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INTENSIONAL POSITIVE AND PARADOXICAL SET THEORY

GABRIEL HOLLANDER

Abstract
In this paper, we construct a pure-term model for first-order para-
doxical set theory, in which new identification and differentation
rules hold. An analogous construction was already studied for pos-
itive and partial set theory.

1. Introduction

“Positive set theories” were introduced in the pioneer work of Gilmore [1],
for the “partial case”, and have been studied since in the other cases also
(“positive” and “paradoxical”). Gilmore showed the consistency of abstrac-
tion, but the incompatibility of abstraction with extensionality; this was the
initial indication that the main problem is the one of “identification/dif-
ferentiation”. Gilmore’s model allows no real identifications between sets
at all. In his model, “equality” (=+) is just “formal identity”.

The more recent methods developed in [2] and [3] do allow non-trivial
identifications, but bring restrictions on the terms that are used. In this paper,
we study a kind of “dual” variant of these methods.

We will use the notions of “positive formula” and “positive term”. We
will define these notions inductively as to create a language Lτ that uses the
symbols ∈,= and the abstractor { | }:

• Any variable is a positive term;

• If τ, τ ′ are positive terms, then τ ∈ τ ′ and τ ′ = τ ′ are positive
(atomic) formulas;

• If ϕ,ψ are positive formulas, then so are ϕ ∨ ψ,ϕ ∧ ψ, ∃xϕ, ∀xϕ;

• > and ⊥ (respectively “true” and “false”) are positive formulas;

• If ϕ is a positive formula, then {x | ϕ } is a positive term;

• If ϕ,ψ are formulas, then so are ¬ϕ, ϕ ∨ ψ,ϕ ∧ ψ, ∃xϕ, ∀xϕ;
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386 GABRIEL HOLLANDER

We let also L be the usual first-order language constructed with only the two
relation symbols ∈,=, so without the abstractor. If τ is a positive term of the
form {x | ϕ(x) } with ϕ a positive formula, then we will further refer to ϕ
as ϕτ .

For a structure to be a model of positive set-theory, it must interpret the
involved terms and satisfy the following scheme of abstraction axioms,

∀~y ∀x
(

x ∈ { t | ϕ(t, ~y) } ↔ ϕ(x, ~y)
)

,

where ϕ is a positive formula.
One possible way of examining whether structures satisfy this abstraction

scheme, is to divide the problem into the two implications that appear in the
definition above:

• We define the admissible models as those that satisfy the implication

∀~y ∀x
(

x ∈ { t | ϕ(t, ~y) } → ϕ(x, ~y)
)

and for which the relation = is a congruence for the language L; this
is an equivalence relation satisfying replacement in formulas of L.

• We define the co-admissible models as those that satisfy the other
implication

∀~y ∀x
(

x ∈ { t | ϕ(t, ~y) } ← ϕ(x, ~y)
)

and for which the relation = is a congruence for the language L.

In [2], it is proven that the method of admissible models gives good re-
sults for positive set-theory. Furthermore, [3] shows that this method can be
productive also for partial set-theory. This kind of theory is inductively de-
fined on the language with four relation symbols ∈+,∈−,=+,=−, and the
abstractor { | }, in the same way as for the positive case:

• Any variable is a positive term;

• If τ, τ ′ are positive terms, then τ ∈+ τ ′, τ ∈− τ ′, τ =+ τ ′ and
τ =− τ ′ are positive (atomic) formulas;

• If ϕ,ψ are positive formulas, then so are ϕ ∨ ψ,ϕ ∧ ψ, ∃xϕ, ∀xϕ;

• > and ⊥ are positive formulas;

• If ϕ is a positive formula, then {x | ϕ } is a positive term;

• If ϕ,ψ are formulas, then so are ¬ϕ, ϕ ∨ ψ,ϕ ∧ ψ, ∃xϕ, ∀xϕ;
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INTENSIONAL POSITIVE AND PARADOXICAL SET THEORY 387

The full partial set-theory (Gilmore [1]) is constructed on this language L±
τ

with the following axioms,

• The relation =+ is a congruence relation for L±τ ;

• The partiality axioms

¬(x ∈+ y ∧ x ∈− y) and ¬(x =+ y ∧ x =− y);

• The abstraction scheme

∀~y ∀x
(

(

x ∈+ { t | ϕ(t, ~y) } ↔ ϕ(x, ~y)
)

∧
(

x ∈− { t | ϕ(t, ~y) } ↔ ϕ(x, ~y)
)

)

,

where ϕ is defined as follows

– τ ∈+ τ ′ is τ ∈− τ ′,

– τ =+ τ ′ is τ =− τ ′,

– ϕ is ϕ,

– ϕ ∨ ψ is ϕ ∧ ψ,

– ∃xϕ is ∀xϕ,

– ⊥ is >,

so ϕ is a non-classical kind of negation of ϕ.

