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EXTENDING THE STANDARD FORMAT OF ADAPTIVE LOGICS
TO THE PRIORITIZED CASE∗

FREDERIK VAN DE PUTTE AND CHRISTIAN STRASSER

Abstract
This paper introduces a new format for reasoning with prioritized
standards of normality. It is applicable in a broad variety of con-
texts, e.g. dealing with (possibly conflicting) prioritized belief bases
or combining different reasoning methods in a prioritized way. The
format is a generalization of the standard format of adaptive logics
(see [4]). Every logic that is formulated within it has a straightfor-
ward semantics in the style of Shoham’s selection semantics(see
[22]) and a dynamic proof theory. Furthermore, it can count on a
rich meta-theory that inherits the attractive features of the standard
format, such as soundness and completeness, reflexivity, idempo-
tence, cautious monotonicity, and many other properties.

1. Introduction

In this paper, we present a format for adaptive logics (henceforth ALs), that
is a generalization of the standard format of ALs. The new format enables
one to deal with prioritized defeasible reasoning. Let us inthe following
introduce the main ideas behind ALs and motivate the extension to the pri-
oritized case.

1.1. Adaptive Logics

ALs are powerful formal systems that model and explicate several forms of
human reasoning: reasoning with inconsistent premises [1], inductive gen-
eralization [6], abduction [18], reasoning on the basis of conflicting norms

∗Research for this paper was supported by subventions from Ghent University and from
the Fund for Scientific Research – Flanders. We are greatly indebted to Mathieu Beirlaen,
Rafal Urbaniak and the two anonymous referees for their comments to previous versions.
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[19], argumentation [26], etc.1 Many consequence relations from the litera-
ture have been reformulated as ALs, see e.g. [8, 12, 23, 30].

Generally speaking, ALs are developed to capture defeasible reasoning
forms (DRFs), reasoning forms in which certain inferences may be retracted
in view of later insights. A distinctive feature of ALs is their dynamic proof
theory — most of the available systems that model DRFs lack a proof theory.
Scholars often highlight the non-monotonic character of the consequence re-
lation that is supposed to represent a DRF, but neglect the internal dynam-
ics that is characteristic of the way we reason towards consequences. The
growing insight into the given information (resp. premises) may cause the
withdrawal of previously drawn inferences, even if no new information is
available.2 The proof theory of ALs nicely captures this internal dynamics.

One of the most important developments within the AL programis the
definition of a canonical format, the so-calledstandard formatfor ALs. This
format encompasses a generic proof theory and semantics. A rich and attrac-
tive meta-theory has been shown to hold generically for all ALs formulated
in the standard format (see [4]): they are sound and complete, their conse-
quence relation is idempotent, cautiously monotonic, etc.Most ALs have
been successfully expressed within this format, whence it provides a good
basis for a unifying study of DRFs. Let us list some of the key features of
the standard format — technical details and a discussion of its meta-theory
will be given in Section 2.

Every AL in standard format is characterized by a triple: (i)a lower limit
logic (henceforth LLL), (ii) a set of abnormalitiesΩ and (iii) a strategy. The
LLL is a monotonic logic, the rules of which are unconditionally valid in
the AL. The AL strengthens its LLL by considering a certain set of formulas
(the elements ofΩ) as abnormal, and by interpreting premises “as normally
as possible”. The precise interpretation of the latter phrase depends on the
strategy of the AL — the details will be spelled out in Section2. Hence we
can say that the AL equips its LLL with a certain standard of normality.

For example, the inconsistency-adaptive logicCLuNm from [1] strength-
ens its LLL, the paraconsistent logicCLuN, by interpreting premises as con-
sistently as possible. Hence its standard of normality reads: “contradictions
are false”. WhileCLuNm does not lead to triviality in the face of an incon-
sistent premise set, it retains a large number of inferencesthat are valid in
classical logic.

In adaptive proofs, this is realized by deriving formulas ona condition.
For instance,CLuNm allows for the application of Disjunctive Syllogism to
A ∨ ¬B andB on the condition thatB behaves consistently. Whether we

1 Unpublished papers in the reference section (and many others) are available from the
internet addresshttp://logica.UGent.be/centrum/writings/.

2 Pollock dubs this the diachronic defeasibility of defeasible inferences [21].
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can depend on the consistent behavior of a formula, may change with the
insights we gain and the new information we obtain. Hence some formula
occurring at a line of a proof may count as derived at some point and as not
derived at another point in the proof. This is determined by its condition,
other formulas derived so far in the proof, and the adaptive strategy.

ALs employ a selection semantics in the vein of Shoham [22]. From the
set of the LLL-models of the premises, ALs select a subset of models that
verify “as few abnormalities as possible”. Again, what is meant by “as few
as possible” depends on the strategy.

1.2. Prioritized Adaptive Logics

This paper deals with prioritized ALs. Agents often make useof various
reasoning methods, where some of these methods take precedence over oth-
ers. For instance, a scientist may reason towards inductivegeneralizations,
but only in as far as this does not run counter to his (defeasible) background
knowledge. He may even infer some abductive consequences from his in-
duced generalizations. Also, some standards of normality may themselves
have a prioritized flavor. For example, where we start from a (possibly con-
flicting) set of obligations, each having a certain weight, we may want to
deal with the conflicts in a way that is sensitive to this weight.

We will henceforth use the name “prioritized ALs” to refer toALs that
model such processes. The first prioritized ALs were developed to cap-
ture reasoning with prioritized belief bases (see Section 3.3 for an example).
There are also examples in the literature of prioritized logics for inductive
generalization [6] and prioritized inconsistency-adaptive logics [5, 3]. Ex-
amples of prioritized ALs that combine different reasoningmethods can be
found in [17, 16, 25, 26].

While ALs in the standard format are well-studied, prioritized ALs have
been comparatively neglected.3 The standard format of ALs does not incor-
porate prioritized ALs. The most straightforward way to achieve a prioritized
system is to superimpose ALs in standard format. Roughly speaking, this is
done as follows: whereAL1,AL2, . . . are ALs in standard format — each
of them taking care of one particular set of abnormalities —,andCnALi(Γ)
denotes theALi-consequence set ofΓ, define the prioritized logicPAL by

CnPAL(Γ) = “ . . . CnAL3(CnAL2(CnAL1(Γ))) . . .”

In other words,PAL boils down to the application ofAL1 toΓ, next ofAL2
to the consequences obtained so far, nextAL3, and so on. Promising as this
approach may seem, some rather discouraging results are available forPAL,

3There is some work forthcoming though, namely [27, 7, 24]



“05vdputte&strasser
2012/12/9
page 604

✐

✐

✐

✐

✐

✐

✐

✐

604 FREDERIK VAN DE PUTTE AND CHRISTIAN STRASSER

such as the lack of soundness, completeness, and idempotence.4 Moreover,
there has been a substantial lack of meta-theory on these combinations of
ALs.

Starting from Section 3, we will depart from the above approach, and de-
velop a new format for prioritized ALs that cannot be reducedto (the com-
bination of) ALs in standard format. This new format is very close to the
standard format in numerous respects. It also makes use of the characteriza-
tion by a triple, but now replacing the set of abnormalitiesΩ by a sequence of
sets of abnormalities〈Ω1,Ω2, . . .〉, where the different subscripts of the sets
refer to their priority ranking. Both proof theory and semantics of the new
format have the same overall structure as the standard format. The difference
is that the strategy is adjusted to the prioritized setting.

Since the new format cannot be reduced to the standard format, we have
to re-establish a lot of meta-theoretic results. However, in view of the strong
similarity with the standard format, much of the work can be easily achieved
through an adaptation of the meta-proofs from [4, 7]. As a result, the new
format inherits most if not all of the nice properties of the standard format.
Last but not least, every AL in standard format can be characterized as a
logic in the new format as well. In view of this, we can safely claim that the
new format provides a generalization of the old one.

2. Flat Adaptive Logics

In this section, the standard format of ALs is spelled out. This standard
format unifies a broad range of what we will henceforth callflat ALs. Flat
ALs stand in contradistinction to the prioritized ALs we introduce in Section
3. We only explain the general characteristics of the standard format here,
and refer to [4] for more details, examples and meta-theoretic proofs. Before
we start, let us introduce some conventions.

Throughout this paper, all formulas are assumed to be finite strings. Where
W is the set of closed formulas of a formal languageL, we define a logicL
as a functionf : ℘(W ) → ℘(W ). L may be characterized by a proof theory,
by a semantics or by both. WhereΓ ⊆ W andA ∈ W , we useΓ ⊢L A
to denote thatA is L-derivable fromΓ. Let CnL(Γ) = {A | Γ ⊢L A} be
theL-consequence set ofΓ. WhereM is aL-model andA ∈ W , we write
M  A to denote thatA is true inM . M is aL-model ofΓ ⊆ W iff it is a
L-model andM  A for all A ∈ Γ. The set ofL-models ofΓ is denoted by
ML(Γ). We say thatA ∈ W is a semanticL-consequence ofΓ, Γ |=L A iff
A is verified by allL-models ofΓ.

4 [24] introduces some exceptional cases in which soundness and completeness is guar-
anteed.
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2.1. The Standard Format

General Characterization.Henceforth, we say thatL is a Tarski-logic iff it is
reflexive, transitive and monotonic. Every adaptive logic in standard format
is characterized by a triple:

1. A lower limit logic LLL: a compact Tarski-logic that has a proof
theory and a characteristic semantics

2. A set of abnormalitiesΩ: a set of formulas, characterized by a (pos-
sibly restricted) logical formF; or a union of such sets

3. An adaptive strategy: Reliability or Minimal Abnormality

The strategy is indicated by a superscript:ALr for ALs that have Reli-
ability as their strategy,ALm for those that have Minimal Abnormality as
strategy. Many definitions and theorems are applicable to both classes of
logics. In that case, we use the generic nameAL.

The logicLLL is a function℘(W) → ℘(W), whereW is the set of closed
formulas of a formal language, henceforth denoted byL. As mentioned in
the introduction,AL equipsLLL with a certain standard of normality. To
express statements concerning normality in the object language, a distinct
set of classical connectives is used. How this is done precisely, requires
some explanation.

The additional classical connectives are noted by a check:¬̌, ∨̌, ∧̌, ⊃̌, and
for the predicative case alsǒ∃, ∀̌. The languageL+ is obtained by extending
L with the checked connectives, where it is assumed that thesesymbols are
not inL. The set of closed formulas ofL+, W+ is the closure ofW under
the checked connectives. Unless specified differently, we henceforth useΓ
as a metavariable for subsets ofW+.

To model inferences on the basis ofL+, LLL is upgraded toLLL+ :
℘(W+) → ℘(W+). To prepare for semantics ofLLL+ : ℘(W+) → ℘(W+),
we define a model validity relation+ that extends the validity relation
of LLL, as follows. LetM be anLLL-model. Define (1) for allA ∈ W:
M + A iff M  A, (2) for all A ∈ W+: M 6+ A iff M + ¬̌A, (3)
for all A,B ∈ W+: (M + A orM + B) iff M + A ∨̌B, and likewise
for the other checked connectives. Henceforth, we say thatM is anLLL+-
model ofΓ ⊆ W+, M ∈ MLLL+(Γ) iff M is anLLL-model andM + A
for everyA ∈ Γ. We writeΓ |=LLL+ A iff for all LLL

+-modelsM of Γ:
M + A.

In the standard format, a sound and complete axiomatizationfor LLL+ is
assumed to be given.5 Note that in view of its semantics,LLL+ is a compact

5WhereLLL is supraclassical, one can obtain the axiomatization forLLL
+ by a generic

procedure. However, for the sake of generality, we include logicsLLL that have rather weak
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Tarski-logic and it is aL-conservative extension ofLLL: for everyΓ ⊆ W,
CnLLL(Γ) ∩W = CnLLL+(Γ) ∩W.

Every logicAL is a function℘(W+) → ℘(W+). SinceAL was intended
to explicate defeasible reasoning processes on the basis ofpremises inL,
premises ofAL logic are often assumed to be subsets ofW. One possible
interpretation of the relation betweenAL, L andL+ is thatAL provides an
explication of a reasoning based on formulas inL, but that for this explica-
tion, it uses formulas inL+ — this will become clear when we present the
AL-proof theory.

The set of abnormalitiesΩ ⊆ W+ represents those formulas thatAL as-
sumes to be false “as much as possible”, in view of the premises.6 The
phrase “as much as possible” can have various interpretations — every such
interpretation corresponds to an adaptive strategy.7

Every flat AL also has anupper limit logicULL : ℘(W+) → ℘(W+),
which boils down to enforcing the standard of normality axiomatically. In
the remainder of this paper, letΘ¬̌ = {¬̌A | A ∈ Θ} for anyΘ ⊆ W+.
Syntactically,ULL is defined as follows:Γ ⊢ULL A iff Γ∪Ω¬̌ ⊢LLL+ A. Se-
mantically, we speak ofnormal modelsas thoseLLL+-modelsM for which
M + ¬̌A for everyA ∈ Ω. Γ is a normal premise setiff it has normal
models. Finally,Γ |=ULL A iff for every normal modelM of Γ,M LLL+ A.

Semantics.Before we come to theAL-semantics, we first need a few extra
definitions. A Dab-formulaDab(∆) is the checked disjunction of the mem-
bers of a finite∆ ⊆ Ω. Where∆ = {A},Dab(∆) denotesA; where∆ = ∅,
∨̌Dab(∆) denotes the empty string. Where∆ 6= ∅, Dab(∆) is a minimal
Dab-consequence ofΓ iff Γ ⊢LLL+ Dab(∆) and there is no∆′ ⊂ ∆ for
whichΓ ⊢LLL+ Dab(∆′).

