
“06vanrooij”
2012/2/26
page 85

i

i

i

i

i

i

i

i

Logique & Analyse 217 (2012), 85–108

THE PROPOSITIONAL AND RELATIONAL SYLLOGISTIC∗

ROBERT VAN ROOIJ

Abstract
In this paper it is shown how syllogistic reasoning can be extended
to account for propositional logic and relations.

1. Introduction

Syllogistic logic is a loose term for the logical tradition that originated with
Aristotle and survived until the advent of modern predicate logic in the late
nineteenth century. The innovation of predicate logic led to an almost com-
plete abandonment of the traditional system. In almost all standard modern
textbook introductions one starts with propositional logic, extends this to
predicate logic, and then points out that the scope of syllogistic logic is just
a very small part of this. It is customary to revile or disparage syllogistic
logic in these textbooks. Modern logicians used quite a number of argu-
ments as to why syllogistic logic should be abandoned. The most important
complaint is that syllogistic logic is not rich enough to account for mathe-
matical reasoning, or to give a serious semantics of natural language. It is
only a small fragment of predicate logic, which doesn’t say anything about
propositional logic, or multiple quantification. Russell (1900) blamed the
traditional logical idea that every sentence is of subject-predicate form for
giving sentences misleading logical forms.

For several reasons, traditional logic recently regained new popularity. A
main motivation for Sommers (1982) — a prominent proponent of traditional
logic — to study syllogistic logic is its close relation to natural language.
Indeed, due to the development of Montague grammar and especially Gen-
eralized Quantifier Theory in the 1960s-1980s the misleading form thesis of
early proponents of modern logic is not a mainstream position anymore, and
analyzing sentences in subject-predicate form is completely accepted again

∗I would like to thank a reviewer of this journal for valuable comments on an earlier ver-
sion of this paper and Jan van Eijck and Larry Moss for discussion. My interest in traditional
logic goes back to my master thesis on (modern and) medieval theories of reference from
1992.
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86 ROBERT VAN ROOIJ

(cf. Westerståhl, 1989). Computer scientists (e.g. Purdy, Pratt-Hartmann,
and Moss), on the other hand, have shown that syllogistic logic and some
natural extensions of it behave much better in terms of decidability and com-
plexity than standard predicate logic.

In this paper I will first quickly discuss traditional Aristotelian syllogistic,
and how to extend it (also semantically) with negative and singular terms.
Afterwards I will discuss how full propositional logic can be seen as an ex-
tension of Aristotelian syllogistic. Thus, in distinction with polish logicians
like Łukasiewicz (1957) and others, I won’t assume that to understand tradi-
tional logic we have to presuppose propositional logic, but instead formulate
propositional logic by presupposing syllogistic reasoning. It is well-known
that once we have full monadic predicate logic, we have full propositional
logic as well. Indeed, syllogistic can be viewed as a fragment of proposi-
tional logic. In this paper I show how to complete this fragment. There are
at least two possible ways to do so. In section 3.1 I sketch a first way by
introducing conjunctive and other complex terms to the language. Section
3.2, instead, shows how to account for all of propositional logic in a more di-
rect way. Afterwards I will follow (the main ideas, though not the details of)
Sommers (1982) and his followers in showing how traditional logic can be
extended so as to even account for inferences involving multiple quantifica-
tion that almost all modern textbooks claim is beyond the reach of traditional
logic: A woman is loved by every man, thus Every man loves a woman. Al-
though the aim of this paper is not to study historical systems by formalizing
them, it is sometimes motivated by such historical ideas.

2. Traditional syllogistic reasoning

Syllogisms are arguments in which a categorical sentence is derived as con-
clusion from two categorical sentences as premisses. As is well-known, a
categorical sentence is always of one of four kinds: a-type (‘All men are
mortal’), i-type (‘Some men are philosophers’), e-type (‘No philosophers are
rich’), or o-type (‘Some men are not philosophers’). In a- and e-sentences
the predicate is affirmed or denied of ’the whole’ of the subject, while in
i and o-sentences, the predicate is affirmed or denied of only ‘part of’ the
subject. The syntax of categorical sentences can be formulated as follows:
If S and P are primitive terms, SaP , SiP , SeP , and SoP are categorical
sentences. Because a syllogism has two categorical sentences as premisses
and one as the conclusion, every syllogism involves only three terms, each
of which appears in two of the statements.

Aristotle’s way to determine which syllogisms are valid was ‘proof-theo-
retic’ in nature. He showed that if one takes the four ‘perfect’ syllogisms of
the first figure (Barbara, Celarent, Darii and Ferio) to be axioms, and use any
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THE PROPOSITIONAL AND RELATIONAL SYLLOGISTIC 87

combination of subalternation (SaP ` SiP and SeP ` SoP ), conversion
(SeP ` PeS and SiP ` PiS), and his so-called reductio per impossibile
(if contradictory sentences can be derived from a set of premisses, at least
one of them is false),1 one can derive all other valid syllogisms.

We will not make use of subalternation, but instead implement existen-
tial import by assuming TiT to be an axiom.2 We are also not going to
make use of conversion, but instead adopt the Law of Identity (TaT ) and
make heavy use of Aristotle’s Reductio per impossibile. The rule ‘reductio
per impossibile’ can best be formulated in terms of a notion of sentence-
negation ‘¬’ which doesn’t really exist in traditional logic. However, it
can be defined as the contradictory negation featuring in the square of op-

position: ¬(SaP )
def
= SoP , ¬(SiP )

def
= SeP , ¬(SeP )

def
= SiP , and

¬(SoP )
def
= SaP . Now we can state a proof theory for syllogistic rea-

soning without negative terms as follows:

1. The first 4 valid Syllogisms of the first figure:

(a) Barbara: MaP, SaM ` SaP .
(b) Celarent: MeP, SaM ` SeP .
(c) Darii: MaP, SiM ` SiP .
(d) Ferio: MeP, SiM ` SoP .

2. Law of Identity: ` TaT , for all terms T .

3. Existential import: ` ¬(TeT ), or ` TiT , for all terms T .

4. Reductio per impossibile: if contradictory sentences can be derived
from a set of premisses, at least one of them is false. If Γ,¬φ ` ψ
and Γ,¬φ ` ¬ψ, then Γ ` φ.3

It is easy to see that the validity of TiT accounts for subalternation. Fol-
lowing medieval and Leibnizian practice (e.g. Leibniz, 1966d), we can de-
rive all the valid syllogisms of the second and third figure by means of Re-
ductio per impossibile from Barbara, Celarent, Darii, and Ferio. Next, it can

1 Larry Moss pointed out to me that this rule is not required to axiomatize syllogistic
reasoning.

2 Thus, in contrast to some traditional logicians I don’t require that categorical sentences
contain two distinct terms.

3 I will always assume that the order of premisses is unimportant. It is sometimes ar-
gued that because of this assumption together with the Reductio rule, syllogistic depends
propositional logic. I disagree, because I just see two extra assumptions.
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88 ROBERT VAN ROOIJ

be shown that the conversion rules follow from some valid syllogisms to-
gether with the law of identity. These rules of conversion can then be used,
finally, to derive the valid syllogisms of the fourth figure.

