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REASSURANCE VIA TRANSLATION∗

MARCEL CRABBÉ

Abstract
Reassurance and classical recapture are scrutinized for minimal ver-
sions of non-classical bivalent logics, by embedding non-classical
logics in classical logic in order to take advantage of the standard
classical background.

Reassurance and classical recapture will be shown to hold for a minimal ver-
sion of non-classical logics. This kind of reassurance was first proved by
Graham Priest for the logic of paradox for languages with a finite number of
relation symbols and no function symbols. Later on he changed his specific
definition of minimality, because it appeared to lack recapture. This was not
the end of the story, however, because we showed in [1], not only that reas-
surance fails for his new concept in the languages considered, but also that it
is likely to fail for any reasonable notion of minimality when function sym-
bols and equality are included. We then proposed a definition of minimality
that fixes the problem for the languages considered by Priest, and left the
problem open for languages with predicate and function symbols, but with-
out equality; and for languages containing an infinite number of predicate
symbols and equality, but no function symbols.

The aim of this paper is to settle the first problem via a natural translation
technique. We will do it not only for LP but for the so called four valued logic
and its derived three valued ones. We have checked that the same method
can be adapted to solve the second problem, at least if equality is treated in
one of the ways suggested in [1].

Though the semantics for these non-classical logics differ from that of
standard logic, it is convenient to work in ordinary standard logic and derive
the results for non-classical logics from propositions of ordinary classical
logic, by translating/embedding the non-classical logic into classical logic.

∗I wish to thank the people who read and commented on draft versions of this paper,
especially T. Lucas and G. Priest.
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282 MARCEL CRABBÉ

The excess of logical stuff over the image of the translation, will then act as
a kind of metalanguage.

The paper is divided into two sections. The first section is a sort of exer-
cise in elementary model theory. The second one transfers/translates the re-
sults thereby obtained in the non-classical bivalent logic, which stems mainly
from Michael Dunn’s semantics in [2].1

Our main reference for motivation and complementary information is [3],
especially chapter 16.

1. Minimal models

Definition 1.1 : Let F be a set of first-order formulas in a language without
equality, but possibly with function symbols.
The F-kernel of a model A, kerF (A), is the set of the objects o in the universe
|A| of A such that v(x) = o and (A, v) |= A, for some formula A of F , some
variable x occurring free in A, and some valuation v in |A|.
Loosely speaking, kerF (A) is the union of the fields of the formulas in F ,
viewed as relations on |A|. If F is a set of sentences, then the F-kernel is the
emptyset. If a universal closure of some formula in F with a free variable is
a logical truth, then kerF (A) = |A|.

The transfer relation ⊂⊂F between models is defined by:

B ⊂⊂F A iff
kerF (B) ⊆ kerF (A) and
if (B, v) |= A then, (A, v) |= A, for all A in F ,
and all valuations v to kerF (B).

The relation B ≺F A is defined by B ⊂⊂F A and |B| ⊇ |A|.
Note that if F is the set of all sentences, then ⊂⊂F is the relation of ele-

mentary equivalence. Also, if F is the set of all formulas, and the language
has no function symbols, then B ≺F A if and only if B is an elementary
extension of A.

If X is a class of models, an F-minimal model in X is a model A in X
such that for every model B in X , if B ≺F A, then A ⊂⊂F B.
In particular, if Σ is a theory (a set of sentences), an F-minimal Σ-model is
an F-minimal model in the class of all models of Σ.

Thus, an F-minimal model in X is a minimal element of X , relative to the
strict partial ordering “B ≺F A and not A ⊂⊂F B”.

1 See also [3], chapter 5, footnote 3, and the autocommentary of it in chapter 19.
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Proposition 1.1 : For every F , Σ, and model A of Σ, with finite F-kernel,
there is an F-minimal Σ-model B such that B ≺F A.

Proof. We enrich the language by adding a new symbol = (that we shall
interpret canonically as the identity) and a new constant co for each element
o of the universe |A| of the model A of Σ.

