
“08degauquier”
2012/6/6
page 229

i

i

i

i

i

i

i

i

Logique & Analyse 218 (2012), 229–240

CUTS, GLUTS AND GAPS∗

VINCENT DEGAUQUIER

Abstract
This paper deals with predicate logics involving two truth values
(here referred to as bivalent logics). Sequent calculi for these logics
rely on a general notion of sequent that helps to make the principles
of excluded middle and non-contradiction explicit. Several formu-
lations of the redundancy of cut are possible in these sequent calculi.
Indeed, four different forms of cut can be distinguished. I prove that
only two of them hold for positive sequent calculus (which is both
paraconsistent and paracomplete) while all of them hold for classi-
cal sequent calculus. As for complete and consistent sequent calculi
(which are respectively paraconsistent and paracomplete), I prove
that they only admit one form of cut in addition to the two that hold
for positive sequent calculus.

Introduction

Logic is traditionally defined according to underlying principles. Among
them, three seem particularly important. The principle of bivalence (under-
stood in its etymological sense) says that there are exactly two truth values,
usually called True and False. The principle of excluded middle states that
a sentence has at least one truth value. The principle of non-contradiction
states that a sentence has at most one truth value. A logic that satisfies the
conjunction of these three principles is called classical. By contrast, a logic
is called non-classical if it does not obey at least one of them.

∗Dedicated to the memory of Professor Jean Ladrière, distinguished translator of Ger-
hard Gentzen’s Untersuchungen über das logische Schließen into French (see [5]), this article
is an opportunity to pay tribute to the logico-philosophical tradition initiated by him at the
Université catholique de Louvain. This article is based on a paper presented at the third
edition of PhDs in Logic, Brussels, Belgium, 17–18 February 2011.
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230 VINCENT DEGAUQUIER

In relation to these principles, three bivalent logics differ from classical
logic insofar as they ignore the principle of excluded middle and/or the prin-
ciple of non-contradiction: consistent logic satisfies the principle of non-
contradiction, complete logic satisfies the principle of excluded middle and
positive logic ignores both of these principles. In addition to classical logic,
three bivalent (non-classical) logics can therefore be distinguished.

My purpose is to provide a unified framework for studying the semantic
and proof-theoretic relationships between these four bivalent logics. More
specifically, my aim is to characterize the notion of logical consequence
within each of these logics. To do this, I propose new definitions of the
notions of model and sequent which make these principles explicit.

The proof-theoretic approach I have chosen is sequent calculus. For each
of the logics mentioned above, I will give a notion of validity and propose
an associated sequent calculus. A sequent is called valid, glut-valid, gap-
valid and classic-valid if it is semantically correct in positive logic, complete
logic, consistent logic and classical logic, respectively. Similarly, a sequent
is called derivable, glut-derivable, gap-derivable and classic-derivable if it is
proof-theoretically correct in positive logic, complete logic, consistent logic
and classical logic, respectively.

1. Language

A first-order predicate language L is composed of a countable set of sym-
bols consisting of a non-empty set of n-ary relation symbols, a set of n-ary
function symbols, a countable set of variables and the usual logical symbols
(¬, ∧, ∨, →, ∀ and ∃). The nullary function symbols are called constants
and the nullary relation symbols are called propositional symbols.

As for syntax, the notions of term and formula are defined in the usual way.
Nevertheless, formulas equivalent up to their bound variables are identified
so that their bound variables are supposed to be Bourbaki’s squares. In this
way, any occurrence of a variable in a formula is free. The substitution
operation is defined as follows: If A is a formula, α1, ..., αn are distinct
variables and t1, ..., tn are terms, then A[α1 := t1, ..., αn := tn] denotes the
formula resulting from the simultaneous substitution of ti for αi in A, for all
i (1 ≤ i ≤ n).