It is well-known how to give a satisfactory semantics for syllogistic logic.
Almost all modern textbooks use Venn diagrams, and thus a set-theoretic
extensional semantics, to represent the meaning of sentences and to decide
whether a syllogistic inference is valid.4 A sentence like SaP , for instance,
is counted as true if the individuals in the extension of S are also in the ex-
tension of P . According to such a semantics, M = 〈D,E〉 is a model, with
D a domain of objects and E an interpretation function which assigns to
each primitive term T a non-empty proper subset of D: ∅ 6= EM (T ) ⊂ D.
For later generality, we will use a more general interpretation function, VM ,
which for primitive terms T is identical to E: VM (T ) = EM (T ). Cate-
gorical sentences are counted as true in the expected way: VM (SaP ) = 1
iff VM (S) ∩ VM (P ) = VM (S) iff VM (S) ⊆ VM (P ) and VM (SiP ) = 1 iff
VM (S)∩VM (P ) 6= ∅. SoP and SeP are interpreted as the negations of SaP
and SiP , respectively. We say that φ1, ..., φn |= ψ iff ∀M : VM (φ1) = 1
and ... and VM (φn) = 1, then VM (ψ) = 1. It is well-known that this seman-
tics validates all and only all arguments in classical syllogistic style if and
only if they are traditionally counted as valid.5

Negative terms didn’t play an important role in Aristotle’s theory of syl-
logisms.6 This is perhaps due to the intensional interpretation of terms pre-
ferred by Aristotle.7 According to it, SaP is true if the intension of P is

4 Of course, set theory comes with al the axioms of Boolean algebra, and this much
structure is not at all required to model syllogistic reasoning. For the traditional fragment
without negative terms, partial, or even pre-orders with a distinguished bottom is already
enough.

5 It is well known how to extend the extensional semantics with negative (and conjunc-
tive) terms (cf. Shepherdson, 1956).

6 In the history of logic, negative terms are also known as indefinite or infinite terms.

7 Leibniz (1966a) claims that Aristotle indeed preferred such an intensional interpreta-
tion.
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THE PROPOSITIONAL AND RELATIONAL SYLLOGISTIC 89

contained in the intension of S.8 When one adopts an extensional seman-
tics, on the other hand (as was popular among scholastic logicians), negative
terms can easily be interpreted. We add negative terms to the language as
follows: first we say that all primitive terms are categorical terms and sec-
ond that if S is a categorical term, S is a categorical term as well. Once
negative terms are added to the language, we have to interpret them, and the
proof-system has to change. As for (extensional) interpretation, S will just
denote the complement of what is denoted by S. Notice that this means that
no term denotes either the empty set or the universal set. As for the proof-
theory, we will add two things that account for negative terms: a new double
negation axiom, and the rule of contraposition.9 However, we will simplify
the rule system as well by dropping Celarent and Ferio to be axioms. The
categorical sentences SeP and SoP can now be written, or defined, as SaP
and SiP , respectively, where P is the negative counterpart of P .10 Instead
of taking Barbara and Darii to be axioms, I prefer to assume with scholastic
logicians the Dictum de Omni as a rule. This rule is a kind of substitution
rule and makes crucial use of the distribution values of terms. Whether a
term is distributed or not is traditionally thought of as a semantic question:
a term is said to be distributed when it is actually applied to all the objects
it can refer, and undistributed when it is explicitly applied to only part of the
objects to which it can refer. This formulation has been criticized by Geach
(1962) and other modern logicians, but as noted by van Benthem (1986), it
can be redefined in terms of monotonicity: a term occurs distributively when

8 For the simplest fragment, an intensional semantics is easy to give. Let M = 〈A, I,⊥〉
be a model, with A a set of attributes, I an interpretation function which assigns to each
primitive term T a subset of A, IM (T ) ⊆ A, and ⊥ a relation between elements of A. If for
two elements x, y ∈ A it holds that x⊥y, we say that the attributes x and y are incompatible.
We will denote by ∆ the set of subsets of A which contain such mutually incompatible
elements: ∆ = {S ⊆ A : ∃x, y ∈ S : x⊥y}. We assume that for each primitive term T ,
IM (T ) 6∈ ∆, and that the set of supersets of IM (T ) does not equal the set of all maximally
consistent sets of A. Then we say that VM (SaP ) = 1 iff VM (S) ∪ VM (P ) = VM (S) iff
VM (S) ⊇ VM (P ) and VM (SiP ) = 1 iff VM (S) ∪ VM (P ) 6∈ ∆. Thus, SiP is true iff
S and P do not contain mutually incompatible attributes. SoP and SeP are interpreted as
the negations of SaP and SiP , respectively. It is not trivial to extend this semantics to a
language which allows for negative and conjunctive terms.

9 Though contraposition need not be assumed, and can be derived.

10 Aristotle allowed for the inference SaP ` SeP , but not for SeP ` SaP (cf. Kneale
& Kneale, p. 57). The reason seems to be that ‘Socrates is not black’ seems to have a ‘wider’
meaning that ‘Socrates is non-black’. Similarly, many traditional logicians didn’t allow for
the inference SoP ` SiP .
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90 ROBERT VAN ROOIJ

it occurs monotone decreasingly/negatively within a sentence, and undis-
tributively when it occurs monotone increasingly/positively. Denoting a dis-
tributed term by − and an undistributed term by +, the following follows at
once: S−aP+, S+iP+, S−eP−, and S+oP−, and P occurs positively in
Γ iff P occurs negatively in Γ, which we might think of now as a syntactic
characterization. Now we can formulate the Dictum de Omni and the related
Dictum de Nullo as follows:11

• Dictum de Omni (DDO): SaP,Γ(S)+ ` Γ(P ), where Γ(S)+ is a
sentence where term S occurs positively.12

• Dictum de Nullo (DDN): SaP,Γ(P )− ` Γ(S), where Γ(P )− is a
sentence where term P occurs negatively (or distributively).