WhereDab(∆1),Dab(∆2), . . . are the minimal Dab-consequences ofΓ,
let Σ(Γ) = {∆1,∆2, . . .}. We say thatU(Γ) =

⋃
Σ(Γ) is the set ofun-

reliable formulas with respect toΓ. Finally, whereM is aLLL+-model, its
abnormal partAb(M) is the set{B ∈ Ω |M + B}.

As mentioned in the introduction, ALs have a semantics similar to Sho-
ham’s preferential semantics [22]: from the set ofLLL

+-models ofΓ, AL

and non-standard connectives, whence it becomes a lot tougher to find a generic procedure
that gives a sound and complete axiomatization forLLL

+. Nevertheless, for concrete cases,
the adaptive logician’s job of devising a syntax forLLL

+ will usually be fairly easy.
6 In some papers on ALs, it is required that for some or allA ∈ Ω, 0LLL+ A and0LLL+

¬̌A. This restriction is useful to rule out ALs that have no sensible applications; however,
there is no technical problem with allowing for degenerate cases in which all abnormalities
areLLL+-theorems, or all abnormalities are trivialized byLLL

+.
7 Other strategies then Reliability and Minimality are e.g. Counting, Normal Selections

and the Flip-Flop-Strategy. These are strictly speaking not part of the Standard Format, but
can be obtained from it under a translation — see [7, Chapter 6].
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selects a subset of models in view of their abnormal part. Theprecise crite-
rion for a model to be selected depends on the strategy:

Definition 1: M ∈ MALr(Γ) iff M ∈ MLLL+(Γ) andAb(M) ⊆ U(Γ).

Definition 2: M ∈ MALm(Γ) iff M ∈ MLLL+(Γ) and there is noM ′ ∈
MLLL+(Γ) such thatAb(M ′) ⊂ Ab(M).

MALr(Γ) is called the set ofreliable models,MALm(Γ) the set of⊂-
minimally abnormalmodels, or more briefly,minimally abnormalmodels.

Although the above definition ofMALm(Γ) is more direct, we can also
define the semantics of Minimal Abnormality in terms of the minimal Dab-
consequences ofΓ. This requires some notational preparation. LetI ⊆ N

be an index set,Σ = {∆i | i ∈ I} and for everyi ∈ I, ∆i ⊆ Ω. We say
thatϕ ⊆ Ω is a choice setof Σ iff for every i ∈ I, ϕ ∩ ∆i 6= ∅. For the
border case whereΣ = ∅, this means that every setϕ ⊆ Ω is a choice set of
Σ, including the empty set.
ϕ is a⊂-minimal choice set ofΣ iff there is no choice setψ of Σ such

thatψ ⊂ ϕ. In the context of the standard format, we speak of “minimal
choice sets” to refer to “⊂-minimal choice sets”. The following is proven in
[7, Chapter 5]:

Fact 1: If every∆ ∈ Σ is finite, thenΣ has minimal choice sets.[7, Fact
5.2.1]

Φ(Γ) is the set of minimal choice sets ofΣ(Γ). Note that whenΣ(Γ) = ∅,
Φ(Γ) = {∅}. It is easily provable thatU(Γ) =

⋃
Φ(Γ). Also, remark that

since all the members ofΣ(Γ) are finite,Φ(Γ) 6= ∅ for everyΓ ⊆ W by Fact
1. The following theorem was proven in [4]:

Theorem 1: M ∈ MALm(Γ) iff (M ∈ MLLL+(Γ) andAb(M) ∈ Φ(Γ)).

From this it follows immediately that every minimally abnormal model is
a reliable model:Ab(M) ∈ Φ(Γ) implies thatAb(M) ⊆ U(Γ).

Proof Theory. The proof theory of ALs mirrors the dynamic character of
defeasible reasoning forms. EveryAL-proof consists of lines that have four
elements: a line numberi, a formulaA, a justification (consisting of a series
of line numbers and a derivation rule) and a condition∆ ⊆ Ω. WhereΓ is
the set of premises, the inference rules are given by:
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PREM IfA ∈ Γ:
...

...
A ∅

RU If A1, . . . , An ⊢LLL+ B: A1 ∆1

...
...

An ∆n

B ∆1 ∪ . . . ∪∆n

RC If A1, . . . , An ⊢LLL+ B ∨̌Dab(Θ) A1 ∆1

...
...

An ∆n

B ∆1 ∪ . . . ∪∆n ∪Θ

A stageof a proof can be seen as a (countable) sequence of lines, obtained
by the application of the above rules. A proof is a (countable) sequence
of stages. Every proof starts off with stage 1. Adding a line to a proof by
applying one of the rules of inference brings the proof to a successor stage,
which is the sequence of all lines written so far. Notably, a new line can
be added anywhere in the proof as long as the inference rules are used. An
extensionof a proof at stages is simply the same proof at a later stages′. In
view of the inference rules, the condition of any linel is necessarily finite,
and the following lemma holds:

Lemma 1: There is anAL-proof fromΓ that contains a line at whichA is
derived on a condition∆ ⊆ Ω iff Γ ⊢LLL+ A ∨̌Dab(∆). [4, Lemma 1]

A distinguishing feature of adaptive proofs is the marking definition. At
every stage of a proof, a marking definition — see below — determines for
each line in the proof whether it is marked or not. If a line that has as its
second elementA is marked at stages, this indicates that according to our
best insights at this stage,A cannot be considered derivable. If the line is
unmarked at stages, we say thatA is derived at stages of the proof. To
prepare for the marking definitions, we need some more conventions.

Where∅ 6= ∆ ⊂ Ω,Dab(∆) is a Dab-formula at stages of a proof iff it is
the second element of a line at stages with an empty condition.Dab(∆) is a
minimalDab-formula at stages iff there is no other Dab-formulaDab(∆′) at
stages for which∆′ ⊂ ∆. WhereDab(∆1),Dab(∆2), . . . are the minimal
Dab-formulas at stages of a proof, letΣs(Γ) = {∆1,∆2, . . .}. Us(Γ) =⋃

Σs(Γ) and letΦs(Γ) be the set of minimal choice sets ofΣs(Γ). By Fact
1,Φs(Γ) 6= ∅ at every stages of a proof fromΓ.
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Definition 3: ALr-Marking: a line l is marked at stages iff, where∆ is its
condition,∆ ∩ Us(Γ) 6= ∅.

Definition 4: ALm-Marking: a linel with formulaA is marked at stages iff,
where its condition is∆: (i) there is noϕ ∈ Φs(Γ) such thatϕ ∩∆ = ∅, or
(ii) for a ϕ ∈ Φs(Γ), there is no line on whichA is derived on a conditionΘ
for whichΘ ∩ ϕ = ∅.

Put differently: where the strategy is Minimal Abnormality, a line with
formulaA is unmarked at stages iff its condition has an empty intersection
with at least oneϕ ∈ Φs(Γ), and for everyψ ∈ Φs(Γ), there is a line on
whichA is derived on a condition∆ such that∆ ∩ ψ = ∅. As a line may
be marked at stages, unmarked at a later stages′ and marked again at a still
later stages′′, we also define a stable notion of derivability.

Definition 5: A is finally derivedfromΓ on linel of a finite stages iff (i) A is
the second element of linel, (ii) line l is unmarked at stages, and (iii) every
extension of the proof at stages, in which linel is marked may be further
extended in such a way that linel is unmarked again.

Definition 6: Γ ⊢AL A iff A is finally derived on a line of anAL-proof from
Γ.

2.2. An Example: the logicCLuNm

General Characterization ofCLuNm. In the introduction, we already men-
tioned the idea behind inconsistency-adaptive logics. Theexample we will
use to illustrate the standard format is one such logic:CLuNm. For reasons
of simplicity, we only consider the propositional fragmentof this system.

The lower limit of CLuNm is CLuN, which stands for “ClassicalLogic
with gluts for theNegation”. CLuN is a monotonic paraconsistent logic,
defined by full positiveCL together with excluded middle (e.g. by the axiom
(A ∧ ¬A) ⊃ ¬A). This means thatCLuN invalidates disjunctive syllogism:
{A,¬A ∨ B} 0CLuN A. CLuN

+ is obtained by enrichingCLuN with the
checked connectives as described above.

The set of abnormalities ofCLuNm is {A ∧¬A | A ∈ W}. Hence contra-
dictions (with respect to any formulaA ∈ W) are avoided as much as possi-
ble. As a result, we obtain a much richer consequence set thanCnCLuN(Γ),
without trivializing inconsistent premises setsΓ ⊆ W.

Example of aCLuNm-proof. Consider the premise setΓ1 = {p,¬p ∨ q,¬q,
¬p ∨ r, q ∨ r}. Note that the following Dab-formula isCLuN+-derivable
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from Γ1, which implies that we are dealing with an inconsistent premise set:

(p ∧ ¬p) ∨̌(q ∧ ¬q) (1)

On the semantic level, everyCLuN+-model ofΓ1 verifies eitherp ∧ ¬p or
q ∧ ¬q, or both. For every minimally abnormalCLuN+-modelM of Γ1,
eitherAb(M) = {p ∧ ¬p} or Ab(M) = {q ∧ ¬q}. Suppose that for some
such modelM , Ab(M) = {p ∧ ¬p}. In view of the premise set,M + ¬q
andM + q ∨ r. Since alsoM 6+ q ∧ ¬q, M 6+ q andM + r. We
leave it to the reader to see that also the second class of minimally abnormal
models verifyr. As a result,r is a semanticCLuNm-consequence ofΓ1.

Consider the followingCLuNm-proof fromΓ1:

1 p PREM ∅
2 ¬p ∨ q PREM ∅
3 ¬q PREM ∅
4 ¬p ∨ r PREM ∅
5 q ∨ r PREM ∅

Note that the fourth element is∅, indicating that premises are introduced
on the empty condition. We may now deriver from lines 1 and 4:

6 (p ∧ ¬p) ∨̌ r 1,4;RU ∅
7 r 6;RC {p ∧ ¬p}

In the remainder of this paper, let us denote the stage consisting of lines
1 — n by stage n. At stage7 of the proof,r is derived. However, we can
continue the proof as follows, showing that the condition online 7 is prob-
lematic:

6 (p ∧ ¬p) ∨ r 1,4;RU ∅
7 r 6;RC {p ∧ ¬p}X8

8 (p ∧ ¬p) ∨̌(q ∧ ¬q) 1,2,3;RU ∅

Wherei ∈ N, we will henceforth useXi to denote the marking of a line
at stagei. At stage8, line 7 is marked. Recall that in order to find out
which lines are marked at stages, we had to look at the setΦs(Γ1). Since
Σ8(Γ1) = {{p ∧ ¬p, q ∧ ¬q}}, the minimal choice sets at stage8 areϕ1 =
{p ∧ ¬p} andϕ2 = {q ∧ ¬q}.

Clearly, the condition of line7 has an empty intersection withϕ2. But r,
the formula on line7, has not been derived on a condition that has an empty
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intersection withϕ1. Hence the marking definition for Minimal Abnormality
stipulates that line7 is marked.

So how can line 7 become unmarked again? This is done by showing that
r can be derived in the proof on a yet different condition:

6 (p ∧ ¬p) ∨̌ r 1,4;RU ∅
7 r 6;RC {p ∧ ¬p}
8 (p ∧ ¬p) ∨̌(q ∧ ¬q) 1,2,3;RU ∅
9 r 3,5;RC {q ∧ ¬q}

Note that throughout the stages8 − 9, the set of minimal choice sets re-
mains the same, which means that lines 7 and 9 are unmarked.

The difference with the Reliability Strategy can also be clarified by the
above example: inCLuNr, r is not finally derivable fromΓ1. The reason
is that from stage8 on, the set of unreliable formulas is{p ∧ ¬p, q ∧ ¬q}.
In view of Definition 3, both lines7 and9 are marked if Reliability is the
strategy. This is in agreement with theCLuNr-semantics: there is aM ∈
MCLuNr(Γ)−MCLuNm(Γ) for whichAb(M) = {p∧¬p, q∧¬q}andM 6+

r.

2.3. Meta-theory of the Standard Format

In this section, we mention some of the most significant meta-theoretic prop-
erties of the standard format. A number of well-known properties are inher-
ent to ALs in standard format, such as soundness, reflexivityand the fixed
point property. Furthermore, forALm, the Deduction Theorem holds, which
means that one can introduce hypotheses in a proof, as in classical logic. We
assume the reader to be familiar with these properties and refer to Section 5
for their exact formulation. A number of significant properties are less well-
known, whence we discuss them here. We mention the original theorems
and corollaries in the literature between square brackets.

L-Completeness.In [24] and [7, Chapter 4], an example is presented of a
Γ, A for which Γ 0ALm A, whereasΓ |=ALm A. A similar example can
be constructed for the Reliability Strategy.8 Hence completeness in general
does not hold forAL. Nevertheless, for allΓ ⊆ W, completeness is prov-
able — we will use the termL-completeness to refer to this restricted form

8Note that according to Definitions 5 and 6, in order to finally deriveA, one has to be able
to derive it in a finite proof on an unmarked line. The mentioned examples are constructed
such that this first requirement cannot be fulfilled: in orderto deriveA on a linel, one has to
derive Dab-formulas that render linel marked. See Lemmas 7 and 12 for how this problem
is avoided wheneverΓ ⊆ W.
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of completeness. From the same examples, we can infer that some other
properties such as e.g. Fixed Point also have to be restricted to Γ ⊆ W.
This should not be seen as a severe problem for ALs, since as weexplained
before, they were developed to explicate a reasoning process on the basis of
premises inL. For the sake of generality we state the meta-theory aboutAL

for anyΓ ⊆ W+ whenever possible.

