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HOLISM AND INDISPENSABILITY

JÖRGEN SJÖGREN

Abstract
One questioned premiss in the indispensability argument of Quine
and Putnam is confirmational holism. In this paper I argue for a
weakened form of holism, and thus a strengthened version of the in-
dispensability argument. The argument is based on an idea of con-
cept formation in mathematics. Mathematical concepts are arrived
at via a sequence of explications, in Carnap’s sense, of non-clear,
originally empirical, concepts. I identify a deductive and an empiri-
cal component in mathematical concepts. In a test situation the use
of the empirical component, but not of the deductive one, is corrob-
orated or falsified together with the scientific theory.

1. Introduction

The indispensability argument of Quine and Putnam is widely recognized as
the only really good argument for mathematical realism. It is founded on the
theses of indispensability, confirmational holism, naturalism, and the prin-
ciple of ontological commitment. According to Putnam the argument is as
follows:

... quantification over mathematical entities is indispensible for sci-
ence, both formal and physical; therefore we should accept such
quantification; but this commits us to accepting the existence of the
mathematical entities in question ([Putnam 1971], Sec. VIII).

He also points to

the intellectual dishonesty of denying the existence of what one
daily presupposes (ibid.).
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464 JÖRGEN SJÖGREN

The four theses on which the argument is founded have each and all been
subject to criticism ever since the indispensability argument first appeared.1

The weakest part of the argument is, in my opinion, the thesis of confirma-
tional holism. It seems that there are lots of cases where scientific theories
are corroborated or falsified in test situations, and the involved mathematics
is not affected at all. It also seems that there are a multitude of examples of
mathematical theories, or single results, that are impossible to even regard
as falsifiable. Indeed, several philosophers question the thesis. To name
but a few, Penelope Maddy claims that the theses of naturalism and holism
are inconsistently used by Putnam, and Elliott Sober means that contrastive,
scientific hypotheses often use the same mathematics, and consequently a
test cannot rule out the mathematical theories (op. cit.). Others are of the
opinion that holism is not necessary for the indispensability argument at all
([Resnik 1995], [Dieveney 2007]). I shall argue in this paper that mathemat-
ical theories are not tested in the way proponents of confirmational holism
claim. I will, furthermore, try to make clear exactly in which way mathe-
matical theories really are tested, and in which way they are unaffected by
empirical tests.

It is obvious that there are several ways in which mathematics is used
in scientific applications. One can distinguish at least three levels of uses;
purely instrumental, explanatory, and representative (descriptive) ones.2

Purely instrumental uses, as e.g. numerical methods or perturbation calculus,
can be of no relevance when questions of realism are at stake, and neither can
explanatory uses, as when e.g. complex analysis unifies seemingly different
results in real analysis. In some cases, however, mathematical and empir-
ical theories are strongly connected to each other. Anthony Peressini (op.
cit.) mentions the use of Hilbert spaces in quantum mechanics, and Michael
Resnik states that “Fields and particles are functions from spacetime points
to probabilities” [Resnik 1991]. The representative use of mathematics indi-
cates that there are examples where mathematics is so involved in physical
theories that in a test situation both will be affected. I will argue below that
in some cases these mathematical theories will receive empirical support if
corroborated together with scientific ones, and I will point to just what this
support amounts to.

Inspired by Aristotle and Carnap, I propose an idea of concept formation
in mathematics. According to Aristotle, mathematical objects are inherent in
substances (individual objects), and via a thought process traits of these ob-
jects can be isolated in thought. This process of making abstractions can be

1 See, e.g., [Field 1980], [Maddy 1992], [Sober 1993], and [Resnik 1995] for critical as-
pects of the argument, and [Colyvan 2001] for a defense against these attacks.

2 See [Peressini 1997], and [Colyvan 2001].
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described as a sequence of explications, in Carnap’s sense, in an ontological
neutral way. In this way several mathematical concepts are explications of
vague, or otherwise non-clear, concepts, and these concepts are intimately
connected with scientific ones. When, for example, a physical theory, to-
gether with the mathematics used, is corroborated in a test situation, this
justification carries over to a justification of how the involved mathematical
concepts are related to reality via, what Peressini (op. cit.) calls, bridge prin-
ciples, and also to the mathematical sentences involving the concepts. I will
use this to argue for a weaker version of the thesis of holism, thus giving a
stronger indispensability argument.