Modern logicians are not very familiar with the Dictum de Omni. In con-
trast, they all know Leibniz’s famous substitution principle which allows
terms S and T to be substituted for one another in any sentence if they are
‘the same’. In fact, Leibniz’s substitution principle follows syllogistically
from the much more general Dictum de Omni. On the basis of the following
passage, Sommers (1982) argues that Leibniz was fully aware of this (Leib-
niz writes ‘AaB’ as ‘a is b’):

If a is b and b is a, then a and b are said to be ‘the same’. From
this it can be easily proved that one can everywhere be substituted
in place of the other without loss of truth; for if a is b and b is a, and
b is c or d is a, then a is c or d is b. (Leibniz, 1966b, p. 43)

In fact, Leibniz proves here something more general than just the substi-
tution principle for which he is so famous. He proves that if AaB, then (i) if
BaC then AaC (by DDO), and (ii) if DaA then DaB (by DDO). Thus, (i)
all things (C) predicated of B can also be predicated of A, and (ii) all things
(D) A can be predicated of, B can also be predicated of.

11 The soundness of these rules in the extended syllogistic is proved very elaborately by
MacIntosh (1982). But as shown by Sánchez (1997), their soundness follows from a much
more general relation between monotonicity and positive and negative occurrences of predi-
cates in Lyndon (1959).

12 It is of course also possible to get rid of SiP by defining it as ¬(SaP ). In that case,
we might use instead of the Dictum just Barbara as axiom, but now also use Celarent as
axiom. The axiomatic system that seems to be most standardly assumed was taking Barbara
and Celarent as axioms, together with the reduction rule, conversion, and subalternation.
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The proof system SYL of syllogistic reasoning consists of the following
set of axioms and rules (for all terms T , S and P ):

(1) SaP,Γ(S)+ ` Γ(P ) Dictum de Omni. 13

(2) ` TaT Law of identity.

(3) ` T ≡ T 14 Double negation.

(4) SaP ` PaS Contraposition (or conversion,
SeP ` PeS).15

(5) Γ,¬φ ` ψ,¬ψ16 ⇒ Γ ` φ Reductio per impossibile.

(6) ` ¬(TaT ) (i.e. ` TiT ) Existential Import.

The first five rules of SYL are obviously semantically valid. Axiom (6)
is really an assumption: we only make use of non-empty terms. One can
also easily check by hand that the above set of rules accounts for all valid
syllogisms. In fact, from the above set of axioms and rules we can also
account for derivations that are intuitively valid (e.g., come out true if we
make use of Venn diagrams together with a given discourse domain), but
do not correspond to a valid syllogism. This is the case, for instance, for
MaP,MiS ` SiP simply because it is not of the required form: the con-
clusion SiP can not be expressed without negative terms using only the
Aristotelian ‘a’, ‘i’, ‘e’, and ‘o’. Having lifted one arbitrary restriction Aris-
totle put on valid syllogistic reasoning, we might as well slightly extend
syllogistic reasoning in another way as well.17 We could do so by adding a

13 Actually, Barbara is enough, because Darii can be derived from the rest.

14 By this I really mean ` TaT and ` TaT .

15 Contraposition and conversion can both be derived from the rest. For conversion, as-
sume SeP . Now suppose that PeS is false, i.e., that PiS is true. By Ferio (which follows
from DDO), it follows that PoP holds, which is contradictory to the axiom PaP . Thus, by
reductio we conclude that PiS is false, which means that PeS is true. For contraposition,
assume that SaP is true and PaS is false. Thus that both SaP and PoS, or PiS are true. By
Darii (which follows from the DDO) it follows that PiP , which is PoP , which contradicts
the axiom PaP . Thus by reductio we conclude that PoS is false, which means that PaS is
true.

16 By which I mean that both ψ and ¬ψ can be derived.

17 Church (1965, p. 420) notes that Ockham allowed for empty subject terms and counted
in such a case an affirmative proposition false and the negative true. A reviewer of this paper
noted that Avicenna already adopted the same position.
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distinguished ‘transcendental’ term ‘>’ to our language, standing for some-
thing like ‘entity’. Obviously, the sentence Sa> should always come out
true for each term S. To reflect this, we will add this sentence as an axiom to
SYL. But adding > as an arbitrary term to our language gives rise to a com-
plication once we accept existential import for all terms, including negative
ones: for negative term > existential import is unacceptable. One way to
get rid of this problem is to restrict existential import to positive categorical
terms only. Most conservatively, we could say that all categorical terms are
positive except for ⊥. More generally, we could say that > (but not ⊥) is
a primitive term, and then define a categorical term T to be positive iff it
either is a primitive term, or it is one that occurs under an even number of
term-negations. Either way, ‘>’ is a positive categorical term, but ‘>’, or
‘⊥’, is not.

Most traditional logicians treated singular propositions as universal ones.
One can show that this indeed gives rise to the correct inferences if one lim-
its one-selves to the traditional fragment.18 But there is still a problem with
this proposal. Normally, a and e propositions are contrary to each other:
they can’t both be true, but they can both be false. Thus, from ¬(SaP ) one
cannot derive SeP . However, this inference is valid with singular terms: if
‘Socrates is wise’ is not true, it follows that ‘Socrates is not wise’ is true. In
terms of the square of opposition this means that contrary and contradictory
negation come down to the same. Sommers (1982) pointed out that to solve
this problem, Leibniz (1966c) proposed that for singular propositions, a and
i propositions coincide, just like e and o propositions.

How is it that opposition is valid in the case of singular propositions
[...] since elsewhere a universal affirmative and a particular negative
are opposed. Should we say that a singular proposition is equivalent
to a particular and to a universal proposition? Yes, we should. So
also when it is objected that a singular proposition is equivalent to a
particular proposition, since the conclusion in the third figure must
be particular, and can nevertheless be singular; e.g., ‘Every writer is
a man, some writer is the Apostle Peter, therefore the Apostle Peter
is a man’, I reply that there also the conclusion is really particular
and it is as if we had drawn the conclusion ‘Some Apostle Peter is
a man’. For ‘Some Apostle Peter’ and ‘Every Apostle Peter’ coin-
cide, since the term is singular. (Leibniz, 1966c, p. 115)

18 According to Thom (1981, p. 79), however, this proposal goes wrong in case we extend
the formalism with relations
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This is a very natural idea, and adopted also by 20th century logicians as
Quine and Montague. To account for it proof-theorically, we need a special
rule for singular terms.

We will denote the system consisting of (1), (2), (3), (4), (5) together with
the following four rules by SYL+.

(6′) ` CiC, for all positive categorical terms C.

(7) ` Ta>, for all terms T .

(8) SaS ` SaP ,19 for all terms S and P .

(9) for all singular terms I and terms T : IiT −| ` IaT .

Rules (7) and (8) tell us what to do with empty and transcendental terms.
The use of rule (8) seems to be very limited: SaS can be true only if S
denotes (extensively) the universe of discourse, and S thus the empty set.
But, then, the conclusion of (8) follows already from (7), and adding (8)
to our system doesn’t do much harm either. We will make real use of (7)
and (8) only in the following section, where we will think of other sentential
connectives as well.