Strong Reassurance.In Section 2.1, we explained that everyAL selects a
subset of theLLL+-models ofΓ. Now suppose aLLL+-modelM of Γ is not
selected. In that case, it seems desirable to have as a property of the logic
that there is aLLL+-modelM ′ of Γ thatis selected, and that is less abnormal
thenM . Only then can the logic justify thatM is not selected. This property
is called “Strong Reassurance” in the literature.

Theorem 2: If M ∈ MLLL+(Γ)−MAL(Γ), then there is aM ′ ∈ MAL(Γ)
such thatAb(M ′) ⊂ Ab(M). [4, Th. 4& 5] (Strong Reassurance)

Note that the abnormal part-relation and⊂ impose a partial order on the
LLL+-models ofΓ: M ≺ M ′ iff Ab(M) ⊂ Ab(M ′). Strong Reassurance
boils down to the claim that≺ is smooth on the set ofLLL+-models ofΓ.9

It also entails that wheneverΓ hasLLL+-models,Γ hasAL-models — this
property is referred to asReassurance. In other words, unlessΓ is LLL+-
trivial, AL will not trivialize this premise set.

Cautious Indifference.Suppose we have established for someΓ, A, that
Γ ⊢AL A. In that case, it seems desirable that theAL-closure ofΓ ∪ {A} is
not different from theAL-closure ofΓ itself. That is, addingA as a premise
to Γ should not lead to a different consequence set. This is warranted by the
Cautious Indifference principle:

Theorem 3: For everyΓ ⊆ W: if Γ′ ⊆ CnAL(Γ), thenCnAL(Γ) = CnAL
(Γ ∪ Γ′). (Cautious Indifference)[4, Th. 11.10]

Note that the fixed point property, i.e. thatCnAL(Γ) = CnAL(CnAL(Γ)),
is derivable from Theorem 3 together with the reflexivity ofAL. Cautious In-
difference is often divided in two parts: Cautious Monotonicity (CnAL(Γ) ⊆
CnAL(Γ ∪ Γ′)) and Cumulative Transitivity (CnAL(Γ) ⊇ CnAL(Γ ∪ Γ′)).
Cautious Monotonicity can be proven for the more general case whereΓ ⊆
W+, whereas Cumulative Transitivity only holds forΓ ⊆ W.

9 A partial order≺ onX is smooth with respect to a setY ⊆ X iff for all A ∈ Y either
A is ≺-minimal or there is a≺-minimal elementB ∈ Y for whichB ≺ A.
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The Hierarchy within the Standard Format.We say thatL is weaker than
L′ (L′ is stronger thanL) iff for every Γ ⊆ W , CnL(Γ) ⊆ CnL′(Γ), while
for someΓ ⊆ W , CnL(Γ) ⊂ CnL′(Γ). The following theorem summarizes
the difference in strength between the different logicsLLL

+, ALr, ALm and
ULL:

Theorem 4: CnLLL+(Γ) ⊆ CnALr(Γ) ⊆ CnALm(Γ) ⊆ CnULL(Γ). [4, Th.
11.1]

Obviously,AL is in most cases stronger thanLLL+. Also, ALr is slightly
weaker thanALm, as the example in Section 2.2 illustrated. A related prop-
erty is that if a premise setΓ is normal, thenAL is equipowerful toULL:

Theorem 5: If Γ is normal, thenCnAL(Γ) = CnULL(Γ).

Hence ifAL can avoid abnormalities altogether, it will do so. Neverthe-
less, if the premise set is not normal, it will still in most cases render more
consequences thanLLL+, without yielding triviality asULL would. In other
words,AL strengthensLLL+ and approximatesULL as much as possible,
adapting itself to the premises.

Equivalent Premise Sets.In [11], it is argued that ALs have certain advan-
tages over numerous other formal approaches to defeasible reasoning meth-
ods. The most important argument there is one concerning transparency:
there are various criteria to decide when two premise sets areAL-equivalent
— criteria that do not hold for those other formalisms. For a lengthy discus-
sion, we refer to the original paper; here we simply mention the three criteria
for equivalence (the original Theorems from [11] are given between square
brackets).

Theorem 6: WhereΓ,Γ′ ⊆ W, CnAL(Γ) = CnAL(Γ
′) if one of the follow-

ing holds:

(C1) Γ′ ⊆ CnAL(Γ) andΓ ⊆ CnAL(Γ
′) [Th. 6]

(C2) WhereL is a Tarski-logic weaker than or identical toAL: CnL(Γ) =
CnL(Γ

′) [Th. 7]
(C3) WhereL is a Tarski-logic and for everyΘ ⊆ W, CnAL(Θ) =

CnL(CnAL(Θ)): CnL(Γ) = CnL(Γ
′) [Th. 7]
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3. A Prioritized Selection of Models:AL⊏

3.1. General Characterization ofAL⊏

Recall that the aim of this paper is to develop a generic format for prioritized
ALs that remains as close as possible to the existing standard format, and
inherits its meta-theoretic properties. We will useAL⊏ as a placeholder for
logics in this format, for reasons that will become clear in this section. Every
logic AL⊏ : ℘(W+) → ℘(W+) is characterized by a triple:

1. A lower limit logic LLL
2. A sequence of sets of abnormalities:〈Ωi〉i∈I , whereI ⊆ N is an

index set
3. A strategy:⊏-Minimal Abnormality or⊏-Reliability

For the remainder of this paper, letΩ =
⋃

i∈I Ωi. EachΩi ⊆ W+ is char-
acterized by a (possibly restricted) logical form, whenceΩ fits the format
of a set of abnormalities of a flat AL — see page 605. Henceforth, we will
use the nameAL to refer to the flat AL defined by (i)LLL, (ii) Ω and (iii) a
strategy (Reliability or Minimal Abnormality).

Let us briefly discuss the elements of the above triple. Firstof all, just like
AL, every logicAL⊏ is built on top of a logicLLL+, which is obtained from
LLL as described in Section 2. The upper limit logic ofAL⊏ is identical to
the upper limit logic ofAL, and will hence also be denoted byULL.

The sets of abnormalitiesΩ1,Ω2, . . . correspond to the different standards
of normality mentioned in the introduction. We say thatA is an abnormality
of rank i iff A ∈ Ωi and there is noj < i such thatA ∈ Ωj. The lower the
rank of an abnormality, the higher the priority of the corresponding standard
of normality. The logicAL⊏ avoids abnormalities “as much as possible,in
view of their rank”. The adaptive strategy specifies the latter phrase. As for
AL, the two strategies give rise to two subclasses of prioritized ALs: ALm⊏
andALr⊏.

Since theALm⊏-semantics is technically less involving than theALr⊏-seman-
tics, we start with the former in Section 3.2. In Section 3.3,we present an
example of a logic in the new format:Km

⊏ . After that, we discuss an alterna-
tive way to characterize theALm⊏-models of a premise set. Finally, in Section
3.5, we show how a Reliability-variant is obtained from thisalternative char-
acterization.
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3.2. TheALm⊏ -semantics

In Section 2, we explained that flat ALs select a subset of theLLL+-models
of a premise set in view of their abnormal part. ForALm, a modelM is se-
lected iff its abnormal partAb(M) is minimal with respect to set-inclusion.
The prioritized logicALm⊏ also selectsLLL+-models in view of their abnor-
mal part, but takes into account the rank of abnormalities. In view of the
prioritizationAb(M) is not flat but is structured and may be represented by
the tuple〈Ab(M) ∩ Ω1, Ab(M) ∩ Ω2, . . .〉. Just like the flat abnormal parts
were partially ordered in the standard format by⊂, the structured abnormal
parts of prioritized ALs may be partially ordered by the lexicographic order
⊏lex:10

Definition 7: 〈∆ ∩ Ωi〉i∈I ⊏lex 〈∆′ ∩ Ωi〉i∈I iff (1) there is ani ∈ I such
that for all j < i, ∆ ∩ Ωj = ∆′ ∩ Ωj, and (2)∆ ∩ Ωi ⊂ ∆′ ∩ Ωi. We write
∆ ⊏ ∆′ iff 〈∆ ∩Ωi〉i∈I ⊏lex 〈∆

′ ∩ Ωi〉i∈I .

Just as for flat ALs, theLLL+-models were selected whose abnormal part
was⊂-minimal, we now select theLLL+-models whose abnormal part is
⊏-minimal:

Definition 8: M ∈ MALm
⊏
(Γ) iff M ∈ MLLL+(Γ) and there is noM ′ ∈

MLLL+(Γ) such thatAb(M ′) ⊏ Ab(M).

As we did with⊂-minimally abnormal models, we can speak of⊏-mini-
mally abnormal models. Lemma 2 below states that the⊂-order on℘(Ω) is
included in the⊏-order on℘(Ω).

Lemma 2: Where∆,∆′ ⊆ Ω: if ∆ ⊂ ∆′, then∆ ⊏ ∆′.

Proof. Suppose∆ ⊂ ∆′. Then for alli ∈ I, ∆ ∩ Ωi ⊆ ∆′ ∩ Ωi and there
is ani ∈ I such that∆ ∩ Ωi ⊂ ∆′ ∩ Ωi. Take the smallesti ∈ I for which
∆ ∩ Ωi ⊂ ∆′ ∩ Ωi, whence for allj < i, ∆ ∩ Ωi = ∆′ ∩ Ωi. By Definition
7,∆ ⊏ ∆′. �

By Lemma 2, we immediately obtain:

10Lexicographic orders are a well-known ordering type and arementioned in any repre-
sentative mathematical dictionary or encyclopedia (see e.g. [14, p. 1170]). Lexicographic
orders have already previously proven to be useful for the formal explication of reasoning on
the basis of prioritized information. Lehmann employed them to deal with priorities among
defaults [15], Nebel [20] in order to deal with prioritized theory bases and Hansen [13] ap-
plied Nebel’s preference order to the context of prioritized imperatives.



“05vdputte&strasser
2012/12/9
page 616

✐

✐

✐

✐

✐

✐

✐

✐

616 FREDERIK VAN DE PUTTE AND CHRISTIAN STRASSER

Theorem 7: EveryALm⊏-model ofΓ is aALm-model ofΓ.

3.3. An Example:Km
⊏

Several ALs have been developed to explicate reasoning withprioritized
belief bases — see [9], [30] and [29]. These are sequences of the form
Ψ = 〈Θ0,Θ1,Θ2, . . .〉, where eachΘi is a set of formulas, and the index
of the sets denotes their plausibility degree:Θ0 is the set of facts,Θ1 the
set of most plausible beliefs, and so on. The ALs that deal with such belief
bases typically use a certain logical operator or a sequenceof such operators
to express that a belief has a certain degree of plausibility. We will discuss
only one such system, in order to illustrate theALm⊏-format.

As before, we restrict the logic to the propositional level.We use the
standard modal languageLM of Kripke’s minimal normal modal logicK,
axiomatized by the propositional fragment ofCL together with the following
axioms:

K �(A ⊃ B) ⊃ (�A ⊃ �B)
RN if ⊢ A then⊢ �A

As usually, we define♦A = ¬�¬A. LetWM denote the set of modal wffs,
andW l the set of literals (sentential letters and their negations). To express
the plausibility degree of a piece of information, sequences of diamonds are
used:♦♦ . . .♦A The longer the sequence, the less plausible the information.
A sequence ofi diamonds will be abbreviated by♦i — ♦0 denotes the empty
string. Starting from a prioritized belief baseΨ = 〈Θ0,Θ1,Θ2, . . .〉, we
translate this into the premise setΨ♦ =

⋃
i∈N{♦

iA | A ∈ Θi}.
WhereA ∈ W l, let !iA abbreviate♦iA ∧ ¬A. LetN = {1, 2, 3, . . .}. The

prioritized logicKm
⊏ is characterized by the following triple:

1. The modal logicK+, obtained by enrichingK with the checked con-
nectives

2. The sequence of sets of abnormalities:〈ΩK
i 〉i∈N, where for every

i ∈ N, ΩK
i = {!iA | A ∈ W l}

3. The Strategy:⊏-minimal abnormality

To compare the format for prioritized logics with flat adaptive logics, it
will be convenient to refer to the logicsKm andKr, defined by (i)K+, (ii)
ΩK =

⋃
i∈NΩK

i and (iii) Minimal Abnormality, respectively Reliability.
The logicKm

⊏ allows for the defeasible inference from♦iA (wherei ∈ N)
to A. This is done by defining “A is plausible (to degreei), but false” as
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M1 M2 M3 M4 M5 M6 M7 M8

p, q, p, q, ¬p, q, ¬p, q, ¬p, q, ¬p, q, ¬p,¬q, ¬p,¬q,
r, s ¬r, s r, s r,¬s ¬r, s ¬r,¬s r, s ¬r, s

!1p + + + + + +
!1¬q + + + + + +
!1r + + + +
!2s + +
!2¬s + + + + + +

Table 1. A representation of theK+-models ofΓ2. The
first row shows the non-modal propositions each model val-
idates, the second row the abnormalities of rank 1 and the
third row the abnormalities of rank 2.

an abnormality (of ranki).11 Consider the prioritized belief baseΨex =
〈{p ⊃ q, q ∨ s, p ⊃ s}, {p,¬q ∧ r}, {s,¬s}〉. The translation gives us
Ψ♦

ex = {p ⊃ q, q ∨ s, p ⊃ s,♦p,♦(¬q ∧ r),♦♦s,♦♦¬s}. To facilitate the
reading, let henceforthΓ2 = Ψ♦

ex. Let us take a look at theK+-models ofΓ2.
Note that every such model validates the modal formulas♦p,♦¬q,♦r,♦♦s
and♦♦¬s. Table 1 represents these models in terms of (1) the non-modal
literals they validate and (2) their abnormal part. For reasons of simplicity,
we restrict the scope to those propositional letters that occur inΓ2.12

Figure 1 shows the partial order imposed on the models from Table 1 by
the two logicsKm andKm

⊏ . M1,M4,M7 are⊂-minimally abnormal. From
these,M4 is not⊏-minimally abnormal:Ab(M1) ∩ ΩK

1 ⊂ Ab(M4) ∩ ΩK
1 ,

whenceAb(M1) ⊏ Ab(M4). M1 andM7 are incommensurable in view of
Ω1, whenceAb(M1) 6⊏ Ab(M7) andAb(M7) 6⊏ Ab(M1). Recall that the
set ofALm⊏-models is always a subset of theALm-models, whence in this
particular case,M1 andM7 are the only⊏-minimally abnormal models. As
a result,s andp ∨ ¬q are semanticKm

⊏-consequences ofΓ2. Note that in
view ofM4, these are not semanticKm-consequences ofΓ2.