The set of these new constants is denoted by A, and if C is a model such
that |A| ⊆ |C|, we will denote by (C,A) the expansion of C for the enriched
language, obtained by putting co(C,A) = o, for o ∈ |A|.

Suppose kerF (A) = {o1, ..., ok} and let K = {co1
, ..., cok

}. We form a
theory ∆, by first adding to Σ all the sentences

• ¬A[x1 := α1, ..., xn := αn] that are true in (A,A), and where A is
in F , and {α1, ..., αn} ⊆ K;

• ∀x1...∀xn (A → (x1 = co1
∨ ... ∨ x1 = cok

)), where A ∈ F and x1

occurs free in A;2

• ¬co = co′ , when o, o′ are distinct elements of |A|.
and, next, a maximal set, consistent with the so obtained theory, of sentences
¬A[x1 := α1, ..., xn := αn], where A is in F , and {α1, ..., αn} ⊆ K.

Let B be a model such that (B,A) is a model of ∆. We will complete the
proof by showing that

1. B ≺F A, and that
2. B is an F-minimal Σ-model.

1. We have |A| ⊆ |B| and kerF (B) ⊆ kerF (A), by the axioms of ∆.
Let A be in F , and let v be a valuation to kerF (B) such that (B, v) |= A.

We have (B,A) |= A[x1 := cv(x1), ..., xn := cv(xn)]. Since ¬A[x1 :=
cv(x1), ..., xn := cv(xn)] is not in ∆, (A,A) 6|= ¬A[x1 := cv(x1), ..., xn :=
cv(xn)]. Therefore, (A, v) |= A, because v is a valuation in A as well.

2. Let B′ ≺F B and let us prove that B ⊂⊂F B′.
We first show that (B′,A) is a model of ∆.
Suppose that ¬A[x1 := α1, ..., xn := αn] ∈ ∆ and that (B′,A) |=

A[x1 := α1, ..., xn := αn], for A ∈ F and {α1, ..., αn} ⊆ K. Then
(B′, v) |= A, for a valuation in kerF (B′) such that v(xi) = αi(B′,A)

(1 ≤ i ≤ n), and it follows that (B, v) |= A, because B′ ≺F B. Hence,
(B,A) |= A[x1 := α1, ..., xn := αn], in contradiction with the fact that
(B,A) |= ∆.
The other sentences of ∆ are easily seen to be true in (B′,A).

We finish by showing that B ⊂⊂F B′.
If, for A ∈ F and valuation v in kerF (B) ⊆ |B′|, (B, v) |= A and

(B′, v) 6|= A, then (B,A) |= A[x1 := cv(x1), ..., xn := cv(xn)] and (B′,A)

2 When the kernel is empty, this is ∀x1...∀xn ¬A.
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284 MARCEL CRABBÉ

6|= A[x1 := cv(x1), ..., xn := cv(xn)]. It follows that ∆ ∪ {¬A[x1 :=
α1, ..., xn := αn]} would be consistent, since (B′,A) is a model of it. But
this is plainly impossible, by maximality of ∆, and the fact that (B,A)
is a model of ∆. Therefore, (B′, v) |= A. From this, we also see that
kerF (B) ⊆ kerF (B′). �

Corollary 1.1 : If F is a set of sentences and Σ is consistent, then there is a
≺F -minimal Σ-model.

Proof. If F is a set of sentences, the F-kernel is empty, and hence finite! �

1.1. Positive theories

Definition 1.2 : A formula is positive if all its logical symbols are among
∧,∨, ∀ and ∃.
A p-trivial theory is one that entails all positive sentences of its language.
A model is (positive) trivial iff every positive sentence is true in it.

Note that a model is trivial iff all sentences of the form ∀x1...∀xnrx1...xn

are true in it.
The next proposition refines the observation that every positive theory has

a finite (trivial) model.

Proposition 1.2 : Every non p-trivial positive theory has a finite non-trivial
model.

