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EXTENDING THE STANDARD FORMAT OF ADAPTIVE LOGICS
TO THE PRIORITIZED CASE

FREDERIK VAN DE PUTTE AND CHRISTIAN STRASSER

Abstract

This paper introduces a new format for reasoning with praed
standards of normality. It is applicable in a broad varieftycan-
texts, e.g. dealing with (possibly conflicting) priorittzbelief bases
or combining different reasoning methods in a prioritizeaywT he
format is a generalization of the standard format of adagtigics
(see [4]). Every logic that is formulated within it has a gjhdfor-
ward semantics in the style of Shoham’s selection sema(gers
[22]) and a dynamic proof theory. Furthermore, it can countio
rich meta-theory that inherits the attractive featureshefstandard
format, such as soundness and completeness, reflexiviy)pd-
tence, cautious monotonicity, and many other properties.

1. Introduction

In this paper, we present a format for adaptive logics (hiemtte ALs), that

is a generalization of the standard format of ALs. The newnftrenables
one to deal with prioritized defeasible reasoning. Let ughin following

introduce the main ideas behind ALs and motivate the exterisi the pri-
oritized case.

1.1. Adaptive Logics
ALs are powerful formal systems that model and explicatesdforms of

human reasoning: reasoning with inconsistent premisesridiictive gen-
eralization [6], abduction [18], reasoning on the basisaiflicting norms

*Research for this paper was supported by subventions fraemtGimniversity and from

the Fund for Scientific Research — Flanders. We are grealgbited to Mathieu Beirlaen,

Rafal Urbaniak and the two anonymous referees for their centsnto previous versions.
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[19], argumentation [26], ett.Many consequence relations from the litera-
ture have been reformulated as ALs, see e.g. [8, 12, 23, 30].

Generally speaking, ALs are developed to capture defeasdasoning
forms (DRFs), reasoning forms in which certain inferencey bre retracted
in view of later insights. A distinctive feature of ALs is thelynamic proof
theory — most of the available systems that model DRFs lackaf pheory.
Scholars often highlight the non-monotonic character efdbnsequence re-
lation that is supposed to represent a DRF, but neglect teenam dynam-
ics that is characteristic of the way we reason towards cuesees. The
growing insight into the given information (resp. premjsesy cause the
withdrawal of previously drawn inferences, even if no nefoimation is
available? The proof theory of ALs nicely captures this internal dynesni

One of the most important developments within the AL progiarthe
definition of a canonical format, the so-callsidndard formafor ALs. This
format encompasses a generic proof theory and semantiash Arrd attrac-
tive meta-theory has been shown to hold generically for & formulated
in the standard format (see [4]): they are sound and complet& conse-
guence relation is idempotent, cautiously monotonic, &ost ALs have
been successfully expressed within this format, whenceoitiges a good
basis for a unifying study of DRFs. Let us list some of the kegt@ires of
the standard format — technical details and a discussiots ohéta-theory
will be given in Section 2.

Every AL in standard format is characterized by a triple:a(lpwer limit
logic (henceforth LLL), (ii) a set of abnormalitiés and (iii) a strategy. The
LLL is a monotonic logic, the rules of which are unconditibpavalid in
the AL. The AL strengthens its LLL by considering a certaibhafdormulas
(the elements aof2) as abnormal, and by interpreting premises “as normally
as possible”. The precise interpretation of the latter ghmdepends on the
strategy of the AL — the details will be spelled out in SecttrHence we
can say that the AL equips its LLL with a certain standard ofmality.

For example, the inconsistency-adaptive 1o0glauN™ from [1] strength-
ens its LLL, the paraconsistent logid.uN, by interpreting premises as con-
sistently as possible. Hence its standard of normalityseambntradictions
are false”. WhileCLuUN™ does not lead to triviality in the face of an incon-
sistent premise set, it retains a large number of inferetiwgsare valid in
classical logic.

In adaptive proofs, this is realized by deriving formulasanondition.
For instanceCLuN™ allows for the application of Disjunctive Syllogism to
AV =B and B on the condition thaB behaves consistently. Whether we

lUnpublished papers in the reference section (and manyjthez available from the
internet addresBt t p: / /| ogi ca. UGent . be/ centrum writings/.

2Pollock dubs this the diachronic defeasibility of defebssibferences [21].
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can depend on the consistent behavior of a formula, may ehaiitt) the
insights we gain and the new information we obtain. Henceestormula
occurring at a line of a proof may count as derived at sometoid as not
derived at another point in the proof. This is determinedtbycondition,
other formulas derived so far in the proof, and the adaptrategy.

ALs employ a selection semantics in the vein of Shoham [22pnFthe
set of the LLL-models of the premises, ALs select a subsetadets that
verify “as few abnormalities as possible”. Again, what isaneby “as few
as possible” depends on the strategy.

1.2. Prioritized Adaptive Logics

This paper deals with prioritized ALs. Agents often make abearious
reasoning methods, where some of these methods take pneeeuleer oth-
ers. For instance, a scientist may reason towards indugéneralizations,
but only in as far as this does not run counter to his (defégsiiackground
knowledge. He may even infer some abductive consequenaesHis in-
duced generalizations. Also, some standards of normality themselves
have a prioritized flavor. For example, where we start frompassibly con-
flicting) set of obligations, each having a certain weighg may want to
deal with the conflicts in a way that is sensitive to this weigh

We will henceforth use the name “prioritized ALS” to refer Ads that
model such processes. The first prioritized ALs were dewsloj cap-
ture reasoning with prioritized belief bases (see Secti8rid@ an example).
There are also examples in the literature of prioritizeddsdor inductive
generalization [6] and prioritized inconsistency-adaptiogics [5, 3]. Ex-
amples of prioritized ALs that combine different reasoningthods can be
found in[17, 16, 25, 26].

While ALs in the standard format are well-studied, priaetl ALs have
been comparatively neglectédlhe standard format of ALs does not incor-
porate prioritized ALs. The most straightforward way toiagh a prioritized
system is to superimpose ALs in standard format. Roughlglgpg, this is
done as follows: wherédL;,AL,,... are ALs in standard format — each
of them taking care of one particular set of abnormalitiesard Cnay, (I')
denotes thé\L;-consequence set bf define the prioritized logi®AL by

CTLPAL(P) =" .. CTLALS(CTLALQ (CTLALl (P))) S
In other wordsPAL boils down to the application &L, toI', next ofAL,

to the consequences obtained so far, Wdx, and so on. Promising as this
approach may seem, some rather discouraging results alabéevdor PAL,

3There is some work forthcoming though, namely [27, 7, 24]
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such as the lack of soundness, completeness, and idemgbtémareover,
there has been a substantial lack of meta-theory on thesbiatons of
ALs.

Starting from Section 3, we will depart from the above apphpand de-
velop a new format for prioritized ALs that cannot be redute@he com-
bination of) ALs in standard format. This new format is vetgse to the
standard format in numerous respects. It also makes use chtracteriza-
tion by a triple, but now replacing the set of abnormalifiesy a sequence of
sets of abnormalitie§2, 29, .. .), where the different subscripts of the sets
refer to their priority ranking. Both proof theory and serties of the new
format have the same overall structure as the standard fofitha difference
is that the strategy is adjusted to the prioritized setting.

Since the new format cannot be reduced to the standard fowesatave
to re-establish a lot of meta-theoretic results. Howewevjew of the strong
similarity with the standard format, much of the work can bsily achieved
through an adaptation of the meta-proofs from [4, 7]. As altethe new
format inherits most if not all of the nice properties of tharglard format.
Last but not least, every AL in standard format can be charaeid as a
logic in the new format as well. In view of this, we can safdgim that the
new format provides a generalization of the old one.

2. Flat Adaptive Logics

In this section, the standard format of ALs is spelled out.isT8tandard
format unifies a broad range of what we will henceforth @all ALs. Flat
ALs stand in contradistinction to the prioritized ALs weripduce in Section
3. We only explain the general characteristics of the stahftamat here,
and refer to [4] for more details, examples and meta-theopebofs. Before
we start, let us introduce some conventions.

Throughout this paper, all formulas are assumed to be fimiteys. Where
W is the set of closed formulas of a formal langudgeve define a logid
as a functionf : (W) — o(W). L may be characterized by a proof theory,
by a semantics or by both. WhereC W andA € W, we usel’ - A
to denote that is L-derivable fromI". LetCn (I') = {A | ' - A} be
the L-consequence set of WhereM is aL-model andA € W, we write
M I+ A to denote thatd is true inM. M is aL-model ofl' C W iffitis a
L-model andM I+ A for all A € T. The set of.-models ofT" is denoted by
M (T'). We say thatd € W is a semantid-consequence df, I' = A iff
A is verified by allL-models ofl".

4[24] introduces some exceptional cases in which soundmass@mpleteness is guar-
anteed.
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EXTENDING THE STANDARD FORMAT OF ADAPTIVE LOGICS 605

2.1. The Standard Format

General CharacterizationtHenceforth, we say théatis a Tarski-logic iff it is
reflexive, transitive and monotonic. Every adaptive logisiandard format
is characterized by a triple:

1. A lower limit logic LLL: a compact Tarski-logic that has a proof
theory and a characteristic semantics

2. A set of abnormalities): a set of formulas, characterized by a (pos-
sibly restricted) logical fornk; or a union of such sets

3. Anadaptive strategyReliability or Minimal Abnormality

The strategy is indicated by a superscrigit" for ALs that have Reli-
ability as their strategyAL™ for those that have Minimal Abnormality as
strategy. Many definitions and theorems are applicable tb blasses of
logics. In that case, we use the generic nahe

The logicLLL is a functionp(WW) — (W), where)V is the set of closed
formulas of a formal language, henceforth denoted’byAs mentioned in
the introduction,AL equipsLLL with a certain standard of normality. To
express statements concerning normality in the objectulage, a distinct
set of classical connectives is used. How this is done mlycisequires
some explanation.

The additional classical connectives are noted by a check; A, O, and
for the predicative case alshV. The language .. is obtained by extending
L with the checked connectives, where it is assumed that #yesbols are
not in £. The set of closed formulas @f., W, is the closure oV under
the checked connectives. Unless specified differently, @eéforth usd’
as a metavariable for subsets)of, .

To model inferences on the basis 6f., LLL is upgraded toLLL™ :
e(Wy) = p(Wy). To prepare for semantics bELt : oW, ) — p(W4),
we define a model validity relatioir ™ that extends the validity relatioh
of LLL, as follows. LetM be anLLL-model. Define (1) for alldA € W:
M It Aiff M I A, (2 forallA e Wy M It Aiff M IFT 5 A, (3)
forall A, B e W.: (M IF™ Aor M I-T B)iff M I-T AV B, and likewise
for the other checked connectives. Henceforth, we sayitha anLLL™-
model of ' C W, , M € M, +(T) iff M is anLLL-model andM -+ A
for every A € I'. We write" |= |+ A iff for all LLL™-modelsM of I':
M I-T A.