3. Propositional logic as part of syllogistic

Aristotelian logic doesn’t contain propositional logic. But that doesn’t mean
that we cannot think of propositional logic in traditional syllogistic terms.20

In order to do so, we have to treat sentences as terms. Until now we assumed
that all terms were 1-ary predicates. To think of propositional logic in tradi-
tional terms, we have to allow for 0-ary predicates as well (see for instance
Sommers; 1970, 1982). But once we do so, it is very natural to say that if S
and P are 0-ary predicates, the conditional ‘If S, then P ’ should be repre-
sented by the categorical sentence SaP , and the conjunction ‘S and P ’ by
SiP . Indeed, this was a quite standard position among traditional logicians
and it was explicitly defended by Gassendi (1658), Wallis (1687), and Leib-
niz (1966a, p. 66 and p. 78). How should 0-ary predicates be interpreted?
Adopting an extensional semantics, we could interpret a 0-ary predicate S as
a set of possible worlds. The conditional SaP is thus true iff all S-worlds are

19 See Shepherdson (1956) and reference in here for a motivation for this axiom.

20 Of course, traditional logicians thought of propositional logic, but not always in Aris-
totelian terms.
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also P -worlds. This semantics is certainly reasonable (it interprets the con-
ditional as a strict implication), but it doesn’t result in the truth-conditional
propositional logic that we are used to. To get to the standard logic, we have
to adopt Frege’s idea: 0-ary predicates denote either the truth or the falsity.21

Starting from this idea, there are at least two ways to get propositional logic.
A first way makes crucial use of conjunctive terms (or non-traditional two-
place connectives), and was in fact proposed by Leibniz. The other method
of obtaining propositional logic does not make use of conjunctive terms or
new connectives, and is therefore perhaps more in accordance with tradition.
I will discuss both ways in what follows, focussing mostly on the second
method.

But let us start sketching the first way. Until the previous section we have
assumed that if S and P are terms, S and P are terms as well. But it is possi-
ble, of course, to allow for more types of terms: we can assume that if S and
P are terms, SP is a (conjunctive) term as well (of the same arity). Conjunc-
tive terms are interpreted, naturally, by set-theoretic intersection. Obviously,
once we have negative and conjunctive terms, we have disjunctive terms as
well. To reason with such complex terms, we could add the following new
axioms to our proof system.

• Distributivity: SaP, SaQ ` SaPQ and SaPQ ` SaP and SaPQ `
SaQ.

It is easy to see that with the help of these axioms we can derive the fol-
lowing tautologies: identity, ` TaTT (by ` TaT and Distributivity) and
` TT ′aT (by ` TT ′aTT ′ and Distributivity); commutativity, ` TT ′aT ′T
(by ` TT ′aTT ′ and Distributivity in both directions), and associativity,
` T (T ′T ′′) ≡ (TT ′)T ′′ (by ` T (T ′T ′′)a(TT ′)T ′′ and two times Distribu-
tivity in both directions). In fact, if we add the distributivity law to our
syllogistic system we come close to derive all axioms of Boolean algebra:
idempotence, commutativity and associativity for conjunctive terms, for in-
stance, is (almost) given; the De Morgan laws follow immediately once we
define the disjunctive term consisting of T and T ′ as (T )(T ′); the comple-
ment laws follow if we assume that ` TT ≡ PP and identify > with TT ,
and the laws T⊥ = ⊥ and T> = > follow easily from identity and our rules

21 According to Lenzen (1990), Leibniz didn’t adopt this idea and analyzed conditionals
as strict implication. Castañeda (1990), on the other hand, argues that in Leibniz (1966a) a
material implication analysis of conditionals is proposed. The reason for this disagreement
is that Leibniz (1966a) uses the words ‘impossibile’ and ‘inconsistent’ that only Castañeda
(1990) interprets (in this paper) as ‘false’ and ‘inconsistent with what is true’.
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(7) and (8). To prove the other laws is sometimes more tricky,22 and I am
not quite sure whether we can derive all of them. But once we have enough
to generate a Boolean algebra, it is clear that we have propositional logic as
well.

In the rest of this section we will discuss how to account for propositional
logic without allowing for a new set of conjunctive terns. We say that just
as SaP and SiP are sentences if S and P are 1-ary terms, they are also
sentences if S and P are 0-ary terms. Moreover, if S, P , Q and R are 1-
ary predicates, SaP,RiQ, but also things like (SiP )a(RaQ) will be 0-ary
predicates as well. As mentioned earlier, we will assume that a 0-ary term
will denote (from an extensional point of view) either the truth, or the fal-
sity. To state things in a metaphysically less committing way, let us start
again with a domain of individuals D. Now we assume that the denota-
tion of any n-ary term will be a subset of Dn, where D2, for instance, is
{〈d1, d2〉 : d1, d2 ∈ D}. Thus, just like any 1-ary term will denote a subset
of D1 = {〈d〉 : d ∈ D} = D, any 0-ary terms will now denote a subset of
D0 = {〈〉}. It is clear that D0 has exactly two subsets: {〈〉} and ∅.23 We say
that if a sentence denotes {〈〉} it is true, and false otherwise. We can assume
that for primitive 0-ary terms, or sentences, like ‘It is raining’ the denotation
is given by the interpretation function. For complex propositional terms, its
denotation is determined as expected:

• VM (SaP ) = {〈〉 : VM (S) ⊆ VM (P )}.

• VM (SiP ) = {〈〉 : VM (S) ∩ VM (P ) 6= ∅}.

• VM (SeP ) = {〈〉 : VM (S) ∩ VM (P ) = ∅}.

• VM (SoP ) = {〈〉 : VM (S) − VM (P ) 6= ∅}.

Notice that this interpretation works not only if ‘S’ and ‘P ’ are 0-ary terms,
but works if they both are monadic terms as well.

If we now think of φ (or [φ]) and ψ as arbitrary 0-ary terms, we can form
sentences (or 0-ary terms) like [φ]a[ψ], [φ]i[ψ], [φ]e[ψ] and [φ]o[ψ] and so on

22 One half of one distributivity law, for instance, can be proven as follows: ` SPaS. It
follows that ` SaSP . By the above distributivity rule it follows that ` (R)(S)a(R)(SP ),
and by contraposition that ` (R)(SP )a(RS)(RP ).