We finish the definitions for the theory of partial sets by giving the adaptation
of the concept of “admissibility”:

{

ϕ(x, ~y)← x ∈+ { t | ϕ(t, ~y) }

ϕ(x, ~y)← x ∈− { t | ϕ(t, ~y) }.

There is a dual version of the partial set-theory, which we will call the
paradoxical set-theory. This is defined in the same way as for the partial case,
except that the partiality axioms are replaced by the following paradoxality
axioms:

x ∈+ y ∨ x ∈− y and x =+ y ∨ x =− y.

Sadly, the method of admissible models doesn’t seem to work in a straight-
forward way for the paradoxical case. This is why we develop in this paper
the method of the co-admissible models. In a first instance, we will work
with the positive case, and afterwards, we will adapt it to the paradoxical
case.
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388 GABRIEL HOLLANDER

2. The positive case

In this section, we use the duals of the techniques used in [2] and [3], again
modulo restrictions on the terms that are allowed. Roughly speaking: these
techniques “work” for “first-order terms”.

So, in the following, we define inductively the universe Uω of the models
we will consider in the rest of this discussion:

U0 =
{

{x | ϕ(x)}
∣

∣ ϕ is a positive formula of L
}

Un =
{

{x | ϕ(x, τ1, . . . , τk)}
∣

∣ ϕ is a positive formula of L and

τ1, . . . , τk ∈ Uj , for some j < n
}

Uω =
⋃

n<ω

Un.

Each element of Uω is thus a closed term τ and we denote ϕτ (x) the formula
such that τ is {x | ϕτ (x) }.

Models in this discussion will thus be of the form

M = (Uω,∈M ,=M ),

with ∈M and =M two binary relations on Uω intended to interpret the rela-
tion symbols ∈ and = respectively.

In this context, we say thatM is co-admissible ifM satisfies the conditions

M |= ϕτ (x)→M |= x ∈ τ

and =M is a congruence relation for L. We note at once that there exists at
least one co-admissible model, namely the "full model",

(Uω, U
2
ω, U

2
ω),

where every element belongs to and equals every element of Uω. Finally,
we write M ≤ N , for two models M and N if and only if they satisfy the
conditions

∈M ⊇∈N and =M ⊇=N .

We say that M is an extension of N or that N is “better” than M . For
M ≤ N , we always have the implication

“Positive preservation lemma”: N |= ϕ(τ1 . . . , τn)→M |= ϕ(τ1 . . . , τn),



“02hollander”
2012/9/6
page 389

i

i

i

i

i

i

i

i

INTENSIONAL POSITIVE AND PARADOXICAL SET THEORY 389

for any positive formula ϕ of L, and parameters τ1 . . . , τn ∈ Uω. We can
prove this easily by induction on the complexity of the formula ϕ.

We will denote the set of all co-adminissible models as A0. We will now
select inductively among the models of A0 as follows: if Aα is a defined
selection among the co-admissible models, then we define Aα+1 as follows,

Aα+1 = {M ∈ Aα |M 
α τ = τ ′ →M |= τ = τ ′ }

for α an ordinal. In this definition, we use the symbol 
α to denote a “forc-
ing” relation, that we will define later in this discussion, based on some
conditions. Finally, if γ is a limit ordinal, then we complete this inductive
definition by stating

Aγ =
⋂

α<γ

Aα.

We have thus formed a chain of selections of co-admissible models

A0 ⊇ A1 ⊇ A2 ⊇ A3 ⊇ · · · ,

for which there must exist a fixed point δ for which Aδ+1 = Aδ, otherwise
one would have an injection from the proper class of ordinals into the set
PA0, which is not possible.