2. Semantics

A positive model M (simply called model hereafter) for a language L is
composed of a structure for L and an interpretation of the proper symbols of
L in this structure (see [1] and [3]).
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CUTS, GLUTS AND GAPS 231

A structure for L consists of a universe, a set of relations on this universe
and a set of functions defined on this universe and with values in this uni-
verse. For every n ∈ N, if L has n-ary relation symbols, the structure must
have at least one n-ary relation. For every n ∈ N, if L has n-ary function
symbols, the structure must have at least one n-ary function.

The universe |M| of a model M is a non-empty set. An n-ary relation R is
an ordered pair of subsets of |M|n such that R = 〈R+, R−〉. The first term
of the ordered pair denotes the set of n-tuples of elements of the universe
that verify the relation R and the second term of the ordered pair denotes the
set of n-tuples of elements of the universe that falsify the relation.

An interpretation of L assigns an object in the universe to every constant,
an n-ary function defined on the universe to every n-ary function symbol of
L and an n-ary relation to every n-ary relation symbol of L. The interpreta-
tion of an n-ary relation symbol R of L in the universe of the model M is
denoted RM and is equated to the ordered pair

〈

(Rn)+
M

, (Rn)−
M

〉

of subsets
of |M|n.

A valuation is an assignment of objects to variables. If v is a valuation, ~α
is a sequence of distinct variables α1, ..., αn and ~o is a sequence of elements
o1, ..., on in |M|, then v[~α 7→ ~o] is the valuation that differs from v insofar
as the variable αi denotes the element oi, for all i (1 ≤ i ≤ n). More
specifically, the valuation v[~α 7→ ~o] is defined as follows:

• v[~α 7→ ~o](β) = oi, if β is the same variable as αi (1 ≤ i ≤ n).
• v[~α 7→ ~o](β) = v(β), if β is distinct from every αi (1 ≤ i ≤ n).

By combining a valuation v and an interpretation of constants and func-
tion symbols in M, all terms of the language are given a value. The joint
extension of interpretation and valuation is denoted vM. Moreover, if ~t is a
sequence of terms t1, ..., tn, then vM(~t) denotes the sequence vM(t1), ...,
vM(tn). It is required that:

• vM(β) = v(β), for every variable β.
• vM(F~t) = FM(vM(~t)), for every n-ary function symbol F .

Truth and falsity of a formula A are defined in a model under a valuation.
Given a model M and a valuation v, truth (denoted by M �

+
v A) and falsity

(denoted by M �
−
v A) of formulas of the language are defined inductively:

M �
+
v Rt1...tn if and only if 〈vM(t1), ..., vM(tn)〉 ∈ R+

M

M �
−
v Rt1...tn if and only if 〈vM(t1), ..., vM(tn)〉 ∈ R−

M

M �
+
v ¬A if and only if M �

−
v A

M �
−
v ¬A if and only if M �

+
v A

M �
+
v (A ∧ B) if and only if M �

+
v A and M �

+
v B
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232 VINCENT DEGAUQUIER

M �
−
v (A ∧ B) if and only if M �

−
v A and/or M �

−
v B

M �
+
v (A ∨ B) if and only if M �

+
v A and/or M �

+
v B

M �
−
v (A ∨ B) if and only if M �

−
v A and M �

−
v B

M �
+
v (A → B) if and only if M �

−
v A and/or M �

+
v B

M �
−
v (A → B) if and only if M �

+
v A and M �

−
v B

M �
+
v ∀α A if and only if M �

+
v[α7→o] A, for all o ∈ |M|

M �
−
v ∀α A if and only if M �

−

v[α7→o] A, for some o ∈ |M|

M �
+
v ∃α A if and only if M �

+
v[α7→o] A, for some o ∈ |M|

M �
−
v ∃α A if and only if M �

−

v[α7→o] A, for all o ∈ |M|

Remark: Although the notation might suggest it, the definitions of the con-
nectives listed above are not equivalent to the usual definitions. By dis-
tinguishing truth from non-falsity and falsity from non-truth, the positive
definitions of truth and falsity make the traditional definitions of logical con-
nectives ambiguous. While it does not exist in classical logic, this ambiguity
must be removed in a non-classical bivalent logic. It is therefore possible to
propose several positive definitions corresponding to the classical definition
of a connective but none of them fit perfectly with it. This translation prob-
lem is particularly acute in the cases of negation and implication.

