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COMBINING INTUITIONISTIC LOGIC WITH PARACONSISTENT
OPERATORS

NORIHIRO KAMIDE

Abstract
A new propositional intuitionistic paraconsistent logic, ILω, is intro-
duced as a sequent calculus combining Gentzen’s LJ with paracon-
sistent negation-like and involution-like operators. Completeness
theorem with respect to Kripke semantics, embedding theorem into
LJ, cut-elimination theorem and decidability theorem are shown for
ILω.

1. Introduction

In this paper, a new propositional intuitionistic paraconsistent logic, ILω, is
introduced as a cut-free and Kripke-complete Gentzen-type sequent calculus
combining Gentzen’s LJ with paraconsistent negation-like and involution-
like operators. The proposed paraconsistent negation-like operators are re-
garded as a variant of the paraconsistent negation operators of the well-
known “useful” many-valued paraconsistent logics: Belnap’s and Dunn’s 4-
valued logic B4 [4, 5], first-degree entailment FDE [2], Nelson’s paraconsis-
tent logic N4 [1], Arieli-Avron’s bilattice logics [3] and Shramko-Wansing’s
trilattice logics [9].

Gentzen-type sequent calculi for these many-valued paraconsistent log-
ics have been studied by many researchers. For example, cut-free sequent
calculi for some bilattice-based paraconsistent logics, which are natural ex-
tensions of N4, were studied by Gargov [6] and by Arieli and Avron [3],
and a cut-free sequent calculus L16 that includes Shramko-Wansing’s logic
FDEt+∼f was introduced by Kamide [7]. Since FDEt+∼f has both the
negation and involution operators, L16 needed a bit complicated formaliza-
tion to obtain a cut-free system. In order to simplify and refine L16, two
sequent calculi Lω and FLω have recently been introduced by Kamide [8]
presenting a new negation operator that can simultaneously represent both
paraconsistent negation-like and involution-like operators. In these logics,
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58 NORIHIRO KAMIDE

the uncertainty level of the truth (or falsehood) of a proposition can be rep-
resented by a given number of nested occurrences of the new negation oper-
ator.

However, Lω and FLω do not support intuitionistic or constructive char-
acters such as the property of “constructible falsity” [1], since Lω and FLω

are based on (propositional and first-order, respectively) classical logic. The
systems Lω and FLω are also not appropriate for representing “partial (or
incomplete) information”, i.e., the situation when α ∨ ¬α is not always true
for any information α. It is known that Nelson’s N4 is useful for represent-
ing “constructible falsity” and that intuitionistic logic and N4 are suitable
as a base logic for representing “partial information”. The aim of introduc-
ing ILω is thus to obtain an intuitionistic version of Lω by extending LJ and
modifying N4, in order to represent “constructible falsity” and “partial in-
formation”.

The contents of this paper are then summarized as follows. In Section 2,
ILω is introduced as a Gentzen-type sequent calculus by extending LJ and
modifying N4. A theorem for embedding ILω into LJ is shown, and by us-
ing this theorem, the cut-elimination and decidability theorems are shown
for ILω. The properties of paraconsistency and constructible falsity for ILω

are also derived from the cut-elimination theorem. In Section 3, a Kripke
semantics for ILω is introduced, and the completeness theorem w.r.t. this
semantics is proved. This theorem is the main result of this paper. In Sec-
tion 4, some versions of ILω, which can include N4, are presented, and a
modal version LMω of Lω, which can be associated with ILω by the Gödel-
McKinsey-Tarski translation, is presented.

2. Sequent calculus and cut-elimination

The following list of symbols is adopted for the language of the underlying
logic: (countable) propositional variables p0, p1, ..., constant ⊥ (falsity con-
stant), logical connectives → (implication), ∧ (conjunction), ∨ (disjunction)
and ∼ (paraconsistent negation). The intuitionistic negation ¬ can be de-
fined by ¬α := α→⊥. Greek lower-case letters α, β, ... are used to denote
formulas, and Greek capital letters Γ, ∆, ... are used to represent finite (pos-
sibly empty) sets of formulas. We write A ≡ B to indicate the syntactical
identity between A and B. The symbol ω is used to represent the set of nat-
ural numbers. The symbols ωe and ωo are used to represent {i ∈ ω | i is
even} and {i ∈ ω | i is odd}, respectively. An expression ∼iα for any i ∈ ω

is used to denote
i

︷ ︸︸ ︷
∼∼ · · ·∼α, which is defined inductively by (∼0α := α)

and (∼n+1α := ∼∼nα). Lower-case letters i, j and k are used to denote any
natural numbers. An expression of the form Γ ⇒ ∆ where ∆ is empty or
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singleton is called a sequent. An expression L ` S is used to denote the fact
that a sequent S is provable in a sequent calculus L. A rule R of inference
is said to be admissible in a sequent calculus L if the following condition is
satisfied: for any instance