We can explain this outcome as follows. In view ofΓ2, bothp and¬q are
plausible, but one of them has to be false (although we do not know which
one). So if we want to privilege our most plausible beliefs, all we can do

11Note that for alli, j ∈ N such thati 6= j, ΩK
i ∩ΩK

j = ∅. This is not required for a logic
to fit the format ofAL⊏; all that is required is that eachΩi is characterized by a logical form.

12It is provable for that (1) for everyM ∈ MK+(Γ2), Ab(M) ⊇ Ab(Mi) for a “model”
Mi in the table and (2), for every “model”Mi in the table, there is aM ∈ MK+(Γ2) such
thatAb(M) = Ab(Mi). Hence it suffices to look at these limited representations,to decide
which abnormalities hold in the minimal abnormal models. This allows one to derive the
claims aboutCnKm

⊏
(Γ2) that are made in this section.
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M5

M2 M3 M8 M6

M1 M7 M4

(a)

M6 M5

M2 M4 M3 M8

M1 M7

(b)

Figure 1. A graphic comparison of the partial orders⊂
(1a) and⊏ (1b) on the abnormal parts of the models
M1, . . . ,M8.

is assume that one of both holds:p ∨ ¬q. So all the selected models either
verify p or they verify¬q. SinceΓ2 ∪ {p ∨ ¬q} ⊢K+ s, these models also
verify s. The logicKm cannot achieve this result, since it considersM1 and
M4 as incommensurable.

3.4. An Alternative Characterization of theALm⊏-Semantics

In Section 2.1 we pointed out that the set ofALm-models ofΓ can be char-
acterized alternatively, in view of the minimal Dab-consequences ofΓ. A
similar characterization can be given ofMALm

⊏
(Γ). We define a choice set

as in Section 2.1. We say thatϕ is a⊏-minimal choice set ofΣ iff there is
no choice setψ of Σ such thatψ ⊏ ϕ. LetΣ(Γ) be defined as in Section 2.

Definition 9: Φ⊏(Γ) is the set of⊏-minimal choice sets ofΣ(Γ).

Note that the following theorem follows immediately from Lemma 2:

Theorem 8: Φ⊏(Γ) ⊆ Φ(Γ).

In the appendix, it is proven that for everyΓ, Φ⊏(Γ) 6= ∅ — see Theorem
25. We will now show that, just as the setMALm(Γ) can be characterized in
view ofΦ(Γ), the setMALm

⊏
(Γ) can be characterized in view ofΦ⊏(Γ).

Lemma 3: WhereM ∈ MLLL+(Γ), Ab(M) is a choice set ofΣ(Γ).

Proof. SupposeM ∈ MLLL+(Γ). Let Dab(∆) be an arbitrary minimal
Dab-consequence ofΓ. By the soundness ofLLL+, Γ |=LLL+ Dab(∆).
HenceM + Dab(∆), which implies thatM + A for anA ∈ ∆. Hence
Ab(M) ∩∆ 6= ∅. �
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Lemma 4: If Γ hasLLL+-models, then for every choice setϕ ofΣ(Γ), there
is aLLL+-modelM of Γ such thatAb(M) ⊆ ϕ.

Proof. Suppose (†) Γ hasLLL+-models. Letϕ be a choice set ofΣ(Γ).
Suppose there is noM ∈ MLLL+(Γ) such thatAb(M) ⊆ ϕ. HenceΓ∪(Ω−
ϕ)¬̌ has noLLL+-models. By the compactness ofLLL

+, there is a finiteΓ′ ⊆
Γ and a finite∆ ⊆ Ω−ϕ such thatΓ′ ∪∆¬̌ has noLLL+-models. However,
by (†) and the monotonicity ofLLL+, Γ′ hasLLL+-models, whence∆ 6= ∅.
By CL-properties,Γ′ ⊢LLL+ Dab(∆), whence by the monotonicity ofLLL+,
Γ ⊢LLL+ Dab(∆). Note that there is a minimal non-empty∆′ ⊆ ∆ such
thatΓ ⊢LLL+ Dab(∆′), and also∆′ ∩ ϕ = ∅. Henceϕ is not a choice set of
Σ(Γ) — a contradiction. �

Theorem 9: M ∈ MALm
⊏
(Γ) iff (M ∈ MLLL+(Γ) andAb(M) ∈ Φ⊏(Γ)).

Proof. (⇒) SupposeM ∈ MALm
⊏
(Γ). By Definition 8,M ∈ MLLL+(Γ).

Suppose (†) Ab(M) 6∈ Φ⊏(Γ), and letAb(M) = ϕ. By Lemma 3,Ab(M)
is a choice set ofΣ(Γ), whence by (†), there is a choice setψ of Σ(Γ)
such thatψ ⊏ ϕ. By Lemma 4, there is aLLL+-modelM ′ of Γ such that
Ab(M ′) ⊆ ψ.
Case 1:Ab(M ′) = ψ. HenceAb(M ′) ⊏ ϕ.
Case 2:Ab(M ′) ⊂ ψ. HenceAb(M ′) ⊏ ψ in view of Lemma 2. By the
transitivity of⊏, Ab(M ′) ⊏ ϕ.

Hence in either case, there is aLLL+-modelM ′ of Γ such thatAb(M ′) ⊏
Ab(M), which contradicts the fact thatM ∈ MAL⊏

m(Γ).
(⇐) SupposeM ∈ MLLL+(Γ), but M 6∈ MALm

⊏
(Γ). Then there is a

M ′ ∈ MLLL+(Γ) : Ab(M
′) ⊏ Ab(M). By Lemma 3,Ab(M ′) is a choice

set ofΣ(Γ), whence in view of Definition 9,Ab(M) 6∈ Φ⊏(Γ). �

Note that the above theorem nicely parallels Theorem 1. The theorem
below states that wheneverΓ hasLLL+-models, then we can also go in the
opposite direction: the setΦ⊏(Γ) can be defined in view ofMALm

⊏
(Γ).

Theorem 10: If Γ has LLL+-models, thenΦ⊏(Γ) = {Ab(M) | M ∈
MALm

⊏
(Γ)}.

Proof. SupposeΓ hasLLL+-models. That{Ab(M) | M ∈ MALm
⊏
(Γ)} ⊆

Φ⊏(Γ) is immediate in view of Theorem 9. Letϕ ∈ Φ⊏(Γ). By Lemma 4,
there is aM ∈ MLLL+(Γ) such thatAb(M) = ϕ. By Theorem 9,M ∈
MALm

⊏
(Γ). �
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Below we will see thatΦ⊏(Γ) has a proof-theoretic counterpart,Φ⊏
s (Γ),

that determines the marking of lines of a proof at stages. Hence Theorems 9
and 10 function as a bridge between the proof theory and semantics ofALm⊏ .

3.5. TheALr⊏-semantics

Recall thatU(Γ) =
⋃

Φ(Γ) — see page 607 —, whereU(Γ) is associated
with ALr andΦ(Γ) with ALm. In view of Theorem 1, this implies that an
abnormality is unreliable iff it is verified by a⊂-minimally abnormal model:
U(Γ) = {A ∈ Ω |M + A for aM ∈ MALm(Γ)}.

Let us now take a look atALr⊏. Just asU(Γ), the set of⊏-unreliable
abnormalities can be characterized in two equivalent ways:(i) syntactically,
as the union of all the members ofΦ⊏(Γ) and (ii) semantically, as the set
of those abnormalities that are verified by a⊏-minimally abnormal model.
To simplify the meta-theory and to stay as close as possible to the standard
format, we will use (i) as the official definition of the set of⊏-unreliable
abnormalities:

Definition 10: U⊏(Γ) =
⋃

Φ⊏(Γ)

By Theorem 9,U⊏(Γ) = {A ∈ Ω | M + A for aM ∈ MALm
⊏
(Γ)}. We

can now define the set ofALr⊏-models ofΓ as we did forMALr(Γ):

Definition 11: M ∈ MALr
⊏
(Γ) iff (M ∈ MLLL(Γ) andAb(M) ⊆ U⊏(Γ))

In view of Theorem 8, the fact thatU(Γ) =
⋃

Φ(Γ) and Definition 10, we
obtain:

Theorem 11: U⊏(Γ) ⊆ U(Γ)

Theorem 12: EveryALr⊏-model ofΓ is aALr-model ofΓ.

Let us reconsider the example from Section 3.3 from the viewpoint of
theKr

⊏-semantics. In view of the above definitions, it is required that we
first look at the minimal Dab-consequences of a setΓ, to find the set of
⊏-unreliable formulas. The setΓ2 = {p ⊃ q, q ∨ s, p ⊃ s,♦p,♦(¬q ∧
r),♦♦s,♦♦¬s} has four minimalDab-consequences:!1p ∨̌ !1¬q, !1p ∨̌ !2¬s,
!1¬q ∨̌ !2¬s, and!2s ∨̌ !2¬s.

HenceΣ(Γ2) = {{!1p, !1¬q}, {!1p, !2¬s}, {!1¬q, !2¬s}, {!2s, !2¬s}}. The
set of⊏-minimal choice sets ofΣ(Γ2) is Φ⊏(Γ2) = {{!1¬q, !2¬s}, {!1p,
!2¬s}}. Remark that these sets correspond to the⊏-minimal abnormal mod-
elsM1 andM7 depicted in Table 1. As a result,U⊏(Γ2) = {!1p, !1¬q, !2¬s}.
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This means that all⊏-reliable models falsify!2s, whence in view ofΓ2,
they verify s. Hences is also a semanticKr

⊏-consequence ofΓ2. Note
however thatMKr

⊏
(Γ2) 6= MKm

⊏
(Γ2): for the modelM3 represented in

Section 3.3, we have thatM3 ∈ MKr
⊏
(Γ2)−MKm

⊏
(Γ2). This implies that

p ∨ ¬q is not a semanticKr
⊏-consequence ofΓ2.

4. A Proof Theory forAL⊏

4.1. The Generic Proof Theory forAL⊏

One of the merits of the standard format is that it provides every logic in this
format with a sound and complete proof theory. This proof theory explicates
the defeasible reasoning methods the logics were developedfor. In what
follows, we will present a proof theory that does the same forlogics in the
AL⊏-format.

The inference rules of aAL⊏-proof are identical to those of aAL-proof —
see page 607. The concept of a line, a stage, a proof and an extension of a
proof in theAL⊏-format are also inherited from the standard format. As a
result, Lemma 1 holds also forAL⊏-proofs. This implies that apart from the
marks, everyAL-proof is aAL⊏-proof and vice versa.

The distinctive feature of anAL⊏-proof lies in its marking definition. Let
Σs(Γ) be defined as in Section 2.

Definition 12: Φ⊏
s (Γ) is the set of⊏-minimal choice sets ofΣs(Γ).

In the appendix, we prove that for everyΓ and at every stages of aAL⊏-
proof fromΓ, Φ⊏

s (Γ) 6= ∅. Of course, it may be the case thatΦ⊏
s (Γ) = {∅},

i.e. wheneverΣs(Γ) = ∅. Marking in view ofALm⊏ is now done in the same
way as forALm, replacingΦs(Γ) by Φ⊏

s (Γ):

Definition 13: ALm⊏-Marking: a line l with formulaA is marked at stages
iff, where its condition is∆: (i) no ϕ ∈ Φ⊏

s (Γ) is such thatϕ ∩∆ = ∅, or
(ii) for a ϕ ∈ Φ⊏

s (Γ), there is no line on whichA is derived on a condition
Θ for whichΘ ∩ ϕ = ∅.

The set of⊏-unreliable formulas at stages is defined as the union of the
members ofΦ⊏

s (Γ):

Definition 14: U⊏
s (Γ) =

⋃
Φ⊏
s (Γ)
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Definition 15: AL
r
⊏-Marking: a line l with formulaA is marked at stages

iff, where its condition is∆, ∆ ∩ U⊏
s (Γ) 6= ∅.

Derivability at a stage and final derivability are defined as for AL — see
Definitions 5 and 6. This gives us the relationΓ ⊢AL⊏ A.

The following is an immediate consequence of Lemma 2:

Fact 2: At every stages of a proof fromΓ, Φ⊏
s (Γ) ⊆ Φs(Γ).

This fact implies that at every stages of a proof fromΓ, we can first check
which choice sets ofΣs(Γ) are⊂-minimal, and only afterwards select the
subset of⊏-minimal choice sets from these. Also, from Fact 2, the fact that
at every stages, Us(Γ) =

⋃
Φs(Γ) and Definition 14, we can derive:

Fact 3: At every stages of a proof fromΓ, U⊏
s (Γ) ⊆ Us(Γ).