Proof. For a simple-minded proof, suppose that A is an infinite model such
that, for some rn, 〈o1, ...., on〉 /∈ rn

A
, and let ♠ be an element of |A| \

{o1, ...., on}.
Define a finite model B as follows:
|B| = X ∪ {♠};
fB(o1, ..., on) = ♠, for all function symbols;
rn
B

= |B|n \ {〈o1, ..., on〉};
sm
B

= |B|m, for any other relation symbol sm.
One shows that every positive sentence true in A is true in B, by showing,

by induction, that, for A positive, (B, vb) |= A, if (A, v) |= A, where
vb(x) = v(x), for v(x) ∈ {o1, ..., on}, and vb(x) = ♠, else.

The basis of the induction is clear and the inductive steps are straight-
forward, because the set of positive formulas is closed under subformulas.
Clearly, B 6|= ∀x1...∀xnrnx1...xn, that is to say B is not trivial. �
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Definition 1.3 : The consequence relation Σ F C holds iff A |= C, for
every F-minimal Σ-model.3

Remark : Since an F-minimal Σ, Π-model ought not be an F-minimal Σ-
model, this consequence relation ought not be monotonic.4 For example,
p {p,q} ¬q, but p, q 6{p,q} ¬q. Neither is it closed under substitution:
p {p,q} ¬q, but p 6{p,q} ¬p. Clearly, if Σ  C, then Σ F C.

Definition 1.4 : F transfers triviality between models of a positive theory Σ
iff whenever B is trivial and B ≺F A, then A is trivial, for every model A

and B of Σ.

It is in the next lemma that the condition on the universes in the definition
of ≺F comes in.

Lemma 1.1 : A sufficient condition for F to transfer triviality between models
of Σ is that for every atomic rx1...xn with distinct variables, there are posi-
tive formulas A1, ..., Am in F such that Σ  (∀x1...∀xk (A1 ∧ ... ∧ Am) →
∀x1...∀xn rx1...xn) (or Σ  ∀x1...∀xn rx1...xn).

Proof. Let A, B be models of Σ such that B is trivial and that B ≺F A.
Suppose moreover that Σ  (∀x1...∀xk (A1 ∧ ...∧Am) → ∀x1...∀xn rx1...
xn), for some positive formulas A1, ..., Am in F . Since B is trivial, we have
(B, v) |= Ai (1 ≤ i ≤ m), for every valuation v in kerF (B) = |B|. Using
the crucial fact that |B| ⊇ |A|, we conclude (A, v) |= Ai (1 ≤ i ≤ m), for
every valuation in A. Therefore A |= ∀x1...∀xn rx1...xn. Since this works
for every relational symbol, A is trivial. �

Now we show that one can be reassured with regard to the “triviality” of
F :

Theorem 1.1 : If F transfers triviality and the positive theory Σ is not p-
trivial, then Σ 6F C, for some positive C.

Proof. Bringing propositions 1.1 and 1.2 together, one sees that every non
p-trivial positive theory Σ has a non-trivial F-minimal Σ-model. �

3 The proper generalisation of this relation to formulas, is achieved by extending the
notion of F-minimal Σ-model to formulas as follows: if G is a set of formulas, an F-minimal
G-model is an F-minimal model in the class in {B | (B, v) |= G, for some v }.

4 When dealing with sets of sentences, I write Σ, Π for Σ ∪ Π and A for {A}.
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286 MARCEL CRABBÉ

In a suitable language, Σ = ∅ and F = {¬px} provide an example of a
non p-trivial positive theory without a non-trivial F-minimal Σ-model.

We now show that F recaptures the logical consequence  in some con-
sistent environments.

Theorem 1.2 : Let ∀¬F be the universal closures of the negations of the
formulas of F . If ∀¬F , Σ is consistent, then Σ F C iff ∀¬F , Σ  C.