A model M is consistent if and only if (Rn)+
M

∩ (Rn)−
M

= ∅, for every
n-ary relation R on |M|. A model M is complete if and only if (Rn)+

M
∪

(Rn)−
M

= |M|n, for every n-ary relation R on |M|. In this sense, a model
is called classical if and only if it is both consistent and complete.

Fact 1 : (EXCLUDED MIDDLE) Let M be a complete model.

1. if M 2
+
v A, then M �

−
v A, for all formulas A.

2. if M 2
−
v A, then M �

+
v A, for all formulas A.

Proof. By induction on the complexity of A. �

Fact 2 : (NON-CONTRADICTION) Let M be a consistent model.

1. if M �
+
v A, then M 2

−
v A, for all formulas A.

2. if M �
−
v A, then M 2

+
v A, for all formulas A.

Proof. By induction on the complexity of A. �
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CUTS, GLUTS AND GAPS 233

Depending on whether a bivalent logic restricts the class of models to that
of consistent, complete or classical models, this logic will be called consis-
tent, complete or classical, respectively. In general, bivalent logic that takes
into account the class of models without restriction is called positive.

3. Sequent calculi

A sequent is a quadruple 〈Π, Γ, ∆, Σ〉, where Π, Γ, ∆ and Σ are finite mul-
tisets over the set of formulas of the language (see [6] and [7]). The sequent
〈Π, Γ, ∆, Σ〉 is denoted Π; Γ  ∆; Σ. A multiset is a sequence modulo the
ordering.

More specifically, a multiset M over S is an ordered pair 〈S, f〉, where S
is a set and f : S → N is a function that indicates the multiplicity of each
element of S. The underlying set of a multiset M = 〈S, f〉 is the set µ such
that µ = {s ∈ S | f(s) 6= 0}. M is called finite, if µ is finite, and M is
called empty, if µ is empty. The notation M 6= ∅ means that M is not empty.

Let M1 and M2 be multisets such that M1 = 〈S, f1〉 and M2 = 〈S, f2〉.
M is the intersection of M1 and M2, denoted M1 ∩ M2, if M = 〈S, f〉
is a multiset, where f(s) = f1(s), if f1(s) ≤ f2(s), and f(s) = f2(s),
if f2(s) ≤ f1(s), for all s ∈ S. M is the union of M1 and M2, denoted
M1 ∪ M2, if M = 〈S, f〉 is a multiset, where f(s) = f1(s) + f2(s), for all
s ∈ S. The multisets M1∪M2 and 〈S, f〉, where {s ∈ S | f(s) 6= 0} = {A}
and f(A) = 1, are denoted M1, M2 and A, respectively.

Let Π; Γ  ∆; Σ be a sequent such that π, γ, δ and σ are the underlying
sets of Π, Γ, ∆ and Σ, respectively. Then, Π; Γ  ∆; Σ is valid if and only if
for every model M and valuation v, M 2

−
v A, for all A ∈ π, and M �

+
v A,

for all A ∈ γ, implies M �
+
v A, for some A ∈ δ, and/or M 2

−
v A, for some

A ∈ σ.
The definition of validity can be preserved for consistent and/or complete

logics. Depending on whether the notion of valid sequent is restricted to
consistent models or to complete models, a sequent is called gap-valid or
glut-valid, respectively. If only the class of models which are both consistent
and complete is taken into account, then a sequent is called classic-valid.