S1 · · · Sn

S

of R, if L ` Si for all i, then L ` S.

Definition 2.1 : (ILω) Let ∆ be empty or singleton.
The initial sequents of ILω are of the form: for any propositional variable

p and any i ∈ ω,

∼ip ⇒ ∼ip ∼i⊥ ⇒.

The structural inference rules of ILω are of the form:

Γ ⇒ α α, Σ ⇒ ∆

Γ, Σ ⇒ ∆
(cut) Γ ⇒ ∆

α, Γ ⇒ ∆
(w-left) Γ ⇒

Γ ⇒ α
(w-right).

The even logical inference rules of ILω are of the form: for any i ∈ ωe,

Γ ⇒ ∼iα ∼iβ, Σ ⇒ ∆

∼i(α→β), Γ, Σ ⇒ ∆
(→lefte)

∼iα, Γ ⇒ ∼iβ

Γ ⇒ ∼i(α→β)
(→righte)

∼iα,∼iβ, Γ ⇒ ∆

∼i(α ∧ β), Γ ⇒ ∆
(∧lefte)

Γ ⇒ ∼iα Γ ⇒ ∼iβ

Γ ⇒ ∼i(α ∧ β)
(∧righte)

∼iα, Γ ⇒ ∆ ∼iβ, Γ ⇒ ∆

∼i(α ∨ β), Γ ⇒ ∆
(∨lefte)

Γ ⇒ ∼iα
Γ ⇒ ∼i(α ∨ β)

(∨right1e)
Γ ⇒ ∼iβ

Γ ⇒ ∼i(α ∨ β)
(∨right2e).

The odd logical inference rules of ILω are of the form: for any j ∈ ωo,

∼j−1α,∼jβ, Γ ⇒ ∆

∼j(α→β), Γ ⇒ ∆
(→lefto)

Γ ⇒ ∼j−1α Γ ⇒ ∼jβ

Γ ⇒ ∼j(α→β)
(→righto)

∼jα, Γ ⇒ ∆ ∼jβ, Γ ⇒ ∆

∼j(α ∧ β), Γ ⇒ ∆
(∧lefto)
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60 NORIHIRO KAMIDE

Γ ⇒ ∼jα
Γ ⇒ ∼j(α ∧ β)

(∧right1o)
Γ ⇒ ∼jβ

Γ ⇒ ∼j(α ∧ β)
(∧right2o)

∼jα,∼jβ, Γ ⇒ ∆

∼j(α ∨ β), Γ ⇒ ∆
(∨lefto)

Γ ⇒ ∼jα Γ ⇒ ∼jβ

Γ ⇒ ∼j(α ∨ β)
(∨righto).

The sequents of the form ∼iα ⇒ ∼iα for any formula α and any i ∈ ω
are provable in cut-free ILω. This fact can be proved by induction on the
complexity of α. Hence, these sequents can also be regarded as the initial
sequents of ILω. The ⊥-less fragment of ILω with both i = 0 and j = 1 is
just a sequent system for Nelson’s 4-valued logic N4 [1] without the double-
negation-elimination axiom: ∼∼α ↔ α. Also, the {→,⊥}-less fragment of
ILω with both i = 0 and j = 1 is a sequent system for Belnap’s and Dunn’s
4-valued logic B4 [4, 5] without the double-negation-elimination axiom for
∼. For a detailed explanation for sequent calculi for N4 and B4, see e.g.,
[10].

The following proposition shows that the expressions ∼i (i: even) and
∼j (j: odd) are regarded as an involution-like operator and a negation-like
operator, respectively.

An expression α ⇔ β is an abbreviation for the pair of sequents α ⇒ β
and β ⇒ α.