Facts 2 and 3 imply that whenever a line is unmarked in anALx-proof
(wherex ∈ {r,m}), it is unmarked in anALx⊏-proof as well — recall that
apart from the marking, these proofs are interchangeable. Hence if some-
thing is (finally) derived in anALx-proof, then it is finally derived in an
ALx⊏-proof as well. This allows us to safely infer:

Theorem 13: Wherex ∈ {r,m}: CnALx(Γ) ⊆ CnALx
⊏
(Γ).

4.2. Example of aK⊏-proof

⊏-Minimal Abnormality. To illustrate the new marking definitions, let us
take a look at a particularKm

⊏-proof fromΓ2 = {p ⊃ q, q ∨ s, p ⊃ s,♦p,♦
(¬q ∧ r),♦♦s,♦♦¬s}:

1 q ∨ s PREM ∅
2 ♦(¬q ∧ r) PREM ∅
3 ♦¬q 2;RU ∅
4 ¬q 3;RC {!1¬q}
5 s 1,4;RU {!1¬q}
6 ♦♦¬s PREM ∅
7 !1¬q ∨̌ !2¬s 1,3,6;RU ∅

Note thatΣ7(Γ2) = {{!1¬q, !2¬s}}. This implies that the set of⊏-
minimal choice sets at stage 7,Φ⊏

7
(Γ2) only contains one member, i.e.{!2¬s}
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— note that{!2¬s} ⊏ {!1¬q}. Since the condition of line 5 has an empty
intersection with this set, line 5 is unmarked.

Suppose we extend the proof as follows (we repeat from line 5 on):

5 s 1,4;RU {!1¬q}X10

6 ♦♦¬s PREM ∅
7 !1¬q ∨̌ !2¬s 1,3,6;RU ∅
8 p ⊃ q PREM ∅
9 ♦p PREM ∅
10 !1p ∨̌ !1¬q 3,8,9;RU ∅

Σ10(Γ2) = {{!1¬q, !2¬s}, {!1p, !1¬q}}, whence there are two⊏-minimal
choice sets at this stage:Φ10(Γ2) = {{!1¬q}, {!1p, !2¬s}}. In view of the
first choice set, line 5 is marked. We can however further extend the proof
such that line 5 is again unmarked:

5 s 1,4;RU {!1¬q}
...

...
...

...
10 !1p ∨̌ !1¬q 3,8,9;RU ∅
11 p 9;RC {!1p}
12 p ⊃ s PREM ∅
13 s 11,12;RU {!1p}

Note that since no new Dab-formula has been derived,Φ13(Γ2) = Φ10(Γ2).
However,s is now also derived on a condition that has an empty intersection
with {!1¬q}. As a result, lines 5 and 13 are unmarked.

⊏-Reliability. If the marking definition for⊏-Reliability is applied, the
above proof does not suffice to finally derives. That is,U⊏

13
(Γ2) =

⋃
Φ⊏
13

(Γ2) = {!1p, !1¬q, !2¬s}. As a result, both line 5 and line 13 are marked.
Nevertheless,s is finally derivable in aKr

⊏-proof fromΓ. To show how,
let us recapitulate lines 5–15 from the above proof, but now mark lines ac-
cording to Definition 15:

5 s 1,4;RU {!1¬q}X15

...
...

...
...

11 p 9;RC {!1p}X15

12 p ⊃ s PREM ∅
13 s 11,12;RU {!1p}X15
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14 ♦♦s PREM ∅
15 s 14;RC {!2s}

Note that this time, lines 5 and 13 are marked. However, we have derived
s on a condition that is not⊏-unreliable at stage 15. As we explained in
Section 3,!2s is not contained in any⊏-minimal choice set ofΣ(Γ2). This
warrants thats is finally derived in the proof. To explain why, let us look at
an extension of the proof:

15 s 14;RC {!2s}X16

16 !2s ∨̌ !2¬s 6,14;RU ∅

Σ16(Γ2) = {{!1¬q, !2¬s}, {!1p, !1¬q}, {!2s, !2¬s}}, whenceΦ⊏
16
(Γ2) =

{{!1p, !2¬s}, {!1¬q, !2s}, {!1¬q, !2¬s}}. As a result,U⊏
16
(Γ2) = {!1p, !1¬q,

!2s, !2¬s}. However, it suffices to derive the fourth minimal Dab-conse-
quence ofΓ2 (see page 620) to undo the marking of line 15:

15 s 14;RC {!2s}
16 !2s ∨̌ !2¬s 6,14;RU ∅
17 !1p ∨̌ !2¬s 6,9,12;RU ∅

At stage 17, all minimal Dab-consequences ofΓ2 have been derived,
whenceU⊏

17
(Γ2) = U⊏(Γ2) = {!1p, !1¬q, !2¬s} — see Section 3.5. As a

result, line 15 is unmarked again and will remain unmarked inevery further
extension of this proof.

4.3. The Standard Format as a Border Case

In the introduction, we mentioned that the standard format of is a border
case of the format for prioritized ALs we introduced above. Let us briefly
spell out why this holds. Consider the sequence of sets of abnormalities:
S = 〈Ωi〉i∈I , whereΩi = Ωj for everyi, j ∈ I. Note that this is the case
e.g. wheneverI = {1}, i.e. whenever there is only one set in the sequence.
As before, letΩ =

⋃
i∈I Ωi. We leave it to the reader to prove that in this

case (†) ∆ ⊏ ∆′ iff ∆ ⊂ ∆′.
For the sake of clarity, let us use the nameBALx⊏ for the border case logic

defined by (i)LLL, (ii) S and (iii) a strategyx ∈ {r,m}. By (†) and Defi-
nitions 2 and 8, we immediately have thatMBALm

⊏
(Γ) = MALm(Γ). Also,

since in this caseΦ⊏(Γ) = Φ(Γ), we have by Definition 10 thatU⊏(Γ) =
U(Γ). This implies by Definitions 1 and 11 thatMBALr

⊏
(Γ) = MALr(Γ).
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Similar results can be established for the proof theory. In view of Defini-
tion 9, it easy to see that by (†), for every stages of a proof fromΓ,Φ⊏

s (Γ) =
Φs(Γ). From this and Definition 14, it follows thatU⊏

s (Γ) = Us(Γ). Hence,
wherex ∈ {r,m}, a line is unmarked in aALx-proof, iff it is unmarked in a
BALx⊏-proof. This implies that wherex ∈ {r,m}, CnBALx

⊏
(Γ) = CnALx(Γ).

So every AL in standard format is equivalent to a logic in the new format.
Remark that the equivalence is not restricted to the respective consequence
sets, but to all the crucial concepts in the semantics and proof theory of both
logics. This implies that all the meta-theoretic properties ofAL⊏ hold forAL
as well.

5. Meta-Theory ofAL⊏

In this section, we show that all the meta-theoretic properties discussed in
Section 2 hold forAL⊏ as well. Since we already discussed the meaning
and importance of these properties, we will simply state them here. We refer
to the second appendix for their proofs — some of these are variations of
proofs from the meta-theory of the standard format (see [7] for their most
recent formulation).

Theorem 14: If Γ ⊢AL⊏ A, thenΓ |=AL⊏ A. (Soundness)

Theorem 15: WhereΓ ⊆ W: if Γ |=AL⊏ A, thenΓ ⊢AL⊏ A. (L-Complete-
ness)

Theorem 16: If M ∈ MLLL+(Γ)−MAL⊏(Γ), then there is anM ′ ∈
MAL⊏(Γ) such thatAb(M ′) ⊏ Ab(M). (Strong Reassurance)

Theorem 17: Γ ⊆ CnAL⊏(Γ) (Reflexivity)

Theorem 18: WhereΓ ⊆ W: if Γ′ ⊆ CnAL⊏(Γ), thenCnAL⊏(Γ) =
CnAL⊏(Γ ∪ Γ′) (Cautious Indifference)

Theorem 19: WhereΓ ⊆ W: CnAL⊏(CnAL⊏(Γ)) = CnAL⊏(Γ). (Fixed
Point / Idempotence)

Theorem 20: WhereΓ ⊆ W: if Γ ∪ {A} ⊢ALm
⊏
B, thenΓ ⊢ALm

⊏
¬̌A ∨̌B.

(Deduction Theorem forALm⊏)13

13The Deduction Theorem does not hold forAL
r
⊏. This follows immediately in view of

the fact that it does not hold forALr — see [4, Theorem 13.3] — and the fact that every logic
AL

r is a logic in the extended format as well — see Section 4.3.
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Theorem 21: Each of the following holds:

1. CnLLL+(Γ) ⊆ CnALr
⊏
(Γ) ⊆ CnALm

⊏
(Γ) ⊆ CnULL(Γ)

2. CnLLL+(Γ) ⊆ CnALr(Γ) ⊆ CnALr
⊏
(Γ) ⊆ CnULL(Γ)

3. CnLLL+(Γ) ⊆ CnALm(Γ) ⊆ CnALm
⊏
(Γ) ⊆ CnULL(Γ)

Theorem 22: If Γ is normal, thenCnAL⊏(Γ) = CnULL(Γ).

Theorem 23: WhereΓ,Γ′ ⊆ W, CnAL⊏(Γ) = CnAL⊏(Γ
′) if one of the

following holds:

(C1) Γ′ ⊆ CnAL⊏(Γ) andΓ ⊆ CnAL⊏(Γ
′)

(C2) WhereL is a Tarski-logic weaker than or identical toAL⊏: CnL(Γ) =
CnL(Γ

′)
(C3) WhereL is a Tarski-logic and for everyΘ ⊆ W, CnAL⊏(Θ) =

CnL(CnAL⊏(Θ)): CnL(Γ) = CnL(Γ
′)

6. Conclusion and Outlook

Let us briefly summarize our main results. We have developed anew for-
mat for prioritized ALs, that includes the standard format as a border case.
We proved that the most central properties of the standard format hold for
the new format as well. Many of these, notably soundness and complete-
ness, were proven independently of previous results. Apartfrom that, the
new format offers all the advantages that make (flat) ALs so attractive, e.g.
their straightforward semantics and a proof theory that mirrors the dynamic
aspects of human reasoning.

In our paper, we only presented one particular logicK⊏. This logic can
be used to explicate reasoning with prioritized belief bases or background
knowledge. However, theAL⊏-format can be applied in a broad variety
of other contexts: hierarchies of imperatives, prioritized combinations of
deontic and doxastic logics, abduction and inductive generalization, etc. As
a result, a huge range of defeasible reasoning forms can be studied from the
viewpoint of this unifying framework.

Many issues still require our consideration, such as computational com-
plexity [28], decision procedures for final derivability [2], proof heuristics
[10], and so on. Although the proof of the pudding will be in the eating, it is
likely thatAL⊏ will resembleAL in these respects, in view of their structural
similarity.
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APPENDIX

A.Φ⊏
s (Γ) 6= ∅ andΦ⊏(Γ) 6= ∅

As promised, we prove here thatΦ⊏
s (Γ) 6= ∅ at every stages of a proof from

Γ. From this, it follows almost immediately thatΦ⊏(Γ) 6= ∅ — see Theorem
25. The latter property is called upon in the proof of Lemma 9 below.

Lemma 5: Where (1)Σ = {∆1,∆2, . . .} is a set of sets and (2)ϕ is a choice
set ofΣ: (3) for everyA ∈ ϕ, there is a∆ ∈ Σ for which∆ ∩ ϕ = {A} iff
(4)ϕ is a minimal choice set ofΣ.

Proof. Suppose (1) and (2) hold. (⇒) Suppose (3) holds, and consider a
ϕ′ ⊂ ϕ and aB ∈ ϕ,B 6∈ ϕ′. By (3), there is a∆ ∈ Σ for which∆ ∩ ϕ =
{B} and hence∆∩ϕ′ = ∅. This implies thatϕ′ is not a choice set ofΣ. As
a result,ϕ is a minimal choice set ofΣ. (⇐) Suppose (3) is false, whence
there is aB ∈ ϕ such that, for no∆ ∈ Σ, ϕ ∩ ∆ = {B}. In that case for
every∆ for whichB ∈ ∆, there is aC ∈ ϕ−{B} such thatC ∈ ∆. Hence
ϕ− {B} is a choice set ofΣ, henceϕ is not a minimal choice set ofΣ. �

Let Ω1 = Ω1. For all i ∈ I, i > 1, let Ωi = Ωi − (Ω1 ∪ . . . ∪ Ωi−1).
Wherei ∈ I, aDabi-formula is the classical disjunction of the members
of ∆ ⊂ (Ω1 ∪ . . . ∪ Ωi). WhereDab(∆1),Dab(∆2), . . . are the minimal
Dabi-formulas at stages of a proof of fromΓ, let Σi

s(Γ) = {∆1,∆2, . . .}.
Note thatΣ1

s(Γ) ⊆ Σ2
s(Γ) ⊆ . . .. Let Φi

s(Γ) be the set of minimal choice
sets ofΣi

s(Γ).
Note that for each∆ ∈ Σi+1

s (Γ) − Σi
s(Γ), ∆ ∩ Ωi+1 6= ∅. Whereϕ ∈

Φi
s(Γ), let Φ

i+1

ϕ,s (Γ) be the set of minimal choice sets of{∆ ∩ Ωi+1 | ∆ ∈

Σi+1
s (Γ), ϕ ∩ ∆ = ∅}. As before, if the latter set is empty we have that

Φ
i+1

ϕ,s (Γ) = {∅}.