It is in this selectionAδ of co-admissible models that we would like to find
a maximal model G (for the order ≤ defined above). For this, we will prove
that everyAα is inductively ordered, so the existence of the desired maximal
element will follow from Zorn’s lemma.

We start by demonstrating that every chain of elements of A0 has an upper
bound. Actually, as this upper bound will be the “intersection” of the chain
elements, it suffices to show thatA0 is closed under “intersections” of chains.

Let thus (Mβ)β<γ : M0 ≤ M1 ≤ M2 ≤ · · · ≤ Mω ≤ · · · be a chain
of elements of A0, with γ a limit ordinal. We then define the “intersec-
tion”

⋂

β Mβ of the models Mβ as follows,

• We keep the same universe Uω as in the rest of this discussion;

• We define ∈∩Mβ
as the intersection

⋂

β<γ ∈Mβ
;

• We define =∩Mβ
in the same way:

⋂

β<γ =Mβ
.

It is for this “intersection” of models
⋂

β Mβ that we will prove it to be
still co-admissible. For this, we consider an arbitrary element τ of Uω and
assume that

⋂

β<γ

Mβ |= ϕτ (x).
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390 GABRIEL HOLLANDER

As, for ζ < γ, we have that Mζ ≤
⋂

β<γ Mβ , we get

∀ζ < γ : Mζ |= ϕτ (x),

by the “positive preservation lemma”. As each Mζ is co-admissible, it fol-
lows that

∀ζ < γ : Mζ |= x ∈ τ,

so we conclude
⋂

β

Mβ |= x ∈ τ,

which proves that the intersection is still co-admissible, as we wanted.
We then continue inductively: we prove that the intersection of a chain of

elements ofAα+1 still remains inAα+1, given that this is true inAα. It is for
this part that we will consider the following condition on the forcing relation

:

N ′ ≤ N 
α τ = τ ′ → N ′

α τ = τ ′,

so every extension of a forcing model should force in its turn.
Thus, for a chain M0 ≤ M1 ≤ M2 ≤ · · · of elements of Aα+1, we

suppose that
⋂

β

Mβ 
α τ = τ ′.

As each modelMβ is an extension of the intersection of the models, we have
that

∀β < γ : Mβ 
α τ = τ ′.

This implies by definition of Aα+1 that

∀β < γ : Mβ |= τ = τ ′,

and thus, we conclude that
⋂

β

Mβ |= τ = τ ′,

what we wanted to prove. In this proof, we of course used the induction
hypothesis when we declared that

⋂

β Mβ still is an element of Aα.
We finish this part by mentioning that Aη, for a limit ordinal η, is also

closed under intersections of chains, if this is true for every ordinal α < η.
This proof is straightforward.
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INTENSIONAL POSITIVE AND PARADOXICAL SET THEORY 391

We have thus proved in the previous paragraphs that for every ordinal α,
the set Aα of models is closed under intersections of chains of its elements,
and thus is inductively ordered. It follows from the lemma of Zorn that the
fixed point set Aδ described earlier has a “maximal1 ” element, which we
will call G for the rest of this discussion. We were able to find an adequate
forcing relation, which is

M 
α τ = τ ′ if and only iff co-adm ` ∀x
(

ϕτ (x)↔ ϕτ ′(x)
)

,

where co-adm is the theory of the co-admissible models.
Notice that this definition is independent of the choice of the model M

and of the ordinal α, while the forcing relations described in [2] and [3] for
respectively the positive and the partial case are not uniformly defined. This
is because in this positive case, using co-admisssible models (and not ad-
missible models as in the two earlier articles), it seems to be very difficult
to use a non-uniformly defined forcing relation. We discuss this more in
detail in the related section “Comments”. However, even if the fixed point
is quickly reached here (as δ = 1), we keep the presentation using possible
non-uniform forcing relations M 
α (which depend on M and α) as that al-
lows easier comparisons with the “admissible models”-approach, and could
provide future alternative forcings.

