who use a single-barrelled notion. The two notions of entailment are co-
extensional on sets of formulas based on classical connectives only, but not on formulas
based on a functionally complete set of connectives or on a set of connectives that expresses
all ≤k-monotone functions. Belnap [5, page 43] is quite clear about his views on the
connection between entailment and the lattice L4. Considering the question when an
argument in his logic is a good one, he writes:

The abstract answer relies on thelogical lattice we took so much time to develop.
It is: entailment goes uphill. That is, given any sentenceA andB (compounded
from variables by negation, conjunction and disjunction),we will say thatA
entailsor impliesB just in case for each assignment of one of the four values to
the variables, the value ofA does not exceed (is less-than-or-equal-to) the value
of B.

On the same page Belnap refers to Dunn [8], who shows that preservation of truth and
preservation of non-falsity coincide for classical sentences, but he nevertheless insists on
defining entailment as preservation of truthandnon-falsity:

But I agree with the spirit of a remark of Dunn’s, which suggests that the False
really is on all fours with the True, so that it is profoundly natural to state our
account of “valid” or “acceptable” inference in a way which is neutral with respect
to the two.



“06wintein&muskens”
2012/12/9
page 645

✐

✐

✐

✐

✐

✐

✐

✐

A CALCULUS FOR BELNAP’S LOGIC 645

�
��

❅
❅❅

❅
❅❅

�
��

s

s

s

s

t

nb

f

L4 �
��

❅
❅❅

❅
❅❅

�
��

s

s

s

s

b

ft

n

A4

Figure 1. Belnap’s bilatticeFOURdepicted in terms of its
constituting lattices L4 and A4.

in the≤k ordering in every model. We feel that this notion of necessary ap-
proximation carries some interest given the pivotal role ofthe approximation
(or ‘knowledge’) ordering in the semantics of programming languages.

The main purpose of this paper is a simple one. We want to add one more
doubling to the ones mentioned already by giving a proof system for four-
valued predicate logic in which each proof consists oftwo Gentzen proof
trees, one establishing transmission of truth, the other transmission of non-
falsity. The system can also be used to show that necessary approximation
holds. In that case one proof tree again corresponds to transmission of truth
but the other to transmission of falsity, not non-falsity. While Muskens [13]
presents a Gentzen calculus in which only one proof tree is needed to estab-
lish provability, and while one tree may be thought to be nicer than two, this
advantage is offset by the fact that the system of [13] is obviously biased
towards the L4 ordering, as its sequent rules for∧, ∨, ∀ and∃ are natural
and familiar, while those for⊗, ⊕, Π andΣ come out rather convoluted.
The present calculus is more natural, with sequent rules in the second group
completely dual to those in the first. It is also more natural in the sense that
the ‘structural elements’ of [13] can be done away with (without giving up
analiticity).

Naturalness is also our defense against the objection that there are now
uniform methods by which signed (analytic) proof systems for finite val-
ued logics can be obtained (see e.g. Baaz et al. [4]). While this is clearly
an important general result, the proof systems that are obtained in particu-
lar cases are sometimes unnecessarily complicated and the system generated
for Belnap’s logic using the method of [4] is a case in point. The binary
connectives, for instance, are provided with tableau rulesthat have up to
four disjunctive clauses, while these clauses themselves may consist of sets
of signed statements rather than of single signed statements. Consider, for
example, the tableau rules forb : ϕ∧ψ andf : ϕ∧ψ obtained in this manner.
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b : ϕ ∧ ψ

t : ϕ, b : ψ | b : ϕ, t : ψ | b : ϕ, b : ψ

f : ϕ ∧ ψ

f : ϕ | f : ψ | n : ϕ, b : ψ

The proof system of the present paper exploits the fact thatt, f, n andb are
best thought of as combinations of truth values. We choose our four signs
to capture the “underlying” values of (non-)truth and (non-)falsity and, in
doing so we arrive at a proof system that is tailor made for Belnap’s logic. In
the tableau variant of our system, a signed tableau rule for abinary connec-
tive is either of disjunctive or conjunctive type and alwaysinvolves exactly
two immediate descendants. In this sense, our system resembles the tableau
calculus for first order logic of Smullyan [14].