Proposition 2.2 : The following sequents are provable in ILω: for any for-
mulas α, β, any i ∈ ωe and any j ∈ ωo,

1. ∼i(α ◦ β) ⇔ ∼iα ◦ ∼iβ where ◦ ∈ {→,∧,∨},

2. ∼j(α→β) ⇔ ∼j−1α ∧ ∼jβ (esp., ∼(α→β) ⇔ α ∧ ∼β),

3. ∼j(α ∧ β) ⇔ ∼jα ∨ ∼jβ,

4. ∼j(α ∨ β) ⇔ ∼jα ∧ ∼jβ.

Proof. Similar to the proofs of Lω in [8]. �

Note that ILω is also an extension of the sequent calculus LJ for intuition-
istic logic.

Observation 2.3 : (LJ) LJ is obtained from ILω by deleting the odd logical
inference rules and replacing i in the initial sequents and the even logical
inference rules by 0 (i.e., deleting every occurrence of ∼). The modified
inference rules for LJ by replacing i by 0 are denoted by deleting the super-
script “e”.
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As well-known, LJ enjoys cut-elimination.

Definition 2.4 : Let Φ := {p, q, r, ...} be a fixed countable non-empty set of
propositional variables. Then, we define the sets Φi := {pi | p ∈ Φ} (i ∈ ω)
of propositional variables where p0 := p, i.e., Φ0 = Φ. The language LILω

of ILω is defined using Φ, ⊥,→,∧,∨ and ∼. The language LLJ of LJ is
defined using

⋃

i∈ω Φi, ⊥,→, ∧ and ∨.
A mapping f from LILω to LLJ is defined as follows.

1. f(∼ip) := pi ∈ Φi for each p ∈ Φ and each i ∈ ω (especially,
f(p) := p ∈ Φ),

2. f(∼i⊥) := ⊥ for each i ∈ ω,

3. f(∼i(α◦β)) := f(∼iα)◦f(∼iβ) (◦ ∈ {→,∧,∨}) for each i ∈ ωe,

4. f(∼j(α→β)) := f(∼j−1α) ∧ f(∼jβ) for each j ∈ ωo,

5. f(∼j(α ∧ β)) := f(∼jα) ∨ f(∼jβ) for each j ∈ ωo,

6. f(∼j(α ∨ β)) := f(∼jα) ∧ f(∼jβ) for each j ∈ ωo.

An expression f(Γ) denotes the result of replacing every occurrence of a
formula α in Γ by an occurrence of f(α).

Theorem 2.5 : Let Γ and ∆ be sets of formulas in LILω and f be the mapping
defined in Definition 2.4. Then:

1. ILω ` Γ ⇒ ∆ iff LJ ` f(Γ) ⇒ f(∆).

2. ILω − (cut) ` Γ ⇒ ∆ iff LJ − (cut) ` f(Γ) ⇒ f(∆).

Proof. (2) immediately follows from (1). Thus, we only examine (1).
(Left-to-right): By induction on the length of the proof P of Γ ⇒ ∆ in

ILω. We distinguish the cases according to the last inference of P . We only
show the following cases.

Case (∼ip ⇒ ∼ip): The last inference of P is of the form: ∼ip ⇒ ∼ip.
In this case, we obtain f(∼ip) ⇒ f(∼ip), i.e., pi ⇒ pi (pi ∈ Φi), which is
an initial sequent of LJ.

Case (→lefte): The last inference of P is of the form:

Γ1 ⇒ ∼iα ∼iβ, Γ2 ⇒ ∆

∼i(α→β), Γ1, Γ2 ⇒ ∆
(→lefte).
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By induction hypothesis, we have LJ ` f(Γ1) ⇒ f(∼iα) and LJ ` f(∼iβ),
f(Γ2) ⇒ f(∆). Then, we obtain

....
f(Γ1) ⇒ f(∼iα)

....
f(∼iβ), f(Γ2) ⇒ f(∆)

f(∼iα)→f(∼iβ), f(Γ1), f(Γ2) ⇒ f(∆)
(→left)

where f(∼iα)→f(∼iβ) coincides with f(∼i(α→β)) by the definition of f .
Case (→righto): The last inference of P is of the form:

Γ ⇒ ∼j−1α Γ ⇒ ∼jβ

Γ ⇒ ∼j(α→β)
(→righto).