We come now to the precise meaning of “G is generic”, via our Generic
Lemma:

G 
δ τ = τ ′ ↔ G |= τ = τ ′,

for arbitrary terms τ and τ ′.
In the following paragraphs, we will prove this lemma. For this, observe

that the direction from left to right follows from the definition of Aδ+1: as
G ∈ Aδ = Aδ+1, we have immediately that

G 
δ τ = τ ′ → G |= τ = τ ′,

what is the first half of what we would like to prove.
For the other half, we will define a new model G′ for which we will prove

that it is “better” than G. We take for this G′ the model defined with the
same universe Uω, and for which the interpretations of the relation symbols
satisfy

{

G′ |= τ = τ ′ if and only if G 
δ τ = τ ′

∈G′ is equal to ∈G .

1 This element is maximal with respect to the order ≤ between models, so this is the
“best” model, as we described earlier.
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392 GABRIEL HOLLANDER

We first show that G′ is a better model than G, so that G ≤ G′. As both
models have the same interpretation for the∈ relation symbol, we only check
that =G′ ⊆=G. For this, we suppose that G′ |= τ = τ ′, so by definition of
G′, we have that G 
δ τ = τ ′, which implies by the first part of this proof
that G |= τ = τ ′. This is what we wanted to prove in this paragraph.

We then continue by showing that G′ belongs to every Aα, for every ordi-
nal α. This, of course, will be done by induction on the class of ordinals.

In a first instance, we show that G′ ∈ A0. For this, we first suppose that
G′ |= ϕτ (x) and we must show that G′ |= x ∈ τ . As G′ ≥ G, it follows
from G′ |= ϕτ (x) that also G |= ϕτ (x) holds, by the “positive preservation
lemma”. As G is co-admissible, it follows that G |= x ∈ τ . We conclude
with G′ |= x ∈ τ , as per definition ∈G′ is exactly ∈G.

To finish the proof that G′ ∈ A0, we still have to show that =G′ is a
congruence relation for the language L. For this, we suppose that

G′ |= x′ = x ∈ τ = τ ′,

and we must prove that G′ |= x′ ∈ τ ′. As we already have that G ≤ G′, by
the “positive preservation lemma”, we get

G |= x′ = x ∈ τ = τ ′,

so this implies
G |= x′ ∈ τ ′,

as G is a co-admissible model for which =G is a congruence relation for
L. As per definition, the models G and G′ have the same ∈-relation, we
conclude that

G′ |= x′ ∈ τ ′,

as we wanted to prove.
In a second instance, we show that if G′ ∈ Aα, then it follows that G′ ∈

Aα+1, for every ordinal α. We thus suppose that G′ ∈ Aα. To prove that
G′ is also in Aα+1, we suppose that G′


α τ = τ ′. As by definition of our
forcing relation, this relation is independent of the ordinal α and the involved
model, this is equivalent to G 
δ τ = τ ′, and thus G′ |= τ = τ ′, what we
wanted to prove.

In a last instance, we show that if we suppose that G′ ∈ Aα, for all ordi-
nals α smaller than a limit ordinal γ, then we also have that G′ ∈ Aγ . For,
as Aγ is the intersection of all Aα with α < γ, this follows immediately.

This finishes the proof that the model G′ is in Aα for all ordinals α. And
thus, it follows that G′ ∈ Aδ. As G ≤ G′ and G is maximal in Aδ per
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choice, we conclude that G = G′. This implies that the direction of right to
left is proven, what we wanted in these paragraphs.

It is for this generic model G that we can now prove abstraction. For this,
as G is already a co-admissible model, it suffices to show the implication

G |= x ∈ τ → G |= ϕτ (x).

As in the previous paragraphs, we define a (new) “better” model G′ ≥ G, as
follows:

{

G′ |= x ∈ τ if and only if G |= ϕτ (x)

=G′ is equal to =G .

It easily follows from the definitions that G′ ≥ G, so we just need to show
that G′ ∈ Aα, for all ordinals α. Again, we do this by induction on the
ordinal α:

• For α = 0, we must prove that G′ is in fact co-admissible. We thus
suppose that G′ |= ϕτ (x), so it holds also that G |= ϕτ (x), by the
“positive preservation lemma”, as G′ is better than G. We conclude,
by definition of G′, that G′ |= x ∈ τ , as we wanted.

Further, we check that =G′ is a congruence relation on G′. Actu-
ally, the only less trivial point is:

if G′ |= x ∈ τ = τ ′, then G′ |= x ∈ τ ′.

By the definition of G′, this is brought back to the implication

if G |= ϕτ (x) and G |= τ = τ ′, then G |= ϕτ ′(x),

and this is guaranteed by our Generic lemma and the forcing adopted
here.