In the standard format, a sound and complete axiomatizétiohLL™ is
assumed to be givenNote that in view of its semantick). LT is a compact

SWhereLLL is supraclassical, one can obtain the axiomatizatioh.kdrt by a generic
procedure. However, for the sake of generality, we inclaedgcsLLL that have rather weak
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606 FREDERIK VAN DE PUTTE AND CHRISTIAN STRASSER

Tarski-logic and it is aC-conservative extension ai L: for everyI’ C W,
CTLLLL(F) nNwW = CnLLL+ (P) NW.

Every logicAL is a functionp(W,) — p(W,). SinceAL was intended
to explicate defeasible reasoning processes on the bapiewises in’,
premises ofAL logic are often assumed to be subset3\af One possible
interpretation of the relation betwedl, £ and £, is thatAL provides an
explication of a reasoning based on formulagirbut that for this explica-
tion, it uses formulas i — this will become clear when we present the
AL-proof theory.

The set of abnormalitie® C W, represents those formulas tht as-
sumes to be false “as much as possible”, in view of the presfis&he
phrase “as much as possible” can have various interpregatie every such
interpretation corresponds to an adaptive strategy.

Every flat AL also has ampper limit logicULL : p(W;) — p(W5),
which boils down to enforcing the standard of normality axaically. In
the remainder of this paper, 16" = {<A | A € ©} forany® C W,.
Syntactically,ULL is defined as followsI" -y Aiff TUQ™ -+ A. Se-
mantically, we speak aformal modelss thosd LL™-models)M for which
M |-t = A for every A € Q. T'is anormal premise seiff it has normal
models. FinallyI’ =y A iff for every normal model/ of I', M It + A.

Semantics Before we come to th&L-semantics, we first need a few extra
definitions. A Dab-formulaDab(A) is the checked disjunction of the mem-
bers of a finiteA C 2. WhereA = {A}, Dab(A) denotesA; whereA = ),

V Dab(A) denotes the empty string. Whete # (), Dab(A) is aminimal
Dab-consequence df iff I" - + Dab(A) and there is nd\’ C A for
whichT F + Dab(A").

WhereDab(A1), Dab(As), ... are the minimal Dab-consequencesl of
let X(T") = {A1,Aq,...}. We say that/(I") = [JX(T") is the set ofun-
reliable formulas with respect td. Finally, where)M is aLLL™-model, its
abnormal partAb(M) isthe se{ B € Q | M I+ B}.

As mentioned in the introduction, ALs have a semantics sinttd Sho-
ham’s preferential semantics [22]: from the setLbl T-models ofl, AL

and non-standard connectives, whence it becomes a loteotglind a generic procedure
that gives a sound and complete axiomatizatiorLidr™. Nevertheless, for concrete cases,
the adaptive logician’s job of devising a syntax fdrl. ™ will usually be fairly easy.

81n some papers on ALs, it is required that for some otk 2, ¥ + A andF +
= A. This restriction is useful to rule out ALs that have no sklesapplications; however,
there is no technical problem with allowing for degeneratses in which all abnormalities
areLLL™-theorems, or all abnormalities are trivialized iyl *.

" Other strategies then Reliability and Minimality are e.@u@ting, Normal Selections
and the Flip-Flop-Strategy. These are strictly speakirigpaat of the Standard Format, but
can be obtained from it under a translation — see [7, Chapter 6
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EXTENDING THE STANDARD FORMAT OF ADAPTIVE LOGICS 607

selects a subset of models in view of their abnormal part. preeise crite-
rion for a model to be selected depends on the strategy:

Definition . M € MALr(F) iff M e M+ (F) andAb(M) - U(P)

Definition 2 M € M= (1) iff M € M +(T") and there is na\/’ €
M, 1+(T) such thatdb(M') C Ab(M).

M- (') is called the set ofeliable models, Ma m(I") the set ofcC-
minimally abnormaimodels, or more brieflyninimally abnormalmodels.

Although the above definition oM~ (I") is more direct, we can also
define the semantics of Minimal Abnormality in terms of thenimial Dab-
consequences df. This requires some notational preparation. Left N
be an index set. = {A; | i € I} and for everyi € I, A; C Q. We say
thatp C Q is achoice sebf X iff for everyi € I, o N A; # (). For the
border case wherE = (), this means that every setC 2 is a choice set of
3}, including the empty set.

v is a C-minimal choice set o2 iff there is no choice set of ¥ such
thaty C ¢. In the context of the standard format, we speak of “minimal
choice sets” to refer to¢-minimal choice sets”. The following is proven in
[7, Chapter 5]:

Fact 1. If everyA € X is finite, thenX has minimal choice set47, Fact
5.2.1]

®(T) is the set of minimal choice sets B{I'). Note that wherE(T") = (),
®(T") = {0}. Itis easily provable tha/(I") = |J®(T"). Also, remark that
since all the members ai(T") are finite,®(T") # () for everyl' C W by Fact
1. The following theorem was proven in [4]:

Theorem 1 M € Mpn (D) iff (M € M+ (") and Ab(M) € ®(T)).

From this it follows immediately that every minimally abnoal model is
a reliable modelAb(M) € &(I") implies thatAb(M) C U(T).

Proof Theory. The proof theory of ALs mirrors the dynamic character of
defeasible reasoning forms. Eveky-proof consists of lines that have four
elements: a line numbera formulaA, a justification (consisting of a series
of line numbers and a derivation rule) and a conditiorC 2. Wherel is
the set of premises, the inference rules are given by:
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PREM IfA eI

RU If Al,...,An |_|_|_|_+ B: A A

AlU...UA,

RC If Al, N ,An |—|_|_|_+ BV Dab(@) Al Al

A, A,
B AjU...UA,UB

A stageof a proof can be seen as a (countable) sequence of linemedbta
by the application of the above rules. A proof is a (countpBkEguence
of stages. Every proof starts off with stage 1. Adding a limetproof by
applying one of the rules of inference brings the proof to@ssasor stage,
which is the sequence of all lines written so far. Notably,eavdine can
be added anywhere in the proof as long as the inference mdassad. An
extensiorof a proof at stage is simply the same proof at a later stageln
view of the inference rules, the condition of any linis necessarily finite,
and the following lemma holds:

Lemma 1 There is anAL-proof fromI" that contains a line at whicld is
derived on a conditiol\ C Qiff ' + AV Dab(A). [4, Lemma 1]

A distinguishing feature of adaptive proofs is the markimgdimition. At
every stage of a proof, a marking definition — see below — deditezs for
each line in the proof whether it is marked or not. If a linetthas as its
second elementl is marked at stage, this indicates that according to our
best insights at this stagd, cannot be considered derivable. If the line is
unmarked at stage, we say that4 is derived at stage of the proof. To
prepare for the marking definitions, we need some more cdioven

Wherel) # A C Q, Dab(A) is a Dab-formula at stageof a proof iff it is
the second element of a line at stageith an empty conditionDab(A) is a
minimalDab-formula at stageiff there is no other Dab-formul®ab(A’) at
stages for which A’ ¢ A. WhereDab(A1), Dab(Ay), ... are the minimal
Dab-formulas at stage of a proof, letX,(I') = {A;, Ag,...}. Us(T') =
U 2s(T") and let®4(T") be the set of minimal choice sets¥Bf(I"). By Fact
1, ®,(T") # () at every stage of a proof fromTI".
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Definition 3 AL'-Marking: a line!l is marked at stage iff, where A is its
condition,A N U4 (T") # 0.

Definition 4 AL™-Marking: a linel with formula A is marked at stage iff,
where its condition i\: (i) there is nop € ®,(T") such thatp N A = (), or
(i) for a ¢ € ®4(I"), there is no line on whichl is derived on a conditio®
for which® N ¢ = 0.

Put differently: where the strategy is Minimal Abnormality line with
formula A is unmarked at stage iff its condition has an empty intersection
with at least onep € ®4(T"), and for everyy € ®4(T'), there is a line on
which A is derived on a conditiod\ such thatA N+ = (. As a line may
be marked at stage unmarked at a later stageand marked again at a still
later stages”, we also define a stable notion of derivability.

Definition 5. A isfinally derivedfromT" on line! of a finite stages iff (i) A is
the second element of lirig(ii) line [ is unmarked at stage, and (iii) every
extension of the proof at stage in which linel is marked may be further
extended in such a way that linés unmarked again.

Definition 6. T" -5 A iff A is finally derived on a line of aAL-proof from
T.

2.2. An Example: the logi€LuN™

General Characterization ocfLuN™. In the introduction, we already men-
tioned the idea behind inconsistency-adaptive logics. &taample we will
use to illustrate the standard format is one such logloaN™. For reasons
of simplicity, we only consider the propositional fragmeithis system.

The lower limit of CLuN™ is CLuN, which stands for ClassicallLogic
with gluts for the Negation”. CLuN is a monotonic paraconsistent logic,
defined by full positiveCL together with excluded middle (e.g. by the axiom
(AAN—=A) D —A). This means thafLuN invalidates disjunctive syllogism:
{A,-~AV B} ¥FcLun A. CLuNT is obtained by enrichin€LuN with the
checked connectives as described above.

The set of abnormalities @fLuN™ is {A A —A | A € W}. Hence contra-
dictions (with respect to any formul4d € W) are avoided as much as possi-
ble. As a result, we obtain a much richer consequence setthap,n ('),
without trivializing inconsistent premises séts_ W.

Example of &CLuN™-proof. Consider the premise sE{ = {p, —p V ¢, g,
—p V r,qV r}. Note that the following Dab-formula i€LuN"-derivable
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fromI';, which implies that we are dealing with an inconsistent pserset:
(p A =p) V(g A —q) )
On the semantic level, eveLuN'-model ofI'; verifies eithemp A —p or
g A —q, or both. For every minimally abnorm&LuN"-model M of T'y,
either Ab(M) = {p A —p} or Ab(M) = {q A —q}. Suppose that for some
such modelV/, Ab(M) = {p A —p}. In view of the premise sefy/ |- —q
andM IF* ¢V r. Since alsaM 1™ g A —~q, M T gandM I r. We
leave it to the reader to see that also the second class ahallgiabnormal
models verifyr. As a resulty is a semanti€€LuN™-consequence df;.
Consider the followingCLuN™-proof fromT';:
1 p PREM 0
2 —pVyg PREM 0
3 —q PREM 0
4 —-pVr PREM 0
5 qgvr PREM 0
Note that the fourth element & indicating that premises are introduced
on the empty condition. We may now deriwvérom lines 1 and 4:
6 (pA-p)Vr 1,4RU 0
7 r 6;RC {p A —-p}
In the remainder of this paper, let us denote the stage dmgsisf lines
1 — n by stage n. At stage of the proof,r is derived. However, we can
continue the proof as follows, showing that the conditionline 7 is prob-
lematic:
6 (pA-p)Vr 1,4RU 0
7 r 6;RC {pA-p}v®
8 (pA-p)VigA—q) 1,2,3;RU 0
Wherei € N, we will henceforth use’? to denote the marking of a line
at stagei. At stages, line 7 is marked. Recall that in order to find out
which lines are marked at stagewe had to look at the s&t;(I";). Since
Ys('1) = {{p A —p,q A —q}}, the minimal choice sets at stagarep; =
{p A —p}andps = {g A ~q}. . o
Clearly, the condition of ling has an empty intersection with,. Butr,
the formula on liner, has not been derived on a condition that has an empty
O
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intersection withp;. Hence the marking definition for Minimal Abnormality
stipulates that lin€ is marked.