The structure of the paper is as follows. In section two I briefly review
this idea of concept formation in mathematics. Section three discusses how
mathematical theories may contain empirical elements, and in section four
I put forward a modified indispensability argument using a weakened the-
sis of holism. In the presentation below, I follow Carnap and describe how
concepts are explicated ([Carnap 1950], p. 3). I use the expression “math-
ematical entity” without any ontological commitments, and “mathematical
object” when the issues may have ontological implications.

2. Concept Formation in Mathematics

Two main sources for my view on concept formation put forward below are
Aristotle’s philosophy of mathematics, and Carnap’s use of explications as
a means to develop exact and fruitful concepts. Since these ideas have been
presented in other contexts, I will be rather brief here.3 According to Aristo-
tle mathematical entities are inherent in substances (individual objects). By
abstraction these entities, or traits, can be isolated in thought, but they do not
have any separate existence like the Platonic forms. One difference between
physics and mathematics is that the former treats accidental properties (like
snub nosed) while the latter treats essential ones (like curved)(concerning
the nose of Socrates).4

I suggest that we regard this process of making abstractions, by isolat-
ing essential traits, as a process of making explications in Carnap’s sense
([Carnap 1950], ch. 1). This can be understood as a totally non-metaphysical
way of formulating more precise concepts for a given purpose. In this way it
is possible to replace vague, imprecise, or otherwise non-clear concepts by
more exact ones. To be able to mathematize a part of ‘reality’, an abstract

3 See [Sjögren 2008], [Sjögren 2010], and above all [Sjögren 2011].

4 See [Lear 1982], and Aristotle, e.g. Phys., Book II, 193
b–194

a.
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mathematical one or an empirical, sufficiently exact mathematical concepts
are needed. This can be achieved as above. Not only concepts of empirical
science, but also mathematical ones, have an origin in reality as suggested
by Aristotle. Mathematics has in this way been able to generate concepts via
explications; concepts that are fruitful in mathematizing reality. The vague
and ambiguous concept mathematical proof has exact counterparts in proof
theory. The concept natural number (finite cardinal number) can be expli-
cated as certain sets of sets in different ways, all preserving the idea of a
certain type of sequence or progression. The concept effectively computable
function is identified with Turing computable function, or any of its equiv-
alents. The concepts of function and continuity have received explications
as a certain kind of pairing of elements of two sets, and within topology as
preservation of open sets, respectively. The concept infinitesimal (fluxion)
was used to explicate instantaneous velocity via time derivative. This list of
explications could be made longer ad libitum.5

Some of the concepts mentioned above can be seen as far removed from
empirical reality, but tracing their origins, in a kind of concept archaeology,
will lead us back to a more or less non-clear empirical counterpart. The con-
cept of continuity, for example, has to do with the idea that natural processes,
as we perceive them, do not take place in jumps. This was treated geometri-
cally in the seventeenth century, and at that time functions were regarded as
(continuous) curves. In the nineteenth century the concept received a precise
enough explication via the ε − δ strategy, and still later as preservation of
open sets in inverse mappings. The concept of functionality has its origin in
one process determining another. Perhaps it can even be seen as a mathe-
matical counterpart to causality. With the modern set-theoretical explication
this origin is lost. Of course, mathematical concepts are also defined of
purely mathematical concerns, like e.g. uniform continuity as distinct from
(pointwise) continuity. The point is that several, fundamental, mathematical
concepts originally are closely related to physical reality.

