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TOLERATING DEONTIC CONFLICTS
BY ADAPTIVELY RESTRICTING INHERITANCE∗

CHRISTIAN STRASSER, MATHIEU BEIRLAEN AND JOKE MEHEUS

Abstract
In order to deal with the possibility of deontic conflicts Lou Goble
developed a group of logics (DPM) that are characterized by a re-
striction of the inheritance principle. While they approximate the
deductive power of standard deontic logic, they do so only if the user
adds certain statements to the premises. By adaptively strengthen-
ing the DPM logics, this paper presents logics that overcome this
shortcoming. Furthermore, they are capable of modeling the dy-
namic and defeasible aspect of our normative reasoning by their dy-
namic proof theory. This way they enable us to have a better insight
in the relations between obligations and thus to localize deontic con-
flicts.

1. Introduction

Recent work in deontic logics has shown a growing interest in systems that
are able to deal with deontic conflicts (e.g., [9, 11, 12, 14, 15, 18, 20, 22,
27, 32]). A deontic conflict between obligations occurs when the obligations
cannot be jointly realized. Note that deontic conflicts are not just an abstruse
philosophical notion, but that they occur quite commonly in our every-day
moral lives (see e.g. [16, 29]). This has for instance to do with the fact that
different obligations and behavioral codices may stem from different moral
systems and institutions. Sartre famously reports on one of his students who
found himself in an unfortunate situation. On the one hand, he felt obliged
to support the French army in their resistance against Nazi Germany. On
the other hand, however, there was the obligation to stay at home in order to
support his ill mother. Obviously, it was not possible for him to fulfill both
obligations simultaneously.

∗Research for this paper was supported by the Research Fund of Ghent University by
means of Research Project 01G01907. We are very grateful to the two anonymous referees
whose comments helped to improve a previous version of this manuscript.
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In deontic logics a modal operator O is used where OA expresses the obli-
gation to bring about A. In order to accommodate deontic conflicts systems
that tolerate them need to be developed, i.e., systems that do not lead to
triviality when applied to conflicting obligations. Formally, conflict-tolerant
deontic logics do not validate the following principle of deontic explosion:

` (OA ∧ O¬A) ⊃ OB (DEX)

Note that standard deontic logic (SDL)1 is not conflict-tolerant. One reason
is that it validates the principle (D), ` OA ⊃ ¬O¬A. Thus, ¬(OA∧O¬A) is
a theorem of SDL and all conflicts of the form OA∧O¬A lead to explosion.

There are various proposals for conflict-tolerant deontic logics. First, one
could restrict or reject the ex contradictione quodlibet principle ((A∧¬A) `
B, for any B), i.e., go paraconsistent (see e.g. [9, 11, 22]). Another approach
is to restrict the aggregation principle (if OA and OB, then O(A ∧B)) or to
abandon it (see [12, 13, 20, 27]).

Yet another approach is given by Goble’s logics DPM (see [14, 15]). They
prevent deontic explosion by restricting the inheritance principle

If ` A ⊃ B, then ` OA ⊃ OB (RM)

Note that any system that validates full aggregation, full inheritance as
well as ex contradictione quodlibet leads to explosion when applied to con-
flicts of the form OA ∧ O¬A. By aggregation O(A ∧ ¬A) is derivable from
OA ∧ O¬A and, in view of ex contradictione quodlibet, OB follows from
O(A ∧ ¬A) by (RM).

We will argue in this paper that, although Goble’s DPM logics are conflict-
tolerant with respect to conflicting obligations, they are suboptimal in other
respects. In order to overcome this, we will present adaptive strenghten-
ings of the DPM logics. The idea behind adaptive logics (see [3, 4]) is to
interpret a given premise set “as normally as possible”. In our case obliga-
tions are interpreted as non-conflicting as possible. It will be demonstrated
that the adaptive systems are significantly stronger than the DPM logics and
approximate SDL. For instance, for premise sets that are conflict-free, the
adaptive versions of the DPM systems lead to exactly the same consequence
set as SDL.

Let us outline the structure of this paper. In Section 2, we introduce
Goble’s DPM systems and explain their semantics in Section 3. We show
that the DPM systems have some shortcomings in Section 4. Motivated by

1
SDL is obtained by adding the principle (D), ` OA ⊃ ¬O¬A to the normal modal

logic K. There are various alternative axiomatizations of SDL, cfr. footnote 5.
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the limitations of the DPM systems, we introduce the reader into adaptive
logics in Section 5. In Sections 6 and 7 we present the adaptive strengthen-
ings ADPM.1 and ADPM.2′. We list some meta-theoretical properties of the
adaptive logics in Section 8. In Section 9 we discuss some shortcomings of
our logics and relate them to other systems. Finally, in Section 10 we offer a
conclusion. The appendix features the proofs of our results.

2. Dealing With Deontic Conflicts by Restricting Inheritance

In the remainder we work with a propositional language enriched by a mo-
nadic obligation operator O. Where S is the set of sentential letters, our
set of well-formed formulas W is given by the 〈¬,∧,∨,⊃, O〉-closure of
S , ⊥ and > with the usual rules for brackets. We define A ≡ B by (A ⊃
B) ∧ (B ⊃ A) and the permission operator PA by ¬O¬A.

The idea behind Goble’s DPM systems is to restrict the inheritance prin-
ciple via permission statements. The full inheritance principle (RM) is re-
placed by the following ‘rule of permitted inheritance’

If ` A ⊃ B, then ` PA ⊃ (OA ⊃ OB) (RPM)

What the rule (RPM) comes to is this: if A is obligatory and A entails B, then
B is also obligatory provided that it is explicitly stated that A is permitted, or
what comes to the same, that the obligation to bring about A is unconflicted.2

Thus, OB follows neither from Γ1 = {O(A ∧ B), O¬(A ∧ B)} nor from
Γ2 = {O(A ∧ B)}, but it does follow from Γ3 = {O(A ∧ B), P(A ∧ B)}.

Classical propositional logic enriched with the rules (RPM), and

If ` A ≡ B, then ` OA ≡ OB (RE)

and the axioms

` O> (N)
` (OA ∧ OB) ⊃ O(A ∧ B) (AND)

defines the system DPM.1. More precisely, DPM.1 is the least set of formu-
las containing all classical tautologies of formulas of W , plus all instances of
(N) and (AND), that is closed under Modus Ponens, (RE), and (RPM) with
‘`’ indicating membership in DPM.1. We define in a canonical way, `DPM.1

2 In view of the definition of PA, OA ∧ PA expresses that the obligation OA is
unconflicted.
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A iff A is a member of DPM.1. Furthermore, where Γ ⊆ W , Γ `DPM.1 A
iff for some B1, . . . , Bn ∈ Γ we have `DPM.1 (B1 ∧ · · · ∧ Bn) ⊃ A.3

Besides DPM.1 Goble presented another system, DPM.2, that also em-
ploys the restricted inheritance principle (RPM), but that moreover restricts
aggregation. We have motivated the restriction of the inheritance principle
and of the aggregation principle as a way to gain conflict-tolerant deontic
logics. As will be stated in Theorem 1, DPM.1 does not validate (DEX).
Hence, since DPM.1 is already a conflict-tolerant deontic logic, the question
arises concerning the use of this further restriction. Let us give some rea-
sons. First, it is not clear that aggregation should hold unrestrictedly. For
instance, should aggregation be applied to conflicting obligations? Exam-
ple: do we want to derive O(A∧B) from {OA, O¬A, OB}? Analogously,
should aggregation be applied in cases where it leads to (additional) deontic
conflicts? For instance, should one allow that O(A ∧ B) is derivable from
{OA, OB, O¬(A ∧ B)}, thus creating an additional conflict? A negative
answer to these questions motivates the restriction of aggregation. Secondly,
principle (P), ¬O⊥, has quite some intuitive appeal. Obviously it is im-
possible to bring about ⊥. The Kantian principle ‘ought implies can’ says
that we are not obliged to bring about things that are impossible to realize.
However, allowing for unrestricted aggregation in the presence of a conflict
OA ∧ O¬A leads to O(A ∧ ¬A) and hence to O⊥. Thus, adding (P) as an
axiom to DPM.1 leads to explosion when applied to deontic conflicts. This
can be avoided by restricting aggregation.