23 At least, if D is not empty.
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recursively. Let us see what some of them mean, if we don’t make the as-
sumption of existential import (I used ‘1’ and ‘0’ as abbreviations for ‘{〈〉}’
and ‘∅’, respectively):

[φ] [ψ] [φ]a[ψ] [φ]i[ψ] [φ]e[ψ] [φ]o[ψ] [φ]e[φ] [[φ]e[φ]]a[ψ]
{〈〉} {〈〉} 1 1 0 0 0 1
{〈〉} ∅ 0 0 1 1 0 1
∅ {〈〉} 1 0 1 0 1 1
∅ ∅ 1 0 1 0 1 0

We see that [φ]a[ψ] ≡ ‘φ → ψ’, [φ]i[ψ] ≡ ‘φ ∧ ψ’, [φ]e[φ] ≡ ‘¬φ’,24

and [[φ]e[φ]]a[ψ] ≡ ‘φ ∨ ψ’. If we abbreviate ‘SaS’ by > we can write
the negation of φ more simply as ‘[>]e[φ]’. Notice that because for 0-ary
relation φ it holds that VM (φ) = {〈〉} iff VM ([>]a[φ]) = {〈〉}, we can
write ‘[φ]’ also as ‘[>]a[φ]’.25 Notice also that because [>] always denotes
{〈〉}, in our extensional fragment it holds for every φ that VM ([>]a[φ]) =

VM ([>]i[φ]). (In the following I abbreviate ‘[>]e[φ]’ sometimes by [φ].)
Let us see now how things work from a proof-theoretic point of view. To

implement the above suggestions, we will add to SYL+ the following three
ideas: (i) in contrast to others terms, 0-ary terms don’t allow for existential
import, (ii) >0 is a singular term, and (iii) P 0 is equal to >0iP 0. The first
idea is implemented with the help of axiom (6’) by stipulating that 0-ary
terms are not categorical.

(10) 0-ary terms are not categorical terms and >0 is a singular term.

(11) P 0 −| ` >0iP 0.

We will denote the system SYLS+ together with (10) and (11) by SYL+PL.
This system can indeed account for all inferences in propositional logic. To

24 Once we think of 0-ary predicates as terms, sentence negation is just 0-term negation.
Thus (SaP ) is by our earlier definition of ‘¬’ identified with (SoP ), for instance.

25 If we require that all sentences are of subject-predicate structure, a primitive 0-ary term
by itself doesn’t constitute a sentence. But this is a problem, because then it cannot be used
in syllogistic reasoning. To nevertheless reason with such sentences after all, Wallis (1687)
(and others) proposed that ‘it is raining’ really means something like ‘Now, it is raining’. To
account for this we would have to add terms to the language that stand for points of time or
place, and add singular terms like ‘now’, N , and ‘here’ that refers to the present point in time
or place. A sentence like ‘It is raining’ can then be represented by something like NaR. A
simpler route, which is more in accordance with what Frege did, would be to represent the
sentence by >iR instead.
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see why, let us first look at the power of the Dictum de Omni.26 We have
seen that this rule played a crucial role in traditional logic. It turns out that
this rule is very powerful, and immediately accounts for quite a number of
inferences in propositional logic (see also Sommers, 1982). As we will see
below, it immediately accounts for modus ponens, modus tollens, and the
hypothetical and the disjunctive syllogism:27

• Modus Ponens: φ, φ→ ψ ` ψ [>]a[φ], [φ]a[ψ] `DDO [>]a[ψ]

• Modus Tollens:
¬ψ, φ→ ψ ` ¬φ [>]e[ψ] `Contrap [ψ]a[⊥], [φ]a[ψ] `DDO [φ]a[⊥]

• Hypothetical Syllogism:
φ→ ψ,ψ → χ ` φ→ χ : [φ]a[ψ], [ψ]a[χ] `DDO [φ]a[χ]

• Disjunctive Syllogism (φ ∨ ψ,¬φ ` ψ):
([>]e[φ])a[ψ], [>]a([>]e[φ]) `DDO [>]a[ψ].

Also other ‘monotonicity’ inferences like ‘p ` q → p’, ‘p ` q ∨ p’,
and ‘p ∧ q ` p’ can be immediately accounted for if for each term P 0,
(i) we take P 0 to be equivalent with >0aP 0 (as we argued above), and (ii)
assume the validity of P na>n as an axiom in our system SYLS+. Notice
that >aP,Qa> `DDO QaP , which accounts for ‘p ` q → p’. Second,
>aP,Qa>(axiom) `DDO QaP , which means that ‘p ` q ∨ p. Finally,
we derive PiQ ` >iP by means of the Reductio-rule and axiom (7), which
means that ‘p ∧ q ` p’. Suppose PiQ. By conversion this is QiP . Assume
now the negation of >iP : >aP . Because Qa> is an axiom, we can use it
to derive via the dictum QaP . Thus, we have reached a contradiction with
the derived QiP , and we conclude via the reductio-rule that >iP .

It thus seems that the syntactic deduction system for propositional logic
can make use of the syllogistic rules of inference. But is SYL+PL really
enough? Can we already prove things like ‘p, q ` p ∧ q’, ‘p ` p ∧ p’,

26 Scholastic and post-Scholastic logicians were well aware of its general applicability.
Leibniz (1973) states in one sentence the following: “without loss of truth, the predicate can
be put in place of the subject of a universal affirmative proposition, or the consequent in place
of the antecedent of an affirmative proposition, in another proposition where the subject of the
former proposition is the predicate or where the antecedent of the former is the consequent.”

27 Although Wallis (1687) does not seem to think of a conditional as a material implica-
tion, he explicitly argues (in chapter 16-18 of the third part) that these rules should be thought
of as ordinary valid syllogisms of the form Barbara, Camestres, Barbara, and Camestres,
respectively.
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‘p ∨ p ` p’, ‘p ∨ q ` q ∨ p’, or ‘p→ q ` (r → p) → (r → q)’? It turns out
that we can.28

Let us first consider conjunction introduction. Recall that p ≡ >ip. Be-
cause also q ≡ >iq, it follows from the fact that > is a singular term that
>aq. But from >ip and >aq it follows by the Dictum at once that piq, thus
p, q ` piq. Next, we will make use of Aristotle’s reductio-rule to show that
‘p ` p ∧ p’. So, assume p and ¬(pip). The latter is equivalent to pap. But
from this together with p we derive via the Dictum that p. Thus, assuming
¬(pip) we have reached a contradiction, from which we conclude via the
reductio-rule that p ` pip.

For the formulas involving disjunction it is important to realize that we
represent p∨ q by paq. For disjunctive elimination, we make use of rule (8):
SaS ` SaP . First, notice that because we translate p ∨ p by pap, we can
conclude by (8) to pa⊥. Via contraposition and double negation we derive
>ap. Because > is a singular term (rule 10)) it follows by (9) that >ip, and
thus via (11) that p. So we have validated p ∨ p ` p. It is easier to validate
‘p∨q ` q∨p’: it immediately follows by contraposition and double negation.