Lemma 6: For all ϕ ∈ Φi
s(Γ) and allϕ′ ∈ Φ

i+1

ϕ,s (Γ), ϕ ∪ ϕ′ ∈ Φi+1
s (Γ).

Proof. Let ϕ ∈ Φi
s(Γ) and consider an arbitraryϕ′ ∈ Φ

i+1

ϕ,s (Γ). Suppose
∆ ∩ ϕ = ∅ for a∆ ∈ Σi+1

s (Γ). Then∆ /∈ Σi
s(Γ) sinceϕ ∈ Φi

s(Γ). In this

case∆ ∩Ω
i+1

6= ∅. Henceϕ′ ∩∆ 6= ∅, sinceϕ′ ∈ Φ
i+1

ϕ,s . Henceϕ ∪ ϕ′ is a
choice set ofΣi+1

s (Γ).
By the right-left direction of Lemma 5 and the fact thatϕ ∈ Φi

s(Γ), for
everyA ∈ ϕ there is a∆ ∈ Σi

s(Γ) such that∆ ∩ ϕ = {A}. Moreover, for
all these∆,ϕ′∩∆ = ∅, sinceϕ′ ⊆ Ωi+1. Finally,Σi

s(Γ) ⊆ Σi+1
s (Γ), which
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gives us:

(1) for everyA ∈ ϕ there is a∆ ∈ Σi+1
s (Γ) such that∆ ∩ (ϕ ∪ ϕ′) = {A}.

From the right-left direction of Lemma 5: for everyA ∈ ϕ′, there is a
Θ ∈ Φ

i+1

ϕ,s such thatΘ∩ϕ′ = {A}, whereΘ = ∆∩Ωi+1 for a∆ ∈ Σi+1
s (Γ).

Sinceϕ′ ⊆ Ωi+1,∆∩ϕ′ = {A}. Moreover, in view of the definition ofΦ
i+1

ϕ,s ,
∆ ∩ ϕ = ∅. Hence we have:

(2) for everyA ∈ ϕ′, there is a∆ ∈ Σi+1
s (Γ) such that∆∩ (ϕ∪ϕ′) = {A}.

By (1) and (2): for everyA ∈ ϕ ∪ ϕ′, there is a∆ ∈ Σi+1
s (Γ) such that

∆ ∩ (ϕ ∪ ϕ′) = {A}. By the left-right direction of Lemma 5,ϕ ∪ ϕ′ is a
minimal choice set ofΣi+1

s (Γ), henceϕ ∪ ϕ′ ∈ Φi+1
s (Γ). �

Theorem 24: For every stages of a proof fromΓ, Φ⊏
s (Γ) 6= ∅.

Proof. Note that at every stages of a proof,Σ1
s(Γ) is a set of finite sets. By

Fact 1,Φ1
s(Γ) 6= ∅. Let ϕ1 ∈ Φ1

s(Γ), and for all i > 1, let ϕj be some

arbitrary element inΦ
i
ϕi−1,s

. Considerϕ⊕ = ϕ1 ∪ ϕ2 ∪ . . .. Note that for

everyi ∈ I, ϕi ⊆ Ωi. As a result, for everyi ∈ I, ϕ⊕ ∩ (Ω1 ∪ . . . ∪ Ωi) =
ϕ1 ∪ . . . ∪ ϕi, whence by Lemma 6, (†) ϕ⊕ ∩ (Ω1 ∪ . . . ∪ Ωi) ∈ Φi

s(Γ).
Let ∆ ∈ Σs(Γ). Then there is ani ∈ I such that∆ ⊆ Ωi. It follows

immediately by (†) thatϕ⊕ ∩∆ 6= ∅. Henceϕ⊕ is a choice set ofΣs(Γ).
Supposeϕ⊕ /∈ Φ⊏

s (Γ). Hence there is a choice set ofΣs(Γ), sayψ, such
that for ani ∈ I, ψ ∩ Ωj = ϕ⊕ ∩ Ωj for all j < i andψ ∩ Ωi ⊂ ϕ⊕ ∩ Ωi.
Note that sinceΣi

s(Γ) ⊆ Σs(Γ), ψ is a choice set ofΣi
s(Γ), whence also

ψ ∩ (Ω1 ∪ . . . ∪ Ωi) is a choice set ofΣi
s(Γ). This however implies that

ϕ⊕∩ (Ω1∪ . . .∪Ωi) is not a minimal choice set ofΣi
s(Γ), which contradicts

(†). �

Theorem 25: For everyΓ, Φ⊏(Γ) 6= ∅.

Proof. Consider aAL⊏-proof from Γ in which every minimal Dab-conse-
quence ofΓ has been derived at stages. Note thatΣs(Γ) = Σ(Γ). By
Definitions 9 and 12,Φ⊏

s (Γ) = Φ⊏(Γ). By Theorem 24,Φ⊏(Γ) 6= ∅. �
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B. Meta-theory ofAL⊏

B.1. Soundness and Completeness

We first prove soundness and restricted completeness forALm⊏ , next we prove
these two properties forALr⊏.

B.1.1. Minimal Abnormality

Lemma 7: For everyΓ ⊆ W: if Γ ⊢LLL+ A ∨̌Dab(∆) and∆ ∩ ϕ = ∅ for
a ϕ ∈ Φ⊏(Γ), then there is a finiteALm⊏-proof fromΓ in whichA is derived
on the condition∆ at an unmarked line.

Proof. Suppose the antecedent holds. Due to the compactness ofLLL+,
there is aΓ′ = {A1, . . . , An} ⊆ Γ such thatΓ′ ⊢LLL+ A ∨̌Dab(∆). Let
the adaptive proofP be constructed as follows. At line 1 we introduce the
premiseA1 by PREM, . . . , and at linen we introduce the premiseAn by
PREM. At linen + 1 we deriveA by RC on the condition∆. Let s be the
stage consisting of lines 1 up ton+1. SinceΓ′ ⊆ Γ ⊆ W, all Dab-formulas
B1, . . . , Bm that have been derived at stages (if any) are members ofΩ.
HenceΦ⊏

s (Γ
′) = {{B1, . . . , Bm}}. Due to the monotonicity ofLLL+, also

Γ ⊢LLL+ Bi for all these abnormalitiesBi. Then{B1, . . . , Bm} ⊆ ψ for all
ψ ∈ Φ⊏(Γ). Sinceϕ∩∆ = ∅ andϕ ∈ Φ⊏(Γ), also∆∩{B1, . . . , Bm} = ∅.
Thus, linen+ 1 is unmarked. �

Lemma 8: If Γ ⊢ALm
⊏
A, then each of the following holds:

1. A is derivable on a linel of a finiteALm⊏-proof fromΓ, on a condition
∆ such that∆ ∩ ϕ = ∅ for aϕ ∈ Φ⊏(Γ)

2. For everyϕ ∈ Φ⊏(Γ), there is a finite∆ ⊆ Ω−ϕ such thatΓ ⊢LLL+

A ∨̌Dab(∆).

Proof. SupposeΓ ⊢ALm
⊏
A. By Definition 5, there is a finiteALm⊏- proof P

from Γ, such that (i)A is derived in this proof on an unmarked linel with
a condition∆, (ii) every extension of the proof in which linel is marked
can be further extended such that linel is unmarked again. We now extend
P to a stages such that all minimal Dab-consequences are derived on the
empty condition. NoteΦ⊏

s (Γ) = Φ⊏(Γ) and that at every later stages′,
Φ⊏
s′(Γ) = Φ⊏

s (Γ).
Ad 1. Suppose there is noϕ ∈ Φ⊏(Γ) such that∆ ∩ ϕ = ∅. By Definition
13, line l is marked at stages and at every later stages′, which contradicts
(ii).
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Ad 2. Suppose there is aϕ ∈ Φ⊏(Γ) for which there is no∆ ⊆ Ω such that
Γ ⊢LLL+ A ∨̌Dab(∆) and∆ ∩ ϕ = ∅. By Definition 13 linel is marked at
stages, and we cannot further extend the proof such that linel is unmarked
— this again contradicts (ii). �

Lemma 9: WhereΓ ⊆ W: if for everyϕ ∈ Φ⊏(Γ), there is a finite∆ ⊆
Ω− ϕ such thatΓ ⊢LLL+ A ∨̌Dab(∆), thenΓ ⊢ALm

⊏
A.

Proof. Suppose that for everyϕ ∈ Φ⊏(Γ) there is a finite∆ϕ ⊆ Ω − ϕ for
which Γ ⊢LLL+ A ∨̌Dab(∆ϕ). Due to Lemma 7, for every such∆ϕ there
is a finiteALm⊏-proof fromΓ in whichA is derived on the condition∆ϕ at
an unmarked linel. Let P be any such proof (sinceΦ⊏(Γ) is non-empty by
Theorem 25, there is at least one). Suppose the proof is extended to a stages
in which line l is marked. We extend the proof further to a stages′ in which
(i) all minimal Dab-formulas have been derived on the empty condition, and
(ii) for all ϕ ∈ Φ(Γ),A has been derived on the condition∆ϕ. By Definition
13, linel is unmarked at stages′. �

Theorem 26: If Γ ⊢ALm
⊏
A, thenΓ |=ALm

⊏
A. (Soundness)

Proof. SupposeΓ ⊢ALm
⊏
A. If MALm

⊏
(Γ) = ∅, the theorem follows im-

mediately. SupposeMALm
⊏
(Γ) 6= ∅. Let M ∈ MALm

⊏
(Γ), whenceM ∈

MLLL+(Γ). By Theorem 9,Ab(M) ∈ Φ⊏(Γ). By Lemma 8.2, there is a
∆ ⊆ Ω such thatAb(M) ∩ ∆ = ∅ andΓ ⊢LLL+ A ∨̌Dab(∆). By the
soundness ofLLL+, Γ |=LLL+ A ∨̌Dab(∆). SinceM ∈ MLLL+(Γ) and
M + ¬̌Dab(∆),M + A. �

Definition 16: Whereϕ ∈ Φ(Γ): Mϕ = {M ∈ MLLL+(Γ) | Ab(M) = ϕ}

Lemma 10: Whereϕ ∈ Φ(Γ): if M is aLLL+-model ofΓ ∪ (Ω− ϕ)¬̌, then
M ∈ Mϕ.

Proof. Suppose (†) ϕ ∈ Φ(Γ) andM is aLLL+-model ofΓ ∪ (Ω − ϕ)¬̌.
Hence (1)M ∈ MLLL+(Γ). Note thatAb(M) ⊆ ϕ. By Lemma 3,Ab(M)
is a choice set ofΣ(Γ), whence by (†),Ab(M) 6⊂ ϕ. Hence (2)Ab(M) = ϕ.
By (1) and (2),M ∈ Mϕ. �

Lemma 11: Whereϕ ∈ Φ(Γ): if all members ofMϕ verifyA, thenΓ ⊢LLL+

A ∨̌Dab(∆) for a∆ ⊆ Ω− ϕ.

Proof. Suppose all members ofMϕ verify A. By Lemma 10, allLLL+-
models ofΓ∪(Ω−ϕ)¬̌ verifyA. This implies by the completeness ofLLL

+:
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Γ∪(Ω−ϕ)¬̌ ⊢LLL+ A. By the compactness ofLLL+,Γ′∪∆¬̌ ⊢LLL+ A, for a
finite Γ′ ⊆ Γ and a finite∆ ⊆ Ω− ϕ. By the Deduction Theorem,Γ′ ⊢LLL+

A ∨̌Dab(∆), and by the monotonicity ofLLL+, Γ ⊢LLL+ A ∨̌Dab(∆). �

Theorem 27: WhereΓ ⊆ W: if Γ |=ALm
⊏
A, thenΓ ⊢ALm

⊏
A. (L-Complete-

ness)

Proof. Suppose (†) Γ |=ALm
⊏
A. Consider aϕ ∈ Φ⊏(Γ). By Theorem 8,ϕ ∈

Φ(Γ). By Theorem 9, we have that for everyM ∈ Mϕ,M ∈ MALm
⊏
(Γ). In

view of (†), it follows that for everyM ∈ Mϕ, M + A. By Lemma 11,
Γ ⊢LLL+ A ∨̌Dab(∆) for a∆ ⊆ Ω−ϕ. Since this holds for allϕ ∈ Φ⊏(Γ),
we obtain by Lemma 9 thatΓ ⊢ALm

⊏
A. �

B.1.2. Reliability

Lemma 12: WhereΓ ⊆ W: if Γ ⊢LLL+ A ∨̌Dab(∆) and∆ ∩ U⊏(Γ) = ∅,
then each of the following holds:

1. There is a finiteALr⊏-proof fromΓ in whichA is derived on the con-
dition ∆ at an unmarked line

2. Γ ⊢ALr
⊏
A

Proof. Ad 1.The proof proceeds analogous to the proof for Lemma 7. We
again construct the proofP as above. Note that sinceΓ ⊢LLL+ Bi for all
the derived abnormalitiesBi, U⊏

s (Γ
′) = {B1, . . . , Bm} ⊆ U⊏(Γ). Since

∆ ∩ U⊏(Γ) = ∅, also∆ ∩ U⊏
s (Γ′) = ∅. Thus, linen+ 1 is unmarked.

Ad 2. Suppose that there is a finite∆ ⊆ Ω such thatΓ ⊢LLL+ A ∨̌Dab(∆)
and∆ ∩ U⊏(Γ) = ∅. By item 1, there is a finite proof fromΓ such thatA
is derived on the condition∆, on an unmarked linel. Suppose the proof is
extended such that linel becomes marked. In that case, we can further extend
the proof, deriving every minimal Dab-consequence ofΓ. Then wheres′

is the stage of the second extension,U⊏
s′ (Γ) = U⊏(Γ), whence linel is

unmarked again. �

Lemma 13: If Γ ⊢ALr
⊏
A, thenA is derivable in aALr⊏-proof P from Γ on

line l with condition∆ such that∆ ∩ U⊏(Γ) = ∅.