The remainder of the paper is organized as follows. The next section gives
the syntax and semantics of Belnap’s logic; section 3 introduces the ‘two
trees’ proof system; section 4 answers a question by Avron bydiscussing
a tableau variant of this proof system which extends that of Avron [3]; and
section 5 is a conclusion. An appendix gives a series of Gentzen rules for
defined operators.

2. L4: Syntax and Semantics

In setting up the four-valued predicate logicL4 we will by and large follow
Muskens [13], and refer to this paper for discussion of the concepts involved.
The set offormulasof L4 is defined just as it is done in standard predicate
logic, except that− and⊗ are added to the familiar¬, ∧, ∀ and=. A model
is a pair〈D,I〉 whereD 6= ∅ andI is a function with as domain the language
(set of non-logical constants)L, such thatI(f) is ann-ary function onD if
f ∈ L is ann-ary function symbol andI(R) is a pair of n-ary relations
on D if R ∈ L is ann-ary relation symbol. We denote the first element
of this pair asI+(R), the second element asI−(R). We usea to denote a
(variable) assignment andaxd to denote the assignment that is likea except
for assigningd tox. The value of a termt in a modelM under an assignment
a is defined in the usual way and written as[[t]]M,a, or [[t]]M if t is closed.

Definition 1: We define the three-place relationsM |= ϕ[a] (formulaϕ is
true in modelM under assignmenta) andM =| ϕ[a] (ϕ is falsein M under
a) as follows.

1. M |= Rt1 . . . tn[a] ⇔ 〈[[t1]]
M,a, . . . , [[tn]]

M,a〉 ∈ I+(R),
M =| Rt1 . . . tn[a] ⇔ 〈[[t1]]

M,a, . . . , [[tn]]
M,a〉 ∈ I−(R);
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2. M |= t1 = t2[a] ⇔ [[t1]]
M,a = [[t2]]

M,a,
M =| t1 = t2[a] ⇔ [[t1]]

M,a 6= [[t2]]
M,a;

3. M |= ¬ϕ[a] ⇔ M =| ϕ[a],
M =| ¬ϕ[a] ⇔ M |= ϕ[a];

4. M |= −ϕ[a] ⇔ M 6=| ϕ[a],
M =| −ϕ[a] ⇔ M 6|= ϕ[a];

5. M |= ϕ ∧ ψ[a] ⇔ M |= ϕ[a] & M |= ψ[a],
M =| ϕ ∧ ψ[a] ⇔ M =| ϕ[a] or M =| ψ[a];

6. M |= ϕ⊗ ψ[a] ⇔ M |= ϕ[a] & M |= ψ[a],
M =| ϕ⊗ ψ[a] ⇔ M =| ϕ[a] & M =| ψ[a];

7. M |= ∀xϕ[a] ⇔ M |= ϕ[axd ] for all d ∈ D,
M =| ∀xϕ[a] ⇔ M =| ϕ[axd ] for somed ∈ D.

The following definition gives the connection between the elements ofFOUR
and combinations of truth and falsity.

Definition 2: The value of a formulaϕ in a modelM under an assignment
a, [[ϕ]]M,a, is defined as follows.

[[ϕ]]M,a = t iff M |= ϕ[a] andM 6=| ϕ[a],

[[ϕ]]M,a = f iff M 6|= ϕ[a] andM =| ϕ[a],

[[ϕ]]M,a = n iff M 6|= ϕ[a] andM 6=| ϕ[a],

[[ϕ]]M,a = b iff M |= ϕ[a] andM =| ϕ[a].

In this paper we will restrict all discussion to sentences (closed formulas)
and all mention of assignment functions will be dropped.