For each bivalent logic, a sequent calculus and a notion of derivability
corresponding to that of validity are now set out. (A completeness proof for
these sequent calculi is provided in [2].) The rules for these sequent calculi
are as follows. The main feature of these rules is that the weakening and
contraction structural rules are absorbed into the rules of inference.

Π;Γ  ∆;A,Σ
¬i

LΠ;Γ,¬A  ∆;Σ

Π, A; Γ  ∆;Σ
¬i

RΠ;Γ  ¬A,∆;Σ
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234 VINCENT DEGAUQUIER

Π;Γ  A,∆;Σ
¬e

LΠ,¬A; Γ  ∆;Σ

Π;Γ, A  ∆;Σ
¬e

RΠ;Γ  ∆;¬A,Σ

Π;Γ, A,B  ∆;Σ
∧i

LΠ;Γ, (A ∧ B)  ∆;Σ

Π;Γ  A,∆;Σ Π;Γ  B,∆;Σ
∧i

RΠ;Γ  (A ∧ B),∆;Σ

Π, A,B; Γ  ∆;Σ
∧e

L
Π, (A ∧ B); Γ  ∆;Σ

Π;Γ  ∆;A,Σ Π;Γ  ∆;B,Σ
∧e

R
Π;Γ  ∆; (A ∧ B),Σ

Π;Γ, A  ∆;Σ Π;Γ, B  ∆;Σ
∨i

LΠ;Γ, (A ∨ B)  ∆;Σ

Π;Γ  A,B,∆;Σ
∨i

RΠ;Γ  (A ∨ B),∆;Σ

Π, A; Γ  ∆;Σ Π, B; Γ  ∆;Σ
∨e

L
Π, (A ∨ B); Γ  ∆;Σ

Π;Γ  ∆;A,B,Σ
∨e

RΠ;Γ  ∆; (A ∨ B),Σ

Π;Γ  ∆;A,Σ Π;Γ, B  ∆;Σ
→i

LΠ;Γ, (A → B)  ∆;Σ

Π, A; Γ  B,∆;Σ
→i

RΠ;Γ  (A → B),∆;Σ

Π;Γ  A,∆;Σ Π, B; Γ  ∆;Σ
→e

LΠ, (A → B); Γ  ∆;Σ

Π;Γ, A  ∆;B,Σ
→e

R
Π;Γ  ∆; (A → B),Σ

Π;∀αA,Γ, A[α := t]  ∆;Σ
∀i

LΠ;Γ,∀αA  ∆;Σ

Π;Γ  A[α := β],∆;Σ
∀i

RΠ;Γ  ∀αA,∆;Σ

∀αA,Π, A[α := t]; Γ  ∆;Σ
∀e

LΠ,∀αA; Γ  ∆;Σ

Π;Γ  ∆;A[α := β],Σ
∀e

RΠ;Γ  ∆;∀αA,Σ

Π;Γ, A[α := β]  ∆;Σ
∃i

LΠ;Γ,∃αA  ∆;Σ

Π;Γ  A[α := t],∆,∃αA; Σ
∃i

RΠ;Γ  ∃αA,∆;Σ

Π, A[α := β]; Γ  ∆;Σ
∃e

LΠ,∃αA; Γ  ∆;Σ

Π;Γ  ∆;A[α := t],Σ,∃αA
∃e

RΠ;Γ  ∆;∃αA,Σ

The usual restrictions for the ∀i
R, ∀e

R, ∃i
L and ∃e

L rules hold. The eigen-
variable β must not appear in the conclusion of these rules.

The notion of derivation as well as those of initial sequent and endsequent
are defined inductively in the usual way. Roughly speaking, a derivation is
a finite rooted tree in which the nodes are sequents. The root of the tree (at
the bottom) is called the endsequent and the leaves of the tree (at the top) are
called initial sequents. The length of a derivation is the number of sequents
in that derivation.