Proof. A model of ∀¬F , Σ is clearly an F-minimal Σ-model. For the con-
verse, suppose that A is F-minimal. And let B be a model of ∀¬F , Σ. By
the upward Löwenhein-Skolem theorem5 , we can suppose that |A| ⊆ |B|.
Therefore B ≺F A. By minimality, A is model of ∀¬F . �

If Σ = {∃x¬px} and F = {¬px}, we have ∀¬F , Σ  ∀x px, but not
Σ F ∀x px.

2. Two-valued logic translated in one-valued logic

2.1. Truth / Falsehood

The bivalent logic is the natural non-classical logic that emerges from classi-
cal logic by simply dropping the principles of excluded-middle and of non-
contradiction.6 As odd and maybe misleading this use of ‘bivalent’ might
sound, it is intended to refer only to the existence of two independent truth-
values not to their relations. Hence although classical logic could be in-
troduced as it is often the case along this line as a bivalent consistent and
complete logic, it is actually better seen as a univalent partial logic, since the
false, there being definable from the truth, need not be considered in it as a
primitive value.

A BL-model A, with non empty universe |A|, is exactly like an ordi-
nary model, except that n-ary relation symbols are interpreted by ordered
pairs of their respective extension and anti-extension 〈r+

A
, r−

A
〉. Thus, con-

stants and function symbols are interpreted, as usual, by objects and func-
tions. Likewise, a valuation is still a function of the set of the variables;
and the valuation v to |A| extends canonically to an interpretation vA of
the terms by putting, vA(x) = v(x), for variables x, and vA(ft1...tm) =

5 If equality was present and interpreted in a standard way (no externally distinct objects
are internally equal), then this argument would not not valid, because it doesn’t apply to finite
models.

6 See the text accompanying footnote 1.
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fA(vA(t1), ..., vA(tm)), for complex terms. The truth and falsehood in a
model with respect to a valuation are defined inductively, as follows:

(A, v) |=+ rt1...tn iff 〈vA(t1), ..., vA(tn)〉 ∈ r+
A

(A, v) |=− rt1...tn iff 〈vA(t1), ..., vA(tn)〉 ∈ r−
A

(A, v) |=+ ¬A iff (A, v) |=− A

(A, v) |=− ¬A iff (A, v) |=+ A

(A, v) |=+ (A ∧ B) iff (A, v) |=+ A and (A, v) |=+ B

(A, v) |=− (A ∧ B) iff (A, v) |=− A and/or (A, v) |=− B

(A, v) |=± (A ∨ B) iff (A, v) |=± ¬(¬A ∧ ¬B)

(A, v) |=± (A → B) iff (A, v) |=± ¬(A ∧ ¬B)

(A, v) |=+ ∀x A iff (A, v[x 7→ o]) |=+ A,
for all o in |A|

(A, v) |=− ∀x A iff (A, v[x 7→ o]) |=− A,
for some o in |A|

where v[x 7→ o](α) is o, if α is x, and else v(α)

(A, v) |=± ∃x A iff (A, v) |=± ¬∀x ¬A

We define the BL-consequence relation by Σ BL C iff for every BL-
model A and valuation v such that (A, v) |=+ A, for A in Σ, we have
(A, v) |=+ C.

2.2. Positive translation

We will exploit Lyndon’s well-known notion of positive and negative occur-
rence of a relation symbol r in a formula A.
An occurrence of r in A is positive when the branch of the parse tree of A
leading from this occurrence of r to A itself contains an even number of for-
mulas ¬F or (F → B), with the corresponding occurrence of r in F . The
occurrence is negative when this number of formulas is odd.

A formula is positive [negative] iff all occurrences of relation symbols in
it are positive [negative].