Definition 3: With Ξ andΘ sets of sentences ofL, we define the following
relations.

• Ξ |=tr Θ iff, for all modelsM, [[ϕ]]M ∈ {t, b} for all ϕ ∈ Ξ implies
[[ψ]]M ∈ {t, b} for someψ ∈ Θ

• Ξ |=nf Θ iff, for all modelsM, [[ϕ]]M ∈ {t, n} for all ϕ ∈ Ξ implies
[[ψ]]M ∈ {t, n} for someψ ∈ Θ

• Ξ |=f Θ iff, for all modelsM, [[ϕ]]M ∈ {f, b} for all ϕ ∈ Ξ implies
[[ψ]]M ∈ {f, b} for someψ ∈ Θ
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• Ξ |= Θ iff Ξ |=tr Θ andΞ |=nf Θ

• Ξ |≈ Θ iff Ξ |=tr Θ andΞ |=f Θ

Entailment (|=) and necessary approximation (|≈) are the two relations of
primary interest in this paper. Their relations to the orderings ≤t and≤k

were discussed in the introduction. They are derived relations, in the sense
that |= is defined as the preservation of truth and non-falsity, while |≈ is
defined as preservation of truth and falsity. A syntactic characterisation of
|= can therefore be obtained by laying down proof rules corresponding to
|=tr and |=nf , while one for|≈ can be given by establishing proof rules
corresponding to|=tr and|=f . We will do so in our ‘two trees’ formalism,
to be discussed in the next section.

As usual, the language will be extended with abbreviations and in fact all
truth-functions are expressible since{⊗,−,∧,¬} is functionally complete
(see Muskens [12] for a proof). We will define∨ and∃ in the standard way.
The following abbreviations may also be used.

Definition 4: We will write

n for −p⊗ ¬p (wherep is some fixed 0-place relation symbol);
b for −n;
f for b ∧ n;
t for ¬f;
ϕ⊕ ψ for −(−ϕ⊗−ψ);
ϕ @ ψ for (ϕ ∧ b) ∨ (ψ ∧ n);
ϕ / ψ for (ϕ ∧ ψ) @ (¬ϕ ∨ ψ);
Πxϕ for ∀xϕ @ ∃xϕ; and
Σxϕ for ∃xϕ @ ∀xϕ.

The first four zero-place connectives have the obvious denotation. The con-
nective⊕ is the natural dual of⊗ and denotes join in A4. A sentence of the
form ϕ @ ψ is true iff ϕ is true and false iffψ is false;ϕ / ψ is related to
Blamey’s [7] transplicationand can be read as ‘ψ, presupposingϕ’. This
formula has the value ofψ if ϕ is true, but is neither true nor false otherwise.
TheΠ andΣ quantifiers are the duals of∀ and∃ and correspond to arbitrary
meet and join in the approximation lattice A4. The operators/, Π andΣ will
play no further role in this paper, but are interesting in their own right.

The proof system of the next section will be based on the four-sided se-
quents that were used in [13], following an idea described inLangholm [11].
Here is a pictorial representation of such a sequent.
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Γ1 ∆1

Γ2 ∆2

✲

We linearise notation by attaching twosignsi andj to formulas. i can be
n (north) or s (south), j can bee (east)or w (west). The sequent displayed
above will be written as

{ϕn,w | ϕ ∈ Γ1} ∪ {ϕn,e | ϕ ∈ ∆1} ∪ {ϕs,w | ϕ ∈ Γ2} ∪ {ϕs,e | ϕ ∈ ∆2}.

The arrow in the picture is meant to signify transmission from left to right,
meaning that whenever a model verifies all sentences inΓ1 and falsifies all
sentences inΓ2 it must also either verify a sentence in∆1 or falsify a sen-
tence in∆2. If this is not the case we say that the sequent isrefuted⇀ by
some model, a notion we define as follows.