Due to the fact that there are various conflict-tolerant deontic logics that
only restrict (or abandon) aggregation, the reader may still wonder why in
DPM.2 both principles are restricted. One reason is, as Goble pointed out
in his [15], that many systems that restrict (but do not abandon) aggregation
are not conflict-tolerant enough. In his critical analysis he elaborated var-
ious refined explosion principles. Besides the very strict notion of deontic
explosion that underlies (DEX), namely situations in which all obligations
are derivable, there are weaker notions. Take for instance the following ex-
plosion principle:4

If 0 ¬B then OA, O¬A ` OB (DEX-1)

3 See also [28] where the authors define consequence relations for rank-1 modal logics in
this way and prove strong completeness.

4 We slightly adjusted the criteria (DEX-1)–(DEX-3) (the latter two will be introduced
in a moment) offered by Goble since his criteria were formulated in terms of theoremhood
while we focus on the consequences of premise sets.
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Another notion of deontic explosion is given if, for every B, OB ∨ O¬B
is derivable. Semantically speaking this corresponds to the case where all
models are such that for every B there is either the obligation to bring about
B or there is the obligation to bring about not-B. Although weaker than
(DEX) it is equally counter-intuitive that OB∨O¬B is derivable from {OA∧
O¬A}. Hence, we expect from conflict-tolerant deontic logics that they do
not validate the following explosion principle:

OA, O¬A ` OB ∨ O¬B (DEX-2)

This may be weakened further. Facing a deontic conflict, OA∧O¬A as well
as an unconflicted obligation OC ∧ ¬O¬C, it would be undesired that, for
every B, the formula OB ∨ O¬B would be derivable. This is expressed as
follows:

OA, O¬A, OC,¬O¬C ` OB ∨ O¬B (DEX-3)

Validating (DEX-3) is counter-intuitive, since for some arbitrary B the con-
flict OA∧O¬A together with the other, otherwise unrelated and unproblem-
atic obligation OC does not entail that we are either obliged to bring about
B or to bring about ¬B: OB ∨ O¬B.

By restricting aggregation along with inheritance the various advantages
can be combined. In this way we gain systems that follow the Kantian in-
tuition ‘ought implies can’, that hence validate (P), and that are strongly
conflict-tolerant such that they do not validate any of the explosion princi-
ples (DEX), (DEX-1)–(DEX-3).

In order to achieve such a conflict-tolerant logic, Goble uses the following
permitted aggregation principle:

`
(

OA ∧ OB ∧ P(A ∧ B)
)

⊃ O(A ∧ B) (PAND)

The idea is to apply aggregation to OA and OB, provided that A ∧ B is
explicitly permitted. Goble’s logic DPM.2 is defined by (RPM), (RE), (N),
(P), and (PAND). The consequence relation `DPM.2 is defined analogous to
`DPM.1.

There is an alternative way of restricting aggregation that offers several
advantages over (PAND), namely:

`
(

OA ∧ OB ∧ PA ∧ PB
)

⊃ O(A ∧ B) (PAND′)

Here, the idea is to apply aggregation to OA and OB provided that both A
and B are explicitly permitted.



“06strasser”
2012/9/6
page 482

i

i

i

i

i

i

i

i

482 CHRISTIAN STRASSER, MATHIEU BEIRLAEN AND JOKE MEHEUS

The logic DPM.2′ is defined by (RPM), (RE), (N), (P), and (PAND′). The
consequence relation `DPM.2′ is defined analogous to `DPM.1.

Henceforth we will use DPM as a generic term for DPM.1, DPM.2 and
DPM.2′.

As announced already, DPM is sufficiently conflict-tolerant not to validate
any of the introduced explosion principles.

Theorem 1 : Where L ∈ {DPM.1, DPM.2, DPM.2′}, L does not validate any
of the explosion principles (DEX), (DEX-1)–(DEX-3).

Lou Goble argued in [14] in favor of the following criterion of adequacy
for conflict-tolerant deontic logics:

(?): A conflict-tolerant deontic logic should be such that the result
of adding (D), namely ` OA ⊃ ¬O¬A, as an axiom leads to the
same consequence relation as SDL.5

Theorem 2 : Where α ∈ {1, 2′}, DPM.α satisfies (?).

The logic DPM.2′ has several advantages as compared to Goble’s DPM.2.
First, the restricted aggregation principle of DPM.2′, i.e. (PAND′), coheres
better with the idea underlying (RPM) than (PAND). Note that the idea
underlying (RPM) was to restrict inheritance to those obligations that are
explicitly permitted, or what comes to the same, are explicitly unconflicted.
This idea is applied to the aggregation principle by (PAND′) — aggregation
can only be applied if both obligations are explicitly unconflicted. In con-
trast, the idea underlying (PAND) is to apply aggregation to OA and OB
provided that the outcome of the aggregation, A∧B, is explicitly permitted.
Thus in the case of (PAND), but not in the case of (PAND′), O(A ∧ B) is
derivable from {OA, O¬A, OB, P(A ∧ B)}.6 Second, DPM.2′ satisfies
Goble’s criterion (?) while DPM.2 does not. Third, by choosing DPM.2′ in-
stead of DPM.2 as a basis for the adaptive strengthenings that are introduced
in Section 5 we will avoid some technical problems.

5 Goble axiomatizes SDL by adding (D), (N), (RE), (RM), and (AND) to full proposi-
tional logic. A consequence relation `SDL can be defined analogous to `DPM.1. We slightly
adjusted Goble’s (?) since he is mainly interested in theoremhood, while we focus on conse-
quence relations.

6 A restricted inheritance principle following the intuition of (PAND) would be: If ` A ⊃
B, then ` PB ⊃ (OA ⊃ OB). Inheritance is applied to OA in order to derive OB if it does
not result in a deontic conflict OB ∧ O¬B.
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Before we take a look at some of the shortcomings of the DPM logics, let
us introduce the semantics.

3. The Semantics of DPM

The semantics that we introduce in this section are very similar to Goble’s
neighborhood semantics for his DPM logics in [14]. The only difference
is that we employ an actual world. This makes the semantics philosophi-
cally more intuitive for our application, since we are not only interested in
modeling theoremhood but also in defining a semantic consequence relation.

One of the basic ideas for the neighborhood semantics is that propositions
are interpreted in terms of sets of worlds. Moreover, each world has associ-
ated with it propositions, i.e., sets of worlds. The idea is that an obligation
OA is true at a world w, in case A is one of its associated propositions.

Let ℘(X) be the power-set of some set X . A neighborhood frame F is
a tuple 〈W,O〉 where W is a set of points and O : W → ℘(℘(W )). We
call elements of W worlds. Thus, O assigns to each world w ∈ W a set
of propositions, i.e., O(w) ⊆ ℘(W ). We write from now on Ow instead of
O(w). An F -model M on a frame F is a triple 〈F, v, @〉 where @ ∈ W is
called the actual world and v : S → ℘(W ). A propositional atom is mapped
by v into the set of worlds in which it is supposed to hold. Where w ∈ W
and |A|M =df {w ∈ W | M, w |= A}, we define:

(M-P) M, w |= A iff w ∈ v(A), where A ∈ S
(M-O) M, w |= OA iff |A|M ∈ Ow

(M-¬) M, w |= ¬A iff M, w 2 A
(M-∨) M, w |= A ∨ B iff M, w |= A or M, w |= B
(M-∧) M, w |= A ∧ B iff M, w |= A and M, w |= B
(M-⊃) M, w |= A ⊃ B iff M, w |= ¬A ∨ B
(M->) M, w |= >
(M-⊥) M, w 6|= ⊥

Furthermore, M |= A iff M, @ |= A. Where Γ ⊆ W , we say that M is an
F -model of Γ iff M is an F -model and M |= A for all A ∈ Γ.