Remark : A formula is positive if it can be transformed in a positive formula
(in the strict sense of definition 1.2), by replacing (A → B) by (¬A ∨ B),
pushing negations inside — using the de Morgan and the related quantifica-
tion laws — and cancelling double negations.
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Let us enrich our language L to a language Lpos by adding a new symbol
r for each relational symbol r in L. If we replace in a formula A of L each
occurrence of an atomic formula rt1...tn, with negative occurrence of r, by
¬rt1...tn, then we obtain a positive formula Apos in Lpos. If we replace simi-
larly each occurrence of an atomic formula rt1...tn, with positive occurrence
of r, by ¬rt1...tn, then we obtain a negative formula Aneg.7 We denote by
T pos the set of Apos such that A is in T .

To a BL-model A, we associate in a biunivocal way a model Apos for
Lpos, with the same universe and interpretation of the function symbols, by
putting:

rApos = r+
A

rApos = r−
A

,

for all relation symbols in the language.
An easy induction on t and A gives:

Lemma 2.1 :
vA(t) = vApos(t);
(A, v) |=+ A iff (Apos, v) |= Apos;
(A, v) |=− A iff (Apos, v) 6|= Aneg.

Thus the positive translation Apos expresses that A is true, and the negative
translation Aneg that A is not false.

The next proposition follows as a corollary.

Proposition 2.1 : Σ BL C iff Σpos
 Cpos.

2.3. Gaps and Gluts

2.3.1. The general bivalent case

Definition 2.1 : The non-classical part of the bivalent model A is defined à la
Priest as the set of contradictory or incomplete statements in A, namely the
set A!
{

〈rn, 〈o1, ..., on〉〉

∣

∣

∣

∣

rn is a relation symbol; and
〈o1, ..., on〉 ∈ rn+

A
∩ rn−

A
or 〈o1, ..., on〉 /∈ rn+

A
∪ rn−

A

}

7 To make this formal, define first rt1...t
pos
n

as rt1...tn and rt1...t
neg
n

as ¬rt1...tn. And
then define Apos and Aneg inductively as follows: ¬A α is ¬Aα, (A ∧ B)α is (Aα ∧ Bα),
(A ∨ B)α is (Aα ∨ Bα), (A → B)α is (Aα → Bα), ∀x A α is ∀x Aα, and ∃x A α is
∃x Aα; where α stands for pos or for neg and pos is neg, and neg is pos.
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The preorder8 ≺ is defined as

B ≺ A iff B! ⊆ A! and |B| ⊇ |A|

If Σ is a set of sentences, a minimal Σ-model A is a model of Σ such that
if B |= Σ and B ≺ A, then A! ⊆ B!.

The associated consequence relation Σ BLm C is defined as A |=+ C,
for every Σ-minimal model A such that A |=+ Σ.

Definition 2.2 : We denote by NC the set of all formulas (rx1...xn∧¬rx1...xn)
of the language; and by EM the set of all sentences ∀x1...∀xn (rx1...xn ∨
¬rx1...xn) of the language, where x1, ..., xn are the first n variables in some
fixed enumeration of the variables.

Proposition 2.2 :
Let F be the set of all formulas in NCpos or NCneg, then
1. Σ BLm C iff Σpos

F Cpos.
2. F transfers triviality between models of Σpos.

Proof. 1. is true if it is the case that a BL-model A is a minimal Σ-model iff
Apos is an F-minimal Σpos-model. And this follows immediately from the
fact that

B! ⊆ A! iff B
pos ⊂⊂F A

pos

which we now prove.
Suppose that B! ⊆ A!, and let v be a valuation in kerF (Bpos), such

that (Bpos, v) |= (rx1...xn ∧ ¬¬rx1...xn) or (Bpos, v) |= (¬rx1...xn ∧
¬rx1...xn). Then, 〈r, 〈v(x1), ..., v(xn)〉〉 ∈ B! ⊆ A!. Therefore, (Apos, v) |=
(rx1...xn ∧ ¬¬rx1...xn) or (Apos, v) |= (¬rx1...xn ∧ ¬rx1...xn). This
shows also that kerF (Bpos) ⊆ kerF (Apos).