By induction hypothesis, we have LJ ` f(Γ) ⇒ f(∼j−1α) and LJ ` f(Γ) ⇒
f(∼jβ). Then, we obtain

....
f(Γ) ⇒ f(∼j−1α)

....
f(Γ) ⇒ f(∼jβ)

f(Γ) ⇒ f(∼j−1α) ∧ f(∼jβ)
(∧right)

where f(∼j−1α) ∧ f(∼jβ) coincides with f(∼j(α→β)) by the definition
of f .

(Right-to-left): By induction on the length of the proof Q of f(Γ) ⇒ f(∆)
in LJ. We distinguish the cases according to the last inference of Q, and show
only the case (∧left).

Subcase (1): The last inference of Q is of the form:

f(∼j−1α), f(∼jβ), f(Γ′) ⇒ f(∆)

f(∼j−1α) ∧ f(∼jβ), f(Γ′) ⇒ f(∆)
(∧left)

where f(∼j−1α) ∧ f(∼jβ) coincides with f(∼j(α→β)) by the definition
of f . By induction hypothesis, we have ILω ` ∼j−1α,∼jβ, Γ′ ⇒ ∆, and
hence obtain: ....

∼j−1α,∼jβ, Γ′ ⇒ ∆

∼j(α→β), Γ′ ⇒ ∆
(→lefto).
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Subcase (2): The last inference of Q is of the form:

f(∼jα), f(∼jβ), f(Γ′) ⇒ f(∆)

f(∼jα) ∧ f(∼jβ), f(Γ′) ⇒ f(∆)
(∧left)

where f(∼jα) ∧ f(∼jβ) coincides with f(∼j(α ∨ β)) by the definition of
f . By induction hypothesis, we have ILω ` ∼jα,∼jβ, Γ′ ⇒ ∆, and hence
obtain: ....

∼jα,∼jβ, Γ′ ⇒ ∆

∼j(α ∨ β), Γ′ ⇒ ∆
(∨lefto).

Subcase (3): The last inference of Q is of the form:

f(∼iα), f(∼iβ), f(Γ′) ⇒ f(∆)

f(∼iα) ∧ f(∼iβ), f(Γ′) ⇒ f(∆)
(∧left)

where f(∼iα) ∧ f(∼iβ) coincides with f(∼i(α ∧ β)) by the definition of
f . By induction hypothesis, we have ILω ` ∼iα,∼iβ, Γ′ ⇒ ∆, and hence
obtain: ....

∼iα,∼iβ, Γ′ ⇒ ∆

∼i(α ∧ β), Γ′ ⇒ ∆
(∧lefte).

�

Using Theorem 2.5, we can obtain the following theorems.

Theorem 2.6 : The rule (cut) is admissible in cut-free ILω.

Proof. Suppose ILω ` Γ ⇒ ∆. Then, we have LJ ` f(Γ) ⇒ f(∆) by The-
orem 2.5 (1), and hence LJ − (cut) ` f(Γ) ⇒ f(∆) by the cut-elimination
theorem for LJ. By Theorem 2.5 (2), we obtain ILω − (cut) ` Γ ⇒ ∆. �

Theorem 2.7 : ILω is decidable.

Proof. By decidability of LJ, for each α, it is possible to decide if f(α) is
LJ-provable. Then, by Theorem 2.5, ILω is decidable. �

Definition 2.8 : Let ] be a unary connective. A sequent calculus L is called
explosive with respect to ] if for each pair of formulas α and β, the sequent



“04kamide”
2012/2/26
page 64

i

i

i

i

i

i

i

i
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α, ]α ⇒ β is provable in L. It is called paraconsistent with respect to ] if it
is not explosive with respect to ].

Theorem 2.9 : Let ] be ∼i (i ∈ ωe) or ∼j (j ∈ ωo). Then, ILω is paracon-
sistent with respect to ].

Proof. Consider a sequent p, ]p ⇒ q where p and q are distinct atomic for-
mulas. Then, the unprovability of this sequent is guaranteed by using Theo-
rem 2.6. �

The following theorem says that ILω has the property of constructible fal-
sity with respect to ∼j (j ∈ ωo).

Theorem 2.10 : Let j ∈ ωo. If ILω ` ⇒ ∼j(α ∧ β), then ILω ` ⇒ ∼jα or
ILω ` ⇒ ∼jβ.