Concerning at least some mathematical concepts it seems that just one
explication forces itself upon us as in the paradigmatic case of effectively
computable function with explicatum Turing computable function. In tak-
ing this example as paradigmatic, I disregard from abstruse mentalistic ver-
sions, and cling to the original theses of Turing and Church. One possible
way to describe the difference between mathematics and physics at the con-
ceptual level is to emphasize the idea that mathematics deals with uniquely
explicable objects. Compare this with the situation in physics, where e.g.
gravitation is one thing in Newton’s mechanics, and something different in
Einstein’s general theory of relativity. It will perhaps be something totally

5 These concepts and others are discussed in the references in footnote 3.
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different in a future, quantized theory of gravitation. Physics has to turn to
new explications as physical theories evolve.6 This analysis of difference
between concepts is also in line with the Aristotelian conception of the rela-
tion between mathematics and physics, although it is of course described in
other technical terms here.

What is of importance, however, is that mathematical concepts evolve via
sequences of explications. Regard once again continuity; this concept gets
more precise via the ε − δ strategy, and gets a more fruitful formulation in
topology, but there is no radical break in meaning. Mathematical concepts
are reinterpretable with new explications, while concepts in physics may
change meaning in a more radical sense.7

It is possible to identify a deductive and an empirical component in several
mathematical concepts. To illustrate the idea, consider the concept deriv-
ative. This was introduced by Newton, and independently by Leibniz, to
solve problems of movement and geometry in a general way.8 Both New-
ton’s method of fluxions and Leibniz’s of infinitesimals were inconsistent
since increments simultaneously were regarded as both zero and non-zero
depending on the calculations to be made. But the developed techniques did
solve the problems they were designed to solve, so it was rational for the
mathematical community to accept them. Note, however, that the concept
had an empirical origin as an analysis of movement. Concerning the relation
between the a priori and the empirical, Carnap tried to separate them using
Ramsey sentences. He divided the vocabulary into theoretical and observa-
tional terms, and managed to separate observation sentences from theoretical
ones [Carnap 1952]. From our perspective it is, however, not possible to di-
vide the vocabulary into two disjunct sets in this way.

As is well known, the infinitesimal calculus was rapidly developing in the
eighteenth century, and was extremely fruitful in solving problems in, above
all, physics. As is also well known, a need to find a solid foundation for the
calculus grew in the early nineteenth century. This was accomplished with
the limit concept by Cauchy, made precise by Weierstraß, and finally with
the arithmetization of analysis, as Kitcher (op. cit.) names the developed
calculus of Newton and Leibniz. In this later context the concept derivative
has a purely mathematical status in a well connected body of mathematical
concepts.

6 See especially paper 5, jointly written with Christian Bennet, in [Sjögren 2011].

7 See [Kitcher 1984], ch. 6:II on reinterpretation of mathematical concepts.

8 See [Kitcher 1984], ch. 10 for a case study of the development of analysis from its ori-
gin in the calculus of Newton and Leibniz, and [Kline 1972] for a more complete exposition.
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A similar history of evolution can be described for the concept set as an
explication of collection of objects, with Cantor’s explication as the first
one. Though fruitful, it led to inconsistencies that were removed (?) in
the development of axiomatic set theory, a part of mathematics that is still
in progress. Objects are here regarded in a wide sense, noting that Cantor
originally treated sets of reals, and that it was only later on that other types
of objects were treated.

Here it is more fruitful to contrast mature and new mathematical theories,
and not to pay so much attention to the distinction between pure and applied
mathematics.9 When a mathematical theory has grown mature, it has (of-
ten) lost the original connection with the empirical problems that inspired
it. The theory thus becomes insensitive to falsification.10 If we e.g. regard
the empirical facts corroborating the general theory of relativity as falsifying
Newtonian mechanics, these had no influence at all on mature analysis. But,
in the time when analysis was just formulated, its success together with me-
chanics was a strong argument in its favour. Also, several concepts were at
the same time used as both mathematical and physical.

