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ON THE IMPORTANCE OF BEING ANALYTIC
THE PARADIGMATIC CASE OF THE LOGIC OF PROOFS

FRANCESCA POGGIOLESI

Abstract
In the recent literature on proof theory, there seems to be a new rais-
ing topic which consists in identifying those properties that charac-
terise a good sequent calculus. The property that has received by far
the most attention is the analyticity property. In this paper we pro-
pose a new argument in support of the analyticity property. We will
do it by means of the example of the logic of proofs, a logic recently
introduced by Artemov [1]. Indeed a detailed proof analysis of this
logic sheds new light on the logic itself and perfectly exemplify our
argument in favour of the analiticity.

1. Introduction

We are currently witnessing the thriving of many different logics. Or, as
Avron more drastically puts it, “there is no limit on the number of logics that
logicians (and non-logicians) can produce” [3, pp. 1–2]. Faced to this situa-
tion, one question seems to naturally arise: What is a good logic? The first
answer that we can think of is: a logic that has applications. This answer,
although natural and simple, cannot be satisfactory: logic is an autonomous
discipline and as such it deserves its own independent criterion. A good in-
ternal criterion is then the existence of a simple and illuminating semantics.
This is always a good sign. But

A more important criterion (in my opinion, and since logics deal
above all with proofs) is the existence of a good proof system. [3,
pp. 1–2] [Our emphasis.]

It then seems that we have answered the question. However, one might
say that we are just begging the question, because now the issue is that of
defining what a good proof system is. Otherwise stated, the new question
is: what are the characteristics that a proof system needs to satisfy to be
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considered as good? This topic has been the centre of many proof theorists’
attention over the last ten years (e.g. [9], [13], [18]). Amongst the properties
that have been proposed for defining what a good proof system is, one of the
most famous and well-known is by far the analyticity property. The main
aim of this paper is to focus and study this property. More precisely, our
concern is to give a new argument in favour of the analyticity property. So
the questions “what is a good logic?” and “what is a good proof system?”
can be seen as the general framework in which the analyticity property will
be discussed.

The paper will be developed as follows. Section 2. We will introduce the
reader to the two notions of analytic proof and subformula property. The
latter notion can be thought of as a formalisation of the former notion in the
framework of the sequent calculus. We will explain two modern arguments
that have been given in support of the subformula property and we will then
provide a new argument in support of the subformula property. The rest
of the paper will be dedicated to the exemplification of this new argument.
For this we will use the logic of proofs that will be concisely presented in
Section 3, and a recent result on the logic of proofs [15] that will be explained
in Sections 4–5. In Section 6 we will draw some conclusions.

2. Analytic Proofs

Since we are interested in the analyticity property and, more precisely, in
analytic proofs, let us start by explaining what exactly we mean by these
notions. First of all, we use the term proof here in a broad sense: it de-
notes a rational procedure by means of which one may recognise the truth
of a sentence. Depending on how this procedure is developed, one usually
distinguishes between synthetic proofs and analytic proofs. According to a
synthetic conception, the starting point of a proof are acquired truths, and the
proof itself is developed as a gradual determination of propositions whose
truth is ensured by the previous ones. The proof stops when the proposition
whose truth we aim to establish is finally reached. By contrast, under an an-
alytic conception, the starting point of a proof is the proposition whose truth
we aim to establish, and the proof itself is developed as a gradual finding
of propositions whose truth can assure the truth of the successive ones. The
proof stops when established truths, in the sense of first principles or basic
ingredients, are finally reached.

Explained this way the contrast between synthetic and analytic proofs
seems to amount to nothing more than a distinction between different ways
in which the same object can be read: synthetic proofs privilege a top-down
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direction, while analytic proofs privilege a bottom-up direction. Such a dis-
tinction could hardly sound revealing from a logical perspective. The ques-
tion seems then to be: is there a logical significant way in which we can
distinguish synthetic proofs from analytic proofs? The answer is positive
and can be expressed as follows. While a synthetic conception tends to yield
proofs which are concise, in analytic proofs the emphasis is on the reduction
from more complex concepts to simpler ones. Otherwise stated, while syn-
thetic proofs have the advantage of being short, analytic proofs can be seen
as self-contained: every element which occurs in the proof will also occurs
in the conclusion.