So how can line 7 become unmarked again? This is done by sbdia
r can be derived in the proof on a yet different condition:

6 (pA-p)Vr 14RU 0
7 r 6;RC {p A —p}
8 (pA-p)V(gA—q) 1,2,3;RU 0
9 r 35RC {¢gA—q}

Note that throughout the stag&s- 9, the set of minimal choice sets re-
mains the same, which means that lines 7 and 9 are unmarked.

The difference with the Reliability Strategy can also baified by the
above example: iCLuN", r is not finally derivable fronT;. The reason
is that from stage on, the set of unreliable formulas {$ A —p, ¢ A —q¢}.

In view of Definition 3, both lines and9 are marked if Reliability is the
strategy. This is in agreement with tli&uN"-semantics: there is & <
Mecrune (T') = Mcrunm (T') for which Ab(M) = {pA-p, gA—q}andM F+

T.
2.3. Meta-theory of the Standard Format

In this section, we mention some of the most significant nile¢aretic prop-
erties of the standard format. A number of well-known preipsrare inher-
ent to ALs in standard format, such as soundness, reflexavitd/the fixed
point property. Furthermore, fékxL™, the Deduction Theorem holds, which
means that one can introduce hypotheses in a proof, as sicdabgic. We
assume the reader to be familiar with these properties dadtmeSection 5
for their exact formulation. A number of significant propestare less well-
known, whence we discuss them here. We mention the origiearéms
and corollaries in the literature between square brackets.

L-Completenessin [24] and [7, Chapter 4], an example is presented of a

I, A for whichT' ¥am A, whereasl" E=am A. A similar example can
be constructed for the Reliability Stratefjydence completeness in general
does not hold foAL. Nevertheless, for al' C W, completeness is prov-
able — we will use the ternf-completeness to refer to this restricted form

8 Note that according to Definitions 5 and 6, in order to finallyide A, one has to be able
to derive it in a finite proof on an unmarked line. The mentsbegamples are constructed
such that this first requirement cannot be fulfilled: in orbederive A on a linel, one has to
derive Dab-formulas that render lihenarked. See Lemmas 7 and 12 for how this problem
is avoided whenevdr C W.
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of completeness. From the same examples, we can infer tha sther
properties such as e.g. Fixed Point also have to be restriot€ C W.
This should not be seen as a severe problem for ALs, since aspl@ned
before, they were developed to explicate a reasoning awrethe basis of
premises inC. For the sake of generality we state the meta-theory albbut
for anyT" C W, whenever possible.

Strong Reassurancdn Section 2.1, we explained that eveiy. selects a
subset of the.LL™-models ofl". Now suppose aLL"-modelM of I is not
selected. In that case, it seems desirable to have as a tyrape¢he logic
that there is 4 LL"-model M’ of T thatis selected, and that is less abnormal
thenM. Only then can the logic justify thal/ is not selected. This property
is called “Strong Reassurance” in the literature.

Theorem 2 If M € My +(I') — MaL(T), then there is @//" € Ma,(T)
such thatAb(M') C Ab(M). [4, Th. 4& 5] (Strong Reassurance)

Note that the abnormal part-relation aadimpose a partial order on the
LLL*-models ofl: M < M'iff Ab(M) C Ab(M'). Strong Reassurance
boils down to the claim thak is smooth on the set dfLL™-models ofl".°
It also entails that whenevér hasLLLT-models,I' hasAL-models — this
property is referred to aReassuranceIn other words, unlesE is LLL™-
trivial, AL will not trivialize this premise set.

Cautious Indifference.Suppose we have established for somed, that
I' FaL A. In that case, it seems desirable that Meclosure ofl" U {A} is
not different from theAL-closure ofl" itself. That is, addingd as a premise
to I" should not lead to a different consequence set. This is niaday the
Cautious Indifference principle:

Theorem 3 For everyl' C W: if IV C Cnar(T), thenCna,(T') = CnaL
(T UTY). (Cautious Indifferencel, Th. 11.10]

Note that the fixed point property, i.e. thata (I') = CnaL(Cnar(T)),
is derivable from Theorem 3 together with the reflexivityAdf. Cautious In-
difference is often divided in two parts: Cautious Monotityi (Cna (I') C
CnaL(I" UT”)) and Cumulative Transitivity@na (I') 2 Cna (I U T)).
Cautious Monotonicity can be proven for the more generas gdserel” C
W., whereas Cumulative Transitivity only holds forC W.

A partial order< on X is smooth with respect to a set C X iff for all A € Y either
A is <-minimal or there is a<-minimal elementB € Y for whichB < A.



“O5vdputte&stras
2012/12/9
page 613

e

EXTENDING THE STANDARD FORMAT OF ADAPTIVE LOGICS 613

The Hierarchy within the Standard Formate say that_ is weaker than
L’ (L” is stronger thar.) iff for every I' € W, Cn((I') € Cnp/(T"), while
for somel’ C W, Cn (I') € Cny/(T'). The following theorem summarizes
the difference in strength between the different lodits ™, AL", AL™ and
ULL:

Theorem 4 Cnyy | +(I') € Cnarr(T') € Cnan() € Cnype (). [4, Th
11.1]

Obviously,AL is in most cases stronger thahL™. Also, AL" is slightly
weaker tharAL™, as the example in Section 2.2 illustrated. A related prop-
erty is that if a premise sétis normal, themAL is equipowerful taJLL:

Theorem 5 If I is normal, therCna (I') = Cny(T).

Hence ifAL can avoid abnormalities altogether, it will do so. Neverthe
less, if the premise set is not normal, it will still in mostea render more
consequences tham L™, without yielding triviality asULL would. In other
words, AL strengthend LL™ and approximates)LL as much as possible,
adapting itself to the premises.

Equivalent Premise Set$n [11], it is argued that ALs have certain advan-
tages over numerous other formal approaches to defeasdeming meth-
ods. The most important argument there is one concernimgesency:
there are various criteria to decide when two premise setalaequivalent
— criteria that do not hold for those other formalisms. Fogrgthy discus-
sion, we refer to the original paper; here we simply menti@ithree criteria
for equivalence (the original Theorems from [11] are givebaeen square
brackets).

Theorem 6 Wherel', 1" C W, CnaL(T') = Cna,(I") if one of the follow-
ing holds:

(C1) I’ C C’I’LAL(F) andl” C CTLAL(F/) [Th. 6]

(C2) Wherd. is a Tarski-logic weaker than or identical #oL: Cn (T') =
Cn (T") [Th. 7]

(C3) Wherel is a Tarski-logic and for everg) C W, Cna(0) =
CHL(CTLAL(@)): CHL(P) = CHL(F/) [Th 7]
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3. A Prioritized Selection of ModelAL-
3.1. General Characterization oAL-

Recall that the aim of this paper is to develop a generic foforgrioritized
ALs that remains as close as possible to the existing stdrfdamat, and
inherits its meta-theoretic properties. We will uske- as a placeholder for
logics in this format, for reasons that will become clearhiss section. Every
logic AL : p(W+) — p(W,) is characterized by a triple:

1. Alower limit logic LLL

2. A sequence of sets of abnormalitie&2;);c;, wherel C N is an
index set

3. A strategy:C-Minimal Abnormality or—-Reliability

For the remainder of this paper, Rt= | J,.; ;. EachQ; C W, is char-
acterized by a (possibly restricted) logical form, wheficéts the format
of a set of abnormalities of a flat AL — see page 605. Hencefavehwill
use the nam@L to refer to the flat AL defined by ()LLL, (ii) 2 and (ii)) a
strategy (Reliability or Minimal Abnormality).

Let us briefly discuss the elements of the above triple. Biratl, just like
AL, every logicAL. is built on top of a logid_LL™, which is obtained from
LLL as described in Section 2. The upper limit logicAdf- is identical to
the upper limit logic ofAL, and will hence also be denoted by.L.

The sets of abnormalitie, 25, . .. correspond to the different standards
of normality mentioned in the introduction. We say thgis an abnormality
of ranki iff A € Q; and there is ng < i such thatd € ;. The lower the
rank of an abnormality, the higher the priority of the copmsding standard
of normality. The logicAL- avoids abnormalities “as much as possilife,
view of their ranK. The adaptive strategy specifies the latter phrase. As for
AL, the two strategies give rise to two subclasses of priedtiALs: ALT
andAL.

Since theAL-semantics is technically less involving than #i€--seman-
tics, we start with the former in Section 3.2. In Section 3v8, present an
example of a logic in the new formak™. After that, we discuss an alterna-
tive way to characterize th&L"-models of a premise set. Finally, in Section
3.5, we show how a Reliability-variant is obtained from thiternative char-
acterization.
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3.2. TheAL-semantics

In Section 2, we explained that flat ALs select a subset of the"-models

of a premise set in view of their abnormal part. Pdr™, a modelM is se-
lected iff its abnormal partib(M) is minimal with respect to set-inclusion.
The prioritized logicAL™ also selectéLL"-models in view of their abnor-
mal part, but takes into account the rank of abnormalitiesviéw of the
prioritization Ab(M) is not flat but is structured and may be represented by
the tuple(Ab(M) Ny, Ab(M) N Dy, . ..). Just like the flat abnormal parts
were partially ordered in the standard formatdythe structured abnormal
parts of prioritized ALs may be partially ordered by the tographic order
I:Iex:l0

Definition 7. (A N Q;)ier Clex (A’ N Q) ier iff (1) there is ani € I such
thatforallj < i, ANQ; = A'NQ;, and 2JQANQ; C A’ N Q. We write
A C Aiff (A N Qi>i€[ Clex <A, N Qi>ie[-

Just as for flat ALs, théLL™-models were selected whose abnormal part
was C-minimal, we now select théLL"-models whose abnormal part is
C-minimal:

Definition 8 M € Map(T) iff M € My +(T") and there is na\/’ ¢
M, 1+(T) such thatdb(M') = Ab(M).