We define the following requirements on frames F = 〈W,O〉. For all
w ∈ W :

a) W ∈ Ow

b) If X ∈ Ow and Y ∈ Ow, then X ∩ Y ∈ Ow

b′) If X ∈ Ow; Y ∈ Ow; W \ X /∈ Ow; and W \ Y /∈ Ow, then X ∩ Y
∈ Ow

b′′) If X ∈ Ow; Y ∈ Ow; W \ (X ∩ Y ) /∈ Ow, then X ∩ Y ∈ Ow
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c) If X ⊆ Y ; X ∈ Ow and W \ X /∈ Ow, then Y ∈ Ow

d) ∅ /∈ Ow

Condition a) corresponds to (N), b) corresponds to (AND), b′) corresponds
to (PAND′), b′′) corresponds to (PAND), c) corresponds to (RPM), and d)
corresponds to (P). We call the class of all frames that satisfy a), b) and c)
the DPM.1-frames, the ones that satisfy a), b′), c) and d) the DPM.2′-frames,
and the ones that satisfy a), b′′), c) and d) the DPM.2-frames.

Let Γ ⊆ W . A semantic consequence relation can be defined as follows.
Where F is a frame, Γ F A iff for all F -models M of Γ, M |= A. More-
over, where α ∈ {1, 2, 2′}, Γ DPM.α A iff Γ F A for all DPM.α-frames
F .

Theorem 3 : Where α ∈ {1, 2, 2′} and Γ ⊆ W , Γ `DPM.α A iff Γ DPM.α A.

4. Some Shortcomings of DPM

In order to apply the weakened inheritance principle (resp. also the weakened
aggregation principle in the case of DPM.2 and DPM.2′) the user has to
“manually” add permission statements. For instance, in order to apply the
restricted inheritance principle (RPM) to OA we also need PA. In cases in
which PA is not derivable from the premises by means of DPM, the user has
to add manually PA to the premises. This is suboptimal for various reasons.7

(1) For all interesting cases, determining which permission statements can
safely be added to a set of premises (that is, in such a way that no explosion
follows) requires reasoning. This kind of reasoning falls entirely outside the
scope of the DPM systems and is therefore left to the user of the DPM sys-
tems. So, the DPM systems are inadequate to fully explicate the reasoning
processes that are needed to apply the DPM systems in a sensible way (that
is, in a way that modal inheritance is applied “as much as possible”).

(2) The fact that permissions have to be added manually is especially prob-
lematic in cases where the relationship between the premises is interwo-
ven. For instance in complicated setups it might not be obvious at all that
OA ∧O¬A is derivable. However, suppose that in this case the user naïvely

7 In [32], van der Torre and Tan presented a sequential system which, in a first phase, dis-
ables the application of (RM) and allows for the application of a restricted aggregation rule.
In a second phase, it disables this aggregation rule and allows for the application of (RM).
Although this system overcomes this problem, it can do so only by introducing two different
O-operators and by requiring that (RM) is never applied before the restricted aggregation
rule. As the authors themselves admit, this is rather strange from an intuitive point of view
(see also [15], pp. 470–471).
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added PA to the premises in order to apply (RPM) to OA. Since PA is
equivalent to ¬O¬A the user caused in this way an explosion.

(3) For most premise sets the DPM systems are rather weak. Recall that
in order to achieve the deductive strength of SDL we had to add (D) to the
axiomatization of DPM.1 (resp. DPM.2′). Suppose we accept SDL as the
normative standard for the modeling of non-conflicting obligations. It would
be desirable then that conflict-tolerant logics apply all rules of SDL to non-
conflicting obligations. For instance, given a premise set Γ ⊆ W that is
conflict-free, we expect a deontic logic to lead to a consequence set that
is the same as that of SDL without the need of strengthening the premise
set manually by adding instances of (D), or by adding premises. Thus, if
the premises are conflict-free, the logic should apply all the rules of SDL
unrestrictedly.

The discussion above motivates the following strengthening of Goble’s re-
quirement (?).8

(??): For SDL-consistent premise sets9 Γ ⊆ W a conflict-tolerant
deontic logic should lead to the same consequence set as SDL.

Note that neither of the introduced DPM logics satisfies (??). We will in the
next section adaptively strengthen both logics so that they satisfy criterion
(??).

As should have become evident from the discussion above, there is a cer-
tain trade-off for monotonic deontic logics such as DPM. In order to offer
conflict-tolerance certain SDL-principles such as (D) and inheritance have to
be restricted or abandoned. In return, this weakens the logics even in cases
in which it would be unproblematic to apply the principles in question.

The adaptive strengthenings introduced in the next sections will overcome
this trade-off. On the one hand, applying the logic does not involve any
user interference. On the other hand, by interpreting a premise set as non-
conflicting as possible, principles such as inheritance, (D) and aggregation
in the case of the adaptive strengthening of DPM.2′ will be applied as much
as possible.

8 To stay in line with Goble’s (?), we formulate the strengthened requirement in terms of
SDL. If one’s preferred logic is different from SDL, the requirement may easily be adapted.
The basic idea is that, where one’s preferred deontic logic (for conflict-free premise sets) is
L, one expects from a conflict-tolerant deontic logic on the basis of L that it leads to the same
consequence set as L for all L-consistent premise sets. This is exactly what adaptive logics
allow for.

9 Γ is SDL-consistent iff Γ 0SDL ⊥.
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5. Adaptive Logics

The main feature of adaptive logics is that they interpret a given premise
set “as normally as possible”. The standard of normality depends on the
application. For instance, there are inconsistency-adaptive logics that, while
allowing for classical inconsistencies, interpret a given premise set as consis-
tently as possible (see e.g. [1, 4]). In our case the idea is to interpret premise
sets “as non-conflicting as possible”. We will in the following give a precise
meaning to this vague notion. Adaptive logics in standard format are defined
as a triple:

1. the lower limit logic, i.e., a reflexive, transitive, monotonic, and com-
pact logic10 that has a characteristic semantics and contains classical
logic,

2. the set of abnormalities Ω, characterized by a (possibly restricted)
logical form,

3. the adaptive strategy, in this paper the minimal abnormality strategy.

The adaptive logic strengthens its lower limit logic. Since we are inter-
ested in interpreting premise sets as non-conflicting as possible, a minimal
requirement for our lower limit is that it is conflict-tolerant. We will use
DPM.1 or DPM.2′ for this purpose.11 Let henceforth α ∈ {1, 2′}. In or-
der to avoid an unnecessary level of abstraction we introduce the reader into
adaptive logics immediately by means of the systems that we are going to
introduce in this paper.12

The adaptive strategy together with the abnormalities determine what it
means to interpret the premises as normally as possible. The standard for-
mat currently is defined for two strategies: the reliability strategy and the
minimal abnormality strategy. Choosing the latter results in a stronger con-
sequence relation. However, the proof theory is more involving and it is
computationally more complex compared to the one on the basis of the re-
liability strategy [34]. The reason why we prefer the minimal abnormality
strategy over the reliability strategy for our application is that it allows for
the derivation of O(A ∨ B) from two incompatible obligations OA and OB

10 Where CnL(Γ) denotes the consequence set of some premise set Γ for the logic L, L is
reflexive iff Γ ⊆ CnL(Γ), it is monotonic iff CnL(Γ) ⊆ CnL(Γ ∪ Γ′), it is transitive iff if
Γ′ ⊆ CnL(Γ) then CnL(Γ

′) ⊆ CnL(Γ) and it is compact iff if A ∈ CnL(Γ) then there is a
finite Γ′ ⊆ Γ such that A ∈ CnL(Γ

′).

11 We will discuss the case of DPM.2 being a lower limit logic shortly in Section 7.

12 For a more generic introduction see [3, 4].
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while reliability does not. We will give an example of this later on (see
Example 7).

Since our aim is to interpret a given premise set Γ as non-conflicting as
possible, we define our abnormalities to be deontic conflicts, OA ∧ O¬A.
We denote the set of all abnormalities by Ω.

Now we have the three elements needed to define the adaptive logics that
are explicated in this paper: (1) the lower limit logic is either DPM.1 or
DPM.2′, (2) the set of abnormalities is Ω = {OA ∧ O¬A | A ∈ W}, and
(3) the strategy is minimal abnormality. We dub these systems ADPM.1 and
ADPM.2′.

Semantically the minimal abnormality strategy is realized by selecting a
certain well-defined set of DPM.α-models of a given premise set Γ, namely
the ones that are “minimally abnormal”. The models are selected with re-
spect to their abnormal part, i.e. the abnormalities they verify: where M is
a DPM.α-model, Ab(M) = {A ∈ Ω | M |= A}. For a given logic L, we
write ML(Γ) for the set of L-models verifying all members of Γ.