Support for the analytic method has a long and venerable history. This his-
tory extends back to ancient Greece, (with both Plato and Aristotle, but also
with the pythagorean Hippocrates of Chius and the third century mathemati-
cian Pappus), passes trough the early modern era (with Descartes, Arnauld
and Pascal), and arrives up to the first half of the nineteenth century with
the great Bohemian thinker, Bernard Bolzano. A great importance to the
notion of analyticity has also and finally been given by the logician Gerhard
Gentzen. Gentzen seems to follow the long tradition just presented above, in
considering the analyticity property to be of crucial relevance:

Perhaps we may express the essential properties of such a normal
form by saying: it is not roundabout. No concepts enter into the
proof other then those contained in its final result, and their use was
therefore essential to the achievement of that result. [6, pp. 87–
88][Our emphasis]

As is famously known, in 1935 Gentzen introduced the sequent calcu-
lus. The sequent calculus is a particular proof system widely used in mod-
ern proof theory. The sequent calculus generates what we are going to call
derivations, and which are nothing but a formalisation of the concept of
proof introduced above. So Gentzen had formal and precise notions of proof
system and proof; he used them to obtain a formal and precise notion of
analyticity, which is broadly known as the subformula property. A sequent
calculus is said to satisfy the subformula property if, and only if, every prov-
able sequent possesses a derivation such that every formula which occurs in
it is a subformula of the formulas which occur in the conclusion. Observe
that a sequent calculus has the subformula property if the following two con-
ditions are satisfied



“04poggiolesi”
2012/9/6
page 446i

i
i

i

i
i

i
i

446 FRANCESCA POGGIOLESI

(i) the cut-rule is admissible (or eliminable1 ), and

(ii) in every other rule all the formulas that occur in the premises are
subformulas of the formulas that occur in the conclusion.

Therefore Gentzen together with a long list of illustrious thinkers, of whom
we have quoted only several, prefer and support the analytic method. More-
over Gentzen introduced the sequent calculus, and, by means of this new
logical object, he succeeded in giving a formal rendering of the notion of
analyticity, namely the subformula property. These facts would seem per se
sufficient for drawing the following conclusion: when dealing with Gentzen
systems, one must deal with Gentzen systems that satisfy the subformula
property.

Note that other modern arguments have been given in favour of the sub-
formula property. We briefly recall two of them. The first argument is linked
to the philosophical trend called proof-theoretic semantics (e.g. see [10]).
Following this trend we can look at the logical rules of a sequent calculus
as definitions of the constants that they introduce. As was emphasised by
Leśniewski [11], definitions must be conservative and eliminable. So even
logical rules must be conservative and eliminable. The property that ensures
the logical rules of a sequent calculus to be conservative is the subformula
property. So the subformula property is desirable for reasons related to the
meaning of logical constants.

The second argument in support of the subformula property has to do with
the mathematical advantages that the subformula property yields (e.g. see
[7]). Let us list a few of them. The subformula property (sometimes) allows
one to prove the decidability of the given calculus. Moreover, by working
with cut-free proofs, we can show that intuitionistic logic is prime, and that
both classical and intuitionistic logic have the interpolation property. So,
according to this second point of view, the subformula property is defendable
for reasons related to the mathematical strength of a calculus.

Given these valuable arguments in favour of the analyticity property, and
more precisely of the subformula property, one might be led to think that
nowadays everybody agrees on its importance. Although many logicians and
philosophers do not doubt the crucial relevance of the subformula property,
there also exist those who continue to underestimate its value (e.g. see [4],
[8]). These thinkers do not philosophically argue in favour of non-analytic
proof-systems, but they propose calculi that are so made, this way implicitly
belittling the value of the subformula property. Given this situation, it then

1 We take these notions for granted. The unacquainted reader could see [17, pp. 92–94].
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seems useful to give a further argument in support of the analyticity prop-
erty,2 if one believes in its importance. We propose the following one:

the proof of the analyticity of a sequent calculus allows one to fully
understand the features of the logic that the sequent calculus has
been developed for.

The argument is simple but also contains interesting suggestions. On the
one hand, it is an argument completely based on the conceptual understand-
ing of a given logic, so it seems to get to the heart of the matter. Moreover,
unlike the other arguments, it is completely autonomous: it does not contain
any reference to a philosophical trend, such as that concerning the meaning
of logical constants, nor it depends on the mathematical utility of a theory.

The rest of the paper will be dedicated to the exemplification of this argu-
ment. Indeed, since we are faced to a pragmatic argument, there would be no
watertight reasoning that could establish its validity. Hence we will attempt
to persuade the reader by means of an example. In order to give such an ex-
ample, we will use the logic of proofs, which is a logic recently introduced
by Artemov [1]. We will show that the proof that this logic enjoys an ana-
lytic Gentzen system uncovers crucial and hidden features of the logic itself.
We strongly emphasise that we choose the logic of proofs to exemplify our
argument because, as we hope the reader will realise, this case is enlight-
ening for what we aim to explain. However, many other logics could have
been used for illustrating our argument in support of the analyticity property.
Otherwise stated, the logic of proofs is not an ad hoc example, but it it just
the most clarifying one.