Definition 5: A modelM refutes⇀ a sequentΓ if

ϕn,w ∈ Γ =⇒ [[ϕ]]M ∈ {t, b}

ϕn,e ∈ Γ =⇒ [[ϕ]]M ∈ {f, n}

ϕs,w ∈ Γ =⇒ [[ϕ]]M ∈ {f, b}

ϕs,e ∈ Γ =⇒ [[ϕ]]M ∈ {t, n}

The dual notion is transmission from right to left, i.e. whenever a model
falsifies all sentences in∆1 and verifies all sentences in∆2 it also falsifies
a sentence inΓ1 or verifies a sentence inΓ2. The corresponding notion of
refutation↼ can be defined directly, but also in the following way.

Definition 6: LetΓ be a sequent. We define thedualof Γ, dual(Γ), to be the
sequent which results fromΓ by simultaneously replacing every superscript
n in Γ by s, everys by n, everyw by e, and everye by w. A modelM
refutes↼ a sequentΓ if M refutes⇀ dual(Γ). M refutesΓ if M either
refutes⇀ or refutes↼ Γ.

Ξ |=tr Θ iff there is no model refuting⇀ {ϕn,w | ϕ ∈ Ξ} ∪ {ϕn,e | ϕ ∈ Θ},
while Ξ |=nf Θ iff no model refutes↼ {ϕn,w | ϕ ∈ Ξ} ∪ {ϕn,e | ϕ ∈ Θ},
i.e. iff no model refutes⇀ {ϕs,e | ϕ ∈ Ξ}∪{ϕs,w | ϕ ∈ Θ}. Lastly, we have
thatΞ |=f Θ iff no model refutes⇀ {ϕs,w | ϕ ∈ Ξ} ∪ {ϕs,e | ϕ ∈ Θ}.
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3. Proofs

Definition 7: A sequenthas a proof treeif it follows in the usual way from
the following sequent rules. (We let−n = s,−s = n,−e = w,−w = e.)

(R)
Γ, ϕi,w, ϕi,e

(¬)
Γ, ϕi,j

Γ,¬ϕ−i,j

(−)
Γ, ϕi,j

Γ,−ϕ−i,−j

(∧ne
sw)

Γ, ϕi,j Γ, ψi,j

Γ, (ϕ ∧ ψ)i,j
, where〈i, j〉 ∈ {〈n, e〉, 〈s,w〉}

(∧nw
se )

Γ, ϕi,j , ψi,j

Γ, (ϕ ∧ ψ)i,j
, where〈i, j〉 ∈ {〈n,w〉, 〈s, e〉}

(⊗ne
se )

Γ, ϕi,e Γ, ψi,e

Γ, (ϕ⊗ ψ)i,e

(⊗nw
sw )

Γ, ϕi,w, ψi,w

Γ, (ϕ⊗ ψ)i,w

(∀nesw)
Γ, [c/x]ϕi,j

Γ,∀xϕi,j
, wherec is not inΓ orϕ and〈i, j〉 ∈ {〈n, e〉, 〈s,w〉}

(∀nwse )
Γ, [t/x]ϕi,j

Γ,∀xϕi,j
, where〈i, j〉 ∈ {〈n,w〉, 〈s, e〉}

(id)
Γ, t = ti,j

, where〈i, j〉 ∈ {〈n, e〉, 〈s,w〉}

(L)
Γ, [t2/x]ϕ

i′,j′

Γ, t1 = t2
i,j, [t1/x]ϕ

i′,j′
, where〈i, j〉 ∈ {〈n,w〉, 〈s, e〉}.