Definition 1 : A DPM.α-model M ∈ MDPM.α(Γ) is minimally abnormal
iff there is no DPM.α-model M ′ ∈ MDPM.α(Γ) such that Ab(M ′) ⊂
Ab(M).13 We write MADPM.α(Γ) for all the minimal abnormal DPM.α-
models of Γ.

Γ ADPM.α A (A is an ADPM.α-semantic consequence of Γ) iff A is
verified by all M ∈ MADPM.α(Γ).

Hence all the selected models are such that they validate a minimal amount
of conflicts (in the set-theoretical sense). This justifies our claim that the
adaptive logics interpret the premises as non-conflicting as possible.

Let us proceed with the syntactic counter-part to the semantic selection. It
is realized by dynamic adaptive proofs. While all the rules of DPM.α are
valid, a key feature of adaptive proofs is that they allow for certain additional
rules to be applied conditionally. In our case the idea is to apply the inher-
itance principle or principle (D) conditionally. Recall that DPM.α, in order
to avoid deontic explosions, only validates a restricted version of (RM). This
led to the problem (discussed in Section 4) that in many cases the user needs
to add manually permission statements. Note that the following is valid in
DPM.α:

If `DPM.α A ⊃ B, then OA `DPM.α OB ∨ (OA ∧ O¬A).

13 As has been shown in [3, 4], the lower limit logic models of a premise set Γ are smooth
with respect to their abnormal part and set inclusion. That is to say, for every lower limit
model M of Γ there is a minimally abnormal model M ′ of Γ such that Ab(M ′) ⊆ Ab(M).
This property is called strong reassurance by adaptive logicians.



“06strasser”
2012/9/6
page 488

i

i

i

i

i

i

i

i

488 CHRISTIAN STRASSER, MATHIEU BEIRLAEN AND JOKE MEHEUS

The underlying idea of the restriction is that inheritance is applicable to OA
if there is no deontic conflict concerning OA. In the adaptive logic we make
use of this: the inheritance principle is applied to OA on the condition {OA∧
O¬A}. That is to say, on the condition that there is no reason to suppose that
there is a deontic conflict concerning OA. This is still very vague, but we
will make it more precise in a moment. Suppose OA is one of the premises.
A fragment of an adaptive proof may look as follows:

1 OA PREM ∅
2 O(A ∨ B) 1; RC

{

OA ∧ O¬A
}

Line 2 contains a conditional application of the inheritance rule to OA.
This is indicated by the generic rule RC (that is discussed in more detail
later) and by a fourth column in which the conditions of the respective lines
are contained. Conditions are finite sets of abnormalities. The condition of
line 1 is empty since it is the result of a premise introduction. The condition
of line 2 is {OA ∧ O¬A}. Now suppose we are able to derive the following
disjunction of abnormalities from the given premises at a line l:

l (OA ∧ O¬A) ∨ (OC ∧ O¬C) . . . ; RU ∅

By the generic rule RU we indicate the (unconditional) applications of
the DPM.α rules. Note that the disjunction of abnormalities that has been
derived at line l also features the condition of line 2. This gives us reasons
to suspect that OA may after all be part of a deontic conflict. In this case
line 2 is marked according to the marking definition. We will define the
marking for the minimal abnormality strategy in a moment. Formulas that
are the second element of marked lines are not considered to be derived at
that stage. Note however that markings may come and go. Assume for
instance that OC ∧ O¬C has been derived at a later stage of the proof. In
this case there is no reason anymore to suspect that OA is part of a deontic
conflict and the conditional application of inheritance at line 2 can again be
considered as valid. The marking will thus be defined on basis of the minimal
disjunctions of abnormalities that have been derived at a given stage of the
proof.

We give now a precise account of the generic rules RU and RC and the
marking definition.

We have already indicated that the rules of the lower limit logic DPM.α
are unrestrictedly valid in the adaptive logic. This is characterized by the
generic rule RU:
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RU If A1, . . . , An `DPM.α B :

A1 ∆1

...
...

An ∆n

B ∆1 ∪ . . . ∪ ∆n

Note that the conditions of the used lines featuring the Ai’s are carried for-
ward, resulting in B being derived on the condition ∆1∪. . .∪∆n. Moreover,
premises are introduced by PREM on the empty condition.

The conditional rule allows for conditional applications of certain rules
that are invalid in DPM. As is usually done by adaptive logic scholars we use
the notation Dab(∆) =df

∨

A∈∆
A where ∆ is a finite set of abnormalities

(∆ ⊂ Ω). Conditional applications of rules are handled by the generic rule
RC:

RC If A1, . . . , An `DPM.α B ∨ Dab(Θ) :

A1 ∆1

...
...

An ∆n

B ∆1 ∪ . . . ∪ ∆n ∪ Θ

In addition to the conditional rule, we also need a marking definition. This
determines when a condition of a line is violated and hence has to be marked.
The marking indicates that the formula that occurs on that line is no longer
considered as derived in the proof. In order to formulate the marking defini-
tion, we need a few more notions.

A formula Dab(∆) is a minimal Dab-formula at a stage s of the proof iff
it is the formula of a line with condition ∅ and no Dab(∆′) with ∆′ ⊂ ∆ is
the formula of a line with condition ∅. A choice set of Σ = {∆1, ∆2, . . . } is
a set that contains an element out of each member of Σ. A minimal choice
set of Σ is a choice set of Σ of which no proper subset is a choice set of
Σ. Where Dab(∆1), Dab(∆2), . . . are the minimal Dab-formulas that are
derived at stage s, Φs(Γ) is the set of minimal choice sets of {∆1, ∆2, . . .}
for a premise set Γ.

Definition 2 : (Marking for minimal abnormality) Line i is marked at stage
s iff, where A is the second element and ∆ is the condition of line i,

(i) there is no ∆′ ∈ Φs(Γ) such that ∆′ ∩ ∆ = ∅, or
(ii) for some ∆′ ∈ Φs(Γ), there is no line at which A is derived on a

condition Θ for which ∆′ ∩ Θ = ∅.

Given a set of abnormalities Ω, the marking definition determines whether
lines are “in” or “out” of the proof at a certain stage, i.e., it governs the
dynamics of the proof procedure.
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In our introductory example it was illustrated that markings in an adaptive
proof may come and go. While line 2 is marked as long as (OA ∧ O¬A) ∨
(OC∧O¬C) is a minimal Dab-formula, it is unmarked as soon as OC∧O¬C
is derived.

In order to define the consequence set of an adaptive logic we are interested
in a stable criterion for derivability.

Definition 3 : A is finally derived from Γ on line i of a proof at a finite stage
s iff (i) A is the second element of line i, (ii) line i is not marked at stage
s and (iii) every extension of the proof in which line i is marked may be
further extended in such a way that line i is unmarked.

Γ `ADPM.α A (A is finally ADPM.α-derivable from Γ) iff A is finally
derived on a line of a proof from Γ.

Let us state a central representational result for adaptive logics in standard
format proven in [3]:

Theorem 4 : Where Γ ⊆ W , Γ `ADPM.α A iff Γ ADPM.α A.

Besides the lower limit logic there is also an upper limit logic for each
adaptive logic. It is the strengthening UDPM.α of DPM.α that trivializes
abnormalities. It is defined by, Γ `UDPM.α A iff Γ∪{¬B | B ∈ Ω} `DPM.α

A.
We will show that for the adaptive systems introduced in this paper the

upper limit UDPM.α is SDL. For a proof of the following result see Theorem
12 in [3] (note that there premise sets that are consistent with respect to the
upper limit logic are called “normal”).

Theorem 5 : For UDPM.α-consistent premise sets Γ, ADPM.α leads to the
same consequence set as UDPM.α.

In the remainder we will sometimes speak about adding an axiom to
ADPM.α. What we mean is the adaptive logic that is the result of adding
the axiom to the lower limit logic, i.e., 〈DPM.α∗, Ω, minimal abnormality〉
where DPM.α∗ is DPM.α strengthened by the axiom.