Proof. By Theorem 2.6, it is sufficient to consider the cut-free proof P of
⇒ ∼j(α ∧ β) in ILω − (cut). Then, the last inference of P is (∧righto) or
(∧righto). Therefore we have the required fact. �

3. Semantics and completeness

Definition 3.1 : A Kripke frame is a structure 〈M, N, R〉 satisfying the fol-
lowing conditions.

1. M is a nonempty set.

2. N is the set of natural numbers.

3. R is a reflexive and transitive binary relation on M .

Definition 3.2 : A valuation |= on a Kripke frame 〈M, N, R〉 is a mapping
from the set Ψ of all propositional variables to the power set 2M×N of the
direct product M × N such that for any p ∈ Ψ, any i ∈ N , and any x, y ∈
M , if (x, i) ∈ |= (p) and xRy, then (y, i) ∈ |= (p). We will write (x, i) |= p
for (x, i) ∈ |= (p). Each valuation |= is extended to a mapping from the set
Φ of all formulas to 2M×N by the following prescriptions: for any i ∈ ωe,
any j ∈ ωo and any k ∈ ω,

1. (x, k) |= ∼α iff (x, k + 1) |= α,

2. (x, k) |= ⊥ does not hold,

3. (x, i) |= α→β iff ∀y ∈ M [xRy and (y, i) |= α imply (y, i) |= β],
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4. (x, i) |= α ∧ β iff (x, i) |= α and (x, i) |= β,

5. (x, i) |= α ∨ β iff (x, i) |= α or (x, i) |= β,

6. (x, j) |= α→β iff (x, j − 1) |= α and (x, j) |= β,

7. (x, j) |= α ∧ β iff (x, j) |= α or (x, j) |= β,

8. (x, j) |= α ∨ β iff (x, j) |= α and (x, j) |= β.

Proposition 3.3 : Let |= be a valuation on a Kripke frame 〈M, N, R〉. For
any formula α, any i ∈ N , and any x, y ∈ M , if (x, i) |= α and xRy, then
(y, i) |= α.

Proof. By induction on the complexity of α. �

An expression Γ∧ means γ1∧γ2∧· · ·∧γn if Γ ≡ {γ1, γ2, ..., γn} (0 ≤ n).
An expression ∆∗ means α or ⊥ if ∆ ≡ {α} or ∅, respectively. An expres-
sion (Γ ⇒ ∆)∗ means Γ∧→∆∗ if Γ is not empty, and means ∆∗ otherwise.

Definition 3.4 : A Kripke model is a structure 〈M, N, R, |=〉 such that

1. 〈M, N, R〉 is a Kripke frame, and

2. |= is a valuation on 〈M, N, R〉.

A formula α is true in a Kripke model 〈M, N, R, |=〉 if (x, 0) |= α for any
x ∈ M , and valid in a Kripke frame 〈M, N, R〉 if it is true for any valuation
|= on the Kripke frame.

A sequent Γ ⇒ ∆ is true in a Kripke model 〈M, N, R, |=〉 if the formula
(Γ→∆)∗ is true in the Kripke model, and valid in a Kripke frame 〈M, N, R〉
if it is true for any valuation |= on the Kripke frame.

The following soundness theorem can straightforwardly be obtained.

Theorem 3.5 : Let C be the class of all Kripke frames, L := {Γ ⇒ ∆ | ILω

` Γ ⇒ ∆} and L(C ) := {Γ ⇒ ∆ | Γ ⇒ ∆ is valid in all frames of C}.
Then, L ⊆ L(C ).

Now we start to prove the completeness theorem.

Definition 3.6 : Let x and y be sets of formulas. The pair (x, y) is consistent
iff for any α1, ..., αm ∈ x and any β1, ..., βn ∈ y with (m, n ≥ 0), the
sequent α1, ..., αm ⇒ β1 ∨ · · · ∨ βn is not provable in ILω. The pair (x, y)
is maximal consistent iff it is consistent and for every formula α, α ∈ x or
α ∈ y.
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The following lemma can be proved using (cut).

Lemma 3.7 : Let x and y be sets of formulas. If the pair (x, y) is consistent,
then there is a maximal consistent pair (x′, y′) such that x ⊆ x′ and y ⊆ y′.