Proof. Suppose thatΓ ⊢ALr
⊏
A. So A is finally derived on linel of aALr⊏-

proof fromΓ. Let∆ be the condition of linel. Suppose that∆∩U⊏(Γ) 6= ∅.
In that case, we can extendP to a stages such that every minimal Dab-
consequence ofΓ is derived in it. We have thatU⊏

s (Γ) = U⊏(Γ) and for all
later stagess′, U⊏

s′ (Γ) = U⊏
s (Γ). As a result, linel is marked at stages and
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remains marked in every further extension of the proof, which contradicts
the antecedent in view of Definition 5. �

Theorem 28: Γ |=ALr
⊏
A iff Γ |=LLL+ A ∨̌Dab(∆) for a finite∆ such that

∆ ∩ U⊏(Γ) = ∅.

Proof. (⇒) Suppose thatΓ |=ALr
⊏
A, whence for everyM ∈ MALr

⊏
(Γ),

M + A. By Definition 11, for everyM ∈ MLLL+(Γ) such thatAb(M) ⊆
U⊏(Γ),M + A. ThenΓ∪ (Ω−U⊏(Γ))¬̌ |=LLL+ A. AsLLL+ is compact,
Γ′∪(∆)¬̌ |=LLL+ A for a finiteΓ′ ⊆ Γ and a finite∆ ⊆ (Ω−U⊏(Γ)). Hence
Γ′ |=LLL+ A ∨̌Dab(∆). So, asLLL+ is monotonic,Γ |=LLL+ A ∨̌Dab(∆).

(⇐) Suppose there is a finite∆ ⊆ Ω such thatΓ |=LLL+ A ∨̌Dab(∆) and
∆ ∩ U⊏(Γ) = ∅. Note that by Definition 11, for everyM ∈ MALr

⊏
(Γ),

M + ¬̌Dab(∆). This implies thatM + A and we are done. �

Theorem 29: If Γ ⊢ALr
⊏
A, thenΓ |=ALr

⊏
A. (Soundness)

Proof. SupposeΓ ⊢ALr
⊏
A. By Lemma 13,A is derivable in aALr⊏-proof P

from Γ on line l with condition∆ such that∆ ∩ U⊏(Γ) = ∅. By Lemma 1
Γ ⊢LLL+ A ∨̌Dab(∆). By the soundness ofLLL+, Γ |=LLL+ A ∨̌Dab(∆).
By Theorem 28,Γ |=ALr

⊏
A. �

Theorem 30: WhereΓ ⊆ W: if Γ |=ALr
⊏
A, thenΓ ⊢ALr

⊏
A. (L-Complete-

ness)

Proof. SupposeΓ |=ALr
⊏
A. By Theorem 28,Γ |=LLL+ A ∨̌Dab(∆) for

a ∆ such that∆ ∩ U⊏(Γ) = ∅. By the completeness ofLLL+, Γ ⊢LLL+

A ∨̌Dab(∆). By Lemma 12.2,Γ ⊢ALr
⊏
A. �

B.2. Strong Reassurance

As in the previous secion, we first prove the property for⊏-Minimal Abnor-
mality, and next for⊏-Reliability. Wherei ∈ I, let the flat adaptive logic
ALmi be defined by (i)LLL, (ii) Ωi and (iii) Minimal Abnormality. The proof
of Strong Reassurance forALm⊏ relies on the Strong Reassurance property of
each of these flat adaptive logics.

Theorem 31: If M ∈ MLLL+(Γ)−MALm
⊏
(Γ), then there is anM ′ ∈

MALm
⊏
(Γ) such thatAb(M ′) ⊏ Ab(M).
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Proof. SupposeM ∈ MLLL+(Γ)−MALm
⊏
(Γ). LetM be the set of allM ′ ∈

MLLL+(Γ) such that Ab(M ′) ⊏ Ab(M). M 6= ∅ sinceM /∈ MALm
⊏
(Γ). By

Definition 7, there is aniM ′ ∈ I for eachM ′ ∈ M such that for allj < iM ′ ,
Ab(M) ∩ Ωj = Ab(M ′) ∩Ωj , and Ab(M ′) ∩ ΩiM′

⊂ Ab(M) ∩ ΩiM′
. Let

k = min({iM ′ |M ′ ∈ M}) andM ′′ ∈ M be such thatiM ′′ = k.
If k = 1 letMk ∈ MALm1

(Γ) such that Ab(Mk) ∩Ω1 ⊆ Ab(M ′′) ∩ Ω1.
If k > 1, let for everyi < k, ∆i = (Ωi − Ab(Mi))

¬̌ andMi = M .
Moreover, letMk ∈ MALm

k
(Γ ∪∆1 ∪ . . . ∪∆k−1) be such that Ab(Mk) ∩

Ωk ⊆ Ab(M ′′) ∩Ωk.
For everyi ∈ I, i ≥ k let∆i = (Ωi −Ab(Mi))

¬̌, where for allj ∈ I, j >
k,Mj is an arbitrary model inMALm

j
(Γ ∪∆1 ∪ . . . ∪∆j−1).

We show now by induction that for eachi ∈ I, Mi and hence also∆i are
well-defined. Ifk > 1, this is trivially so for alli < k.

“ i = k”: Suppose firstk = 1. Mk exists due to the strong reassurance
property that holds forALm1 . Suppose nowk > 1. By the construction,
M ′′ ∈ MLLL+(Γ ∪∆1 ∪ . . . ∪∆k−1). Mk exists due to the strong reassur-
ance property that holds forALmk .

“ i⇒ i+1”: By the induction hypothesis there is anMi ∈ MALm
i
(Γ∪∆1∪

. . . ∪ ∆i−1). Hence Mi ∈ MLLL+(Γ ∪∆1 ∪ . . . ∪∆i). Thus,
MLLL+(Γ ∪∆1 ∪ . . . ∪∆i) 6= ∅. Hence, by the reassurance property of
ALmi+1, MALm

i+1
(Γ ∪∆1 ∪ . . . ∪∆i) 6= ∅. Let Mi+1 ∈

MALm
i+1

(Γ ∪∆1 ∪ . . . ∪∆i) and∆i+1 = (Ωi+1 − Ab(Mi+1))
¬̌.

For every finite subsetΓ′ of Γ ∪
⋃

i∈I ∆i there is aj for whichΓ′ ⊆ Γ ∪
∆1∪. . .∪∆j. SinceMj+1 ∈ MLLL+(Γ ∪∆1 ∪ . . . ∪∆j),MLLL+(Γ

′) 6= ∅.
Then, by the compactness ofLLL+, MLLL+(Γ ∪

⋃
i∈I ∆i) 6= ∅. LetM⋆ ∈

MLLL+(Γ ∪
⋃

i∈I ∆i). We will now show that (1) Ab(M⋆) ⊏ Ab(M) and
that (2)M⋆ ∈ MALm

⊏
(Γ).

(1) By the construction, for alli ∈ I, Ab(M⋆) ∩ Ωi ⊆ Ab(Mi) ∩ Ωi.
Suppose there is ani ∈ I for which Ab(M⋆)∩Ωi ⊂ Ab(Mi)∩Ωi. Suppose
first thati < k. In view of the construction, for allj < k, Ab(Mj) ∩ Ωj =
Ab(M) ∩ Ωj, whence Ab(M⋆) ∩ Ωj ⊆ Ab(M) ∩ Ωj. But thenM⋆ ∈ M
which is a contradiction to the minimality ofk. Suppose hence thati ≥ k.
Supposei = 1. SinceM1 ∈ MALm1

(Γ) andM⋆ ∈ MLLL+(Γ) this is a con-
tradiction. Suppose now thati > 1. Note that Mi ∈
MALm

i
(Γ ∪∆1 ∪ . . . ∪∆i−1) andM⋆ ∈ MLLL+(Γ ∪∆1 ∪ . . . ∪∆i−1), —

a contradiction. Hence (‡) for all i ∈ I, Ab(M⋆) ∩ Ωi = Ab(Mi) ∩ Ωi.
Since for alli < k, Ab(M⋆) ∩ Ωi = Ab(M) ∩ Ωi, and Ab(M⋆) ∩ Ωk =

Ab(Mk)∩Ωk ⊆ Ab(M ′′)∩Ωk ⊂ Ab(M)∩Ωk, we have Ab(M⋆) ⊏ Ab(M)
by Definition 7.
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(2) Suppose there is anM ′′′ ∈ MLLL+(Γ) such that Ab(M ′′′) ⊏ Ab(M⋆).
Then there is anl ∈ I such that (i) for allm < l, Ab(M ′′′) ∩ Ωm =
Ab(M⋆) ∩ Ωm and (ii) Ab(M ′′′) ∩ Ωl ⊂ Ab(M⋆) ∩ Ωl. By the transi-
tivity of ⊏, Ab(M ′′′) ⊏ Ab(M) and henceM ′′′ ∈ M. Thus, due to
the minimality of k, l ≥ k. Supposel = 1 = k. Due to (ii) and (‡),
Ab(M ′′′) ∩ Ω1 ⊂ Ab(M⋆) ∩ Ω1 = Ab(M1) ∩ Ω1. This is a contradic-
tion, sinceM1 ∈ MALm1

(Γ). Suppose nowl > 1. Note that due to (i)
and (‡), for all m < l, Ab(M ′′′) ∩ Ωm = Ab(M⋆) ∩ Ωm = Ab(Mm) ∩
Ωm. Thus,M ′′′ ∈ MLLL+(Γ ∪∆1 ∪ . . . ∪∆l−1). Due to (ii) and (‡),
Ab(M ′′′) ∩ Ωl ⊂ Ab(M⋆) ∩ Ωl = Ab(Ml) ∩ Ωl. This is a contradiction,
sinceMl ∈ MALm

l
(Γ ∪∆1 ∪ . . . ∪∆l−1). HenceM⋆ ∈ MALm

⊏
(Γ). �

Lemma 14: MALm
⊏
(Γ) ⊆ MALr

⊏
(Γ).

Proof. SupposeM ∈ MALm
⊏
(Γ). By Theorem 9,Ab(M) = ϕ for some

ϕ ∈ Φ⊏(Γ). HenceAb(M) ⊆
⋃
Φ⊏(Γ), whence by Definitions 10 and 11,

M ∈ MALr
⊏
(Γ). �

Theorem 32: If M ∈ MLLL+(Γ)−MALr
⊏
(Γ), then there is anM ′ ∈

MALr
⊏
(Γ) such thatAb(M ′) ⊏ Ab(M).

Proof. SupposeM ∈ MLLL+(Γ)−MALr
⊏
(Γ). By Lemma 14,M ∈

MLLL+(Γ)−MALm
⊏
(Γ). By Theorem 31, there is aM ′ ∈ MALm

⊏
(Γ) such

thatAb(M ′) ⊏ Ab(M). By Lemma 14,M ′ ∈ MALr
⊏
(Γ). �

B.3. Reflexivity

Reflexivity follows immediately from the following property:

Theorem 33: CnLLL+(Γ) ⊆ CnAL⊏(Γ) (LLL+ is weaker than or identical
toAL⊏)

Proof. SupposeΓ ⊢LLL+ A. By the compactness ofLLL+, there is a finite
Γ′ ⊆ Γ such thatΓ′ ⊢LLL+ A. We may introduce all the elements ofΓ′ as
premises in aAL⊏-proof fromΓ, using the rule PREM. We apply the rule RU
to these premises to deriveA, say on a linel. Note that the condition of line
l is ∅, whence in view of marking definitions 13 and 15, linel is unmarked
and remains unmarked in every extension of the proof. �
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B.4. Cautious Indifference

We will first prove that Cautious Indifference holds forALm⊏ , and then that it
also holds forALr⊏. In what follows,Γ′ is an arbitrary subset ofW+.

Theorem 34: If Γ′ ⊆ CnALm
⊏
(Γ), thenMALm

⊏
(Γ) = MALm

⊏
(Γ ∪ Γ′).

Proof. Suppose (†) Γ′ ⊆ CnALm
⊏
(Γ). Consider aM ∈ MALm

⊏
(Γ ∪ Γ′). By

Definition 8,M ∈ MLLL+(Γ ∪ Γ′) and henceM ∈ MLLL+(Γ). Suppose
thatM 6∈ MALm

⊏
(Γ). By Theorem 31, there is aM ′ ∈ MALm

⊏
(Γ) such that

Ab(M ′) ⊏ Ab(M). However, in view of (†), M ′ + A for everyA ∈ Γ′,
whence alsoM ′ ∈ MLLL+(Γ ∪ Γ′). By Definition 8,M 6∈ MALm

⊏
(Γ ∪ Γ′),

which contradicts the supposition.
Consider aM ∈ MALm

⊏
(Γ). By (†), M + A for everyA ∈ Γ′. By

Definition 8,M is aLLL+-model ofΓ. We thus obtain thatM is aLLL+-
model ofΓ ∪ Γ′. SupposeM 6∈ MALm

⊏
(Γ ∪ Γ′). By Theorem 31, there is a

M ′ ∈ MLLL+(Γ ∪ Γ′): Ab(M ′) ⊏ Ab(M). HenceM ′ ∈ MLLL+(Γ). By
Definition 8,M 6∈ MALm

⊏
(Γ), whence we have obtained a contradiction.�

Lemma 15: If Γ′ ⊆ CnALm
⊏
(Γ), thenΦ⊏(Γ) = Φ⊏(Γ ∪ Γ′).