As we did withC-minimally abnormal models, we can speakomini-
mally abnormal models. Lemma 2 below states thattherder ong(£2) is
included in the—-order ong(£2).

Lemma 2 WhereA, A’ C Q:if A c A/, thenA C A,

Proof. SupposeA c A’. Thenforalli € I, AN ; € A’ NQ; and there
is ani € I such thatA N Q; C A’ N Q;. Take the smallest € I for which
ANQ; ¢ A'nQ;, whence forallj < i, ANQ; = A’NQ;. By Definition
7,AC A O

By Lemma 2, we immediately obtain:

10Lexicographic orders are a well-known ordering type andnaeationed in any repre-
sentative mathematical dictionary or encyclopedia (sge [d4, p. 1170]). Lexicographic
orders have already previously proven to be useful for thmdbexplication of reasoning on
the basis of prioritized information. Lehmann employedihe deal with priorities among
defaults [15], Nebel [20] in order to deal with prioritizeldeory bases and Hansen [13] ap-
plied Nebel’s preference order to the context of prioriir@peratives.
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Theorem 7 EveryAL™-model ofl" is aAL™-model ofl".
3.3. An Example:K"

Several ALs have been developed to explicate reasoning prithitized
belief bases — see [9], [30] and [29]. These are sequenceseacfotm
U = (0, 01,09,...), where eacl®); is a set of formulas, and the index
of the sets denotes their plausibility degrég; is the set of factsP, the
set of most plausible beliefs, and so on. The ALs that dedl such belief
bases typically use a certain logical operator or a sequefrggch operators
to express that a belief has a certain degree of plausibility will discuss
only one such system, in order to illustrate fig”-format.

As before, we restrict the logic to the propositional levéle use the
standard modal languag& of Kripke’s minimal normal modal logid,
axiomatized by the propositional fragment@f together with the following
axioms:

K O(A>B)>(EOA>0OB)
RN if - A thent- JA

As usually, we defind A = -0-A. Let WM denote the set of modal wifs,
andW! the set of literals (sentential letters and their negajiofis express
the plausibility degree of a piece of information, sequenafediamonds are
used:0¢ ... 0 A The longer the sequence, the less plausible the information
A sequence of diamonds will be abbreviated Ky — ¢ denotes the empty
string. Starting from a prioritized belief bage = (0¢,01,02,...), we
translate this into the premise skt = | J,.y{0°A | 4 € ©;}.

WhereA € W, let!* A abbreviate)’ A A —A. LetN = {1,2,3,...}. The
prioritized logicK™ is characterized by the following triple:

1. The modal logi™, obtained by enrichingl with the checked con-
nectives

2. The sequence of sets of abnormaliti€§)X),cry, where for every
i e N, QK= {I"A| AW}

3. The Strategyr_-minimal abnormality

To compare the format for prioritized logics with flat adaptiogics, it
will be convenient to refer to the logids™ andK", defined by (i)K™, (ii)
O = U;en X and (jii) Minimal Abnormality, respectively Reliability.

The logicK™ allows for the defeasible inference frofiA (wherei € N)
to A. This is done by defining A is plausible (to degreé), but false” as
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| My | My | Ms | My | Ms | Ms | My | Mg

b,q, | p,q, | 7P,4, | 7P,4, | 7'P,4q, | 7P,q, | 7P, 4, | 7P, 4,
r,s |—r,s| r,s | r,os | or,s | or,os | o1, s -7, s
Hp + + + + + +

Mg | + + + + + +
Iy + + + +
I’s + +

Pos| + + + + + +

Table 1. A representation of th€™-models ofI';. The
first row shows the non-modal propositions each model val-
idates, the second row the abnormalities of rank 1 and the
third row the abnormalities of rank 2.

an abnormality (of rank).}* Consider the prioritized belief bask., =
{p D q,qV s,p D s}, {p,—q N r},{s,—s}). The translation gives us
U0 ={pDqqVspDs Op O(-gAr),Ods, OOs}. To facilitate the
reading, let henceforth, = ¥ . Let us take a look at thi€t-models ofl's.
Note that every such model validates the modal formglas)—q, Or, OO s
and0—s. Table 1 represents these models in terms of (1) the nonimoda
literals they validate and (2) their abnormal part. For oeasof simplicity,
we restrict the scope to those propositional letters thetioio ', .2

Figure 1 shows the partial order imposed on the models froleTh by
the two logicsk™ andK[. M, My, M7 are C-minimally abnormal. From
these, M, is not C-minimally abnormal: Ab(M;) N QX c Ab(My) N QK,
whenceAb(M;) T Ab(M,y). M, and M7 are incommensurable in view of
Oy, whenceAb(M;) 7 Ab(M7) and Ab(My;) iz Ab(M;). Recall that the
set of ALT-models is always a subset of th&."-models, whence in this
particular case)/; and M are the only—-minimally abnormal models. As
a result,s andp v —¢ are semantic-consequences df;. Note that in
view of My, these are not seman#c”-consequences af.

We can explain this outcome as follows. In viewldf, bothp and—q are
plausible, but one of them has to be false (although we do mowvkvhich
one). So if we want to privilege our most plausible belielyae can do

Note that for alki, j € N such that # 7, Q% N QK = 0. This is not required for a logic
to fit the format ofAL; all that is required is that eadhy; is characterized by a logical form.
121t is provable for that (1) for every € My (T'2), Ab(M) D Ab(M;) for a “model”

M; in the table and (2), for every “modelV/; in the table, there is & € M+ (I'2) such
that Ab(M) = Ab(M;). Hence it suffices to look at these limited representatitmdecide
which abnormalities hold in the minimal abnormal models.isTédlows one to derive the

claims abouCnkn (I'2) that are made in this section.
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(a) (b)

Figure 1. A graphic comparison of the partial orders
(1a) and= (1b) on the abnormal parts of the models
My, ..., Ms.

is assume that one of both holgsyv —q. So all the selected models either
verify p or they verify—q. Sincel's U {p V —q} b+ s, these models also
verify s. The logicK™ cannot achieve this result, since it considéfs and
M, as incommensurable.

3.4. An Alternative Characterization of th&L"-Semantics

In Section 2.1 we pointed out that the setAdf™-models ofl’ can be char-
acterized alternatively, in view of the minimal Dab-consegces ofi’. A
similar characterization can be given 8.~ (I'). We define a choice set
as in Section 2.1. We say thatis a—-minimal choice set ok iff there is
no choice set) of ¥ such that) C ¢. Let3(T") be defined as in Section 2.

Definition & ®=(T") is the set of=-minimal choice sets &£ (T").

Note that the following theorem follows immediately fromrama 2:
Theorem 8 ®=(T") C o(I).

In the appendix, it is proven that for every ®-(T") # () — see Theorem

25. We will now show that, just as the st ~(I") can be characterized in
view of ('), the setM  (I") can be characterized in view &f-(T").

Lemma 3 WhereM € M, +(I'), Ab(M) is a choice set oE(T").

Proof. SupposeM € M +(I'). Let Dab(A) be an arbitrary minimal
Dab-consequence df. By the soundness dfLL™, T' =+ Dab(A).
HenceM I+ Dab(A), which implies thatV/ I A foran A € A. Hence
Ab(M) N A # 0. O
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Lemma 4 If T hasLLL*-models, then for every choice sebf X(T), there
isalLLL*-modelM of I such thatdb(M) C .

Proof. Suppose i) I" hasLLL*-models. Lety be a choice set oE(T).
Suppose there is il € M, +(T") such thatdb(M) C ¢. Hencel'U(Q2—
©) " has naLLL*-models. By the compactnessldfL ™, there is a finitd” C
I' and a finiteA C Q — ¢ such thal” U A™ has noLLL*-models. However,
by () and the monotonicity of LL™, I'” hasLLL™-models, whence\ # {.
By CL-propertiesI” -, + Dab(A), whence by the monotonicity &L,
I' ki + Dab(A). Note that there is a minimal non-empty C A such
thatI' -, + Dab(A’), and alscdA’ N ¢ = (). Hencey is not a choice set of
¥(T") — a contradiction. O

Theorem 9 M € Mau=(T) iff (M € My +(T") and Ab(M) € =(T')).

Proof. (=) SupposeM € Man(I'). By Definition 8, M € My +(T).
Suppose{) Ab(M) ¢ ®=(T"), and letAb(M) = . By Lemma 3,Ab(M)
is a choice set of:(T"), whence by {), there is a choice set of 3(T")
such that) = ¢. By Lemma 4, there is aLL™-model M’ of T" such that
Ab(M') C 9.

Case 1:Ab(M') = 1. HenceAb(M') C .

Case 2: Ab(M") C . HenceAb(M') C + in view of Lemma 2. By the
transitivity of =, Ab(M') C .

Hence in either case, there i&BL*-model M’ of I" such thatdb(M') C
Ab(M), which contradicts the fact thatl € Ma_»(I").

(<) SupposeM € M, +(T'), but M ¢ Ma=(T'). Then there is a
M e My +(T) : Ab(M') © Ab(M). By Lemma 3,4b(M’) is a choice
set of X(I"), whence in view of Definition 94b(M) ¢ ®-(T). O

Note that the above theorem nicely parallels Theorem 1. Therém

below states that whenevErhasLLL*-models, then we can also go in the
opposite direction: the sét™(I") can be defined in view af L ().

Theorem 10 If T’ has LLL*-models, thend=(I') = {Ab(M) | M €
M (1)}

Proof. Supposd’ hasLLL"-models. Thaf Ab(M) | M € Ma=(T')} C
®-(T") is immediate in view of Theorem 9. Let € ®-(T"). By Lemma 4,
there is aM € M, +(T') such thatdb(M) = ¢. By Theorem Q.M €
M (). O
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Below we will see thatb™(T") has a proof-theoretic counterpadit- ("),
that determines the marking of lines of a proof at stagdence Theorems 9
and 10 function as a bridge between the proof theory and sesafiAL™.

3.5. TheAL[-semantics

Recall thatU (I') = |J ®(I"') — see page 607 —, wherfé(I") is associated
with AL" and ®(I") with AL™. In view of Theorem 1, this implies that an
abnormality is unreliable iff it is verified by @-minimally abnormal model:
UD)={AcQ|MI-t AforaM € Ma(I')}.