Since several mathematical concepts have an empirical origin, and thus
contain an empirical component, these ideas are relevant in understanding
the applicability of mathematics too. Mathematics deals with reality in a
more or less abstract way, and mathematicians construct abstract structures
out of these concepts. I prefer to say that mathematical theories and concepts
are fruitful, if they, together with some empirical theory, are applicable. Ac-
tually, there are two aspects of truth involved. One is that mathematical sen-
tences are true, if they correctly describe adequate mathematical structures.
The other is that these mathematical structures correspond to an inherent
mathematical structure in Aristotle’s sense. Mathematical sentences would
then be true if they correctly describe this structure. This can be compared
with the relation between sentences of physics, physical models and physical
reality.11

9 See [Peressini 2008] on the complicated relation between pure and applied
mathematics.

10 This is also pointed out in [Hellman 1999].

11 Fruitfulness does not in itself imply truth. It demands further supporting principles as
e.g. ‘inference to the best explanation’. See [Peressini 1999] on this issue.
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3. Some Empirical Aspects of Mathematics

In this section I discuss how mathematical concepts are related to reality,
and more specifically how theories involving them can be empirically tested.
This will in turn make it possible to weaken the thesis of holism, and thus to
support realism via the indispensability argument.

Standard versions of the indispensability argument depend on the thesis of
confirmational holism, which means that mathematical and scientific theo-
ries are tested together. In a corroboration the mathematical and empirical
theories both get empirical support, and in a falsification there is something
wrong with at least one of the theories. Note that the sentences of these two
theories cannot be syntactically separated into two disjoint sets, since they
may be extremely interconnected. Hartry Field had the ambition to nomi-
nalize away the mathematical parts of a fragment of physics, but the project
has not been especially successful [Field 1980]. Quine held that changes in
the two theories, when falsified, should destroy as little as possible, and this
means that the mathematical parts are (almost) sacred ([Quine 1990], ch. 1,
§6). In what follows we will see a way to understand the difference between
testable and ‘sacred’ parts of mathematics.

In recent literature questions of empiricism in mathematics now and then
emerge. Philip Kitcher argues for an empirically founded epistemology
of mathematics [Kitcher 1984]. Imre Lakatos introduced quasi-empiricism
which was discussed from the 1970’s onwards.12 There is, however, nothing
empirical, in the sense of observation reports, etc., in quasi-empirical pro-
cesses according to Lakatos. Thomas Tymoczko takes over Lakatos’s term
“quasi-empiricism”, but he is more inclined to empiricism than Lakatos is.13

Another type of situation where questions of empiricism recently have
entered into mathematics is computer-assisted proofs [Tymoczko 1979]. Ty-
moczko has suggested that the reliability of a computer in the running of
a program is an engineering problem, thus empirical, and consequently the
Four-Colour Theorem, e.g., is empirically founded and known only a poste-
riori.

This is, however, not a viable argument for the empirical character of re-
sults in mathematics. To see this one can point to an analogy between math-
ematicians doing mathematics and computers making computations accord-
ing to advanced programs. Mathematicians sometimes doubt whether re-
ceived results are correct or not, and then the arguments are checked again
until the mathematical community is sufficiently sure that they are correct.

12 See [Lakatos 1978], ch. 2, and [Putnam 1975], ch. 4.

13 On “quasi-empiricism” see [Tymoczko 1998], p. xvi, and on empiricism
[Tymoczko 1979].
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Likewise, if one is in doubt whether a computer or a computer program gives
the correct result, one may run the computer again, or try the program on an-
other one, until one is pleased with the result. The adequate working of a
computer may be an engineering problem, just as the sanity of a mathemati-
cian may be a psychological one, but this does not make the result of the
mathematician’s work, nor that of the running of the computer, an empirical
one.

Turning to experimental mathematics, one view is that propositions that
are well corroborated by numerical experiments, like Goldbach’s conjecture
or Riemann’s hypothesis, could be incorporated as axioms into relevant theo-
ries.14 Chaitin argues for letting in Riemann’s hypothesis as an axiom on the
ground that it is well corroborated. Chaitin seems to say that this corrobora-
tion is empirical [Chaitin 1974]. Especially Riemann’s hypothesis (RH) has
many important consequences, but instead of adding the hypothesis as a new
axiom on ‘empirical’ grounds, one may just as well formulate theorems de-
pending on the hypothesis as “If RH , then ...”. Compare this with axiomatic
set theory, where one strategy is to highlight which axioms a result depends
on by writing “If the Axiom of Choice is true, then ...”, “If there exists a
measurable cardinal, then ...”, etc. The same strategy is used in constructive
mathematics in writing, e.g., “If the Law of Excluded Middle is valid, then
...”.