6. The Adaptive Logic ADPM.1

In this section we introduce a concrete adaptive system on the basis of Lou
Goble’s DPM.1. As discussed above, ADPM.1 is defined by the triple

〈DPM.1, Ω, minimal abnormality〉.
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We have already mentioned the basic idea. In order to interpret a given
premise set as non-conflicting as possible we define the abnormalities to be
deontic conflicts, Ω = {OA ∧ O¬A | A ∈ W}. This makes it possible to
apply the inheritance principle to OA on the condition {OA ∧O¬A} by the
generic rule RC. Moreover, also (D) may be applied conditionally. Note that
the following is valid:

OA `DPM PA ∨ (OA ∧ O¬A)

This allows to derive PA from OA on the condition {OA ∧ O¬A} by the
generic rule RC.

Example 1 : Let us take a look at a first concrete example of a proof in
ADPM.1:

1 OA PREM ∅
2 O¬A PREM ∅
3 O(B ∧C) PREM ∅
4 OB 3; RC

{

O(B ∧ C) ∧ O¬(B ∧ C)
}

5 PB 4; RC
{

O(B ∧ C) ∧ O¬(B ∧ C), OB ∧ O¬B
}

Note that OA, O¬A, O(B ∧ C) 0DPM.1 OB and OA, O¬A, O(B ∧ C)
0DPM.1 PB. In Section 4 we have pointed out that this is suboptimal. A
deontic logic should apply the rules of SDL to non-conflicting parts of the
premise set and there should be no need for the user to add permission state-
ments. In order to derive OB from O(B∧C) the user of DPM.1 would have
to manually add P(B ∧ C) to the premises. Moreover, there is no way of
deriving PB from the given premises in DPM.1.

In contrast, the adaptive logic ADPM.1 applies inheritance conditionally
to O(B ∧ C) in order to derive OB at line 4. Moreover, (D) is applied
conditionally to OB in order to derive PB at line 5. Note that O(B∧C) and
OB are unrelated to the deontic conflict OA∧O¬A, and hence, as discussed
in Section 4, inheritance and (D) should be applicable to them. It can easily
be seen that lines 4 and 5 are finally derived.

In the remainder we will frequently make use of the following fact and of
the abbreviation !A for OA ∧ O¬A.
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Fact 1 : Where α ∈ {1, 2′}, the following holds in DPM.α:14

If `CL ¬(A ∧ B), then OA, OB `DPM.α !A ∨ !B.

The fact shows that a pair of conflicting obligations gives rise to a disjunc-
tion of abnormalities in the DPM logics, even in case they are not directly
conflicting (such as OA and O¬A).

Example 2 : In the example above it was demonstrated that ADPM.1 delivers
all the consequences of a premise (O(B∧C)) that is consistent with the other
two directly conflicting premises (OA, O¬A). In the following example we
have two conflicting premises: O¬A and O(A ∧ B). Note that OB is —
via unrestricted inheritance — a consequence of O(A ∧ B) and that it is not
conflicting with the premise O¬A. This poses the question whether OB is a
desired consequence of these premises. We now demonstrate that ADPM.1
takes a skeptical stance and does not lead to the consequence OB.

By Fact 1 the premises lead to the Dab-formula !A∨!(A∧B). Semantically
speaking we have thus two types of minimally abnormal models: models
with abnormal part {!A} on the one hand and models with abnormal part
{!(A ∧ B)} on the other hand. In the latter models inheritance is blocked
from O(A∧B) and whence it is easy to see that there are minimal abnormal
models of this type that do not verify OB. Thus, OB is not valid in all
minimal abnormal models. Let us take a look at an adaptive proof:

1 O¬A PREM ∅
2 O(A ∧ B) PREM ∅

43 OB 2; RC
{

!(A ∧ B)
}

4 !A ∨ !(A ∧ B) 1,2; RU ∅

Although OB is conditionally derivable at line 3, it is marked since the
condition of line 3 is part of the minimal Dab-consequence derived at line 4.

What motivates the skeptical stance according to which OB is not a conse-
quence of the given premises is that there may be certain causal connections
between A and B. This is for instance the case where A stands for taking a
train to London and B for buying the ticket for it. If there is also the obliga-
tion not to take the train, then despite the fact that there is no direct conflict
between ¬A and B in terms of being jointly realizable, there is nevertheless
clearly a tension. As long as we don’t have reasons to prefer the obligation
to take the train there is no reason to derive the obligation to buy the ticket.

14 This can easily be seen: from OA and restricted inheritance we get O¬B ∨ !A. The
latter together with OB results in !A ∨ !B.
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Example 3 : Let us alter the example slightly by adding OA to the premises.
This way we make the conflict between OA and O¬A explicit in the prem-
ises: now OA ∧ O¬A is DPM.1-derivable.

1 OA PREM ∅
2 O¬A PREM ∅
3 O(A ∧ B) PREM ∅

84 OB 3; RC
{

!(A ∧ B)
}

5 OB ∨ !(A ∧ B) 3; RU ∅
6 O(¬A ∧ B) ∨ !(A ∧ B) 2,5; RU ∅
7 O(¬A ∨ ¬B) ∨ !(¬A ∧ B) ∨

!(A ∧ B)
6; RU ∅

8 !(¬A ∧ B) ∨ !(A ∧ B) 3,7; RU ∅

Note that the adaptive strengthening of DPM.1 interprets the premises as
non-conflicting as possible. One may suspect that in this case it is possible
to derive OB by applying inheritance to O(A ∧ B) conditionally since —
opposite to the example above — !A ∨ !(A ∧ B) is not anymore a minimal
Dab-consequence. Indeed, would !(A∧B) not be part of any minimal Dab-
consequence line 4 would be unmarked. However, due to the fact that !(¬A∧
B)∨!(A∧B) is a minimal Dab-consequence, line 4 is marked and OB is not
a ADPM.1-consequence. Hence, ADPM.1 is also in this example coherent
with its skeptical stance that was illustrated already in the example above.

Example 4 : Examples 2 and 3 have demonstrated that in some cases we
cannot derive non-conflicting conjuncts of conflicting premises by means of
ADPM.1. This opens the question whether OB is derivable if it is part of
each conflicting premise.

1 O(A ∧ B) PREM ∅
2 O(¬A ∧ B) PREM ∅

73 OA 1; RC
{

!(A ∧ B)
}

74 O¬A 2; RC
{

!(¬A ∧ B)
}

5 OB 1; RC
{

!(A ∧ B)
}

6 OB 2; RC
{

!(¬A ∧ B)
}

7 !(A ∧ B) ∨ !(¬A ∧ B) 1,2; RU ∅

As the proof indicates, OB is derivable from O(A ∧ B) and O(¬A ∧ B).
The reason why lines 5 and 6 are unmarked is that for each minimal choice
set {!(A∧B)} and {!(¬A∧B)} at this stage, OB is derivable on a condition
which has an empty intersection with it. As can easily be checked, OB is
finally derived at line 6.
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Example 5 : Let us generalize the example above. We take a look at the
premises O(A ∧ B) and O(¬A ∧ C). Although B ∨ C is not a conjunct of
any of the two premises, it is a consequence of both A ∧ B and ¬A ∧ C.
In coherence with the example above we expect thus O(B ∨ C) to be an
ADPM.1-consequence. On the other hand we expect OB and OC not to be
a consequence.

1 O(A ∧ B) PREM ∅
2 O(¬A ∧ C) PREM ∅

73 OB 1; RC
{

!(A ∧ B)
}

4 O(B ∨ C) 1; RU
{

!(A ∧ B)
}

75 OC 2; RC
{

!(¬A ∧ C)
}

6 O(B ∨ C) 2; RU
{

!(¬A ∧ C)
}

7 !(A ∧ B) ∨ !(¬A ∧ C) 1,2; RU ∅

Indeed, the conditional derivation of OB and OC is marked, while O(B ∨
C) is derivable since it is derived on both conditions, {!(A∧B)} and {!(¬A∧
C)}. Since the minimal choice sets in this example are {!(A ∧ B)} and
{!(¬A ∧ C)} this ensures that line 6 with formula O(B ∨ C) is unmarked.
It can easily be seen that O(B ∨ C) is finally derived at line 6.

Example 6 : The following example of an ADPM.1-proof features a more
complex setup.