A sequent is derivable if and only if there exists a derivation in which it is
the endsequent and all initial sequents are axiomatic. A sequent Π; Γ  ∆; Σ
is axiomatic if and only if Γ ∩ ∆ 6= ∅ and/or Π ∩ Σ 6= ∅.

The definition of derivable sequent can be preserved for consistent and/or
complete logics by changing the definition of axiomatic sequent.
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A sequent is gap-derivable if and only if there exists a derivation in which
it is the endsequent and all initial sequents are gap-axiomatic. A sequent
Π; Γ  ∆; Σ is gap-axiomatic if and only if it is axiomatic and/or Γ∩Σ 6= ∅.

A sequent is glut-derivable if and only if there exists a derivation in which
it is the endsequent and all initial sequents are glut-axiomatic. A sequent
Π; Γ  ∆; Σ is glut-axiomatic if and only if it is axiomatic and/or Π∩∆ 6= ∅.

Finally, a sequent is classic-derivable if and only if there exists a derivation
in which it is the endsequent and all initial sequents are classic-axiomatic. A
sequent Π; Γ  ∆; Σ is classic-axiomatic if and only if it is gap-axiomatic
and/or glut-axiomatic.

4. Hierarchy

Starting with the unified framework outlined above, it is now easy to prove
the following propositions. While propositions 1 and 2 show a hierarchy
of bivalent logics theories, propositions 3 and 4 show that the properties
of derivability and classic-derivability are not reducible to those of glut-
derivability and gap-derivability. Similarly, it is equally easy to prove the
semantic results (involving the notions of validity, glut-validity, gap-validity
and classic-validity) corresponding to these propositions.

Proposition 1 : If a sequent is derivable, then it is both glut-derivable and
gap-derivable.

Proposition 2 : If a sequent is glut-derivable and/or gap-derivable, then it is
classic-derivable.

Proposition 3 : Some sequents which are both glut-derivable and gap-deri-
vable are not derivable.

Example: The sequent ; (p ∧ ¬p)  (q ∨ ¬q) ; is glut-derivable and
gap-derivable but not derivable. Of course, the sequent q ; p  q ; p is a
more obvious example, but less striking.

q ; p  q ; p
¬i

R; p  q,¬q ; p
¬i

L; p,¬p  q,¬q ;
∨i

R; p,¬p  (q ∨ ¬q) ;
∧i

L; (p ∧ ¬p)  (q ∨ ¬q) ;
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236 VINCENT DEGAUQUIER

Proposition 4 : Some classic-derivable sequents are neither glut-derivable
nor gap-derivable.

Example: The sequent (p∨q) ; r  p ; (q∧r) is classic-derivable but neither
glut-derivable nor gap-derivable.

p ; r  p ; q q ; r  p ; q
∨e

L(p ∨ q) ; r  p ; q

p ; r  p ; r q ; r  p ; r
∨e

L(p ∨ q) ; r  p ; r
∧e

R(p ∨ q) ; r  p ; (q ∧ r)

In set-theoretic terms, the conjunction of propositions 1 and 3 asserts that
the class of derivable sequents is strictly included in the intersection of the
class of glut-derivable sequents and the class of gap-derivable sequents. As
for propositions 2 and 4, they assert that the union of the class of glut-
derivable sequents and the class of gap-derivable sequents is strictly included
in that of classic-derivable sequents.

5. Cut elimination

Several formulations of the redundancy of cut are possible in the sequent
calculi mentioned above. Indeed, four different forms of cut are distinguish-
able. Only two hold for positive sequent calculus while all of them hold for
classical sequent calculus. As for complete and consistent sequent calculi,
they only admit one form of cut in addition to the two that hold for positive
sequent calculus. These results are contained in theorems 1 and 2. Only a
sketch of the proofs is given here (for details, see [2]).

Theorem 1 : For all formulas A:

1. if Π; Γ  A, ∆; Σ and Π; Γ, A  ∆; Σ are derivable, then Π; Γ 

∆; Σ is derivable.