However, there are cases where empirical considerations affect our trust in
mathematics, and I will consider some examples in order to illustrate what
testing a mathematical theory can amount to.

Euclidean geometry was thought to describe physical space, and thus be-
ing representational. With the development of non-Euclidean geometries in
the nineteenth century, the geometry of physical space became a problem.
Letting primitive terms of geometry be connected to physical entities, em-
pirical tests may reveal this geometry. But note that a falsification of the idea
that physical space is Euclidean will not falsify theorems in the Elements,
since they are consequences of (the incomplete) axioms.

The introduction of fluxions by Newton (infinitesimals by Leibniz) was
extremely successful in solving problems of physics as mentioned in section
two. Fluxions are intimately connected to the physical concept instanta-
neous velocity; it is difficult to accept one of the concepts while rejecting the
other. It is an example of a representational use.

Examples like the two mentioned above where mathematics is used rep-
resentationally could be produced at will, and as mentioned in the introduc-
tion Peressini further exemplifies with the use of Hilbert spaces in quantum
mechanics, and Resnik regards fields and particles as functions. To name

14 See [Baker 2008] on experimental mathematics.
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a more problematic example, consider renormalization, a technique used in
quantum field theories to cancel out infinities in some cases. At this point we
do not know whether this is just an instrumental use, or if it has a represen-
tational role, since we simply do not understand the mathematics involved
[Jaffe 2004].

The use of mathematics in these examples, with the possible exception
of renormalization, is representational. The mathematical concepts are in-
timately connected with physical ones, and the testing of the theories in-
volving them affects both the mathematics and the physics. The empirical
support for the theories give confidence to both the physical and the mathe-
matical theories and the way these concepts are used in them, and also to how
the concepts are related to ‘reality’. The influence on mathematics is at the
concept formation level. What may happen is that a search for more precise
concepts as well as further developments of theories involving these con-
cepts are motivated. Furthermore, mathematics may together with physics
reveal insights into the way nature is constituted, as illustrated by e.g. the
discovery of the positron.

If exact mathematical counterparts are extracted from non-clear concepts
via explications as described above, there emerges a picture of mathematical
concepts having an origin in empirical reality. One consequence of this idea
is that the distinction between mathematical concepts and the concepts of the
more theoretical parts of physics is not a distinction between kinds of con-
cepts. The representational use of mathematics is also an indication of how
tight concepts of mathematics and physics are tied together, as illustrated by
the examples. The difference between mathematical and physical theories
lies rather in how the concepts are used, and in our attitudes towards how
they are to be used. Concepts in physics are treated with deductive meth-
ods, but axioms and theorems involving the concepts are possible to test. In
mathematics we are normally content with deducing results.

There are at least two ways in which we become confident of the correct-
ness (or fruitfulness) of explications. The first is internal to mathematics,
and has nothing to do with physics at all, as when the concept effectively
computable function is explicated as Turing computable function. In this
case there are several ways to bring about explications, but they all pick out
the same set of functions; the explication is unique. In this way we have
isolated a distinct set of functions, precisely those that can be computed with
algorithmic means. Carnap was of the opinion that there are no questions of
right or wrong in the process of formulating explications. This position has
been questioned by e.g. Kreisel and Schoenfield, and recently a proof of the
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correctness of the explication of effectively computable function as Turing
computable function has appeared.15

The second way is external to mathematics, at least in the first phase of
development. The infinitesimal calculus, and its use in physics, was ex-
tremely successful. This gave confidence in the mathematical concepts used,
notwithstanding their shaky mathematical ground. If we accept that there are
velocities, which as it seems must be explicated as time derivatives, we ought
to accept the existence of infinitesimals. With the work of Cauchy, Weier-
straß, Riemann, et al, the infinitesimal calculus received a secure founda-
tion, and there was no mathematical need any longer for discussions about
infinitesimals, since they ‘disappeared’ in the arithmetization of analysis.
Non-standard analysis brought about a new understanding of infinitesimals,
and made them mathematically legitimate. There has been a development
from a concept with an apparent empirical origin; a concept on the border
between mathematics and physics to a concept with an internal mathemati-
cal explanation. It may be regarded as a problem for realism that there are
several different ways of describing, or formalising, the real numbers. But
this is not necessarily the case. Different formalisations can have differ-
ent models, and one formalisation can have several non-isomorphic models.
All these models may, however, correspond in relevant aspects to an Aris-
totelian, inherent, real structure. Furthermore, one main reason to believe in
continuous space and time, or space-time, is the success of the mathematical
description using differentiable, or at least continuous, functions represent-
ing these structures.