1 OA PREM ∅
2 OB PREM ∅
3 O(C ∨ D) PREM ∅
4 O¬(A ∧ C) PREM ∅
5 O¬(B ∧ D) PREM ∅
6 O(A ∧ ¬C) 1,4; RU ∅
7 O(B ∧ ¬D) 2,5; RU ∅

168 PA ∧ PB ∧ P(C ∨ D) 1,2,3; RC
{

!A, !B, !(C ∨ D)
}

9 O(A ∨ ¬C) ∨ !A 1; RU ∅
10 O(B ∨ ¬D) ∨ !B 2; RU ∅
11 O¬C ∨ !A 4,9;RU ∅

1612 O¬C 11; RC
{

!A
}

13 O¬D ∨ !B 5,10; RU ∅
1614 O¬D 13; RC

{

!B
}

15 O¬(C ∨ D) ∨ !A ∨ !B 11,13; RU ∅
16 !A ∨ !B ∨ !(C ∨ D) 3,15; RU ∅
17 ¬PA ∨ ¬PB ∨ ¬P(C ∨ D) 16; RU ∅
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Without engaging in more advanced reasoning processes it is for a user of
DPM.1 in no way clear which permission statements may be added without
causing deontic conflicts or explosion. We have pointed out this problem in
Section 4 (point 2). Would (s)he, for instance, add PA, PB, and P(C ∨ D)
it would cause explosion, since via DPM.1, ¬PA ∨ ¬PB ∨ ¬P(C ∨ D) is
derivable at line 17. Note that in the adaptive proof line 8 is marked in view
of line 16 and does therefore not cause any harm. Thus, the adaptive logic
identifies given deontic conflicts and blocks undesired consequences from
them. For instance, the counterintuitive derivations of O¬C and O¬D at
lines 12 and 14 are marked.

7. The Adaptive Logic ADPM.2′

We have already pointed out various advantages of our DPM.2′ logic over
Goble’s DPM.2. Besides these points DPM.2′ is also more apt as a lower
limit logic.

One idea to define an adaptive logic on the basis of DPM.2 would be in
terms of the triple 〈DPM.2, Ω, minimal abnormality〉. However, this has
a severe shortcoming. Suppose our premises are Γ = {OA, OB}. Since
these premises do not give rise to any deontic conflicts we expect from the
logic to apply aggregation to them. However, Γ 0ADPM.2 O(A ∧ B). Since
DPM.2 also restricts aggregation beside inheritance it is desirable that the
logic is able to apply aggregation conditionally in a similar way as ADPM.1
applies inheritance and (D) conditionally. The way aggregation is restricted
in DPM.2, namely by (PAND), does not allow for utilizing the same set
of abnormalities as for ADPM.1. A way around this problem is to define
the abnormalities in a different way, for instance by Ω′ = {OA ∧ OB ∧
O¬(A ∧ B) | A, B ∈ W}. This would allow to apply the aggregation
principle conditionally. However, this logic is very weak. For instance, given
two incompatible obligations OA, OB, where O¬(A ∧ B) expresses their
incompatibility, we are not able to derive O(A ∨ B). The upshot is that,
with DPM.2 as the lower limit logic, we were not able to define a set of
abnormalities in such a way that the resulting adaptive logic is sufficiently
strong and aggregation is conditionally applicable.

The situation is different if we employ DPM.2′ as lower limit logic. In that
case, we can use the set of abnormalities Ω of ADPM.1. This contributes to
a more unifying adaptive framework. Let ADPM.2′ be defined by the triple
〈DPM.2′, Ω, minimal abnormality〉.

Note that in DPM.2′ the following is a consequence of (PAND′):

`DPM.2′

(

OA ∧ OB
)

⊃
(

O(A ∧ B) ∨
(

(OA ∧ O¬A) ∨ (OB ∧ O¬B)
))
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This makes it possible to apply aggregation to OA ∧ OB on the condition
{OA ∧ O¬A, OB ∧ O¬B} by the rule RC. Again, inheritance and (D) are
applied conditionally as demonstrated already for ADPM.1.

In order to demonstrate the modus operandi of ADPM.2′ we take a look at
a concrete example.

Example 7 : Let us come back to Sartre’s unfortunate student. On the one
hand, he has the obligation to stay with his sick mother (OM ). However, on
the other hand he has the obligation to fight at the front against Nazi Germany
(OF ). Due to the lack of alethic modalities we have to find a way to model
the fact that both obligations are not simultaneously realizable. This can be
done by O¬(M ∧ F ). We add another premise which is independent of the
first two: as a good citizen he is obliged to pay taxes and to vote, O(T ∧V ).15

1 OM PREM ∅
2 OF PREM ∅
3 O¬(M ∧ F ) PREM ∅
4 O(T ∧ V ) PREM ∅
5 OT 4; RC

{

!(T ∧ V )
}

76 O(M ∧ F ) 1,2; RC
{

!M, !F
}

7 !(M ∧ F ) ∨ !M ∨ !F 1,2,3; RU ∅
8 O(M ∨ F ) 1; RC

{

!M
}

9 O(M ∨ F ) 2; RC
{

!F
}

As discussed in Section 4, we expect that all rules of SDL can be applied
to non-conflicting obligations such as O(T ∧ V ). Indeed, after having intro-
duced the premises at lines 1–4, inheritance is applied to O(T ∧ V ) in order
to derive OT , the student’s duty to pay taxes. Furthermore, the application of
aggregation to OM and OF at line 6 gets marked. This accords with the fact
that (PAND′) is a rule that isolates deontic conflicts, i.e. it is not applicable
to conflicting obligations.

ADPM.2′ realizes our design requirements. On the one hand, it blocks
rules from being applied to conflicting obligations (such as aggregation at
line 6). On the other hand it allows for applications of rules to non-conflicting
premises (such as inheritance at line 5 to O(T ∧ V )) without requiring the
manual addition of permission statements.

Moreover, note that it is desired to derive O(M ∨ F ), the student’s obli-
gation to either stay with his mother or to fight the Nazis. Indeed, since
O(M∨F ) is derivable on both conditions, {OM∧O¬M} and {OF∧O¬F},

15 The proofs of O(M ∨ F ) and OT for ADPM.1 are left to the reader.
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lines 8 and 9 are not marked. Similarly for instance O(T ∧ (M ∨ F )) and
O(V ∧ (M ∨ F )) are derivable.

In contrast, using one of the DPM logics, the user would have to add
manually P(T ∧ V ) to the premises in order to derive OT . Furthermore, it
is unclear how to derive O(M ∨ F ) in DPM. Only by adding either PM or
PF permitted inheritance is applicable to OM or resp. OF . However, there
is no reason to prefer PM over PF or vice versa. Moreover, would the user
add both of them, it may lead to explosion. Consider the case where also
P¬(M ∧ F ) is a premise. It can be argued that, since M and F cannot be
mutually realized an agent is allowed either to bring about not-M or to bring
about not-F . However, in view of the final derivability of the formula at line
7, this leads to the derivability of (OM ∧ O¬M) ∨ (OF ∧ O¬F ). In case
the user would have added both, PM and PF , explosion would result.

Example 8 : ADPM.2′ leads to similar results in examples 1, 2, 4 and 5 as
ADPM.1:

OA, O¬A, O(B ∧ C) `ADPM.2′ OB, PB

O¬A, O(A ∧ B) 0ADPM.2′ OB

O(A ∧ B), O(¬A ∧ B) `ADPM.2′ OB

O(A ∧ B), O(¬A ∧ C) 0ADPM.2′ OB, OC

O(A ∧ B), O(¬A ∧ C) `ADPM.2′ O(B ∨ C)

Example 9 : A difference between ADPM.2′ and ADPM.1 is in the handling
of the premise set consisting of OA, O¬A and O(A ∧ B):

1 OA PREM ∅
2 O¬A PREM ∅
3 O(A ∧ B) PREM ∅
4 OA ∧ O¬A 1,2; RU ∅
5 OB 3; RC

{

!(A ∧ B)
}

As explicated in Example 3, due to the unrestricted aggregation principle
that is valid in DPM.1, !(A∧B)∨ !(¬A∧B) is a minimal Dab-consequence
in DPM.1. Note that we cannot derive this Dab-formula in ADPM.2′. With
the weaker aggregation principle of ADPM.2′ the argument explicated in
the proof of Example 3 is not valid in ADPM.2′. The reason is that at line 6
aggregation is applied to OB and O¬A. However, O¬A conflicts with OA
and thus (PAND′) is not applicable to it.
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8. Some Meta-Theoretical Properties

This section features some meta-theoretic properties of the introduced logics.
The meta-theory of adaptive logics in standard format equips our systems
immediately with soundness and completeness (see Theorem 4). As desired,
the adaptive strengthenings are conflict-tolerant.