This calculus can be used to define several notions of entailment.
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Definition 8: We will write

• Ξ ⊢tr Θ iff {ϕn,w | ϕ ∈ Ξ} ∪ {ϕn,e | ϕ ∈ Θ} has a proof tree;

• Ξ ⊢nf Θ iff {ϕs,e | ϕ ∈ Ξ} ∪ {ϕs,w | ϕ ∈ Θ} has a proof tree;

• Ξ ⊢f Θ iff {ϕs,w | ϕ ∈ Ξ} ∪ {ϕs,e | ϕ ∈ Θ} has a proof tree;

• Ξ ⊢ Θ iff Ξ ⊢tr Θ andΞ ⊢nf Θ;

• Ξ |∼ Θ iff Ξ ⊢tr Θ andΞ ⊢f Θ.

In order to check thatΞ ⊢ Θ it must clearly be shown that{ϕn,w | ϕ ∈
Ξ}∪{ϕn,e | ϕ ∈ Θ} and its dual{ϕs,e | ϕ ∈ Ξ}∪{ϕs,w | ϕ ∈ Θ} have proof
trees. Here, for example, is one half of the proof that¬(ϕ / ψ) ⊢ ϕ / ¬ψ
(for all rules for defined symbols, see the Appendix):

(R)
ϕn,w, ψs,w, ϕn,e

(R)
ϕn,w, ψs,w, ψs,e

(¬)
ϕn,w, ψs,w, ¬ψn,e

(/ne)
ϕn,w, ψs,w, (ϕ / ¬ψ)n,e,

(/sw)
(ϕ / ψ)s,w, (ϕ / ¬ψ)n,e

(¬)
¬(ϕ / ψ)n,w, (ϕ / ¬ψ)n,e

And here is the other half:6

(R)
ϕn,e, ϕn,w, ψn,w

(R)
ψn,e, ϕn,w, ψn,w

(/ne)
(ϕ / ψ)n,e, ϕn,w, ψn,w

(¬)
(ϕ / ψ)n,e, ϕn,w, ¬ψs,w

(/sw)
(ϕ / ψ)n,e, (ϕ / ¬ψ)s,w

(¬)
¬(ϕ / ψ)s,e, (ϕ / ¬ψ)s,w

This proof method, with each proof consisting of two proof trees instead of
the usual single tree, is complete.

6 In many cases it may not be necessary to expand a second proof tree. For example, if
all formulas under consideration are classical, in the sense that they are built up using¬, ∧, ∀
and= only, the second tree will be isomorphic to the first, as can easily be shown. Addition
of − will not change this; but addition of⊗ or any of its ilk does.
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Theorem 1: For all sets of sentencesΞ andΘ:

1. Ξ ⊢tr Θ ⇐⇒ Ξ |=tr Θ

2. Ξ ⊢nf Θ ⇐⇒ Ξ |=nf Θ

3. Ξ ⊢f Θ ⇐⇒ Ξ |=f Θ

4. Ξ ⊢ Θ ⇐⇒ Ξ |= Θ

5. Ξ |∼ Θ ⇐⇒ Ξ |≈ Θ

Proof. The proof rests upon the completeness proof given in [13]. That pa-
per considers sequent calculi for a language containing thelogical operators
{n,=,¬,−,∧,∀}. Here,n is a 0-place operator with the expected interpre-
tation and{n,¬,−,∧, }, just as{¬,∧,−,⊗}, is functionally complete. In
[13], a sequent is defined as a set of signed (as in this paper) formulae to-
gether with any subset of the set ofstructural elements{6⇀, 6↽}. The main
sequent calculus that is considered ([13, Definition 6]) contains three sequent
rules involving structural elements. However, [13, Remark5.3] defines an
alternative sequent calculus, called thetr-calculus, which is closely related
to that of the present paper and which does away with structural elements.
The tr-calculus consists of the following rules that are also present in the
calculus of this paper:7 (R), (¬), (−), ∧ne

sw, ∧nw
se , ∀nesw, ∀nwse , (id), and(L).