3. The Logic of Proofs

We dedicate this section to a brief introduction to the logic of proofs. We
first explain the philosophical background of the logic of proofs, and then
we pass to the formal details.

3.1. Logic of Proofs Informally

The history of the logic of proofs goes back to Brouwer and to his idea
that (intuitionistic) truth means provability. In 1931–34 Heyting and Kol-
mogorov made Boruwer’s definition of intuitionistic truth explicit, though

2 From now on, we are going to use “analyticity property” and “subformula property” as
synonymous.
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informal, by introducing the BHK-semantics (Brouwer-Heyting-Kolmogorov
semantics). BHK-semantics is widely recognised as the intended semantics
for intuitionistic logic and it stipulates that

• a proof of A ∧ B consists of a proof of A and a proof of B,

• a proof of A∨B is given by presenting either a proof of A or a proof
of B,

• a proof of A → B is a construction which, given a proof of A, returns
a proof of B,

• absurdity ⊥ is a proposition which has no proof, a proof of ¬A is a
construction which, given a proof of A, would return a proof of ⊥.

Gödel and Kolmogorov attempted to interpret the informal notion of BHK-
proof on the basis of the usual mathematical notion of proof, i.e. on the basis
of the notion of derivability in a formal system S. Their aim was partially
achieved by translating each intuitionistic formula A into the formula md(A)
of classical modal language, where md(A) stands for: box each subformula
of A. This way Gödel proved that

IPC ` Aif, and only if, S4 ` md(A)

Despite this important result, a central question remained: what is the in-
tended meaning of �? Informally, the interpretation �A ≈ A is provable
seems to be adequate. However, problems arise when �A is treated as for-
mal provability, i.e. �A ≈ ProvPA(Ā), where ProvPA is the formal prov-
ability predicate of Peano Arithmetic and Ā stands for the numeral of the
Gödel’s number of the formula A. Indeed, by the axiom �A → A and
the rule of necessitation, the formula �(�⊥ → ⊥) is an S4-theorem. This
theorem then translates into

ProvPA(ProvPA(⊥) → ⊥) i.e. PA ` Con(PA)

Such a conclusion clearly contradicts the famous second Gödel’s incom-
pleteness theorem and is therefore unacceptable.

We are thus left to deal with two main questions about provability: (i) Is
there a modal logic for the formal predicate ProvPA? (ii) Is there an adequate
provability interpretation of the modal logic S4?

The first question has been positively answered by the so called Gödel-
Löb logic GL that was introduced at the end of the ‘70 and that has been
proved to capture the formal provability predicate. The logic of proofs is, on
the other hand, an important step in the direction of a better understanding
and a solution to the second question.
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3.2. Logic of Proofs Formally

Having informally introduced the logic of proofs, we now present it formally.

Definition 3.1 : The language Llp contains: (i) the usual language of propo-
sitional boolean logic, (ii) proof variables x0, x1, x2, ..., (iii) proof constants
c0, c1, c2, ..., (iv) the functional symbols +, !, and ·, and (v) the operator
symbol of the type “term : formula.”

We will use a, b, c, ... for proof constants, and u, v, w, ... for proof vari-
ables.

Definition 3.2 : Terms are defined by the rule

t := xi | ci | !t | t + s | t · s

We call these terms proof polynomials and denote them by p, q, r, s, t, ...

Definition 3.3 : Formulas are defined by the rule

A := p0 | ⊥ | A ∧ B | A ∨ B | A → B | t : A

Informally, t : A ≈ t is a proof of A.

The Hilbert system LP is composed of:

A0 Axioms of classical logic formulated in the language Llp

A1 t : (A → B) → (s :A → (t · s) :B)

A2 t :A → A

A3 t :A →!t : t :A

A4 ti :A → (t0 + t1) :A, where i = 0, 1

R1 Modus Ponens

R2 If A is one of the axioms A0–A4, and c is a proof constant, then
` c : A

Many important results are provable in LP, amongst which we underline
the following one:

if LP ` A, then S4 ` (A)◦

if S4 ` A, then LP ` (A)ρ for some ρ
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where (A)◦ is the formula obtained from A by replacing all subformulas of
the form t : B by �B; on the other hand, (A)ρ is obtained by assigning
proof polynomials to all subformulas �B of A (the assignment of proof
polynomials must satisfy a few technical conditions).

This result demonstrates that the logic of proofs represent the provability
interpretation of the modal logic S4. Artemov [1] has shown that Lp is sound
and complete with respect to Peano Arithemtic, while Fitting [5] has proved
that Lp is sound and complete with respect to a Kripke semantics enriched
with an evidence function.