Proof. SupposeΓ′ ⊆ CnALm
⊏
(Γ). If Γ has noLLL+-models, thenΓ and

Γ ∪ Γ′ areLLL+-trivial, whenceΦ⊏(Γ) = {Ω} = Φ⊏(Γ ∪ Γ′).
If (1) Γ hasLLL+-models, then in view of the reassurance ofALm⊏ , there is

aM ∈ MALm
⊏
(Γ). By Theorem 34,M ∈ MALm

⊏
(Γ ∪ Γ′), whence also (2)

Γ∪Γ′ hasLLL+-models. By Theorem 34,MALm
⊏
(Γ) = MALm

⊏
(Γ ∪ Γ′). By

(1), (2) and Theorem 10, this means thatΦ⊏(Γ) = Φ⊏(Γ ∪ Γ′). �

Theorem 35: If Γ′ ⊆ CnALm
⊏
(Γ), thenCnALm

⊏
(Γ) ⊆ CnALm

⊏
(Γ ∪ Γ′). (Cau-

tious Monotonicity)

Proof. SupposeΓ′ ⊆ CnALm
⊏
(Γ), whence by Lemma 15, (†) Φ⊏(Γ) =

Φ⊏(Γ ∪ Γ′). SupposeΓ ⊢ALm
⊏
A. By Lemma 8.2 and (†), we have that

(‡) for everyϕ ∈ Φ⊏(Γ ∪ Γ′), Γ ⊢LLL+ A ∨̌Dab(∆) for a ∆ such that
ϕ∩∆ = ∅. By Lemma 8.1 and (‡), there is a finiteALm⊏-proof P fromΓ such
thatA is derived at an unmarked linel with condition∆, and∆∩ϕ = ∅ for
aϕ ∈ Φ⊏(Γ ∪ Γ′). Note thatP is also a proof fromΓ ∪ Γ′.

Suppose linel is marked in an extension ofP. We may extend this exten-
sion further such that (a) all minimal Dab-consequences ofΓ∪Γ′ are derived
on the empty condition and (b) for everyϕ ∈ Φ⊏(Γ ∪ Γ′), A is derived on a
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condition∆ such that∆ ∩ ϕ = ∅ — this is possible in view of (‡). Let s be
the stage of this second extension ofP.

Note that by (a), for every later stages′, Φs′(Γ∪Γ′) = Φ(Γ∪Γ′). By (b),
at every later stages′, for everyϕ ∈ Φs′(Γ∪Γ′),A is derived on a condition
∆ such that∆ ∩ ϕ = ∅. By Definition 13, linel is unmarked at every such
stages′, whenceA is finally derived in the proof. HenceΓ∪Γ′ ⊢ALm

⊏
A. �

Theorem 36: WhereΓ ⊆ W: if Γ′ ⊆ CnALm
⊏
(Γ), thenCnALm

⊏
(Γ ∪ Γ′) ⊆

CnALm
⊏
(Γ). (Cumulative Transitivity)

Proof. SupposeΓ′ ⊆ CnALm
⊏
(Γ), whence by Theorem 34, (†) MALm

⊏
(Γ) =

MALm
⊏
(Γ ∪ Γ′). SupposeΓ ∪ Γ′ ⊢ALm

⊏
A. By the soundness ofALm⊏ , Γ ∪

Γ′ |=ALm
⊏
A. By (†), Γ |=ALm

⊏
A. By theL-completeness ofALm⊏ , Γ ⊢ALm

⊏

A. �

Corollary 1: WhereΓ ⊆ W: if Γ′ ⊆ CnALm
⊏
(Γ), thenCnALm

⊏
(Γ ∪ Γ′) =

CnALm
⊏
(Γ). (Cautious Indifference)

Theorem 37: CnALr
⊏
(Γ) ⊆ CnALm

⊏
(Γ).

Proof. SupposeΓ ⊢ALr
⊏
A. By Lemma 13, there is a finiteALr⊏-proof P

from Γ, in which A occurs on an unmarked linel with condition∆, and
∆ ∩ U⊏(Γ) = ∅. Let s be the stage of this proof. Since linel is unmarked,
we have that (†) ∆ ∩ U⊏

s (Γ) = ∅. SinceU⊏(Γ) =
⋃

Φ⊏(Γ), we can derive
that (‡) ∆ ∩ ϕ = ∅ for everyϕ ∈ Φ⊏(Γ).

Note thatP is also anALm⊏-proof fromΓ. By (†) and the fact thatU⊏
s (Γ) =⋃

Φ⊏
s (Γ), we can derive that∆ ∩ ϕ = ∅ for everyϕ ∈ Φ⊏

s (Γ). Hence linel
is also unmarked inP if the strategy is⊏-Minimal Abnormality.

Suppose linel is ALm⊏-marked in a further extension of the proof. We
then extend the proof further to a stages′, such that every minimal Dab-
consequence ofΓ is derived at stages′. Note thatΦ⊏

s′(Γ) = Φ⊏(Γ). By (‡)
and Definition 13, linel is unmarked at stages′. �

Lemma 16: If Γ′ ⊆ CnALr
⊏
(Γ), thenU⊏(Γ ∪ Γ′) = U⊏(Γ).

Proof. SupposeΓ′ ⊆ CnALr
⊏
(Γ). By Theorem 37,Γ′ ⊆ CnALm

⊏
(Γ). By

Lemma 15,Φ⊏(Γ) = Φ⊏(Γ ∪ Γ′), whence by Definition 10,U⊏(Γ ∪ Γ′) =
U⊏(Γ). �

Theorem 38: If Γ′ ⊆ CnALr
⊏
(Γ), thenMALr

⊏
(Γ) = MALr

⊏
(Γ ∪ Γ′).
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Proof. SupposeΓ′ ⊆ CnALr
⊏
(Γ). By Lemma 16, (†) U⊏(Γ ∪ Γ′) = U⊏(Γ).

SupposeM ∈ MALr
⊏
(Γ). By the supposition and the soundness ofALr⊏,

M ∈ MLLL+(Γ ∪ Γ′). By (†) and Definition 11,M ∈ MALr
⊏
(Γ ∪ Γ′).

SupposeM ∈ MALr
⊏
(Γ ∪ Γ′). By Definition 11,M ∈ MLLL+(Γ ∪ Γ′)

andAb(M) ⊆ U⊏(Γ∪Γ′). Then by the monotonicity ofLLL+ and (†),M ∈
MLLL+(Γ) andAb(M) ⊆ U⊏(Γ). By Definition 11,M ∈ MALr

⊏
(Γ). �

Theorem 39: If Γ′ ⊆ CnALr
⊏
(Γ), thenCnALr

⊏
(Γ) ⊆ CnALr

⊏
(Γ ∪ Γ′). (Cau-

tious Monotonicity)

Proof. SupposeΓ′ ⊆ CnALr
⊏
(Γ), whence by Lemma 16, (†) U⊏(Γ ∪ Γ′) =

U⊏(Γ). SupposeΓ ⊢ALr
⊏
A, whence by Lemma 13,A is derivable in an

ALr⊏-proof P from Γ on line l with condition∆ such that∆ ∩ U⊏(Γ) = ∅.
Note thatP is aALr⊏-proof fromΓ ∪ Γ′ as well.

Suppose that linel is marked in an extension ofP. We may then further
extend the extension, such every minimal Dab-consequence of Γ ∪ Γ′ is
derived in it on the empty condition. Where the stage of the second extension
is s, we have thatU⊏

s (Γ ∪ Γ′) = U⊏(Γ ∪ Γ′). By (†), ∆ ∩U⊏(Γ ∪ Γ′) = ∅.
As a result, linel is unmarked at stages. �

Theorem 40: WhereΓ ⊆ W: if Γ′ ⊆ CnALr
⊏
(Γ), thenCnALr

⊏
(Γ ∪ Γ′) ⊆

CnALr
⊏
(Γ). (Cumulative Transitivity)

Proof. SupposeΓ′ ⊆ CnALr
⊏
(Γ), whence by Theorem 38, (†) MALr

⊏
(Γ) =

MALr
⊏
(Γ ∪ Γ′). Now supposeΓ ∪ Γ′ ⊢ALr

⊏
A. By the soundness ofALr⊏,

Γ ∪ Γ′ |=ALr
⊏
A. By (†), Γ |=ALr

⊏
A. By the L-completeness ofALr⊏,

Γ ⊢ALr
⊏
A. �

Corollary 2: WhereΓ ⊆ W: if Γ′ ⊆ CnALr
⊏
(Γ), thenCnALr

⊏
(Γ ∪ Γ′) =

CnALr
⊏
(Γ). (Cautious Indifference)

B.5. Idempotence

Let Γ′ = CnAL⊏(Γ). By Cautious Indifference,CnAL⊏(Γ) = CnAL⊏(Γ ∪
Γ′). Moreover, by the reflexivity ofAL⊏, Γ ⊆ Γ′, whenceCnAL⊏(Γ∪Γ′) =
CnAL⊏(Γ

′). The rest follows immediately.
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B.6. Deduction Theorem forALm⊏

SupposeΓ ∪ {A} ⊢ALm
⊏
B, whence by the soundness ofALm⊏ : (†) every

ALm⊏-model ofΓ∪{A} verifiesB. SupposeΓ 0ALm
⊏
¬̌A ∨̌B — we derive a

contradiction. By theL-completeness ofALm⊏ , there is aALm⊏-modelM of Γ
such thatM + A ∧̌ ¬̌B. Note thatM is aLLL+-model ofΓ∪{A}. In view
of (†), M is not aALm⊏-model ofΓ ∪ {A}, whence there is aLLL+-model
M ′ of Γ∪{A} such thatAb(M ′) ⊏ Ab(M). However, by the monotonicity
of LLL+,M ′ is aLLL+-model ofΓ. By Definition 8,M 6∈ MALm

⊏
(Γ).

B.7. Hierarchies within the New Format

Theorem 41: CnALm
⊏
(Γ) ⊆ CnULL(Γ).

Proof. SupposeΓ ⊢ALm
⊏
A. By Lemma 8.2,Γ ⊢LLL+ A ∨̌Dab(∆) for a

∆ ⊆ Ω. ByCL-properties,Γ∪Ω¬̌ ⊢LLL+ A, whence in view of the definition
of ULL, Γ ⊢ULL A. �

In view of Theorems 33, 37, 41 and 13, we can immediately derive Theo-
rem 21 as a corollary. By Theorem 5, we can also derive Theorem22.

B.8. Criteria forAL⊏-Equivalence

Theorem 42: WhereΓ ⊆ W, CnAL⊏(Γ) = CnAL⊏(CnLLL+(Γ)). (LLL+ is
conservative with respect toAL⊏)

Proof. By Theorem 33, (‡) CnLLL+(Γ) ⊆ CnAL⊏(Γ). By (‡) and Cautious
Indifference,CnAL⊏(Γ ∪ CnLLL+(Γ)) = CnAL⊏(Γ). SinceLLL+ is reflex-
ive, Γ ⊆ CnLLL+(Γ), whenceCnAL⊏(Γ ∪ CnLLL+(Γ)) = CnAL⊏(CnLLL+
(Γ)) and we are done. �

Theorem 43: WhereΓ,Γ′ ⊆ W: if Γ andΓ′ areLLL+-equivalent, then they
areAL⊏-equivalent.

Proof. SupposeΓ and Γ′ are LLL+-equivalent, whenceCnLLL+(Γ) =
CnLLL+(Γ

′). By Theorem 42,CnAL⊏(Γ) = CnAL⊏(CnLLL+(Γ)) and
CnAL⊏(Γ

′) = CnAL⊏(CnLLL+(Γ
′)). HenceCnAL⊏(Γ) = CnAL⊏(Γ

′). �

Theorem 44: Every monotonic logic that is weaker than or identical toAL⊏

is weaker than or identical toLLL+. (Maximality ofLLL+)
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Proof. (ALm⊏ ) This follows immediately in view of (i) Lemma 8.2 from the
current paper, (ii) the proof of Theorem 10 in [11] — replaceΦ(Γ ∪ Γ′) in
that proof byΦ⊏(Γ ∪ Γ′) and Theorem 4 in that proof by Lemma 8.2 from
the current paper.
(ALr⊏) This follows immediately in view of the fact thatALm⊏ is stronger than
ALr⊏ — see Theorem 37 — and item 1. �

Fact 4: WhereL is a Tarski-logic weaker than or identical toLLL+: if Γ and
Γ′ areL-equivalent, then they areLLL+-equivalent.

Proof of Theorem 23. In view of the preceding lemmas and theorems, the
proof of Theorem 23 is fairly straightforward:

Proof. Ad 1.SupposeΓ′ ⊆ CnAL⊏(Γ) andΓ ⊆ CnAL⊏(Γ
′). By Cautious

Indifference,CnAL⊏(Γ) = CnAL⊏(Γ ∪ Γ′) andCnAL⊏(Γ
′) = CnAL⊏(Γ

′ ∪
Γ), henceCnAL⊏(Γ) = CnAL⊏(Γ

′).
Ad 2. and 3.It was proven in [11] that (C2) and (C3) are coextensive when-
ever (i)AL⊏ is reflexive and has the fixed point property, and (ii)L is mono-
tonic. Hence in view of the reflexivity and idempotence ofAL⊏, it suffices
to prove item 2.

SupposeL is a Tarski-logic weaker than or identical toAL⊏. By Theorem
44, L is weaker than or identical toLLL+. Now supposeΓ andΓ′ areL-
equivalent. By Fact 4,Γ andΓ′ areLLL+-equivalent. By Theorem 43,Γ and
Γ′ areAL⊏-equivalent. �
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