Besides these familiar rules, the tr-calculus contains thefollowing rule forn:

(n)
Γ, ni,w

First note that a sequent (in the sense of our paper) has a proof tree if and
only if it is tr-provable, since (n) is a derivable rule in our calculus and all
rules in our calculus are at least admissible in the tr-calculus. It then follows
by the results of [13] that a sequentΓ has a proof tree iff no model refutes⇀

it. The statements 1-5 follow easily from this. �

Remark 1: As Remark 5.4 in [13] explains, the use of structural elements
in that paper makes it possible to formulate rules for⊗ and⊕ without any
violation of the subformula property. The present paper shows that a move
to a ‘two trees’ system makes it possible to have the subformula property
without structural elements.

7 In [13], (R) and(L) were restricted to atomic formulae, while in the present paper this
atomicity constraint is lifted.
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4. Answer to a Question by Avron

In [3], Arnon Avron develops a unified tableau system, exploiting four signs,
in terms of which sound and complete proof systems can be defined for
various logics. One of the logics considered is an extensionof Belnap’s four
valued logic with an appropriate implication connective, which is denoted as
⊃ and defined as follows.

[[ϕ ⊃ ψ]]M4 =

{

[[ψ]]M4 , if [[ϕ]]M4 ∈ {t, b}
t, if [[ϕ]]M4 6∈ {t, b}

Here,M4 is a four valued model (sentences take values in{t, f, b, n}) for a
propositional language,L⋆, in the connectives{¬,∧,∨,⊃}. With the defi-
nition of⊃ just given, the definition of such a model can be left to the reader.
The semantic consequence relation forL⋆ that is considered by Avron is the
preservation of truth (i.e., the valuest andb are designated) as measured
by M4 models; we denote this relation by|=tr

⋆ . Avron’s tableau system is
shown to be sound and complete with respect to|=tr

⋆ .
However, the connectives of the languageL⋆, {¬,∧,∨,⊃}, are, in con-

trast to the connectives{¬,∧,−,⊗} that were considered in this paper,not
truth functionally complete with respect to{t, f, b, n}. About the relation
between his tableau system and connectives such as− and⊗, Avron asks
the following question:

For the Belnap logic, there is a second set of connectives that is
sometimes considered (the knowledge / information ones). Can
these be captured by tableau rules too? (Avron [3, page 14])

Due to the close relation between sequent calculi and tableau systems, the
results of this paper answer this question affirmatively. Table 1 gives tableau
expansion rules for the connectives¬, −, ∧ and⊗ that correspond closely to
the Gentzen rules that were given before, but use Avron’s [3]notation. Avron
usesT+, T−, F+ andF− in order to sign sentences; here+ corresponds to
ourn, − to s, T tow, andF to e.

Together with the obvious closure condition (a branch is closed if it con-
tains either{T+ϕ,F+ϕ} or {T−ϕ,F−ϕ}) this readily gives characterisa-
tions of |=tr, |=nf , |=f , |=, and |≈ on the propositional fragment of the
language (rules for the quantifiers can easily be added). In order to check
whetherΞ |=tr Θ, for example, a tableau for{T+ϕ | ϕ ∈ Ξ} ∪ {F+ϕ | ϕ ∈
Θ} should be expanded, while checking whetherΞ |=nf Θ requires expan-
sion of{F−ϕ | ϕ ∈ Ξ} ∪ {T−ϕ | ϕ ∈ Θ} and checking whetherΞ |= Θ in
general requires both.
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T
+¬ϕ

T
−ϕ

T
−¬ϕ

T
+ϕ

F
+¬ϕ

F
−ϕ

F
−¬ϕ

F
+ϕ

T
+−ϕ

F
−ϕ

T
−−ϕ

F
+ϕ

F
+−ϕ

T
−ϕ

F
−−ϕ

T
+ϕ

T
+ϕ ∧ ψ

T
+ϕ, T+ψ

T
−ϕ ∧ ψ

T
−ϕ | T−ψ

F
+ϕ ∧ ψ

F
+ϕ | F+ψ

F
−ϕ ∧ ψ

F
−ϕ, F−ψ

T
+ϕ⊗ ψ

T
+ϕ, T+ψ

T
−ϕ⊗ ψ

T
−ϕ, T−ψ

F
+ϕ⊗ ψ

F
+ϕ | F+ψ

F
−ϕ⊗ ψ

F
−ϕ | F−ψ

Table 1. Expansion rules for propositional connectives.