Amongst the several interesting developments of the logic of proofs, there
exists an intuitionistic version of LP, ILP, which has been introduced in [2].
The Hilbert system ILP is composed by the same axioms of LP except for
the base which is intuitionistic, i.e. at the item A0 we do not have the axioms
of classical logic formulated in the language Llp, but those of intuitionistic
logic. The results that are provable about LP are also provable for ILP. So
for example we can prove a theorem that states the equivalence between ILP
and the modal system S4 with an intuitionistic base.

4. Proof Analysis of the Logic of Proofs

We have thus introduced the two Hilbert systems LP and ILP. These two
systems have a deep philosophical meaning and they enjoy several interest-
ing formal features. But what about their Gentzen calculi? Following [1]
and [2], we can formulate two similar sequent calculi for the two systems
LP and ILP, respectively. (The only difference between these two sequent
calculi is the usual difference between a sequent calculus for classical logic
and a sequent calculus for intuitionistic logic: in the second case the con-
sequent of the sequent contains at most one formula.) Though simple and
cut-free, these two sequent calculi fail to satisfy the subformula property.
Indeed in both calculi we can find this rule:3

M ⇒ s : (A → B), [N ] P ⇒ t : A, [Q]

M, P ⇒ (s · t) : B, [N ], [Q]

that clearly violates this requirement.
Given this situation, and also the conviction of the necessity for a logic to

have an analytic sequent calculus, it seems worth to attempt to ameliorate
the proof theory for the logic of proofs. There are basically two choices:

3 We put the contexts N, Q in square brackets since they should be taken into account in
the classical case, while they should be ignored in the intuitionistic case.
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either we can try to improve Artemov’s calculus, or we can restart from
scratch. Let us opt for the second possibility . More precisely, let us restrict
our attention on the intuitionistic logic of proofs and let us try to find a new
analytic sequent calculus for the the system ILP. (It will be easy to verify
that technique used for ILP can also be applied to the classical case LP.) The
departing point is the following reflection.

The main feature of the logic of proofs consists in the use of proof poly-
nomials. Where in modal logic we have formulas of the form �A, in the
logic of proofs we have formulas of the form t :A. Therefore, if we want to
find a sequent calculus for the logic of proofs, the first step is to find logical
rules that introduce formulas of the form t :A on the left and on the right side
of the sequent. In order to understand how to formulate these logical rules,
we look at the semantic interpretation of formulas of the form t :A, and re-
flect this interpretation in the Gentzen framework. (We adopt this strategy
because it often happens to be an useful one.) Following Mkrtychev [12],
the semantic interpretation of formulas of the form t :A is the following

t :A is true if, and only if, A is true and t is a proof of A

Let us attempt to express this equivalence in the sequent calculus. While
it is of course easy to express in the Gentzen framework the fact that the
formulas A and t :A are true, the fact that “t is a proof of A” is more difficult
to be conveyed. Our solution to this issue is to introduce the notion of typed
natural deduction sequent, for short TND-sequent.

Definition 4.1 : A TND-sequent is an object of the form

s1 :B1, ..., sn :Bn ` t :A

where the formulas s1 :B1, ..., sn :Bn form a multiset.

TND-sequents can be seen as natural deduction derivations, written in se-
quent style and where the only formulas that can occur are of the form t :A.
As it will become clear below, the idea is to put side by side a standard se-
quent and a multiset of TND-sequents. This way we can intuitively interpret
TND-sequents in the following way: the formula which lies on the right side
of the ` expresses the fact that t is a proof of A, while the formulas that lie
on the left side of the ` are meant to represent the assumptions by means of
which we can construct the proof t of A. This will become clear once we
introduce the proof rules of the calculus Gilp.
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4.1. Syntactic Notation

– M, N, ... stand for multisets of formulas,

– M, N, ... stand for multisets of formulas of the form t :A,

– M, N, ... stand for multisets of formulas that are not of the form t :A,

– T1, T2, ... stand for TND-sequents,

– Σ, Θ, ... stand for sequents, which is to say objects of the form
M ⇒ N ,

– G, H, ... stand for multisets of TND-sequents.

Definition 4.2 : The notion of proof sequent is defined in the following way:

– if Σ is a sequent, then Σ is a proof sequent,

– if Σ is a sequent and G ≡ T1 | ... | Tn is a multiset of TND-sequents,
then G | Σ is a proof sequent.

Note that we use two separate notations, namely ` and ⇒, to emphasise
the distinction between TND-sequents and classical sequents, respectively.
Such a distinction is purely notational and does not involve any technical
issue.