Let us now take a look aALl. Just asU(I'), the set of_-unreliable
abnormalities can be characterized in two equivalent waysyntactically,
as the union of all the members @f-(I") and (ii) semantically, as the set
of those abnormalities that are verified by_aminimally abnormal model.
To simplify the meta-theory and to stay as close as possiieet standard
format, we will use (i) as the official definition of the set mfunreliable
abnormalities:

Definition 10 U=(T") = |J ®=(I")

By Theorem 9/=(T') = {A € Q | M IF* AforaM € Ma»(T')}. We
can now define the set &L -models ofl" as we did forM - (I'):

Definition 11 M € Ma¢ () iff (M € My (') and Ab(M) € US(T))

In view of Theorem 8, the fact th&f(I") = | ®(I") and Definition 10, we
obtain:

Theorem 11 U=(T") C U(T")
Theorem 12 EveryAL[--model ofl" is a AL"-model ofl".

Let us reconsider the example from Section 3.3 from the vigmtpof
the K--semantics. In view of the above definitions, it is requirkdt twe
first look at the minimal Dab-consequences of alseto find the set of
C-unreliable formulas. The sé&, = {p D ¢,q V s,p D s,0p,O(—g A
r), 00s, 0O—s} has four minimalDab-consequences!p V ' =g, 'p V 12—s,
!1—|q\7 125, and!?s Vv 12 —s.

HenceE(F2) = {{!1p> !1_'Q}7 {!1]9, !2_'3}7 {!1_'Q> !2_'8}7 {!287 !2_'8}}' The
set of _-minimal choice sets 0E(T'y) is ®-(Ty) = {{!'=q, *=s}, {!!p,
I2-5}}. Remark that these sets correspond tathminimal abnormal mod-
els M, and)M; depicted in Table 1. As aresulf;-(I'y) = {!'p, !¢, >—s}.
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This means that ali-reliable models falsify?s, whence in view ofl'y,
they verify s. Hences is also a semanti&[--consequence af,. Note
however thatMy, (I's) # Mkm(I'2): for the modelM; represented in
Section 3.3, we have thatl; € M- (I'2) — Mkr (I'2). This implies that
p V g is not a semanti&--consequence df;.

4. A Proof Theory forAL-
4.1. The Generic Proof Theory fokL-

One of the merits of the standard format is that it provideseiogic in this
format with a sound and complete proof theory. This proobtitexplicates
the defeasible reasoning methods the logics were develimgpedn what
follows, we will present a proof theory that does the samddgics in the
AL--format.

The inference rules of AL--proof are identical to those ofA_-proof —
see page 607. The concept of a line, a stage, a proof and arsiextef a
proof in theAL--format are also inherited from the standard format. As a
result, Lemma 1 holds also fév_--proofs. This implies that apart from the
marks, evenAL-proof is aAL--proof and vice versa.

The distinctive feature of aAL-proof lies in its marking definition. Let
¥4(T") be defined as in Section 2.

Definition 12 & (I") is the set of—-minimal choice sets df,(I").

In the appendix, we prove that for everyand at every stageof a AL.-
proof fromT, 5 (T") # (. Of course, it may be the case thif (I') = {0},
i.e. whenevel(I") = ). Marking in view of AL™ is now done in the same
way as forAL™, replacing®(T") by @5 (T"):

Definition 13 AL™-Marking: a line! with formula A is marked at stage
iff, where its condition is\: (i) no ¢ € ®L(T") is such thatp N A = §), or
(ii) for a ¢ € @ (T"), there is no line on whicl! is derived on a condition
© for which® N ¢ = 0.

The set of—-unreliable formulas at stageis defined as the union of the
members ofb’- (T'):

Definition 14 UL (") = |J ¢5(T")
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Definition 15 AL[-Marking: a line! with formula A is marked at stage
iff, where its condition i\, A N UL (T") # 0.

Derivability at a stage and final derivability are defined @sAL — see
Definitions 5 and 6. This gives us the relatibr-a - A.
The following is an immediate consequence of Lemma 2:

Fact 2. At every stage of a proof froml[", &% (I") C &4(T").

This fact implies that at every stagef a proof fromI’, we can first check
which choice sets oE(I") are C-minimal, and only afterwards select the
subset of—-minimal choice sets from these. Also, from Fact 2, the fhat t
at every stage, U,(I") = | (") and Definition 14, we can derive:

Fact 3: At every stage of a proof from[", U-(I") C U4 ().

Facts 2 and 3 imply that whenever a line is unmarked inPA&i-proof
(wherex € {r,m}), it is unmarked in arALX-proof as well — recall that
apart from the marking, these proofs are interchangeab&ncélif some-
thing is (finally) derived in amAL*-proof, then it is finally derived in an
ALY -proof as well. This allows us to safely infer:

Theorem 13 Wherex € {r,m}: Cnax(I") € Cnapx (T).
4.2. Example of &K --proof

C-Minimal Abnormality. To illustrate the new marking definitions, let us
take a look at a particuldk™-proof fromT's = {p D q,q V s,p D 5,0p, O
(g A7), 00s,00s}:

qV s PREM 0
O(=g A7) PREM 0
O—q 2;RU 0
—q 3;RC {1'-q}
s 1,4;RU {
OO PREM 0
g V125 1,3,6;RU 0

Noorhkh wNE

Note thatX;(Ty) = {{!'—q,!*=s}}. This implies that the set of -
minimal choice sets at stage®y (T's) only contains one member, i.8%-s}
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— note that{!>-s} = {!*=¢}. Since the condition of line 5 has an empty
intersection with this set, line 5 is unmarked.
Suppose we extend the proof as follows (we repeat from ling)5 o

s 1,4;RU {11—g} 10
OO—s PREM 0
gV 12=s 1,3,6;RU 0
pDq PREM 1]
Op PREM 0
0 !pVilag 3,8,9;RU 0

= ©O© 0~ O ol

Y10(Dg) = {{!*=q, 2=s}, {!'p, '=¢}}, whence there are two-minimal
choice sets at this stagé;o(I'z) = {{!'¢}, {!'p,>=s}}. In view of the
first choice set, line 5 is marked. We can however furtherrektbe proof
such that line 5 is again unmarked:

5 1,4;RU {!'~q}

10 Mpvitag 3,8,9;RU 0
11 p 9;RC {1'p}
12 pDOs PREM 0
13 s 11,12;RU {1'p}

Note that since no new Dab-formula has been deri®gglI'2) = ©10(I'2).
However,s is now also derived on a condition that has an empty intdmsect
with {!'=¢}. As a result, lines 5 and 13 are unmarked.

C-Reliability. If the marking definition for_-Reliability is applied, the
above proof does not suffice to finally derive That is,U;(I'2) = | @53
(T'y) = {!'p,11—q, 2=s}. As aresult, both line 5 and line 13 are marked.

Neverthelesss is finally derivable in &--proof fromI'. To show how,
let us recapitulate lines 5-15 from the above proof, but n@avkniines ac-
cording to Definition 15:

5 s 1,4;RU {1tg} v1?

11 p 9:RC {1tpy v 15
12 pOs PREM 0
13 s 11,12;RU {1py 15
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14 O0s PREM 0
15 s 14;RC {125}

Note that this time, lines 5 and 13 are marked. However, we kdavived
s on a condition that is not_-unreliable at stage 15. As we explained in
Section 3,?s is not contained in any-minimal choice set oE(T';). This
warrants that is finally derived in the proof. To explain why, let us look at
an extension of the proof:

15 s 14;RC {125} 16
16 125V 1%-s 6,14;:RU 0

Y16(02) = {{!1—q,12=s}, {1p, =g}, {125,125}, whenced;(T'y) =
{1, 12=s}, {1 =g, 125}, {11 =g, 125} ). As aresultU(T2) = {!'p, ' g,
125,12-s}. However, it suffices to derive the fourth minimal Dab-conse
guence ofl"; (see page 620) to undo the marking of line 15:

15 s 14;RC {125}
16 125V 1%=s 6,14;:RU 0
17 MpviP—g 6,9,12;:RU 0

At stage 17, all minimal Dab-consequencesIif have been derived,
whenceUL(Ty) = US(T) = {!'p,!'—q,*~s} — see Section 3.5. As a
result, line 15 is unmarked again and will remain unmarkeehigry further
extension of this proof.

4.3. The Standard Format as a Border Case

In the introduction, we mentioned that the standard fornias @ border
case of the format for prioritized ALs we introduced abovet us briefly
spell out why this holds. Consider the sequence of sets dbrafmlities:

S = ()ier, WhereQ; = Q; for everyi, j € I. Note that this is the case
e.g. whenevel = {1}, i.e. whenever there is only one set in the sequence.
As before, let? = J,.; ;. We leave it to the reader to prove that in this
case{) AC A’iff A C A.

For the sake of clarity, let us use the naBwLY for the border case logic
defined by (i)LLL, (ii) S and (iii) a strategy € {r,m}. By (}) and Defi-
nitions 2 and 8, we immediately have thétga r (I') = Marn(T). Also,
since in this cas@-(I") = ®(I"), we have by Definition 10 that’~(I") =
U(T'). This implies by Definitions 1 and 11 that(gar (I') = Mar-(T).
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Similar results can be established for the proof theory.ida\of Defini-
tion 9, it easy to see that by)( for every stage of a proof fromI", o5 (T") =
®,(I"). From this and Definition 14, it follows that:- (I") = U4(I"). Hence,
wherex € {r,m}, a line is unmarked in AL*-proof, iff it is unmarked in a
BALY -proof. This implies that where € {r, m}, Cngarx (I') = Cnax(I).

So every AL in standard format is equivalent to a logic in teeriormat.
Remark that the equivalence is not restricted to the relspecbnsequence
sets, but to all the crucial concepts in the semantics amaf gineory of both
logics. This implies that all the meta-theoretic propertéAL- hold for AL
as well.

5. Meta-Theory oAL-

In this section, we show that all the meta-theoretic progemiscussed in
Section 2 hold forAL- as well. Since we already discussed the meaning
and importance of these properties, we will simply statethere. We refer

to the second appendix for their proofs — some of these aiiaticars of
proofs from the meta-theory of the standard format (seediIHeir most
recent formulation).

Theorem 14 If T a - A, thenT’ =5~ A. (Soundness)

Theorem 15 Wherel' C W: if I' =41 A4, thenD' a - A. (£-Complete-
ness)

Theorem 16 If M € My +(I') — M- (T'), then there is anM’ <
M. (T) such thatdb(M') T Ab(M). (Strong Reassurance)

Theorem 17 I C Cnay (T') (Reflexivity)

Theorem 18 WhereI' C W: if I' C Cnai(T), thenCna - (T') =

Cna-(I' UT”) (Cautious Indifference)

Theorem 19 Wherel' C W: Cnai-(Cna-(I')) = Cna(I'). (Fixed
Point / Idempotence)

Theorem 20 Wherel' € W: if T'U {A} Fam B, thenl’ Faom = AV B.
(Deduction Theorem foAL™)*3

3The Deduction Theorem does not hold fk[-. This follows immediately in view of
the fact that it does not hold fé¥L" — see [4, Theorem 13.3] — and the fact that every logic
AL" is a logic in the extended format as well — see Section 4.3.
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Theorem 21 Each of the following holds:

2. CnLLL* (F) - CTLALr(P) - CnALrE (F) - CTLULL(F)
3. Cn,_,_,_+ (F) Q CTL/_\Lm (F) g CnALrEn (P) g CnULL(F)

Theorem 22 If I' is normal, thenCna - (I') = Cny (I).