• We suppose in the following step that G′ ∈ Aα for an ordinal α. We
now want to prove that G′ ∈ Aα+1, so suppose that G′


α τ =
τ ′. As our forcing relation is independent of the ordinal α and the
involved model, this implies that G 
α τ = τ ′, so it follows by
induction hypothesis that G |= τ = τ ′. As G and G′ have the same
=-relation, we conclude that also G′ |= τ = τ ′ and thus G′ ∈ Aα+1,
what we wanted to prove.

• In the last step of the induction, we suppose that G′ ∈ Aα, for all
ordinals α < γ, with γ a limit ordinal. We conclude immediately
that also G′ ∈

⋂

α<γ Aα holds, as we wanted.
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This finishes the proof that G′ ∈ Aα for all ordinals α. It follows as above
that G′ ∈ Aδ, so G′ = G, as G was maximal in Aδ. Finally, in this way we
have proven that G indeed satisfies abstraction, as we wanted.

We conclude for the case of positive set-theory as follows: we have con-
structed G, a pure term model for abstraction on “first-order” terms—these
are terms of the type {x | ϕ(x, ~y) }, with ϕ ∈ L. Furthermore, the equal-
ity on this model is a congruence relation for the language L. Finally, this
model satisfies the following “intensionality ” rule:

co-adm ` ∀x
(

ϕτ (x)↔ ϕτ ′(x)
)

⇐⇒ G |= τ = τ ′,

that allows many identifications of first-order terms in the universe.

3. The paradoxical case

For the discussion in this section, we will use the following universe Uω ana-
logue to the one used in the positive case, but this time in the language L±

τ :

U0 =
{

{x | ϕ(x)}
∣

∣ ϕ is a positive formula of L±
}

Un =
{

{x | ϕ(x, τ1, . . . , τk)}
∣

∣ ϕ is a positive formula of L± and

τ1, . . . , τk ∈ Uj , for some j < n
}

Uω =
⋃

n<ω

Un.

Of course, L± is the “first-order” fragment of L±τ , this is the fragment that
does not use the abstractor.

Models in the rest of this discussion of the paradoxical case will thus be of
the form

M = (Uω,∈
+

M ,∈
−

M ,=
+

M ,=
−

M ),

with ∈+

M , ∈−M , =+

M and =−

M four binary relations on Uω interpreting the
relation symbols ∈+, ∈−, =+ and =− respectively. We suppose =+ to be a
congruence for the language L± and M to satisfy the paradoxality axioms.

As this section is based on adaptations of what precedes, we will just give
an outline of the proof. Only the parts which differ from the positive case
will be proven thoroughly in this part.
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We will call a model M which satisfies the following conditions
{

ϕ(x, ~y)→ x ∈+ { t | ϕ(t, ~y) }

ϕ(x, ~y)→ x ∈− { t | ϕ(t, ~y) }.

co-admissible and denote by A0 the set of all co-admissible models. If M
and N are two models, we will write M ≤ N to denote that N is “better”
than M if it holds that

∈+

M ⊇∈
+

N and ∈−M ⊇∈
−

N and =+

M ⊇=+

N and =−

M ⊇=−

N .

The “positive preservation lemma” also holds in the paradoxical case, and
will be used often, as in the positive case.

We continue our discussion by forming a chain of selections in A0 by
stating

Aα+1 = {M ∈ Aα |M 
α τ =+ τ ′ →M |= τ =+ τ ′

and M 
α τ =− τ ′ →M |= τ =− τ ′ },

when Aα has already been defined, and where 
α is chosen here as the
forcing relation defined by:






M 
α τ =+ τ ′ if and only iff co-adm ` ∀x
(

ϕτ (x)
st
↔ ϕτ ′(x)

)

M 
α τ =− τ ′ if and only iff co-adm 0 ∀x
(

ϕτ (x)
st
↔ ϕτ ′(x)

)

,

where ψ st
↔ χ is a shorthand notation for

ψ ↔ χ ∧ ψ ↔ χ

and thus this is a stronger equivalence between formulas than↔.
The definition by induction started above finishes by stating that Aγ is the

“intersection” of the Aα, with α < γ, with γ a limit ordinal. So this is the
model defined as follows:

• We keep the same universe Uω as in the rest of this discussion;

• We define ∈+

∩Mα
as the intersection

⋂

α<γ ∈
+

Mα
;

• We define ∈−
∩Mα

in the same way:
⋂

α<γ ∈
−

Mα
;

• We define =+

∩Mα
in the same way:

⋂

α<γ =+

Mα
,
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• We define =−

∩Mα
in the same way:

⋂

α<γ =−

Mα
.