For the converse, suppose that Bpos ⊂⊂F Apos. Let 〈r, 〈o1, ..., on〉〉 be in
B! and v be a valuation such that v(x1) = o1, ..., v(xn) = on. As we have
〈o1, ..., on〉 ∈ r+

B
∩ r−

B
or 〈o1, ..., on〉 /∈ r+

B
∪ r−

B
, it follows that (Bpos, v) |=

(rx1...xn ∧ ¬¬rx1...xn) or (Bpos, v) |= (¬rx1...xn ∧ ¬rx1...xn). There-
fore, (Apos, v) |= (rx1...xn ∧ ¬¬rx1...xn) or (Apos, v) |= (¬rx1...xn ∧
¬rx1...xn) and whence 〈o1, ..., on〉 ∈ r+

A
∩ r−

A
or 〈o1, ..., on〉 /∈ r+

A
∪ r−

A
, i.e.

〈r, 〈o1, ..., on〉〉 ∈ A!
2. Since ∀x1...∀xn(rx1...xn ∧ rx1...xn) → ∀x1...∀xnrx1...xn and ∀x1...

∀xn(rx1...xn ∧ rx1...xn) → ∀x1...∀xnrx1...xn are logical truths, F trans-
fers triviality between models of Σpos, by lemma 1.1. �

8 Priest uses strict inclusion between the C!, and so has a strict partial order. This change
does not affect the definition of minimality.
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Definition 2.3 : A BL-model is trivial iff every sentence is true in it. Clearly,
a BL-model A is trivial iff rn+

A
= rn−

A
= |A|n, for every rn.

A theory Σ is BL-trivial [BL
m-trivial] iff Σ BL C [Σ BLm C], for every

C in its language.

Theorem 2.1 : (Reassurance) If a theory is not BL-trivial, then it is not BL
m-

trivial either.

Proof. If Σ is not BL-trivial, then Σpos, is not p-trivial, by proposition 2.1.
By proposition 2.2.2 and theorem 1.1, we then have Σpos 6NCpos,NCneg Cpos,
for some C. Therefore, by proposition 2.2.1, Σ 6BLm C, for some C. �

2.3.2. The glut and gap cases

Definition 2.4 : An LP [K3] model A is a BL-model satisfying rn+
A

∪ rn−
A

=

|A|n [rn+
A

∩ rn−
A

= ∅], for every relation symbol rn in its language.
We observe that there are trivial LP-models, but that no K3-model is trivial.
A CL-model is a model that is both an LP-model and a K3-model.9

An LP-model is a BL-model with no gaps. A K3-model is a BL-model
with no gluts. Thus an LP-model is a BL-model of EM, and a K3-model is a
BL-model in which no sentence of EM is false.

With the consequences relations with respect to LP, K3 and CL-models
(LP, K3 and CL) we have:

Σ BL C =⇒=⇒

Σ LP C

Σ K3 C =⇒

=⇒
Σ CL C ⇐⇒ Σ  C

A BL-model A is an LP-model iff Apos is a model of EMpos, i.e. a model
verifying all the sentences ∀x1...∀xn (rnx1...xn∨rnx1...xn); and it is a K3-
model iff Apos is a model of EMneg, i.e. a model verifying all the sentences
∀x1...∀xn ¬(rnx1...xn ∧ rnx1...xn).

We also have the glut and gap versions of proposition 2.1:

Proposition 2.3 :
1. Σ LP C iff EMpos, Σpos

 Cpos;
2. Σ K3 C iff EMneg, Σpos

 Cpos;
3. Σ  C iff Σ CL C iff EMpos, EMneg, Σpos

 Cpos.

9
LP stands for the logic of paradox and K3 stands for the gappy Kleene’s logic. CL is the

BL-version of classical logic, as a classical (univalent) model can be canonically identified
with a bivalent model without gaps and gluts.
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Proof. We have Σ LP C iff EM, Σ BL C. From this, we get 1, by propo-
sition 2.1.

Let E1, ..., En be the sentences of EM whose relation symbols occur in
Σ, C.