Definition 4.3 : The intended interpretation τ of a proof sequent is:

– (M ⇒ C)τ := (
∧

M → C),

– (M1 ` t1 : A1 | ... | Mn ` tn : An | M ⇒ C)τ := (
∧

M1 → t1 :
A1) ∧ ... (

∧
Mn → tn :An) ∧ (

∧
M → C)

Using the notion of proof sequent we can build up the sequent calculus
Gilp that has been firstly introduced in [14]. Gilp is shown in Figure 1. Let
us dwell for a moment on the rules of Gilp. The axioms are composed by the
standard axioms of intuitionistic logic, plus n TND sequents all in axiomatic
form. The propositional rules are the usual ones operating on proof sequents.
Then we have the proof rules PA and PK. The rules PA and PK reflect
the semantic interpretation of formulas of the form t : A if read top-down.
Indeed the rule PA tells us that if A is false then t :A is false. The rule PK,
on the contrary, tells us that if A is true and t is a proof of A, then t :A is true.
In the rule PK the role of TND sequents becomes clear. Roughly explained,
the role of the TND sequents is to introduce a kind of meta-proof-level in the
sequent calculus. They are derivations plugged into derivations.
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Figure 1. The calculus Gilp

Axioms

t1 :A1 ` t1 :A1 | ... | tn :An ` tn :An | p, M ⇒ p

t1 :A1 ` t1 :A1 | ... | tn :An ` tn :An | M,⊥ ⇒ C

Propositional and Proof Rules

G | A, B, M ⇒ C

G | A ∧ B, M ⇒ C
∧A

G | M ⇒ A G | M ⇒ B

G | M ⇒ A ∧ B
∧K

G | A, M ⇒ C G | B, M ⇒ C

G | A ∨ B, M ⇒ C
∨A

G | M ⇒ Ai

G | M ⇒ A0 ∨ A1
∨K

G | M ⇒ A G | B, M ⇒ C

G | A → B, M ⇒ C
→A

G | A, M ⇒ B

G | M ⇒ A → B
→K

G | t :A, A, M ⇒ C

G | t :A, M ⇒ C
PA

G | N, P ` t :A | N, Q, M ⇒ A

G | N, P, Q, M ⇒ t :A
PK

Polynomial Rules

G | M ` ti :A | Σ

G | M ` t0 + t1 :A | Σ
+

G | M ` t :A | Σ

G | M `!t : t :A | Σ
!

G | M, P ` t : (A → F ) | M, Q ` t′ :A | Σ

G | M, P, Q ` (t · t′) :F | Σ
�

G | Σ

G | ` c :A | Σ
ci

4

As for the polynomial rules, we should observe that they only operate on
TND sequents. Basically, these rules tell us how we can use the functional
symbols !, · and +. The rule ci, on the other hand, tells us when we can
introduce the proof (constant) c of one of the axioms A0 − −A4 of ILP.
Note that the fact that c is a proof of one of the axioms A0 − −A4 does not
depend on any assumption, since the left side of the ` is empty.

The calculus Gilp is a rather satisfying sequent calculus. Indeed, as has
been proved in [14], Gilp is sound and complete with respect to the system

4 A is one of the axioms A0–A4 while c is a constant.
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ILP, its structural rules are height-preserving admissible, the cut-rule is elim-
inable and its left logical rules are height-preserving invertible. Nevertheless
Gilp presents a major shortcoming, namely it does not satisfy the subformula
property. This is because of the polynomial rule:

G | M, P ` t : (A → F ) | M, Q ` t′ :A | Σ

G | M, P, Q ` (t · t′) :F | Σ
�

Thus we are faced to a rather awkward situation. There exist two sequent
calculi, built with very different means, i.e. in one case with the standard
sequent calculus, while in the second case with a much reacher structure,
namely proof sequents, they both are cut-free, but none of them satisfies
the subformula property. In both cases the subformula property is violated
because of a rule that introduces the symbol ·. In front of this weird situation
there are, as far as we can see, two available options: either we surrender
because we think that this strange state of affairs is simply due to the fact
that the logic of proofs does not have analytic proofs, or we try to broach
the problem from a different point of view. We follow this second option,
analysing the situation in a deeper way.

5. The Coveted Analyticity

Let us start our detailed analysis of the logic of proofs by considering the
following theorem of ILP:

t :A ∧ s :B → (c · t · s) : (A ∧ B)

Informally speaking this theorem says that, if we have a proof t for the for-
mula A, and a proof s for the formula B, then we can construct the proof
(c · t · s) for the formula A∧B. The proof (c · t · s) is constructed by means
of the rule ci, which introduces the formula c : (A → (B → A ∧ B)), and
two applications of the rule �.