Notice that it would be very easy to account for ‘p → q ` (r → p) →
(r → q)’ if we could make use of the deduction theorem: Γ, P ` Q ⇒ Γ `
PaQ (for this to make sense, P and Q have to be 0-ary terms, obviously).
But this deduction theorem follows from SYL+PL: Assume Γ, P ` Q and
assume towards contradiction that ¬(PaQ). This latter formula is equiva-
lent to PiQ. We have seen above that >iP can be derived from PiQ in
SYL+. Because ¬(PaQ) ` P , it follows from the assumption Γ, P ` Q
that Γ,¬(PaQ) ` Q. From this we derive >aQ, and together with the
validity of Pa> we derive via the Dictum that PaQ. Thus, from Γ and as-
suming ¬(PaQ) we derive a contradiction: Γ,¬(PaQ) ` ¬(PaQ), PaQ.
By Aristotle’s reductio-rule we conclude that Γ ` PaQ.

Now that we have shown that modus ponens follows from the Dictum de
Omni, and that ‘p ` p ∨ p’, ‘p ∨ p ` p’, ‘p ∨ q ` q ∨ p’, and ‘p → q `
(r → p) → (r → q)’, we have in fact shown that we can derive all valid
propositional formulas from our system SYL+PL! The reason is that we
can axiomatize propositional logic by these four rules, together with modus
ponens and the substitution rule of identicals.29 Because we have seen in
section 2 that the substitution rule follows from the Dictum de Omni, we can
conclude that propositional logic follows from syllogistic logic if we (i) make
the natural assumption that propositions are 0-ary terms, (ii) adopt Frege’s

28 The De Morgan laws follow almost immediately by our definition of negation in section
2.

29 See Goodstein, 1963, chapter 4.
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idea that the 0-ary term >0 is a singular term, and (iii) treat singular terms
as proposed by Leibniz.

4. Relations

It is generally assumed that in traditional syllogistic logic there is no scope
for relations. Thus — or so the Frege-Russell argument goes — it can be
used neither to formalize natural language, nor to formalize mathematics.
What we need, – or so Frege and Russell argued – is a whole new logic.
But the Frege-Russell argument is only partly valid: instead of inventing a
whole new logic, we might as well just extend the traditional fragment. Tra-
ditional logicians were well aware of an important limitation of syllogistic
reasoning. In fact, already Aristotle recognized that the so-called ‘oblique’
terms (i.e. ones expressed in a grammatical case other than the nominative,
and not having ‘widest scope’) gives rise to inferences that cannot be ex-
pressed in the ordinary categorical syllogistic. An example used by Aristotle
is ‘Wisdom is knowledge, Wisdom is of the good, thus, Knowledge is of the
good’ (Aristotle, Book 1, 36). This is intuitively a valid inference, but it, or
its re-wording, is not syllogistically valid: ‘All wisdom is knowledge, Every
good thing is object of some wisdom, thus, Every good thing is object of
some knowledge’ (cf. Thom, 1981, d’20). The re-wording shows that we
are dealing with a binary relation here: ‘is object of’. Aristotle didn’t know
how to deal with such inferences, but he noted that if there is a syllogism
containing oblique terms, there must be a corresponding syllogism in which
the term is put back into the nominative case.

As far as semantics is concerned, it is well-known how to work with re-
lations. The main challenge, however, is to embed relations into the (gen-
eralized) syllogistic theory, and to extend the inference rules such that also
proofs can be handled that crucially involve relations. As it turns out, part
of this work has already been done by medieval logicians (Ockham, 1962;
Buridan, 1976), and also by people like Leibniz and De Morgan when they
were extending syllogistic reasoning such that it could account for inferences
involving oblique terms, or relations.

To account for relations, we first have to extend the language. There are
various ways to do so, but we will just combine relations with monadic terms
by means of the ‘connectives’ a, i, e, and o to generate new terms. This will
just be a generalization of what we did before: When we combine a monatic
term P with a monadic term S (and connective ‘a’, for instance), what
results is a new 0-ary term like SaP . The generalization is now straight-
forward: if we combine an n-ary term/relation R with a monadic term S
(and connective ‘a’, for instance), what results is a new n − 1-ary term
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(S1aRn)n−1. The semantics should now determine what such new terms de-
note. The n−1 ary terms (S1aRn)n−1 and (S1iRn)n−1, for instance, would
denote {〈d1, ..., dn−1〉 : VM (S) ⊆ {dn ∈ D : 〈d1, ..., dn〉 ∈ VM (Rn)} and
{〈d1, ..., dn−1〉 : VM (S) ∩ {dn ∈ D : 〈d1, ..., dn〉 ∈ VM (Rn) 6= ∅}, respec-
tively.30

Now we can represent the natural reading of a sentence like ‘Every man
loves a woman’ as Ma(WiL2). In traditional terminology it is said that
‘woman’ is an oblique term (in this sentence). The meaning of this formula
is calculated as follows:

VM (Ma(WiL2)) = {〈〉 : I(M) ⊆ {d ∈ D : 〈d〉 ∈ VM (WiL2)},
with VM (WiL2) = {〈d1〉 : I(W )∩{d2 ∈ D : 〈d1, d2〉 ∈ I(L2)} 6= ∅}. 31

To represent the sentence ‘There is a woman who is loved by every man’
we will follow medieval practice and make use of the passive form of ‘love’:
being loved by. For every binary relation R, we represent its passive form
by R∪, interpreted as indicated above: VM (R∪) = {〈d2, d1〉 : 〈d1, d2〉 ∈
IM (R)}.32 Now we represent ‘There is a woman who is loved by every
man’ as follows: Wi(MaL∪). Also in this sentence ‘woman’ is an oblique
term. This sentence is true iff:

VM (Wi(MaL∪)) = {〈〉 : I(W ) ∩ {d ∈ D : 〈d〉 ∈ VM (MaL∪)} 6= ∅},
with VM (MaL∪) = {〈d1〉 : I(W ) ⊆ {d2 ∈ D : 〈d1, d2〉 ∈ VM (L∪)}}.

Both truth conditions are intuitively correct, and correspond with those of
the two first-order formulas ∀x[M(x) → ∃y[W (y)∧L(x, y)]] and ∃y[W (y)∧
∀x[M(x) → ∧L(x, y)]], respectively.33

30 This by itself is not general enough to express important mathematical relations. For this
we need to be able to combine relations with other non-monadic terms as well. Now we could
express symmetry and asymmetry, for instance, simply byRaR∪ andRoR∪ respectively. To
express transitivity we also need the operation of composition ‘◦’ with semantics VM (R ◦
R′) = {〈d, d′′〉 : ∃d′ : 〈d, d′〉 ∈ VM (R) ∧ 〈d′, d′′〉 ∈ VM (R′)}. Of course, this is all well
known from work in relation algebra.

31 As usual, 〈d〉 is identified with d.

32 Of course, the active-passive transformation only works for binary relations. For more-
ary relations it fails. Fortunately, we can do something similar here, making use of some
functions introduced by Quine (1976) in his proof that variables are not essential for first-
order predicate logic. We won’t go into this here.