We have Σ K3 C iff Σ BL C ∨ ¬E1 ∨ ... ∨ ¬En. From this, we get, by
proposition 2.1, Σ K3 C iff Σpos

 Cpos ∨¬Eneg
1 ∨ ...∨¬Eneg

n , whence 2.
Finally, Σ CL C iff Σ, EM BL C∨¬E1∨ ...∨¬En. From this 3 follows

similarly, by proposition 2.1. �

Theorem 2.2 : (Classical recapture for BL
m) If Σ is consistent, then Σ  C

iff Σ BLm C.

Proof. The set ∀¬F of the universal closures of the negations of the for-
mulas of NCpos, NCneg is equivalent to EMpos, EMneg. By proposition 2.3.3,
∀¬F , Σpos is consistent. Hence, by theorem 1.2, ∀¬F , Σpos

 Cpos iff
Σpos

F Cpos. From this, the result follows, by propositions 2.2.1 and 2.3.3.
�

Reassurance and recapture. Reassurance and classical recapture hold for the
gap and for the glut cases, but their respective significance is quite different,
as we shall now show.

Definition 2.5 : A minimal Σ-LP-model is a minimal Σ-BL-model, which is
an LP-model; likewise, a minimal Σ-K3-model is a minimal Σ-BL-model,
which is a K3-model.

Notice that if A, B are Σ-BL-models and A is an LP-model [K3-model]
such that B ≺ A, then B is an LP-model [K3-model]. Therefore, a minimal
Σ-LP-model [Σ-K3-model] is a minimal Σ-BL-model, for the relation ≺
restricted to LP-models [K3-models] of Σ; and conversely.

To a model A for Lpos, we associate a “glut-model” Aglut and a “gap-
model” Agap, each of them with same universe and same interpretation of
constants and of function symbols as A, by stipulating:

rn
Aglut = rn

A
; rn

Agap = rn
A
;

rn
Aglut = rn

A
∪ (|A|n \ rn

A
); rn

Agap = rn
A
\ rn

A
,

for all rn.
One shows, by induction on A, that:

if A |= Apos, then Aglut |= Apos;
if Agap |= Apos, then A |= Apos.
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Proposition 2.4 :
1. Every minimal Σ-BL-model is an LP-model .
2. Every minimal Σ-K3-model is a CL-model (hence, an LP-model as well).

Proof. Let F be, as above, the set of all formulas NCpos ∪ NCneg.
1. Let A be a minimal Σ-model. We have Aposglut ≺F Apos, because, in the
first place, (Aposglut, v) |= (rx1...xn∧rx1...xn) implies 〈v(x1), ..., v(xn)〉 ∈
rApos∩(rApos∪(|Apos|n\rApos)) = rApos∩rApos , hence (Apos, v) |= (rx1...xn∧
rx1...xn); and, in the second place, (Aposglut, v) |= (¬rx1...xn∧¬rx1...xn)
implies trivially (Apos, v) |= (¬rx1...xn ∧ ¬rx1...xn). As a consequence,
kerF (Aposglut) ⊆ kerF (Apos).

Since, by proposition 2.2, Apos is an F-minimal Σpos-model, it follows
that Apos ⊂⊂F Aposglut. Hence A is an LP-model.

2. A minimal Σ-K3-model is an LP-model by 1, hence a CL-model. �

For the consequence relations LPm and K3m , and the associated notions
of triviality, defined in the obvious way, we obtain

Corollary 2.1 :
The consequence relation BLm is extensionally the same as LPm .
The consequence relations K3m , CL and  are extensionally identical.

Whence, by the theorems 1.1 and 1.2:

Theorem 2.3 : (Reassurance and Recapture)
1. If Σ is not LP-trivial, then it is not LP

m-trivial; if Σ is not K3-trivial, then
it is not K3

m-trivial.
2. If Σ is consistent, then
Σ BLm C iff Σ LPm C iff Σ K3m C iff Σ  C.
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