2. if Π; Γ  ∆; A, Σ and Π, A; Γ  ∆; Σ are derivable, then Π; Γ 

∆; Σ is derivable.

Proof. The proof of the first assertion proceeds by a main induction on the
complexity of A. When A is an atomic formula or when A is a quantified
formula of the form ∃β B or ∀β B, the proof uses a subinduction on the
sum of the derivation lengths of the sequents Π; Γ  A, ∆; Σ and Π; Γ, A 

∆; Σ. The weakening and contraction structural properties as well as the
inversion property of inference rules are presupposed as proved. The second
assertion is treated symmetrically. �
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Theorem 2 : For all formulas A:

1. if Π; Γ  ∆; A, Σ and Π; Γ, A  ∆; Σ are glut-derivable, then
Π; Γ  ∆; Σ is glut-derivable.

2. if Π; Γ  A, ∆; Σ and Π, A; Γ  ∆; Σ are gap-derivable, then
Π; Γ  ∆; Σ is gap-derivable.

Proof. The proof is similar to that of theorem 1. �

According to the position of the cut formula, four different forms of the
original cut rule can be distinguished (see [4]).

Π; Γ  ∆; A, Σ Π, A; Γ  ∆; Σ
cute−e

Π; Γ  ∆; Σ

Π; Γ  A, ∆; Σ Π; Γ, A  ∆; Σ
cuti−i

Π; Γ  ∆; Σ

Π; Γ  ∆; A, Σ Π; Γ, A  ∆; Σ
cute−i

Π; Γ  ∆; Σ

Π; Γ  A, ∆; Σ Π, A; Γ  ∆; Σ
cuti−e

Π; Γ  ∆; Σ

In view of theorems 1 and 2, it is interesting to note that the cute−e

and cuti−i rules preserve derivability, glut-derivability, gap-derivability and
classic-derivability. By contrast, the cute−i and cuti−e rules do not preserve
derivability. In addition, the cute−i rule does not preserve gap-derivability
and the cuti−e rule does not preserve glut-derivability. In other words, pos-
itive sequent calculus admits only cute−e and cuti−i, while complete and
consistent sequent calculi admit, in addition to these rules, the cute−i and
cuti−e rules, respectively. As for classical sequent calculus, it admits the
four cut rules.

Using the definition of axiomatic sequent, the weakening property and
theorem 2, the following propositions can be easily proved. Proposition 7
means that Π; Γ  ∆; Σ is a classic-derivable sequent if and only if Π, Γ 

∆, Σ is deducible in a classical sequent calculus of the usual kind.

Proposition 5 : For all formulas A:

1. if Π; Γ, A  ∆; Σ is glut-derivable, then Π, A; Γ  ∆; Σ is glut-
derivable.
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2. if Π; Γ  ∆; A, Σ is glut-derivable, then Π; Γ  A, ∆; Σ is glut-
derivable.

Proposition 6 : For all formulas A:

1. if Π, A; Γ  ∆; Σ is gap-derivable, then Π; Γ, A  ∆; Σ is gap-
derivable.

2. if Π; Γ  A, ∆; Σ is gap-derivable, then Π; Γ  ∆; A, Σ is gap-
derivable.

Proposition 7 : For all formulas A:

1. Π; Γ, A  ∆; Σ is classic-derivable if and only if Π, A; Γ  ∆; Σ is
classic-derivable.

2. Π; Γ  ∆; A, Σ is classic-derivable if and only if Π; Γ  A, ∆; Σ is
classic-derivable.

These properties can be expressed using the following rules.