Theorem 6 : Where α ∈ {1, 2′}, none of Goble’s explosion principles (DEX),
(DEX-1)–(DEX-3) is valid in ADPM.α.

Theorem 7 : Where α ∈ {1, 2′}, the upper limit logic of ADPM.α is SDL.

Corollary 1 : Where α ∈ {1, 2′}, ADPM.α satisfies (?).

We introduced another, in a sense more demanding criterion, (??). For
SDL-consistent premise sets the given logics should have the same derivative
power as SDL. This criterion is not fulfilled by the DPM logics. However, as
the following Corollary shows, it is fulfilled by our adaptive strengthenings.
The Corollary is a direct consequence of Theorem 5 and Theorem 7.

Corollary 2 : Where α ∈ {1, 2′}, ADPM.α satisfies (??).

9. Shortcomings and Related Work

The starting point and main motivation of this paper was to present a tech-
nically straightforward way to equip Goble’s DPM systems with a defea-
sible mechanism that strengthens the logics in a non-monotonic fashion.
In this section, we point out some parallels and differences between the
ADPM.α-systems resulting from our enterprise on the one hand, and ex-
isting approaches for dealing with deontic conflicts on the other hand.

The behavior of ADPM.1 explicated in examples 1–5 may suggest that
the consequence set of ADPM.1 can be characterized in the following way:
OB is a consequence of a set of obligations {OA | A ∈ Γ} (where Γ is a
set of propositions) iff A is (classically) derivable from each maximal con-
sistent subset16 of Γ, or A is in Γ∧, where Γ∧ is the closure of Γ under the
aggregation rule. In this formulation we need to consider Γ∧ instead of Γ
since the unrestricted aggregation rule of ADPM.1 allows to derive OB for
each B ∈ Γ∧. This characterization is similar to approaches making use of

16 A subset Γ′ of Γ is maximally consistent iff Γ′ is consistent and for every consistent
Γ′′ ⊆ Γ, if Γ′ ⊆ Γ′′ then Γ′′ = Γ′.
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maximally consistent subsets with a ‘skeptical’ operator for obligation, e.g.
[17, 18] or the “full meet constraint output” of Input/Output logics in [19].17

However, there are more complex settings which show that ADPM.1 is
too weak.18 It is a question for future research to find ways to strengthen this
logic so that the rationale above is realized and a defeasible proof theory is
obtained for the well-known conflict-tolerant approach in terms of maximal
consistent subsets.

We have mentioned that for examples 1, 2, 4, and 5 ADPM.2′ has a similar
behavior as ADPM.1. This may suggest that the consequences of ADPM.2′

can be characterized as follows: OB is a consequence of a set of obligations
{OA | A ∈ Γ} iff A is in Γ or it is (classically) derivable from each maximal
consistent subset of Γ. However, again there are examples in which the
consequence set of ADPM.2′ is too weak (see Footnote 18).

Moreover, we have already mentioned the rather peculiar asymmetry of
ADPM.2′ in the handling of the premise sets Γ1 = {OA, O¬A, O(A ∧ B)}
and Γ2 = {O¬A, O(A ∧ B)} (see Example 9). While in the first case
OB is derivable, in the second case it isn’t. One way to make the behav-
ior of ADPM.2′ more coherent is to restrict inheritance in the lower limit
logic more severely by also blocking it from obligations that display “sub-
conflicts”, i.e. conflicts concerning subformulas of two obligations. In our
example inheritance should be blocked from O(A ∧ B) since this conflicts
with O¬A. In the adaptive system this would be mirrored by a type of abnor-
mality that is not only restricted to direct conflicts but also considers conflicts
such as the one between O(A ∧ B) and O¬A. A deontic adaptive logic that
takes into account such conflicts can be found in [21].

The treatment of Γ1 points also to another direction. Namely to design an
adaptive logic for which OB is derivable from a set of obligations {OA |
A ∈ Γ} iff A is (classically) derivable from some maximal consistent subset
of Γ and A is consistent with all maximal consistent subsets of Γ.19 One way
to realize this is to adjust the restricted inheritance principle in the following

17 In the deontic logic literature on maximally consistent subsets, skeptical operators are
contrasted with more ‘credulous’ operators. The latter allow one to derive the obligation OA
as soon as A is derivable from some maximal consistent subset of Γ (see e.g. [33, 17] or the
“full join constraint output” of Input/Output logics in [19]) while the former allow to derive
OA iff A is derivable in all maximal consistent subsets of Γ.

18 One such counterexample is given by the premise set {OA, OB, O¬(A∧B), O(¬(A∧
B) ∧ D), O(C1 ∧ C2)}. Here it is not possible to derive OC1 by means of ADPM.1 or
ADPM.2′.

19 In a non-deontic setting, this approach was taken up by Rescher & Manor in their def-
inition of an ‘argued’ consequence relation [26]. Adaptive characterizations of Rescher &
Manor’s consequence relations are given in [2, 5].
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way. Instead of applying inheritance if the antecedent is consistent the idea
is to apply inheritance if the consequent is consistent:

If ` A ⊃ B, then OA ⊃ (PB ⊃ OB).

We will investigate in these systems in the future.
Recently various other adaptive deontic systems have been presented. In

[20] and the forthcoming [21] strictly non-aggregative deontic logics were
adaptively strengthened. These systems are based on the lower limit logic
PeSDLa from [13]. Two modalities are used: Oe and Oa where the former
e.g. expresses obligations that stem from some authority while the latter ex-
presses obligations upon which all authorities agree. These systems validate
full inheritance but have no aggregation for the Oe-operator. In [24] these
systems are formulated in the prioritized format for adaptive logics from
[23].20 This way they are able to deal with preferences among obligations.
The abnormalities used in all of the systems mentioned in this paragraph are
of a more complex nature since they also take into account conflicts between
subformulas of obligations. One advantage of the systems presented in the
present paper is that by means of ADPM.1 and ADPM.2′ we are able to de-
rive O(A ∨ B) from OA, OB and O¬(A ∧ B). This ‘disjunctive solution’
has been defended for instance in [10, 18]. Moreover, deontic adaptive log-
ics have been devised that are based on paraconsistent modal logics [9, 8].
This approach has also been applied to a multi-agent setting [6, 7].

In the meantime some other systems have been devised that offer general-
izations of the logics presented in the present paper.

Lou Goble presented in [14] conditional versions of his DPM systems.
Also there he operates with a restricted version of the inheritance principle.
The adaptive handling of inheritance and aggregation introduced in this pa-
per can be applied in the conditional context straightforwardly. Similarly, an
adaptive approach can be used in order to apply strengthening the antecedent
(if O(A | B), then O(A | B ∧ C)) “as much as possible”, i.e., to apply it
whenever the factual premises do no describe an exceptional situation. This
has been presented in [30].

One problem for conditional deontic logics is related to the detaching of
conditional obligations. Given a conditional obligation to bring about A if
B is the case, written O(A | B), and given that the condition B is fulfilled,
one may want to derive the ‘actual obligation’ to bring about A. However,
detachment is not universally valid, there are exceptional circumstances in
which doing what normally would be forbidden is permitted or even obliga-
tory. Again, applying adaptively detachment to O(A | B) and B “as much

20 See also [25] for relations of this format to other ways of prioritizing adaptive logics.
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as possible” leads to solutions to this problem. Furthermore, the semantics
with an actual world introduced in this paper can easily be generalized for
the conditional case. This way factual premises can be handled semantically.
This application of adaptive logics has been presented in [31].