Theorem 23 Wherel',I" C W, Cnai-(I') = Cnar_(I") if one of the
following holds:

(Cl) I’ C C’I’LALE (F) andI’ C C’I’LALE (F/)

(C2) Wherd.is a Tarski-logic weaker than or identical fo_-: Cn(T") =
CHL(F/)

(C3) Wherel is a Tarski-logic and for ever® C W, CnaL-(©) =
CHL(CTL/_\LE (@)) CTLL(F) = CTLL(P/)

6. Conclusion and Outlook

Let us briefly summarize our main results. We have developeewafor-
mat for prioritized ALs, that includes the standard formaiagborder case.
We proved that the most central properties of the standardaihold for
the new format as well. Many of these, notably soundness amplete-
ness, were proven independently of previous results. Apam that, the
new format offers all the advantages that make (flat) ALs tactive, e.g.
their straightforward semantics and a proof theory thatorsrthe dynamic
aspects of human reasoning.

In our paper, we only presented one particular Idgic This logic can
be used to explicate reasoning with prioritized belief basebackground
knowledge. However, thédL--format can be applied in a broad variety
of other contexts: hierarchies of imperatives, prioriiz@ombinations of
deontic and doxastic logics, abduction and inductive gdizattion, etc. As
a result, a huge range of defeasible reasoning forms camubedtfrom the
viewpoint of this unifying framework.

Many issues still require our consideration, such as coatipmal com-
plexity [28], decision procedures for final derivability][2roof heuristics
[10], and so on. Although the proof of the pudding will be ie #ating, it is
likely that AL will resembleAL in these respects, in view of their structural
similarity.
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APPENDIX
A.BC(T) # 0 anddC () £ 0

As promised, we prove here that (T") # () at every stage of a proof from
I'. From this, it follows almost immediately thét-(T") # () — see Theorem
25. The latter property is called upon in the proof of Lemma .

Lemma5 Where (1 = {A;, Ao, ...} is a set of sets and (2) is a choice
set of¥: (3) for every A € ¢, there is aA € X for whichA Ny = {A} iff
(4) ¢ is a minimal choice set of.

Proof. Suppose (1) and (2) hold.=({) Suppose (3) holds, and consider a
¢ CpandaB € p,B ¢ ¢'. By (3), there is @\ € X forwhichANg =
{B} and hence\ N ¢’ = (). This implies thaty’ is not a choice set df. As

a result,p is a minimal choice set ofl. (<) Suppose (3) is false, whence
there is aB € ¢ such that, for nd\ € ¥, o N A = {B}. In that case for
everyA for which B € A, thereis &' € ¢ — {B} such thatC € A. Hence

¢ — {B} is a choice set of, hencey is not a minimal choice set af. O

LetQ; = Q. Foralli € I,i > 1,letQ; = Q; — (Q U...UQ;1).
Wherei € I, a Dab;-formula is the classical disjunction of the members
of A C (2 U...UQ;). WhereDab(A1), Dab(Az), ... are the minimal
Dab-formulas at stage of a proof of fromT, let ©i(I") = {A1, As, ...}
Note thatx!(I') € ¥2(I') C .... Let®i(T") be the set of minimal choice
sets ofyi (T).

Note that for eachA € SitY(T) — Yi(T), AN Qi1 # 0. Whereyp €
dL(T), let E;Tj(r) be the set of minimal choice sets pA N Q41 | A €
YY), o N A = 0}. As before, if the latter set is empty we have that

3. (1) = {0).

©,s
Lemma 6 Forall ¢ € ®(T") and all¢’ € 52;;1(1“), eU € D).
Proof. Let ¢ € ®(I") and consider an arbitrary’ 5:81 (T"). Suppose
ANne=0foraA € SHY(T). ThenA ¢ Zi(T) sincep € ®%(T). In this
caseA N T # 0. Hencey' N A # 0, sincey’ € 5:;81 Hencep U ¢’ is a
choice set of2it1(T). '

By the right-left direction of Lemma 5 and the fact thate ®(T"), for
everyA € ¢ there is aA € X(T") such thatA Ny = {A}. Moreover, for
all theseA, o' N A = (), sincey’ C Q1. Finally, ¥4(I") € Yit1(T'), which
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gives us:
(1) for everyA € p there is aA € X5 (T) such thatA N (p U ¢') = {A}.

From the right-left direction of Lemma 5: for every € ¢/, there is a

SRS 5351 suchthaBny’ = {A}, where® = AN, foraA € XH(T).
i1

Sincey’ C Q;,1, ANy’ = {A}. Moreover, in view of the definition 03@,3 ,
AN ¢ = (. Hence we have:

(2) for everyA € ¢/, there is @A € SiTH(T) such thath N (pU ') = {A}.

By (1) and (2): for everyd € ¢ U ¢/, there is aA € XiH(T) such that
AN (pUy') = {A}. By the left-right direction of Lemma 5 U ¢’ is a
minimal choice set oE:™1(T"), hencep U ' € ®iTL(T). O

Theorem 24 For every stage of a proof from[", % (T") # ().

Proof. Note that at every stageof a proof,>!(I') is a set of finite sets. By
Fact 1,®L(T") # 0. Lety; € ®L(I), and for alli > 1, let ¢, be some
arbitrary element i@;H,s. Considerpy® = ¢; U gy U.... Note that for
everyi € I, o; C Q;. As aresult, forevery € I, o® N (Q U... UQ;) =
@1 U...Uy;, whence by Lemma 6§ ¢® N (2, U...U;) € L(T).
Let A € X4(I'). Then there is an € [ such thatA C ;. It follows
immediately by ) that® N A # (). Hencey® is a choice set oE4(T).
Supposey® ¢ ®L(T'). Hence there is a choice setBf(T"), say, such
thatforani € I, vy NQ; = ¥ N Q, forall j <iandy NQ; C ¥ NQ,.
Note that sincesi(I') C ¥4(I'), ¢ is a choice set o’ (T"), whence also
YN (R U...UQ) is a choice set oBi(T"). This however implies that
0PN (QU...UQ;) is not a minimal choice set 6% (I"), which contradicts

(1)- O
Theorem 25 For everyl', ®&(T") # ().

Proof. Consider aAL--proof from I' in which every minimal Dab-conse-
quence ofl" has been derived at stage Note that>;(I') = X(T"). By
Definitions 9 and 1295 (T") = ®-(T"). By Theorem 249 (T") # (. O
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B. Meta-theory oL
B.1. Soundness and Completeness

We first prove soundness and restricted completenesd foynext we prove
these two properties fokL[-.

B.1.1. Minimal Abnormality

Lemma 7 For everyl' C W: if T .+ AV Dab(A) andA N = ( for
ap € ®-(T'), then there is a finitd L-proof fromI" in which A is derived
on the conditiomA at an unmarked line.

Proof. Suppose the antecedent holds. Due to the compactnelssLof,
there is al” = {A;,...,A,} C ' such thatl” F + AV Dab(A). Let
the adaptive prooP be constructed as follows. At line 1 we introduce the
premiseA; by PREM, ..., and at line we introduce the premisd,, by
PREM. At linen + 1 we deriveA by RC on the conditiom\. Let s be the
stage consisting of lines 1 upto+ 1. Sincel” C I" C W, all Dab-formulas
By, ..., B, that have been derived at stagdif any) are members of2.
Henced. (T") = {{Bi,..., Bx}}. Due to the monotonicity ofLL™, also
I’k + B; for all these abnormalitie®;. Then{By, ..., B,,} C ¢ for all
¥ € dE(T). SincepNA = Pandy € ®=(I"), alsoAN{By,..., By} = 0.
Thus, linen + 1 is unmarked. O

Lemma8 If I' Fam A, then each of the following holds:

1. Ais derivable on aliné of a finiteALT-proof fromI’, on a condition
AsuchthatA Ny = foray € ®-(T)

2. For everyp € ®-(I'), there is a finiteA C Q — ¢ such that” - +
AV Dab(A).

Proof. Supposd’ Fam A. By Definition 5, there is a finitéL{"- proof p

from I', such that (i)A is derived in this proof on an unmarked lihgvith

a conditionA, (ii) every extension of the proof in which linkis marked

can be further extended such that line unmarked again. We now extend

P to a stages such that all minimal Dab-consequences are derived on the
empty condition. Noteb. (T') = ®-(T") and that at every later stagé
0(I) = @5 (I).

Ad 1. Suppose there is np € ®-(T") such thatA N ¢ = (). By Definition

13, linel is marked at stage and at every later stagé, which contradicts

(ii).
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Ad 2. Suppose there is@ € ®-(I") for which there is na\ C 2 such that
I+ AV Dab(A) andA N = ). By Definition 13 linel is marked at
stages, and we cannot further extend the proof such thatlireunmarked
— this again contradicts (ii). O

Lemma 9 Wherel' C W: if for every ¢ € ®~(I"), there is a finiteA C

Proof. Suppose that for every € ®-(I") there is a finiteA , C 2 — ¢ for
whichT' F,+ AV Dab(A,). Due to Lemma 7, for every such,, there
is a finite ALT-proof fromI" in which A is derived on the conditios\, at
an unmarked liné. Let P be any such proof (sincé™(T") is non-empty by
Theorem 25, there is at least one). Suppose the proof isdeddn a stage
in which linel is marked. We extend the proof further to a stagie which
() all minimal Dab-formulas have been derived on the empiydition, and
(i) for all ¢ € ®(I"), A has been derived on the conditidy,. By Definition
13, linel is unmarked at stagé. O

Theorem 26 If I" Fa A, thenD’ }:ALE A. (Soundness)

Proof. Supposel’ Faim A. If Man(I') = (0, the theorem follows im-
mediately. Suppos@a~(I') # 0. Let M € Mar(T'), whenceM €
My 1+(T). By Theorem 9,Ab(M) € ®=(I'). By Lemma 8.2, there is a
A C Q such thatAb(M) N A = @ andT - + AV Dab(A). By the
soundness ofLL™, T’ =+ AV Dab(A). SinceM € My +(T) and
M IF = Dab(A), M -+ A. O

Definition 16 Wherep € ®(I'): MY ={M € M| +(I") | Ab(M) = ¢}

Lemma 10 Wherep € ®(I'): if M isaLLL™-model ofl U (2 — ¢)~, then
M e M¥.