Considering the form of the rule �, we can understand the symbol · to
be a sort of cut at the polynomial level. Thus the proof (c · t · s) can be
thought of as containing two cuts. Suppose that we want to eliminate these
two cuts. The question naturally arises: if we eliminate these two cuts, what
do we substitute them with? In other words, what kind of alternative proof
can we formulate for the formula A∧B? As far as we can see, there is only
one answer: our language is too poor to formulate any proof polynomial
labelling the formula A ∧ B, that does not contain the symbol ·. Indeed,
the only symbols that we have are ! and +, which are evidently inadequate
for this purpose. So we are faced with the following problem: the logic
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of proofs does not have the means to eliminate the cuts at the polynomial
level. In order to modify this situation and reach the desired analyticity, the
only possible strategy is to change the language of the logic of proofs. More
precisely, we want to enhance the language of the logic of proofs by means
of the the functional symbols of the λ-calculus for the logic of proofs (see
[2]).

In order to explain why we want to use the functional symbols of the λ-
calculus (for the logic of proofs), let us focus on the constants of the logic
of proofs. We can think of each constant introduced by the rule ci as being
labelled by one and only one axiom (see for further details [1, p. 9]). The
constant c of the example above is labelled by the axiom A → (B → A∧B).
In the typed λ-calculus, thanks to the normalisation theorem, we know that
each intuitionistic axiom types a different closed λ-term in normal form.
Following up with our example, the axiom A → (B → A ∧ B) types the
λ-term λx.λy.p(x, y). Therefore we seem to have the following relations:

constants → intuitionistic axioms → closed λ-terms in normal form

Suppose that we replace constants by λ-terms in normal forms. Then the
formula

t :A ∧ s :B → (c · t · s) : (A ∧ B)

becomes the formula

t :A ∧ s :B → ((λx.λy.p(x, y)) · t · s) : (A ∧ B)

It is easy to see that the λ-term ((λx.λy.p(x, y))·t·s) is no longer in normal
form, on the contrary it contains two redexes. Therefore, thanks to the λ-
calculus, our intuition that the proof (c · t · s) can be thought of as containing
two cuts, is now clearer: if rewritten in λ-style, i.e. as ((λx.λy.p(x, y))·t·s),
the proof contains two redexes. If in the constants’ case, there was no way
to eliminate cuts, as we have explained above, now, with the introduction of
λ-terms, this can be done. Indeed the λ-term ((λx.λy.p(x, y)) · t ·s) reduces
to p(s, t) : (A ∧ B) and therefore we have

t :A ∧ s :B → p(s, t) : (A ∧ B)

Given a proof t of A and a proof s of B, we have a cut-free (or redex-free)
proof p(s, t) of A ∧ B.
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In [15] these intuitions have been deeply exploited. First of all we have
considered a language L∗

lp obtained from the language Llp by dropping con-
stants and adding the functional symbols of the λ-calculus for the logic of
proofs (see [2]).

Definition 5.1 : The language L∗
lp contains: (i) the usual language of propo-

sitional boolean logic, (ii) proof variables x0, x1, x2, ..., (iii) the functional
symbols +, !, p, pi, ki, E

∨
x,y, E

⊥
A, λu, ·, P, U, B, Si (iv) the operator symbol

of the type “term : formula.”

Let us focus on the crucial point (iii) of Definition 5.1. On the one hand,
the reader may easily recognise the functional symbols of the typed λ-calcu-
lus: p, pi, ki, E

∨
x,y, E

⊥
A, λu (e.g. see [16]). On the other hand, we underline

that the four functional symbols P, U, B, Si were introduced by Artemov
[2] for the λ-calculus for the logic of proofs; they are meant to be used for
constructing proofs for the axioms A1–A4.

Terms, which we call as before proof polynomials, are built from the
proof-variables by the functional symbols. The arities of the functional sym-
bols is made clear in the lambda and polynomial lambda rules, see Figure 2.
u, v, w, ... will denote proof variables, while p, q, r, s, t, ... will denote proof
polynomials. Formulas are defined as in Definition 3.3.

Thanks to this enriched language L∗
lp, we have constructed the sequent

calculus Gilp∗. The sequent calculus Gilp∗ is composed by the same rules
of the sequent calculus Gilp except for the fact that the rule ci is replaced by
a bunch of rules that we have called lambda and polynomial lambda rules,
see Figure 2. Let us dwell for a moment on these new rules. Consider the
lambda rules. If we concentrate on the TND sequents which these rules
operate on, we can easily see that the lambda rules are nothing but the rules
of the λ-calculus. As for the polynomial lambda rules, these are just the
rules introduced in [2] for the λ-calculus for the logic of proofs, operating in
a proof sequents context.