33 If we forget about existential import.
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What we want to know, however, is how we can reason with sentences that
involve relations. Let us first look at the re-wording of Aristotle’s example:
‘All wisdom is knowledge, Every good thing is object of some wisdom, thus,
Every good thing is object of some knowledge’. If we translate this into our
language this becomes WaK, Ga(WiR) ` Ga(KiR), with ‘R’ standing
for ‘is object of’. But now observe that we immediately predict that this in-
ference is valid by means of the Dictum de Omni, if we can assume that ‘W ’
occurs positively in ‘Ga(WiR)’! We can mechanically determine that this
is indeed the case.34 First, we say that if a sentence occurs out of context, the
sentence occurs positively. From this, we determine the positive and nega-
tive occurrences of other terms as follows:

P occurs positively in Γ iff P occurs negatively in Γ.
If (SaR) occurs positively in Γ, then S−aR+, otherwise S+aR−.
If (SiR) occurs positively in Γ, then S+iR+, otherwise S−iR−.

Thus, first we assume that ‘Ga(WiR)’ occurs positively. From this it fol-
lows that the term ‘WiR’ occurs positively, from which it follows in turn that
‘W ’ occurs positively. Assuming that ‘WaK’ is true, the Dictum allows us
to substitute K for W in Ga(WiR), resulting in the desired conclusion:
Ga(KiR). Notice that in a very similar way we could account for the infer-
ence ‘Every horse is an animal, A man sees every animal, thus A man sees
every horse’, by using the Dictum de Nullo. Similarly with the inference
from ‘Every man gives all flowers to some girl’ and ‘All roses are flowers’
to ‘Every man gives all roses to some girl’.

These are nice results, but we want more. Here is one classical example
discussed by Jungius (1957) and Leibniz (1966e): ‘Every thing which is a
painting is an art (or shorter, painting is an art), thus everyone who learns a
thing which is a painting learns a thing which is an art’ (or shorter: everyone
who learns painting learns an art). Formally: PaA ` (PiL2)a(AiL2).35

Semantically it is immediately clear that the conclusion follows from the
premiss. But the challenge for traditional logic was to account for this infer-
ence in a proof-theoretic way. As Leibniz already observed, we can account
for this inference in syllogistic logic if we add the extra (and tautological)
premiss ‘Everybody who learns a thing which is a painting learns a thing
which is a painting’, i.e. (PiL2)a(PiL2). Now (PiL2)a(AiL2) follows
from PaA and (PiL2)a(PiL2) by means of the Dictum the Omni, because

34 Cf. Sommers (1982) and van Benthem (1986).

35 One of De Morgan’s (1847, p. 114) examples is similar: ‘Every man is an animal, thus
He who kills a man kills an animal’.
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by our above rules the second occurrence of ‘P ’ in (PiL2)a(PiL2) occurs
in a monotone increasing position.36 Notice that Leibniz’ example exactly
parallels a famous example discussed by De Morgan (1847): ‘Every horse
is an animal, thus Every owner of a horse is an owner of an animal’ also
follows immediately with the Dictum if we assume the extra tautological
premiss that Every owner of a horse is the owner of a horse, represented by
(HiO2)a(HiO2).

To account for other inferences we need to assume more than just a tau-
tological premiss. For instance, we cannot yet account for many inferences
Ockham (1962) already could account for. Ockham states a whole lists of
oblique syllogisms to be valid, shows how they relate to standard syllogisms
of the various figures, and remarks that oblique terms other than the first can
be deduced to the first figure (cf. Thom, 1977). Some types of syllogisms
listed by Ockham we have already discussed (e.g. the following oblique
variants of syllogisms of the first figure: Ma(PiR), SaM ` Sa(PiR) and
MaP, Sa(MiR) ` Sa(PiR)). Other examples are more interesting and
we need additional tools. The inference from ‘No man is such that an ass
sees him’ Me(AiS∪) and ‘Everything that laughs sees a man’ (La(MiS))
to ‘Nothing that laughs is an ass’ (LeA) is intuitively valid, but cannot yet be
accounted for. Something similar holds for the inference from ‘Every boy
loves some girl’ (Ba(GiL)) and ‘No girl is such that some widow loves her’
(Ge(WiL∪)) to ‘No boy is a widow’ (BeW ). Ockham sees those inferences
as oblique variants of the valid syllogism of the first figure Celarent. To ac-
count for these inferences we need to enrich our system SYL + PL with the
rule of oblique conversion (12), and the passive rule (13) (for binary rela-
tions R, and predicates S and O):

(12) Oblique Conversion: Si(OiR) ≡ Oi(SiR∪).
from ‘A man loves a woman’ we infer that ‘A woman is
loved by a man’ and the converse of this.37

(13) Double passive: R∪∪ ≡ R.

36 In terms of our framework, Leibniz assumed that all terms being part of the predicate
within sentences of the form SaP and SiP occur positively. But this is not necessarily the
case once we allow for all types of complex terms: P doesn’t occur positively in Sa(PaR),
for instance. On Leibniz’s assumption, some invalid inferences can be derived (cf. Sánchez,
1991). These invalid inferences are blocked by our more fine-grained calculation of mono-
tonicity marking.

37 In fact, we only required Si(OiR)aOi(SiR∪) once we have also (13). Thom (1977)
introduces 7 more conversion rules and a rule of ‘Ecthesis’ that I don’t use.
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In standard predicate logic one can easily prove the equivalence of ∃x
[Mx ∧ ∃y[Wy ∧ Rxy]] with ∃xyWy ∧ ∃x[Wx ∧ Rxy]]. But in contrast
to predicate logic, our system demands that the sequence of arguments of a
relational term is in accordance with the scope order of the associated terms.
Because of this, we have to state how sentences with ‘reverse’ relations cor-
respond with ordinary relational sentences. It is important to realize that
the following conversion rule, (12′) Se(OiR) ≡ Oe(SiR∪), immediately
follows from (12).

To account for the first of the above inferences, notice that by (12′), Me
(AiS∪) is equivalent to Ae(MiS). But now we see that in this premiss and
the premissLa(MiS) the same term ‘MiS’ occurs, and we can immediately
infer (by DDN) toAeL. ByE-conversion the conclusionLeA follows. Ock-
ham, instead would first convert the first premiss by ordinary E-conversion
to (MiS)eA, and then derive the conclusion as a ordinary Celarent syllo-
gism. Similarly for the second of the above inferences. This time we infer
from Ge(WiL∪) by (12′) to We(GiL). Together with the second premiss
Ba(GiL) it follows by the DDN that WeB and with E-conversion we de-
riveBeW . Other inferences counted as valid by Ockham could be accounted
for in a similar way. Ockham uses oblique conversion also to reduce valid
oblique syllogisms in figures other than the first to valid oblique syllogism
of the first figure. As observed by Thom (1977), Ockham (1962, Part IIa,
ch. 9, 11. 1-13) says that some oblique syllogisms in the first figure are gov-
erned by the Dictum de Omni et Nullo. Thom (1977) argues, however, that
this doesn’t hold for the following valid oblique syllogism of the first figure
(what he calls Barbara XSS): MaP, Sa(MiR) ` Sa(PiR), because this is
not a special case of Barbara. This might be true, but it is clear that it imme-
diately follows by the DDO nevertheless, because of our general formulation
of this rule in section 2.