Proof. Supposef) ¢ € ®(I') and M is aLLLT-model of ' U (Q — ).
Hence ()M € M +(T"). Note thatAb(M) C ¢. By Lemma 3,Ab(M)
is a choice set af(T"), whence by{), Ab(M) ¢ . Hence (2)Ab(M) = .
By (1) and (2),M € M¥. O

Lemma 11 Wherep € ®(I'): if all members ofM¥ verify A, thenI" | +
AV Dab(A) foraA C Q — .

Proof. Suppose all members o¥1¢ verify A. By Lemma 10, allLLL™-
models ofl"U (2 — )~ verify A. This implies by the completenessldfL *:
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FU(Q—¢)" F+ A. Bythe compactness bt L*, I"UA™ | + A, fora
finiteIY C I" and a finiteA C 2 — . By the Deduction Theorend, b, +
AV Dab(A), and by the monotonicity dfLL™, ' b+ AV Dab(A). O

Theorem 27 Wherel' C W: if I' Eam A, thenl” o m A. (£L-Complete-
ness)

Proof. Suppose{) I' =aL» A. Consider ap € ®~(T"). By Theorem 8¢ €
®(T"). By Theorem 9, we have that for evety € M¥, M € Mair(T). In

view of (1), it follows that for everyM € M¥, M I-* A. By Lemma 11,
I'F 1+ AV Dab(A) foraA C Q— . Since this holds for alp € &=-(I"),
we obtain by Lemma 9 thdt -a m A. O

B.1.2. Reliability

Lemma 12 Wherel' C W: if T' -+ AV Dab(A) andANU=(T) = 0,
then each of the following holds:

1. There is a finitéAL--proof fromI" in which A is derived on the con-
dition A at an unmarked line
2.Tkap A

Proof. Ad 1.The proof proceeds analogous to the proof for Lemma 7. We

again construct the proaf as above. Note that sindé -, + B; for all
the derived abnormalitie®;, U-(I) = {By,..., By} € U-(T"). Since
ANUS(T) =0, alsoA NUL(I") = 0. Thus, linen + 1 is unmarked.

Ad 2. Suppose that there is a finite C Q such thaf” -, + AV Dab(A)
andA NUS(T") = 0. By item 1, there is a finite proof frof such that4
is derived on the conditiod\, on an unmarked liné Suppose the proof is

extended such that lirdbecomes marked. In that case, we can further extend

the proof, deriving every minimal Dab-consequencd of Then wheres’
is the stage of the second extensidf}; (I') = U=(T"), whence linel is
unmarked again. O

Lemma 13 If I' Fa - A, then A is derivable in aAL[--proof P from I" on
line [ with conditionA such thatA N U=(T") = 0.

Proof. Suppose thal' Fa~ A. So A'is finally derived on liné of a AL[ -
proof fromT". Let A be the condition of liné. Suppose thahNU=(T") # 0.
In that case, we can exterrdto a stages such that every minimal Dab-
consequence df is derived in it. We have thdf-(I") = U~(I") and for all
later stages’, U (") = UL (T"). As aresult, lind is marked at stage and
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remains marked in every further extension of the proof, Whiontradicts
the antecedent in view of Definition 5. O

Theorem 28 T' a1 Aiff T' = + AV Dab(A) for a finite A such that
ANUE(T) = 0.

Proof. (=) Suppose thal' [=air A, whence for evenM € Ma- (I'),
M |- A. By Definition 11, for everyM € M, +(T') such thatdb(M) C
US(), M IFT A. ThenT U (2 —US(T))” =+ A. AsLLLT is compact,
I"U(A)™ =+ Aforafinitel” C T'and afiniteA C (Q—US(T")). Hence
IV = L+ AV Dab(A). So, as LL™" is monotonic" =+ AV Dab(A).
(<) Suppose there is a finitd C 2 such thaf” =, + AV Dab(A) and
ANUS(T) = (. Note that by Definition 11, for every/ € M- (T),
M IFT = Dab(A). This implies that I A and we are done. O

Theorem 29 If " Fa . A, thenD’ }:ALE A. (Soundness)

Proof. Supposd’ FaL- A. By Lemma 13,A is derivable in 8AL[--proof P
from I" on line! with condition A such thatA N U=(T") = (. By Lemma 1
[ .+ AV Dab(A). By the soundness dfLL™, T' =, + AV Dab(A).
By Theorem 28" [=a1r A. O

Theorem 30 Wherel' C W: if I' =ar A, thenl ba . A. (£-Complete-
ness)

Proof. Suppose” [=arr A. By Theorem 281" |= |, + AV Dab(A) for

a A such thatA N U=(T") = (. By the completeness &fLL™, I" F  +
AV Dab(A). By Lemma 12.2]" - A. O

B.2. Strong Reassurance

As in the previous secion, we first prove the propertytfeMinimal Abnor-
mality, and next for_-Reliability. Wherei € I, let the flat adaptive logic
AL™ be defined by (iL-LL, (ii) €2; and (iii) Minimal Abnormality. The proof

of Strong Reassurance fALT relies on the Strong Reassurance property of
each of these flat adaptive logics.

Theorem 31 If M € My +(T)— Mar=(T), then there is anM’ <
ML (') such thatAb(M') C Ab(M).
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Proof. Supposeél € M +(I') — MaLr(T). Let M be the set of alM’ €
M+ (T) such that AM') = Ab(M). M # D sinceM ¢ Ma=(T). By
Definition 7, there is amy;, € I for eachM’ € M such that for allj < i,
Ab(M) N Qj = Ab(M/) N Qj, and AuM/) N QiM’ C Ab(M) N QiM/- Let
k= min({iM/ | M e M}) andM” € M be such thaty;» = k.

If k=1let M, € M/.\L;n (F) such that Aka) N C Ab(M//) N Q.

If & > 1, let for everyi < k, A; = (Q; — Ab(M;))" and M; = M.
Moreover, leth;, MALL" (TUA; U...UAg_1) be such that Ap\/;,) N
O C Ab(M//) N Q.

Foreveryi € I,i > kletA; = (Q; — Ab(M;))", where forallj € I, j >
k, M; is an arbitrary model iu\/lAij TUALU...UA;_).

We show now by induction that for eacke I, M; and hence alsd\; are
well-defined. Ifk > 1, this is trivially so for alli < k.

“5 = k" Suppose firstt = 1. M, exists due to the strong reassurance
property that holds foALT". Suppose now: > 1. By the construction,
M" e My +(TUALU...UAg_1). My exists due to the strong reassur-
ance property that holds féxL}".

“i = i+1"; By the induction hypothesis there is &, € M (TuA,U
.. U Ajq). Hence M; € M +TUAU...UA;). Thus,
M +(TUA;U...UA;) # 0. Hence, by the reassurance property of
ALiT—l' MAL{TH (F UAjU... U Az) =+ 0. Let M, €
./\/l,/_\|_injr1 (P UAJU...U Ai) andA;. 1 = (Qi+1 — Ab(MH_l))_'.

For every finite subsdt’ of I' U | J,; A; there is & for whichI” C T' U
AqU...UA;. SinceMj 1 € My + (TuAU... U Aj), M+ (F/) # (.
Then, by the compactness lofL*, M +(T'U;c; Ai) # 0. Let M, €
M+ (T UU;er As). We will now show that (1) AbM,) C Ab(M) and
that (2) M, € MAL’E ().

(1) By the construction, for all € I, Ab(M,) N Q; C Ab(M;) N Q;.
Suppose there is ane I for which Ab(M,) NQ; C Ab(M;) NQ;. Suppose
first thati < £. In view of the construction, for all < k, Ab(M;) N Q; =
Ab(M) N Q;, whence AN, ) N Q; C Ab(M) N ;. But thenM, € M
which is a contradiction to the minimality d&f. Suppose hence that> k.
Supposé = 1. SinceM; € Ma»(I') andM, € M +(T) this is a con-
tradiction. Suppose now thai > 1. Note that M; €
M/_\Lim(r UATU...UA;)andM, e M1+ (TUATU...UA;_1), —
a contradiction. Hence) for all i € I, Ab(M,) N ; = Ab(M;) N Q.

Since for alli < k, Ab(M,) N Q; = Ab(M) Ny, and AM,) N Qy, =
Ab(Mk)ﬁQk - Ab(M”)ﬂQk C Ab(M)ﬂQk, we have AmM*) C Ab(M)
by Definition 7.
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(2) Suppose there is an”’ € M| +(I') such that AipN/"") C Ab(DM,.).
Then there is ari € I such that (i) for allm < 1, Ab(M"") N Q, =
Ab(M,) N Q,, and (ii) Ab(M"") N Q; C Ab(M,) N ;. By the transi-
tivity of =, Ab(M"”) = Ab(M) and henceM” € M. Thus, due to
the minimality ofk, I > k. Supposd = 1 = k. Due to (ii) and {),
Ab(M"™)y Ny C Ab(M,) N Q; = Ab(M;) N Q. This is a contradic-
tion, sinceM; € Map(I'). Suppose now > 1. Note that due to (i)
and ¢), for all m < I, Ab(M"") N Q,, = Ab(M,) N Q,, = Ab(M,,) N
Q. Thus, M € M +(TUA;U...UA;_1). Due to (ii) and f),
Ab(M™) N € Ab(M,) NQ; = Ab(M;) N €. This is a contradiction,
sinceM; € Mar(FUA; U... UA;_1). HenceM, € Marr (D). a

Lemma 14 Ma» (T') € Mar (D).

Proof. SupposeM € Mair(T). By Theorem 9,4b(M) = ¢ for some
p € ®5(T"). HenceAb(M) C |J P (T"), whence by Definitions 10 and 11,
M e ./\/(A|_rE (P) O

Theorem 32 If M € My +(T) — Mare (T), then there is anM’ ¢
MLz (T') such thatAb(M') C Ab(M).

Proof. SupposeM € M+ (') = Mar(I'). By Lemma 14,M €
M+ (T) = Mare(T). By Theorem 31, there is 3’ € Ma=(T') such
that Ab(M') C Ab(M). By Lemma 14M" € Mar (T). O

B.3. Reflexivity
Reflexivity follows immediately from the following propert

Theorem 33 Cny +(I') € Cnar- () (LLLY is weaker than or identical
to ALp)

Proof. Supposd’ -, + A. By the compactness afLL™, there is a finite
I C T such thatl” -+ A. We may introduce all the elementsBf as
premises in &L--proof fromI", using the rule PREM. We apply the rule RU
to these premises to derivls say on a lind. Note that the condition of line
1 is 0, whence in view of marking definitions 13 and 15, linis unmarked
and remains unmarked in every extension of the proof. d
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B.4. Cautious Indifference

We will first prove that Cautious Indifference holds #L™, and then that it
also holds forAL[-. In what follows,I" is an arbitrary subset o,

Theorem 34 If IV C CnAL’E (), thenMALE () = MAL’E (Tur).