Π, A; Γ  ∆; Σ
⇀L

Π; Γ, A  ∆; Σ

Π; Γ  A, ∆; Σ
⇀R

Π; Γ  ∆; A, Σ

Π; Γ, A  ∆; Σ
↽L

Π, A; Γ  ∆; Σ

Π; Γ  ∆; A, Σ
↽R

Π; Γ  A, ∆; Σ

Propositions 5 and 6 assert, respectively, the admissibility of the ↽L/R

rules in complete sequent calculus and the admissibility of the ⇀L/R rules
in consistent sequent calculus. By proposition 7, each of these rules is ad-
missible in classical sequent calculus. However, the ⇀L/R rules do not hold
for complete sequent calculus and the ↽L/R rules do not hold for consistent
sequent calculus. Moreover, none of them are admissible in positive sequent
calculus.

Proposition 8 : Let Π; Γ  ∆; Σ be a sequent.

1. Π; Γ  ∆; Σ is glut-derivable if and only if Π; Γ  ∆; Σ is provable
in positive sequent calculus plus the additional rule cute−i.

2. Π; Γ  ∆; Σ is gap-derivable if and only if Π; Γ  ∆; Σ is provable
in positive sequent calculus plus the additional rule cuti−e.

3. Π; Γ  ∆; Σ is classic-derivable if and only if Π; Γ  ∆; Σ is prov-
able in positive sequent calculus plus the additional rules cute−i and
cuti−e.
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Proof. The proofs proceed by induction on the derivation length of the se-
quent Π; Γ  ∆; Σ. It suffices to note that, from left to right, the basis case
requires the use of the additional cut rule and, from right to left, the induction
case follows from theorem 2. �

Proposition 9 : Let Π; Γ  ∆; Σ be a sequent.

1. Π; Γ  ∆; Σ is glut-derivable if and only if Π; Γ  ∆; Σ is provable
in positive sequent calculus plus the additional rules ↽L/R.

2. Π; Γ  ∆; Σ is gap-derivable if and only if Π; Γ  ∆; Σ is provable
in positive sequent calculus plus the additional rules ⇀L/R.

3. Π; Γ  ∆; Σ is classic-derivable if and only if Π; Γ  ∆; Σ is prov-
able in positive sequent calculus plus the additional rules ↽L/R and
⇀L/R.

Proof. These equivalences follow by induction on the derivation length of
the sequent Π; Γ  ∆; Σ. From left to right, the basis case can be established
by applying the additional rules. From right to left, the induction case is a
consequence of propositions 5–7. �

The foregoing propositions provide a characterization of the notions of
glut-derivability, gap-derivability and classic-derivability obtained from the
more general notion of derivability by adding rules. Proposition 8 under-
lines the crucial part played by the cut properties in characterizing the notion
of logical consequence within complete and/or consistent sequent calculi.
Proposition 9 makes the underlying principles of excluded middle and non-
contradiction explicit in the definitions of glut-axiomatic, gap-axiomatic and
classic-axiomatic sequent.

Conclusion

The metatheoretical relationships between bivalent logics can be tackled ei-
ther in terms of semantic generality or in terms of proof-theoretic strength.

From the viewpoint of underlying principles, positive logic is more general
than consistent and/or complete logics. These are defined from positive logic
only by restricting the class of models. Understood positively, consistent and
complete logics are nothing more than special cases of positive logic and
classical logic is nothing more than a special case of both consistent logic
and complete logic.

From the viewpoint of the correctness of sequents, it is well known that the
class of correct sequents in non-classical logic is usually included in that of
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correct sequents in classical logic. Indeed, the class of glut-derivable and/or
gap-derivable sequents is strictly included in the class of classic-derivable
sequents. In addition, the class of derivable sequents is strictly included in
that of sequents which are both glut-derivable and gap-derivable.

Thus, according to the viewpoint embraced, relationships between bivalent
logics may be understood in different ways. Nevertheless, in general, it can
be said that a bivalent logic is proof-theoretically stronger than another if and
only if it is semantically less general. Therefore, the positive interpretation of
classical logic suggests a unified approach to bivalent logics that underlines
the trade-off between a requirement of generality concerning truth and falsity
and a requirement of strength concerning the correctness of sequents.
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