10. Conclusion

In this paper the adaptive strengthenings ADPM.1 and ADPM.2′ of Goble’s
conflict-tolerant logic DPM.1 and our variant DPM.2′ of Goble’s DPM.2
were introduced. We have demonstrated various advantages of the adaptive
systems:

– ADPM.α (where henceforth α ∈ {1, 2′}) is significantly stronger than
DPM.α. It is not just the case that adding (D) to the axiomatization leads to
equivalent systems to SDL. Moreover, for any SDL-consistent premise set,
ADPM.α leads to the same consequence set as SDL. Furthermore, ADPM.α
applies restricted inheritance “as much as possible”. In contrast, in Goble’s
system many permission statements have to be added by the user in order
to apply the inheritance principle. The needed permission statements are
generated automatically in the adaptive systems. This brings us to another
point:

– The adaptive systems ADPM.α have the design virtue that the logics
model all the reasoning for the user. In contrast, in DPM.α the user not
just has to interfere in order to enable as much consequences as possible
(by adding permission statements). Moreover, finding out what permission
statements are harmless and may be added to a given premise set involves
advanced reasoning by the user. This is especially the case for complicated
setups.

– The meta-theory of adaptive logics in standard format is well-established
and actively researched. Many key-features do not have to be proven (any-
more) for the ADPM.α logics since they have been shown to be valid for all
adaptive logics in standard format. For instance the completeness and sound-
ness of ADPM.α follows immediately from the completeness and soundness
of DPM.α.

– The dynamic adaptive proofs mirror actual reasoning processes. While
the insight in a given premise set grows, some lines of the proof may get
marked, others unmarked due to the fact that their conditions turn out to be
(not) trustworthy. Furthermore, the adaptive proofs are able to deal with new
information in the form of new premises and thus to handle the defeasibility
that comes with it.

The disadvantages of ADPM.1 and ADPM.2′ were discussed in Section
9. The main drawback of ADPM.1 is that its consequence relation is rather
weak compared to some existing systems from the literature. Moreover, both
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ADPM.1 and ADPM.2′ are not always consequential in their treatment of
some (complex) examples. We hope to overcome these problems in the near
future by investigating in detail the suggestions for improvement presented
in Section 9.

Appendix

In order to prove soundness and completeness with respect to our seman-
tics for DPM, we will show that it is equivalent to Goble’s original DPM
semantics. Since the authors in [28] have proven soundness and strong com-
pleteness for Goble’s semantics this is sufficient.

Goble’s original neighborhood semantics is very similar to the one pre-
sented here: the key difference is that we employ an actual world. Where
frames are defined as before, an F -G-model M is a pair 〈F, v〉 where F is a
frame and v : S → ℘(W ) as before. The essential difference concerns the
definition of model-validity. While in our semantics it is defined in terms of
validity with respect to the actual world, in Goble’s semantics it is defined in
terms of validity with respect to all given worlds: M |=G A iff M, w |= A
for all w ∈ W . All other definitions concerning validity are analogous. For
a given frame F = 〈W,O〉 and Γ ⊆ W , Γ 

G
F

A iff for all F -G-models M
and for all w ∈ W , if M, w |= B for all B ∈ Γ, then M, w |= A. More-
over, where α ∈ {1, 2′}, Γ 

G
DPM.α

A iff Γ 
G
F

A for all DPM.α-frames F .
Schröder and Pattinson have shown the following strong completeness and
soundness result in [28]:

Theorem 8 : Where α ∈ {1, 2′} and Γ ⊆ W , Γ 
G
DPM.α

A iff Γ `DPM.α A.

Theorem 9 : Where α ∈ {1, 2′} and Γ ⊆ W , Γ 
G
DPM.α

A iff Γ DPM.α A.

Proof. Let F be the class of DPM.α-frames. “⇐”: Let Γ DPM.α A and
F = 〈W,O〉 ∈ F . Suppose there is an F -G-model M = 〈F, v〉 and a
world w ∈ W for which M, w 6|= A and M, w |= B for all B ∈ Γ. Note
that M ′ = 〈F, v, w〉 is a DPM.α-model of Γ for which M ′ 6|= A, — a
contradiction.

“⇒”: Let Γ 
G
DPM.α

A. Suppose for some frame F = 〈W,O〉 ∈ F there
is an F -model Mw = 〈F, v, w〉 of Γ for which Mw 6|= A. Let M = 〈F, v〉.
Note that M, w |= B for all B ∈ Γ and M, w 6|= A, — a contradiction. �

Proof of Theorem 3 (Soundness and Completeness). Follows immediately
by Theorem 8 and Theorem 9. �
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Proof of Theorem 2. For DPM.1 this has already been shown by Goble in
[14]. Note that (D) together with (PAND) results in (AND). Since DPM.1
strengthened by (D) has the same corresponding consequence relation as
SDL, it also validates (N). Thus, DPM.1 strengthened by (D) and DPM.2′

strengthened by (D) have the same corresponding consequence relation.
Thus, DPM.2′ strengthened by (D) has the same corresponding consequence
relation as SDL. �

Proof of Theorem 6. Let us first consider the case for ADPM.2′. Let W =
℘(S) and p1 and p2 are sentential letters. We define

Wa = {w ∈ W | p1 /∈ w, p2 /∈ w},

Wb = {w ∈ W | p1 /∈ w, p2 ∈ w},

Wc = {w ∈ W | p1 ∈ w, p2 /∈ w},

Wd = {w ∈ W | p1 ∈ w, p2 ∈ w}.

We define a frame F = 〈W,O〉 where Ow = {Wa ∪ Wb, Wc ∪ Wd, W}
for all w ∈ W . Note that F is a DPM.2′-frame. Let M = 〈F, v, @〉
where v(pi) = {w ∈ W | pi ∈ w} and @ is any world in W . Note
first that M |= Op1, O¬p1, O>, P>, P(p1 ∧ p2) and M 6|= O(p1 ∧ p2).
Thus, M models a counter-instance to (DEX), (DEX-1)–(DEX-3). Note fur-
thermore that M is a minimally abnormal model of {Op1, O¬p1} and also
of {Op1, O¬p1, O>, P>} since Ab(M) = {OA ∧ O¬A |` A ≡ p1} and
{Op1, O¬p1} `DPM.2′ A for all A ∈ Ab(M).

The proof for ADPM.1 is similar. Where W = ℘(S) and v : S → ℘(W ),
pi 7→ {w ∈ W | pi ∈ w}, we define a frame F = 〈W,O〉 where for all
w ∈ W ,

Ow = {W ′ | W ′ ⊇ v(p1)} ∪ {∅}

Note that F is a DPM.1-frame. Let M = 〈F, v, @〉 where @ is any world
in W . Evidently, M |= Op1, O>, O⊥, Pp1, Pp2 and M 6|= Op2. Thus,
M models a counter-instance to (DEX), (DEX-1)–(DEX-3). Also, M is a
minimally abnormal model of {O>, O⊥} and of {O>, O⊥, Op1, Pp1} since
Ab(M) = {OA ∧ O¬A |` A ≡ >} and {O>, O⊥} `DPM.1 A for all
A ∈ Ab(M). �

Proof of Theorem 1. Due to the fact that all adaptively selected models are
models of the lower limit logic, the counter-models to (DEX) and (DEX-1)–
(DEX-3) constructed for ADPM.1 and ADPM.2′ in the proof of Theorem 6
are also counter-models for DPM.1 and DPM.2′. Theorem 1 was proven for
DPM.2 by Goble in [14]. �
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Proof of Theorem 7. Given a Γ ⊆ W we have to show that Γ ∪ {¬(OA ∧
O¬A) | A ∈ W} `DPM.α B iff Γ `SDL B. Note that `DPM.α ¬(OA ∧
O¬A) ≡ (OA ⊃ PA). Thus, Γ∪{¬(OA∧O¬A)} `DPM.α B iff Γ `DDPM.α

B where DDPM.α is DPM.α enriched by (D). However, since by Theorem
2 DDPM.α has the same corresponding consequence relation as SDL, we
are finished. �

Proof of Corollary 1. For SDL-consistent premise sets Γ this is an immedi-
ate consequence of Corollary 2. Let Γ ⊆ W be SDL-inconsistent. Where
DADPM.α (resp. DDPM.α) is ADPM.α (resp. DPM.α) enriched by (D)
and Γ′ = Γ ∪ {OA ⊃ PA | A ∈ W}, note that MSDL(Γ) = ∅ =
MDDPM.α(Γ) = MDPM.α(Γ′) ⊇ MADPM.α(Γ′) = MDADPM.α(Γ). �
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