In order to better illustrate what has changed passing from the calculus
Gilp to the calculus Gilp∗, let us return to our previous example. We have
said that t :A∧ s :B → (c · t · s) : (A∧B) is a theorem of the logic of proofs.
Indeed this theorem is provable in Gilp, as the following derivation d shows:
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Figure 2. In the calculus Gilp∗

Lambda Rules

G | M, P ` t0 :A0 | M, Q ` t1 :A1 | Σ

G | M, P, Q ` p(t0, t1) : (A0 ∧ A1)|Σ
∧I

G | M ` t :Ai | Σ

G | M ` ki(t) : (A0 ∨ A1) | Σ
∨I

G | M, x :A ` t(x) :F | Σ

G | M ` λx.t(x) : (A → F ) | Σ
λ

G | M ` t :A0 ∧ A1 | Σ

G | M ` pi(t) :Ai | Σ
∧E

G | M ` t :⊥ | Σ

G | M ` E⊥
A(t) : A | Σ

⊥E

G | M, P, R ` t : (A0 ∨ A1) | M, Q, R′, x :A0 ` q :E | P, Q, R′′, y :A1 ` q′ :E | Σ

G | M, P, Q, R, R′, R′′,` E∨
x,y(t, q, q′) :E | Σ

∨E

Polynomial Lambda Rules

G | M ` r : t :A | Σ

G | M ` U(r) :A | Σ
tE

G | M ` r : t :A | Σ

G | M ` B(r) :!t : t :A | Σ
!I

G | M ` r : ti :A | Σ

G | M ` Si(r) : (t0 + t1) :A | Σ
+I

G | M, P ` r : t : (A → F ) | M, Q ` r′ : t′ :A | Σ

G | M, P, Q ` P(r, r′) : (t · t′) :F | Σ
�I

t :A ` t :A | t :A,A,⇒ A s :B ` s :B | s :B,B ⇒ B

s :B ` s :B | t :A ` t :A | t :A,A, s :B,B ⇒ A ∧ B
∧K

s :B ` s :B | t :A ` t :A | t :A, s :B ⇒ A ∧ B
PA∗

` c : (A → (B → (A ∧ B))) | s :B ` s :B | t :A ` t :A | t :A, s :B ⇒ A ∧ B
ci

s :B ` s :B | t :A ` (c · t) : (B → (A ∧ B)) | t :A, s :B ⇒ A ∧ B
�

t :A, s :B ` (c · t · s) : (A ∧ B) | t :A, s :B ⇒ A ∧ B
�

t :A, s :B ⇒ (c · t · s) : (A ∧ B)
PK

t :A ∧ s :B ⇒ (c · t · s) : (A ∧ B)
∧A

⇒ t :A ∧ s :B → (c · t · s) : (A ∧ B)
→

where PA∗ stands for a double application of the rule PA.
In Gilp∗ we no longer have the constants, nor the rule ci that allows us

to construct the proof polynomial c · t · s. Therefore we cannot prove the
theorem t :A ∧ s :B → (c · t · s) : (A ∧ B). On the other hand we have the
means to construct the proof polynomial λx.λy.p(x, y) which, as we have
explained above, corresponds to the constant c. So in Gilp∗ we will prove the
theorem t :A∧s :B → ((λx.λy.p(x, y)) ·t ·s) : (A∧B) which represents the
lambda-counterpart of the theorem t :A∧ s :B → (c · t · s) : (A∧B). Let us
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see the Gilp∗-derivation d′ of t :A∧s :B → ((λx.λy.p(x, y)) ·t ·s) : (A∧B),
we have:

t :A ` t : A | x : A ` x : A | t :A, A ⇒ A s :B ` s : B | y : B ` y :B | s :B, B ⇒ B

t :A ` t : A | s :B ` s : B | x : A ` x : A | y : B ` y :B | t :A, A, s :B, B ⇒ A ∧ B
∧K

t :A ` t : A | s :B ` s : B | x : A ` x : A | y : B ` y :B | t :A, s :B ⇒ A ∧ B
PA∗

t :A ` t : A | s :B ` s : B | x : A, y : B ` p(x, y) : (A ∧ B) | t :A, s :B ⇒ A ∧ B
∧I

t :A ` t : A | s :B ` s : B | x : A ` λy.p(x, y) : (B → (A ∧ B)) | t :A, s :B ⇒ A ∧ B
λ

t :A ` t : A | s :B ` s : B | ` λx.λy.p(x, y) : (A → (B → (A ∧ B))) | t :A, s :B ⇒ A ∧ B
λ

s :B ` s : B | t :A ` ((λx.λy.p(x, y)) · t) : (B → (A ∧ B)) | t :A, s :B ⇒ A ∧ B
�

t :A, s :B ` ((λx.λy.p(x, y)) · t · s) : (A ∧ B) | t :A, s :B ⇒ A ∧ B
�

t :A, s :B ⇒ ((λx.λy.p(x, y)) · t · s) : (A ∧ B)
PK

t :A ∧ s :B ⇒ ((λx.λy.p(x, y)) · t · s) : (A ∧ B)
∧A

⇒ t :A ∧ s :B → ((λx.λy.p(x, y)) · t · s) : (A ∧ B)
→

So now we have two different theorems, t :A∧ s :B → (c · t · s) : (A∧B)
and t :A ∧ s :B → ((λx.λy.p(x, y)) · t · s) : (A ∧ B), and the two different
derivations d and d′ of Gilp and Gilp∗, respectively. It is easy to check that
none of these derivations satisfy the subformula property. Indeed in both
of them there are formulas that are not subformulas of the formula of the
conclusion. While in the case of Gilp this situation cannot be remedied,
in Gilp∗ the derivation d′ can be changed into a derivation that satisfies the
subformula property. It suffices to operate in the following way

t :A ` t :A | t :A, A ⇒ A s :B ` s :B | s :B, B ⇒ B

t :A ` t :A | s :B ` s :B | t :A, A, s :B, B ⇒ A ∧ B
∧K

t :A ` t :A | s :B ` s :B | t :A, s :B ⇒ A ∧ B
PA∗

t :A, s :B ` p(t, s) : (A ∧ B) | t :A, s :B ⇒ A ∧ B
∧I

t :A, s :B ⇒ p(t, s) : (A ∧ B)
PK

t :A ∧ s :B ⇒ p(t, s) : (A ∧ B)
∧A

⇒ t :A ∧ s :B → p(t, s) : (A ∧ B)
→

In [15] it has been shown that the calculus Gilp∗ is analytic. In order to
obtain this result we have operated on two levels: the sequents’ level, and
the TND sequents’ level. As for the sequents’ level, we have shown that the
cut-rule is eliminable, while at the TND sequents’ level we have proved the
normalisation theorem. The last part of our research has been dedicated to
the study of the precise relationships between Gilp and Gilp∗. We have shown
that Gilp can be embedded in a fragment of Gilp∗, and that this fragment of
Gilp∗ is on the other hand embeddable in Gilp (see Figure 3). So Gilp∗ can
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Figure 3. Links between Gilp and Gilp∗

��
��} m-�

Gilp∗ Gilp

be thought of as a conservative extension of the intuitionistic logic of proofs
where the analyticity of the logic of proofs can be finally reached.

6. Conclusions

Our starting point was the search for a criterion for distinguishing good log-
ics. The most reasonable criterion that we have found is the existence of a
good proof system. But then, one might ask the question of what a good
proof system is. Amongst the properties discussed for defining good proof
systems, that which has received by far the most attention is the analyticity
property. Although this property has been supported throughout the history
and philosophy of mathematics, and Gentzen himself formalised it trough
the framework of the sequent calculus, there still exist philosophers and logi-
ciens who underestimate its importance. In this paper we aimed at giving
one further reason in favour of the analyticity property, and in particular for
wanting a Gentzen calculus to satisfy the subformula property. The reason
that we have proposed is a very simple but relevant: the proof that a sequent
calculus satisfies the subformula property helps discovering and clarifying
several aspects of the logic that the sequent calculus has been developed for.

In order to illustrate our point, we have used the example of the logic of
proofs. The logic of proofs is a recent logic introduced by Artemov in order
to recover the explicit provability of modal and intuitionistic logic. The main
characteristic of the logic of proofs are the formulas of the form t : A, where
t is a proof polynomial, meaning “t is a proof of A.” Proof polynomials
are constructed by means of functional symbols applied on variables and
constants. The constants are only introduced in relation with axioms, i.e. in
formulas of the form c : A where A is one of the axioms of the logic of
proofs.

The logic of proofs therefore happens to be an elegant and simple logic.
However the situation slightly changes once we try to prove that there exists
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a Gentzen calculus enjoying the subformula property for the logic of proofs.
Indeed in this case we discover what “is hidden” behind the language of the
logic of proofs, namely the entire functional apparatus of the typed lambda
calculus. In the paper [1] Artemov already hints a correspondence between
the constants of the logic of proofs and the lambda terms in normal form
typed by the corresponding axioms; nevertheless, it is thanks to the analysis
of [15] that this correspondence is brought to light and explicitly stated. This
is certainly no slim discovery. But what matters for us here is that this dis-
covery has been brought to light by the search of an analytic calculus. Thus
analyticity is important not only for the sake of dealing with analytic proofs,
but also for the deep revelations that it allows to make. The logic of proofs
is but a paradigmatic example of this fact.
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