Proof. Let γ1, γ2, ... be an enumeration of all formulas of ILω. Define a
sequence of pairs (xn, yn) (n = 0, 1, ...) inductively by (x0, y0) := (x, y),
and (xm+1, ym+1) := (xm, ym ∪ {γm+1}) if (xm, ym ∪ {γm+1}) is con-
sistent, and (xm+1, ym+1) := (xm ∪ {γm+1}, ym) otherwise. We can ob-
tain the fact that if (xm, ym) is consistent, then so is (xm+1, ym+1). To
verify this, suppose (xm+1, ym+1) is not consistent. Then, there are for-
mulas α1, ..., αi, α

′

1, ..., α
′

j ∈ xm and β1, ..., βk, β
′

1, ..., β
′

l ∈ ym such that
ILω ` α1, ..., αi ⇒ β1 ∨ · · · ∨ βk ∨ γm+1 and ILω ` α′

1, ..., α
′

j , γm+1 ⇒

β′

1 ∨ · · · ∨ β′

l. By using (cut) and some other rules, we can obtain ILω `
α1, ..., αi, α

′

1, ..., α
′

j ⇒ β1 ∨ · · · ∨ βk ∨ β′

1 ∨ · · · ∨ β′

l. This contradicts the
consistency of (xm, ym). Hence, a pair (xk, yk) produced is consistent for
any k. We thus obtain a maximal consistent pair (

⋃
∞

n=0
xn,

⋃
∞

n=0
yn). �

We now construct a canonical model from a given unprovable sequent
Γ ⇒ ∆ in ILω. Since the pair (Γ, ∆) is consistent, by Lemma 3.7, there is a
maximal consistent pair (u, v) such that Γ ⊆ u and ∆ ⊆ v.

Definition 3.8 : Let ML be the set of all maximal consistent pairs. A binary
relation RL on ML is defined by (x, w)RL(y, z) iff x ⊆ y. A valuation
|=L (p) for any propositional variable p is defined by {((x, w), i) ∈ ML ×
N | ∼ip ∈ x}.

Lemma 3.9 : The structure 〈ML, N, RL, |=L〉 defined is a Kripke model such
that for any formula α, any i ∈ N , and any (x, w) ∈ ML, ∼iα ∈ x iff
((x, w), i) |=L α.

Proof. It can be shown that (1) ML is a nonempty set, because (u, v) ∈ ML

by the discussion above Definition 3.8, (2) RL is a reflexive and transitive re-
lation on ML, and (3) for any propositional variable p and any (x, w), (y, z) ∈
ML, if (x, w)RL(y, z) and ((x, w), i) |=L (p), then ((y, z), i) |=L (p).
Thus, the structure 〈ML, N, RL, |=L〉 is a Kripke model.

It remains to show that in this model, for any formula α, any i ∈ N , and
any (x, w) ∈ ML, ∼iα ∈ x iff ((x, w), i) |=L α. This is shown by induction
on the complexity of α. The base step is obvious by Definition 3.8. We now
consider the induction step below.
• Case α ≡ ⊥: By the consistency of (x, w), ∼i⊥ ∈ x does not hold.
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• Case α ≡ ∼β: ∼i∼β ∈ x iff ∼i+1β ∈ x iff ((x, w), i + 1) |=L β (by
the induction hypothesis) iff ((x, w), i) |=L ∼β.
• Case α ≡ γ→δ:
Subcase (i ∈ ωe): Suppose ∼i(γ→δ) ∈ x. We will show ((x, w), i) |=L

γ→δ, i.e., ∀(y, z) ∈ ML [(x, w)RL(y, z) and ((y, z), i) |=L γ imply
((y, z), i) |=L δ]. Suppose (x, w)RL(y, z) and ((y, z), i) |=L γ. Then, we
have (*): ∼i(γ→δ) ∈ y by the definition of RL, and obtain (**): ∼iγ ∈ y by
the induction hypothesis. Since (*), (**) and ILω ` ∼i(γ→δ),∼iγ ⇒ ∼iδ,
the fact ∼iδ ∈ z contradicts the consistency of (y, z), and hence ∼iδ /∈ z.
By the maximality of (y, z), we obtain ∼iδ ∈ y. By the induction hy-
pothesis, we obtain the required fact ((y, z), i) |=L δ. Conversely, sup-
pose ∼i(γ→δ) /∈ x. Then, ∼i(γ→δ) ∈ w by the maximality of (x, w).
Then, the pair (x ∪ {∼iγ}, {∼iδ}) is consistent because of the following
reason. If it is not consistent, ILω ` Γ,∼iγ ⇒ ∼iδ for some Γ consist-
ing of formulas in x, and hence ILω ` Γ ⇒ ∼i(γ→δ). This fact contra-
dicts the consistency of (x, w). By Lemma 3.7, there is a maximal consis-
tent pair (y, z) such that x ∪ {∼iγ} ⊆ y and {∼iδ} ⊆ z (thus, we have
∼iδ /∈ y by the consistency of (y, z)). Thus, we have (x, w)RL(y, z),
((y, z), i) |=L γ and not-[((y, z), i) |=L δ] by the induction hypothesis.
Therefore ((x, w), i) |=L γ→δ does not hold.