Proof. Supposef{) I'" € Cnain(T"). Consider a\f € Mai»(I'UT’). By
Definition 8, M € M +(I'UT’) and henceVl € M, +(T'). Suppose
that M ¢ Mai»(T). By Theorem 31, there is &I’ € M.~ (T") such that
Ab(M') = Ab(M). However, in view of {), M’ I+ A for every A € T”,
whence alsa/’ € My +(I'UT"). By Definition 8, M ¢ Mai» (T'UTY),
which contradicts the supposition.

Consider aM € Main(I'). By (1), M I+ A for every A € T'. By
Definition 8, M is aLLL™-model of". We thus obtain thad/ is aLLL™-
model of ' UT". SupposeV] ¢ MaL»(I' UT"). By Theorem 31, there is a
M e MLLLJr(FUF/): Ab(M/) C Ab(M) HenceM’ e MLLL+(F)- By
Definition 8, M ¢ Marp (T"), whence we have obtained a contradictiofl

Lemma 15 If I" C Cnaim(T'), then®=(T") = &=(T"UT").

Proof. Supposel” € Cnapr(T). If T' has noLLL*-models, therl® and
' UT” areLLL " -trivial, whenced™(T") = {Q} = o=(T UT).

If (1) T hasLLL*-models, then in view of the reassurance\bf”, there is
aM € Mar(T). By Theorem 34M € M- (I' UT'), whence also (2)
['UT” hasLLL*-models. By Theorem 34y(a n (T') = Marr (T UT"). By
(1), (2) and Theorem 10, this means tiét(I') = d-(T'UTY). O

Theorem 35 If IV C Cn/_\LrEn (P), thenCnALE (P) - Cn/_\LrEn (P U F/). (Cau-
tious Monotonicity)

Proof. Supposel” C Cnair(T'), whence by Lemma 15f) ®=(T') =
®-(I UT'). Supposd’ Far A. By Lemma 8.2 andf), we have that
() for everyp € ®=(I' UTY), T F  + AV Dab(A) for a A such that
©NA = (). By Lemma 8.1 and{, there is a finiteAL™-proof p from I" such
that A is derived at an unmarked lidavith conditionA, andA N ¢ = ( for
ayp € (T UT’). Note thatr is also a proof fronT" U T".
Suppose liné is marked in an extension ef We may extend this exten-

sion further such that (a) all minimal Dab-consequencds.of” are derived
on the empty condition and (b) for evepye ®=(I" UT"), A is derived on a
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condition A such thatA N ¢ = () — this is possible in view ofi{). Let s be
the stage of this second extensiorPof

Note that by (a), for every later stage ¢, (I' UT”) = ®(T'UT”). By (b),
at every later stagé€, for everyy € o, (I'UT”), A is derived on a condition
A such thatA N ¢ = (). By Definition 13, linel is unmarked at every such
stages’, whenceA is finally derived in the proof. HendeUT" Faim A. O

Theorem 36 Wherel' € W: if I' C Cnair(T'), thenCnam (I' UTY) C
Cnarr (T). (Cumulative Transitivity)

Proof. Supposd” C Cnaim(T'), whence by Theorem 34f)(MaLr(T') =
MaLe (T UTY). Supposd’ UT’ Fam A. By the soundness &L, T'U
I am A. By (), T =am A. By the £-completeness oAL™, ' Fapm
A. O

Corollary 1: Wherel' C W: if T" C Cnan(T'), thenCnam (T UTY) =
CnaLr (T"). (Cautious Indifference)

Theorem 37 C”I”L,/_\LrE (F) - CnALE (P)

Proof. Supposel” Far A. By Lemma 13, there is a finitAL{--proof P
from T', in which A occurs on an unmarked linewith condition A, and
ANUE(T) = 0. Let s be the stage of this proof. Since lihés unmarked,
we have thati) AN UL (T") = 0. SinceU=(T") = |J ®-(T"), we can derive
that (f) A N = () for everyp € ®(T).

Note thatr is also amALT-proof fromI". By (t) and the fact thaV/- (I") =
J @5 (T"), we can derive thah N ¢ = () for everyyp € &5 (T"). Hence linel
is also unmarked ir if the strategy is—-Minimal Abnormality.

Suppose lind is AL"-marked in a further extension of the proof. We
then extend the proof further to a stagle such that every minimal Dab-
consequence df is derived at stage’. Note that®(T") = ®=(T"). By (f)
and Definition 13, lind is unmarked at stag€. O

Lemma 16 If I" C Cnacr ('), thenU=(T'UT’) = U=(T).

Proof. Supposd” C Cnarr (T'). By Theorem 37" € Cnar(T). By
Lemma 152(T") = ®=(I" U "), whence by Definition 1Q/=(T' UT") =
US(T). O

Theorem 38 If IV C CnAL'E (1), t|”\el'1./\/l,/_\|_rE () = ./\/(A|_rE Ty P/).
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Proof. Supposd” C Cnair (I'). By Lemma 16,{) U-(I' UTY) = U=(T).
SupposeM € Ma¢ (I'). By the supposition and the soundnessAtf,
M € My +(T"UT’). By (f) and Definition 11M € Ma- (T UT).
Supposel € M- (I'UT). By Definition 11, M € M +(T'UT")
andAb(M) C US(I'UT’). Then by the monotonicity dfLL* and (), M €
M+ (T) and Ab(M) € U(T). By Definition 11,M € Ma- (T). O

Theorem 39 If IV C CTL,/_\LrE (P), thenCnALrE (P) - CTL,/_\LrE (P U F/). (Cau-
tious Monotonicity)

Proof. Supposd” C Cna- (I'), whence by Lemma 16 U= (I' UT") =
US(T). Supposd® Fair A, whence by Lemma 134 is derivable in an
ALL-proof p from I" on line! with condition A such thatA N U=(T") = §.
Note thatp is aAL[-proof fromI" UT” as well.

Suppose that liné is marked in an extension & We may then further
extend the extension, such every minimal Dab-consequehdelol” is
derived in it on the empty condition. Where the stage of tlvesd extension
is s, we have thaU- (T UTY) = U=(T'UTY). By (), ANUS(TUTY) = 0.
As a result, lind is unmarked at stage O

Theorem 40 Wherel' C W: if IV C Cnarr (T'), thenCnar (' UTY) C
Cnarp (T'). (Cumulative Transitivity)

Proof. Supposd” C Cnair ('), whence by Theorem 38f M- (') =
ML (T'UTY). Now supposd’ UT” o~ A. By the soundness dfL[,
FUl” Eae A By (1), I' =a. A. By the £-completeness oALL,
I |—A|_rE A. O

Corollary 2: WhereT' € W: if T" € Cnar- (T), thenCna - (T UTY) =
CnaLc (T"). (Cautious Indifference)

B.5. Idempotence

LetI” = Cna..(T"). By Cautious IndifferenceC'na - (I') = Cna - (I' U
I''). Moreover, by the reflexivity oAL-, I' C I, whenceCna - (I UT) =
Cnar. (I'). The rest follows immediately.
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B.6. Deduction Theorem fakL["

Supposd’ U {A} Fam B, whence by the soundness ALT: (1) every
ALP-model of " U { A} verifies B. Supposé’ ¥a m = AV B — we derive a
contradiction. By theC-completeness diLT", there is AALT-modelM of T’
suchthatV/ |-t A A = B. Note thatM is aLLL"-model ofTU{A}. In view
of (1), M is not aAL™-model of " U { A}, whence there is ALL*-model
M’ of TU{A} such thatdb(M') = Ab(M). However, by the monotonicity
of LLL™, M’ is aLLL*-model ofT". By Definition 8, M ¢ Marp (T).

B.7. Hierarchies within the New Format
Theorem 41 CnALrEn (F) - CnULL(F).

Proof. Suppose” Faim A. By Lemma 8.21" |, + AV Dab(A) for a

A C Q. By CL-propertiesTUQ ™ .+ A, whence in view of the definition
of ULL, T FuLL A. O

In view of Theorems 33, 37, 41 and 13, we can immediately deFlveo-
rem 21 as a corollary. By Theorem 5, we can also derive The@&m

B.8. Criteria for AL--Equivalence

Theorem 42 Wherel' C W, CnaL-(T') = Cnar-(Cny +(T)). (LLLT is
conservative with respect L)

Proof. By Theorem 33,{) Cn +(I") € Cnar(I'). By (f) and Cautious
Indifference,Cna (T'U Cny +(T)) = Cnar. (). SinceLLL" is reflex-
ive,I" C CnLLL* (F), WhenceCnALE (F U C’I’LLLL+ (F)) = CnALE (CnLLL+
(T")) and we are done. O

Theorem 43 Wherel', " C W: if I andI” are LLL*"-equivalent, then they
are AL--equivalent.

Proof. Supposel’ and I are LLL"-equivalent, whenceC'n +(I') =
CTL/_\LE (P/) = CTL,/_\LE (CnLLL+ (P/)). Hel’]CGC'TL,/_\LE (P) = CnALE (F/). O

Theorem 44 Every monotonic logic that is weaker than or identicaltb-
is weaker than or identical toLL™. (Maximality ofLLL™)
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Proof. (ALT) This follows immediately in view of (i) Lemma 8.2 from the
current paper, (ii) the proof of Theorem 10 in [11] — replaed’ U T”) in
that proof by®=(I" U I"”) and Theorem 4 in that proof by Lemma 8.2 from
the current paper.

(ALE) This follows immediately in view of the fact th&tl" is stronger than
AL — see Theorem 37 — and item 1. O

Fact 4. WherelL is a Tarski-logic weaker than or identical td.L": if I and
I'" are L-equivalent, then they afel L™ -equivalent.

Proof of Theorem 23n view of the preceding lemmas and theorems, the
proof of Theorem 23 is fairly straightforward:

Proof. Ad 1.Supposd” C Cnai-(I") andI’ C Cna(I'). By Cautious
Indifference,CnAl_E (F) = CnALE (F @] F,) ananALE (F/) = CnALE (F/ U

F), henceCnALE (P) = CnALE (F/).

Ad 2. and 3.t was proven in [11] that (C2) and (C3) are coextensive when-
ever ()AL is reflexive and has the fixed point property, andl(iiy mono-
tonic. Hence in view of the reflexivity and idempotencefdf-, it suffices

to prove item 2.

Supposd. is a Tarski-logic weaker than or identical Ab.-. By Theorem
44, L is weaker than or identical tbLL*. Now supposd’ andI" arelL-
equivalent. By Fact 4, andI areLLL*-equivalent. By Theorem 43, and
I'” areAL--equivalent. O
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