The formulation of this rule in section 2 is not general enough, however,
to account for the inference from ‘There is a woman who is loved by every
man’ to ‘Every man loves a woman’. We need the more general formulation
of the Dictum in (1′) 38 and the following variant of oblique conversion:

(1′) Dictum de Omni: Γ(MaR)+,Θ(M)+ ` Γ(Θ(R)).

(12′′) Oblique Conversion: Sa(OaR) ≡ Oa(SaR∪).39

38 This Dictum is more general than the so-called Barbara XSS and Barbara XPP men-
tioned by (Thom, 1981, p. 256). The rule is semantically sound.

39 This rule can be derived from the earlier one. Assume Sa(OaR). This is equivalent

with Se(OaR) ≡ Se(OoR) ≡ Se(OiR) ≡ (Oe(SiR
∪

) ≡ Oa(SiR
∪

) ≡ Oa(SeR
∪

) ≡
Oa(SaR∪).
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from ‘every man loves every woman’ we infer that ‘every
woman is loved by every man’ and the converse of this.

Let us see how we can account for the inference from Wi(MaL∪) to
Ma(WiL):

1. Wi(MaL∪) premiss.

2. (MaL∪)a(MaL∪) a tautology (everyone loved by every man is
loved by every man).

3. Ma((MaL∪)aL∪∪) from 2 and (12′′) (S = (MaL∪) and S′ = M ).

4. Ma((MaL∪)aL) by 3 and (13), substitution of L for L∪∪.

5. Ma(WiL) by 1 and 4, by the Dictum de Omni (1′).40

This type of validity can now be used to account for other inferences.
For instance, in terms of it we can now infer from ‘Some man loves every
woman’ (Mi(WaL)) and ‘Some teacher loves a woman’ (Ti(WiL)) that
Some teacher loves someone that is loved by some man (Ti((MiL∪)iL).
The reason is that from the first premiss it follows that Wa(MiL∪) holds,
which together with the second premiss and the Dictum de Omni allows us
to infer the conclusion.

5. Conclusion

In this paper I have argued with Sommers (1982) and others that interesting
parts of standard logic could have, and perhaps even have been, developed
naturally out of traditional syllogistic. Singular propositions straightfor-
wardly fit into the system, and the syllogistic can naturally be extended to ac-
count for full propositional reasoning, and even for reasoning with relational
terms. This is interesting, for one thing because syllogistic logic seems much
closer to natural language than first-order predicate logic. In contrast to the
latter, the former analyses sentences as being of subject-predicate structure.
Indeed, the idea that natural language is misleading because it systematically
analyses sentences in a wrong way is foreign to syllogistic logic. Syllogis-
tic logic is also of great interest for empirical linguistics because it makes
essential use of the Dictum de Omni (et Nullo), distributivity, or monotonic-
ity. Though Geach (1962) famously argued that the traditional theory of
distribution was hopelessly confused, developments in modern Generalized

40 With Γ = Ma,Θ = Wi,R = L, and M = MaL∪.
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Quantifier Theory shows that the traditional notion of monotonicity is of
great value for linguistic and logical purposes. Moreover, Geurts & van der
Silk (2005) showed experimentally that inferences based on monotonicity
are ‘easy’ in an interesting sense.

Though we used neither a distinguished relation of identity, nor make use
of variables to allow for binding, we have seen that we could nevertheless
adequately express many types of sentences for which these tools are nor-
mally used in predicate logic. This doesn’t mean that our extended syl-
logistic is as expressive as standard first-order logic. One easy extension
we have already suggested is the use of conjunctive terms to represent sen-
tences like ‘Every tiger is a striped animal’.41 More seriously, what we can-
not (yet) represent are sentences which crucially involve variables/pronouns
and/or identity. Some examples for which these tools are crucial are the fol-
lowing: ‘Every/some man loves himself’, ‘All parents love their children’,
‘Everybody loves somebody else’, ‘There is a unique king of France’, and
‘At least 3 men are sick’. As it turns out, we can extend our language with
numerical quantifiers (cf. Murphee, 1997) and Quinean predicate functors
(Quine, 1976) to solve these problems, but these extensions have their price.
Pratt-Hartmann (2009) shows that syllogistic systems with numerical quan-
tifiers cannot be axiomatized (but see van Eijck (2007) for a related more
positive result), and adding Quinean predicate functors forces the fragment
to jump over the decidability border. In the formal system we have so far,
the sequence of arguments of a relational term will always be in accordance
with the scope order of the associated terms. Thinking of this system as a
fragment of FOL means that this logic has a very interesting property. Fol-
lowing an earlier suggestion of Quine, Purdy (1998) shows that the limits of
decidability are indeed close to the limits of what can be expressed in (our

41 Alternatively, and more in accordance with tradition, we could add the following new
connectives: if S and P are n-ary terms, then Sa∗P and Si∗P are also n-ary terms (of
course, one of them is only required). These new complex terms will be interpreted as fol-
lows: VM (Sa∗P ) = VM (S) ∪ VM (P ) and VM (Si∗P ) = VM (S) ∩ VM (P ). Notice that
semantically it holds that SaP and SiP are true iff >na(Sa∗P ) and >ni(Si∗P ) are true.
To implement this, we could add these equivalences as axioms to the proof theory in the spirit
of Leibniz (With the substitutions as suggested by Castañeda, 1990):

A proposition itself can be conceived as a term: thus, ‘Some A is B’, i.e., ‘AB is
a true term’ is a term – namely, ‘ABtrue’. Again, we have ‘Every A is B’, i.e. ‘A
not-B is false’, i.e. ‘A not-Bfalse’ is a new term; and again ‘No A is B’, i.e. ‘AB
is false’, i.e. ‘ABfalse’ is a new term. (Leibniz, 1966a)
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fragment of) traditional formal logic.42 This suggests that the extended syl-
logistic system discussed in this paper — the part of logic where we don’t
essentially need variables or predicate functors — is indeed a very interesting
part of logic. Indeed, a small contingent of modern logicians (e.g. Suppes,
Sommers, van Benthem, van Eijck, Sánchez, Purdy, Pratt-Hartmann, Moss)
seeks to develop a system of natural logic which is very close to what we
have done in this paper in that it is essentially variable-free.
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