Subcase (i ∈ ωo): Suppose ∼i(γ→δ) ∈ x. Since ILω ` ∼i(γ→δ) ⇒
∼i−1γ, the fact ∼i−1γ ∈ w contradicts the consistency of (x, w), and hence
∼i−1γ ∈ x. Similarly, we obtain ∼iδ ∈ x. By the induction hypothesis, we
obtain ((x, w), i − 1) |=L γ and ((x, w), i) |=L δ, and hence ((x, w), i) |=L

γ→δ. Conversely, suppose ((x, w), i) |=L γ→δ, i.e., ((x, w), i − 1) |=L

γ and ((x, w), i) |=L δ. Then, we obtain ∼i−1γ ∈ x and ∼iδ ∈ x by
the induction hypothesis. Since ILω ` ∼i−1γ,∼iδ ⇒ ∼i(γ→δ), the fact
∼i(γ→δ) ∈ w contradicts the consistency of (x, w), and hence ∼i(γ→δ) /∈
w. By the maximality of (x, w), we obtain ∼i(γ→δ) ∈ x.
• Case α ≡ γ ∧ δ:
Subcase (i ∈ ωe): Suppose ∼i(γ∧δ) ∈ x. Since ILω ` ∼i(γ ∧ δ) ⇒ ∼iγ,

the fact ∼iγ ∈ w contradicts the consistency of (x, w), and hence ∼iγ ∈ x.
Similarly, we obtain ∼iδ ∈ x. By the induction hypothesis, we obtain
((x, w), i) |=L γ and ((x, w), i) |=L δ, and hence ((x, w), i) |=L γ ∧
δ. Conversely, suppose ((x, w), i) |=L γ ∧ δ, i.e., ((x, w), i) |=L γ and
((x, w), i) |=L δ. Then, we obtain ∼iγ ∈ x and ∼iδ ∈ x by the induction
hypothesis. Since ILω ` ∼iγ,∼iδ ⇒ ∼i(γ ∧ δ), the fact ∼i(γ ∧ δ) ∈ w
contradicts the consistency of (x, w), and hence ∼i(γ ∧ δ) /∈ w. By the
maximality of (x, w), we obtain ∼i(γ ∧ δ) ∈ x.

Subcase (i ∈ ωo): Suppose ∼i(γ∧δ) ∈ x. Since ILω `∼i(γ∧δ) ⇒ ∼iγ∨
∼iδ, the fact ∼iγ,∼iδ ∈ w contradicts the consistency of (x, w), and hence
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∼iγ /∈ w or ∼iδ /∈ w. Thus, we obtain ∼iγ ∈ x or ∼iδ ∈ x by the max-
imality of (x, w). By the induction hypothesis, we obtain ((x, w), i) |=L γ
or ((x, w), i) |=L δ, and hence ((x, w), i) |=L γ ∧ δ. Conversely, sup-
pose ((x, w), i) |=L γ ∧ δ, i.e., ((x, w), i) |=L γ or ((x, w), i) |=L δ. By
the induction hypothesis, we obtain ∼iγ ∈ x or ∼iδ ∈ x. Since ILω `
∼iγ ⇒ ∼i(γ ∧ δ) and ILω ` ∼iδ ⇒ ∼i(γ ∧ δ), the fact ∼i(γ ∧ δ) ∈ w
contradicts the consistency of (x, w), and hence ∼i(γ ∧ δ) /∈ w. By the
maximality of (x, w), we obtain ∼i(γ ∧ δ) ∈ x.
• Case α ≡ γ ∨ δ: Similar to (Case α ≡ γ ∧ δ). �

We then obtain the following completeness theorem.