Thus, mathematics sometimes develops in intimate connections with sci-
ence in a wide sense. In this development mathematics and science use the
same concepts. Mathematics examines how the concepts are related deduc-
tively, and the empirical testing of theories gives, in positive instances, cred-
ibility to the explications used. In negative instances new explications may
have to be found.

4. Holism and Indispensability

As mentioned in the introduction, the use of confirmational holism in the
indispensability argument has been questioned by several philosophers. The
view of concept formation put forward in section two, and the impact of

15 See [Carnap 1950], p. 4, [Kreisel 1967a], [Kreisel 1967b], [Shoenfield 1993], p. 26,
and [Dershowitz & Gurevich 2008].
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the empirical on mathematics in the testing of mathematical theories as dis-
cussed in section three, indicate that a weaker version of the traditional thesis
of confirmational holism is possible.

The variant of the indispensability argument I prefer thus rests on a weaker
version of holism. As we have seen, there is often an empirical component in
a mathematical concept, and this component may relate the concept to real-
ity via chains of explications. Mathematical concepts also have a deductive
component that relates the concept to other components in a more or less for-
mal, deductive structure. Since a concept has both these relations, sentences
involving them cannot be separated into two disjoint sets. Confirmational
holism, in standard versions, states that in a test situation both mathematics
and science is put on trial, while I maintain that the deductive part is not
tested; only the empirical part is. Mathematical theories may be rejected,
but not on the ground that an empirical theory and the mathematics used in
it are falsified. The mathematical concepts can come to be related to reality
in new ways, but the deductive structure is almost never affected in this way.
What is of relevance in the indispensability argument is, furthermore, that
it is this relation to reality that may be affected since mathematical entities
are abstracted or, as Aristotle puts it, separated in thought from individual
objects.

Geoffrey Hellman proposes a “moderate holism”, noting that what is re-
ally needed in physics are very weak fragments of mathematics.16 From
my perspective, Hellman makes a doubtful use of the indispensability argu-
ment, since the principles used in these fragments are often reformulations of
mature, well established mathematics that are insensitive to empirical tests.
Furthermore, these weak fragments may very well be inapplicable in scien-
tific contexts. To be attractive, or even usable, mathematical concepts and
theories must fit naturally into the purported applications.

Finally, the origin of a concept is not automatically a justification of its use.
I have emphasized the empirical origin of concepts, referring to Aristotle and
Carnap. This is part of an explanation of the applicability of mathematics.
These concepts are then used in mathematical and empirical theories, and
with bridge principles they are related to observables. These theories may
be corroborated in test situations, thus giving an empirical justification for
the involved sentences, and this grounding carries over to mathematics.

The stronger version of the indispensability argument is thus as follows.
Mathematics is necessary for science. When scientific theories are tested, the
empirical side of mathematics is also put on trial, and there is no essential
difference at the concept formation level between science and mathematics.
It is science that decides questions of existence, and since, as Putnam stated,

16 See [Hellman 1999], and [Peressini 2008] for some comments on Hellman’s position.
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it is dishonest to deny the existence of what one presupposes in daily work,
we ought to accept that mathematical objects as well as the objects of physics
have an objective existence.

Summarizing, mathematical concepts evolve via sequences of explica-
tions. The explicated concepts often have an empirical origin, even though
this origin may be distant, at least in mature theories. When a scientific the-
ory is tested, the empirical component is also put on trial, but the deductive
structure of the mathematics in question is not tested. We thus get a weaker
version of holism and a stronger version of the indispensability argument.
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