The tableau system given here properly extends Avron’s. It extends it be-
cause the rules for¬ and∧ given here correspond to Avron’s rules, Avron’s
rules for∨ are derivable, and his rules for⊃ are derivable onceϕ ⊃ ψ is
taken to be an abbreviation of¬(ϕ @ −ϕ) ∨ ψ.8 The extension is proper,
as{¬,∧,−,⊗} are functional complete while [2, Theorem 14] shows that
{¬,∧,∨,⊃} is not.

While our tableau system characterising|=tr thus extends Avron’s system
characterising|=tr

⋆ , we feel that the entailment relation that correctly cap-
tures the spirit of Belnap’s logic, the one in which entailment corresponds
with ≤t, is |=, not |=tr (see also footnote 5).

5. Conclusion

We have shown how Belnap’s logic can be provided with an analytic Gentzen
calculus that is completely natural. The price is that, in general, every proof
now comes withtwo proof trees instead of one. While this idea may seem
strange at first, it fits well with the observation that doubling of concepts is a
general phenomenon in Belnap’s logic.

Tilburg Center for Logic and Philosophy of Science
The Netherlands

E-mail: {s.wintein, r.a.muskens}@uvt.nl

8 Note that this formula has the right semantics, asϕ @ −ϕ gets the valuet if ϕ has a
value in{t, b} and gets the valuef otherwise.
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Appendix Gentzen Rules for Defined Operators

(n)
Γ, ni,w

(∨nw
se )

Γ, ϕi,j Γ, ψi,j

Γ, (ϕ ∨ ψ)i,j
, where〈i, j〉 ∈ {〈n,w〉, 〈s, e〉}

(∨ne
sw)

Γ, ϕi,j , ψi,j

Γ, (ϕ ∨ ψ)i,j
, where〈i, j〉 ∈ {〈n, e〉, 〈s,w〉}

(∃nwse )
Γ, [c/x]ϕi,j

Γ,∃xϕi,j
, wherec is not inΓ orϕ and〈i, j〉 ∈ {〈n,w〉, 〈s, e〉}

(∃nesw)
Γ, [t/x]ϕi,j

Γ,∃xϕi,j
, where〈i, j〉 ∈ {〈n, e〉, 〈s,w〉}

(@ne
nw)

Γ, ϕn,j

Γ, (ϕ @ ψ)n,j
(@se

sw)
Γ, ψs,j

Γ, (ϕ @ ψ)s,j

(⊕ne
se )

Γ, ϕi,e, ψi,e

Γ, (ϕ⊕ ψ)i,e
(⊕nw

sw )
Γ, ϕi,w Γ, ψi,w

Γ, (ϕ⊕ ψ)i,w

(/ne)
Γ, ϕn,e Γ, ψn,e

Γ, (ϕ / ψ)n,e
(/se)

Γ, ϕn,e Γ, ψs,e

Γ, (ϕ / ψ)s,e

(/nw)
Γ, ϕn,w, ψn,w

Γ, (ϕ / ψ)n,w
(/sw)

Γ, ϕn,w, ψs,w

Γ, (ϕ / ψ)s,w

(Πne
se )

Γ, [c/x]ϕi,e

Γ,Πxϕi,e
(Πnw

sw )
Γ, [t/x]ϕi,w

Γ,Πxϕi,w

(c not inΓ or ϕ)

(Σne
se )

Γ, [t/x]ϕi,e

Γ,Σxϕi,e
(Σnw

sw )
Γ, [c/x]ϕi,w

Γ,Σxϕi,w

(c not inΓ orϕ)