Finally, the chain of selections of co-admissible models

A0 ⊇ A1 ⊇ A2 ⊇ A3 ⊇ · · · ,

must again have a fixed point δ for which Aδ+1 = Aδ.
In the same way as in the preceding section, we can prove that each Aα

is inductively ordered, and thus the lemma of Zorn can be applied to Aδ to
prove the existence of a maximal element G ∈ Aδ for the order ≤ defined
between models. We will now show that this model G is again “generic”, as
it satisfies to the properties

G 
δ τ =+ τ ′ ↔ G |= τ =+ τ ′ and G 
δ τ =− τ ′ ↔ G |= τ =− τ ′,

for arbitrary terms τ and τ ′ in Uω.
The proof goes in the same way as in the positive case: the implications

from left to right are straightforward, so we only prove the implications from
right to left. For this, we again define a model G′ as follows:























∈+

G′=∈
+

G,

∈−G′=∈
−

G,

G′ |= τ =+ τ ′ if and only if G 
α τ =+ τ ′,

G′ |= τ =− τ ′ if and only if G 
α τ =− τ ′.

We start by showing that the model G′ satisfies the paradoxality axioms,
so if we suppose that G′

2 τ =+ τ ′, then it follows that G 6
 τ =+ τ ′, so
per definition of the forcing relation, we have that

co-adm 0 ∀x
(

ϕτ (x)
st
↔ ϕτ ′(x)

)

.

We conclude that G′ |= τ =− τ ′, per definition. So G′ is indeed a paradox-
ical model, as we wanted to prove. Notice that =− is “classical” in G′: we
indeed have that

G′ |= x =− y ↔ ¬G′ |= x =+ y.

We then show that G′ is a better model than G, so that G ≤ G′. As both
models have the same interpretation for the ∈+ and ∈− relation symbols,
we only check that =+

G′ ⊆=+

G and =−

G′ ⊆=−

G. For this, we suppose that
G′ |= τ = τ ′, so by definition of G′, we have that G 
δ τ = τ ′, which
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implies G |= τ = τ ′, by the definition of Aδ+1. The inclusion =−

G′ ⊆=−

G

can be proven in the same way. We conclude that G ≤ G′, as we wanted.
We continue by showing that G′ belongs to every Aα, for every ordinal α.

This, of course, will be done by induction on the class of ordinals.
In a first instance, we show that G′ ∈ A0. For this, we first suppose that

G′ |= ϕτ (x) and we must show that G′ |= x ∈+ τ . As G′ ≥ G, it follows
from G′ |= ϕτ (x) that also G |= ϕτ (x) holds, by the “positive preservation
lemma’. As G is co-admissible, it follows that G |= x ∈+ τ . We conclude
with G′ |= x ∈+ τ , as per definition ∈+

G′ is equal to ∈+

G. The implication
G′ |= ϕτ (x)→ G′ |= x ∈− τ can be proven in the same way.

We also have to show that =+

G′ is a congruence relation for the languageL±.
For this, we suppose that G′ |= x′ =+ x ∈+ τ =+ τ ′, so it also holds that
G |= x′ =+ x ∈+ τ =+ τ ′, by the “positive preservation lemma”. As =+

G

is a congruence relation, it follows that G |= x′ ∈+ τ ′, so we conclude that
G′ |= x′ ∈+ τ ′, as G and G′ have the same ∈+-relation. Furthermore, if we
suppose

G′ |= x′ =+ x =− y,

then G′ |= x′ =− y also holds, as =− is “classical” in G′. This proves that
=+

G′ is indeed a congruence relation for the language L±, as we wanted.
In a second instance, we show that if G′ ∈ Aα, then it follows that G′ ∈

Aα+1, for every ordinal α. We thus suppose that G′ ∈ Aα and G′

α τ =+

τ ′. By the definition of our forcing relation, this implies G 
α τ =+ τ ′, and
thus G′ |= τ =+ τ ′. The case for =− goes in the same way.

In a last instance for this section, we will show that if we suppose thatG′ ∈
Aα, for all ordinals α < γ with γ an arbitrary limit ordinal, then it is also
true that G′ ∈ Aγ ; as Aγ is the intersection of every Aα with α < γ, this
follows immediately.

This finishes the proof that the model G′ is in Aα for all ordinals α. And
thus, it follows that G′ ∈ Aδ. As we have also that G ≤ G′ and that G is
maximal inAδ per choice, we conclude by statingG = G′. This implies that
the direction of right to left is proven, what we wanted in these paragraphs.

This model G will, as in the positive case, again satisfy abstraction. We
prove this in the following paragraphs.

We define a (new) “better” model G′ ≥ G, as follows:






















G′ |= x ∈+ τ if and only if G |= ϕτ (x),

G′ |= x ∈− τ if and only if G |= ϕτ (x),

=+

G′ is equal to =+

G,

=−

G′ is equal to =−

G;
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this new model G′ is obviously again paradoxical. Also, G′ ≥ G holds, as
in the positive case.

Again can one show that G′ ∈ Aα, for all ordinals α. So we conclude
that G′ = G, as G was maximal in Aδ. Finally, in this way we have proven
that G indeed satisfies abstraction, as we wanted.

Final conclusion for the paradoxical case: we have found a pure term
model G which satisfies the abstraction scheme. Also, this model satisfies
the following intensionality rule allowing identification of terms:

G |= τ =+ τ ′ if and only if co-adm ` ∀x
(

ϕτ (x)
st
↔ ϕτ ′(x)

)

.

Finally in this model, the relation =− is classical: “x =− y” is simply the
negation of “x =+ y”.

Notice that, unlike what happens in the article [3], we didn’t have to use
any automorphism argument; we come back to this in our further “Com-
ments”, but mention already that precisely the use of automorphisms brought
in more extra restrictions on the terms admitted in the partial case studied
in [3].

4. Remarks and comments

In this final section, we will give a few comments about the differences and
the similarities with respect to the case of admissible models.

In the article [1] of Gilmore, no real identifications take place between
terms, except formal identifications as for example between the terms {x |
x = x } and { t | t = t }, while the two terms {x | x = x } and {x |
x = x ∧ x = x } are not considered “equal”. In comparison, this paper
now provides models in which more identifications are possible, based on
an intensionality rule using the defining formulas as determining factor of
identification.

In the papers [2] and [3], the notions of “better” and “extension” coincide:
every extension is a better model, and every better model is an extension.
On the other hand, in this paper, if we have M ≤ N , for two models M
and N , then we say that M is an extension of N , while N is better than M .
This seems to be the origin of many differences with the case of admissible
models elaborated in the two articles [2] and [3].

Furthermore, in the case of the admissible models for partial set-theory,
extra restrictions had to be made on the envolved terms (one had to consider
only so-called “predicative” terms), due to the use of an “automorphism ar-
gument”. On the other hand, the co-admissible models in the paradoxical
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case don’t present any need for such restrictions on terms, as there is no
need for an automorphism argument.

Nevertheless, in the “admissible model”-case, the equality relation in the
final models was a “strong” congruence, so one allowing also substitution
in terms; in this article, the equality is “only” a congruence relation for the
corresponding first-order language.

We also note that the differentiation =− used in the paradoxical case is
classcial: one has that =− is just the “negation” of =+.

We observe that it is also possible to use another relation =− defined as

x =− y if and only if ∃t
(

(x ∈+ t ∧ y ∈− t) ∨ (x ∈− t ∧ y ∈+ t)
)

in the style of Gilmore [1].
Finally, let us mention two open questions about the method of co-admissi-

ble models described in this paper:

• Does there exist a forcing relation such that the generic model sat-
isfies extensionality at least on the “classical” sets: a set τ is called
classical if and only if ∀x (x ∈+ τ ↔ ¬x ∈− τ)? This question has
been answered positively for the “admissible model”-case for partial
set-theory.

• Does there exist adequate non-uniform forcing relations M 
α, so
dependent on the model M and the ordinal α?

We leave these open questions for future investigations.

E-mail: gabriel.hollander@gmail.com
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