Theorem 3.10 : Let C be the class of all Kripke frames, L := {Γ ⇒ ∆ | ILω

` Γ ⇒ ∆} and L(C ) := {Γ ⇒ ∆ | Γ ⇒ ∆ is valid in all frames of C}.
Then, L(C ) ⊆ L.

Proof. It is sufficient to show that for any sequent Γ ⇒ ∆, Γ ⇒ ∆ is valid
in an arbitrary frame in C , then it is provable in ILω. To show this, we
show that if Γ ⇒ ∆ is not provable in ILω, then there is a frame F =
〈ML, N, RL〉 ∈ C such that Γ ⇒ ∆ is not valid in F , i.e., there is a Kripke
model 〈ML, N, RL, |=L〉 such that Γ ⇒ ∆ is not true in it.

Suppose that Γ ⇒ ∆ is not provable in ILω. Then, the pair (Γ, ∆) is con-
sistent. By Lemma 3.7, there is a maximal consistent pair (u, v) such that
Γ ⊆ u and ∆ ⊆ v. Note that if ∆ ≡ {α}, then α /∈ u by the consistency of
(u, v).

Then, our goal is to show that ((u, v), 0) |=L Γ ⇒ ∆ does not hold in the
constructed model. Here we consider only the case Γ 6= ∅. We show that
((u, v), 0) |=L Γ∧→∆∗ does not hold, i.e., ∃(x, z) ∈ ML [[(u, v)RL(x, z)
and ((x, z), 0) |=L Γ∧] and [((x, z), 0) |=L ∆∗ does not hold ]]. Taking
(u, v) for (x, z) and 0 for i, we can verify that there is (u, v) ∈ ML such that
[(u, v)RL(u, v) and ((u, v), 0) |=L Γ∧] and [((u, v), 0) |=L ∆∗ does not
hold]. The first argument is obvious since the reflexivity of RL and the fact
Γ ⊆ u. The second argument is shown below. The case ∆ ≡ ∅ is obvious
because ((u, v), 0) |=L ⊥ does not hold. The case ∆ ≡ {α} can be proved
by using Lemma 3.9 and the fact α /∈ u, because we have the fact α /∈ u iff
[((u, v), 0) |=L α does not hold] by Lemma 3.9. �
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4. Remarks

4.1. Finite-valued version

Although ILω may be regarded as a kind of infinite-valued logic, a finite-
valued version ILn of ILω can be obtained from ILω by adding the inference
rules of the form: for a fixed positive integer n ≥ 2,

α, Γ ⇒ ∆

∼nα, Γ ⇒ ∆
(∼nleft) Γ ⇒ α

Γ ⇒ ∼nα
(∼nright)

where ∆ is empty or singleton. In these rules, the case n = 2 corresponds
to the double-negation-elimination axiom ∼∼α ↔ α. The completeness,
cut-elimination and embedding results for ILn can be obtained by impos-
ing some appropriate modifications. The embedding function f w.r.t. ILn,
which is like an embedding function presented in Definition 2.4, needs the
condition:

f(∼nα) := f(α),

and the Kripke semantics for ILn needs the following cyclic valuation con-
dition instead of the condition 1 of Definition 3.2:

1′. (x, i) |= ∼α iff (x, i + 1) |= α if i < n − 1, and (x, 0) |= α
otherwise.

Note that the logic IL2 (i.e., the case n = 2) without both ∼i⊥ ⇒ and
(w-right) is just Nelson’s N4, since the cyclic valuations (x, 0) |= α and
(x, 1) |= α respectively correspond to the well-known dual valuations x |=+

α (verification) and x |=− α (falsification) used in N4.

4.2. Modal version

An S4-type modal extension of Lω [8] with the S4-type modal operator �

can naturally be considered, and such an extension can be associated with
ILω by (a slightly modified version of) the well-known Gödel-McKinsey-
Tarski translation. A logic MLω is obtained from Lω by adding the even-odd
inference rules of the form: for any i, k ∈ ω,

∼iα, Γ ⇒ ∆

∼i
�α, Γ ⇒ ∆

(�lefteo) ∼i
�Γ ⇒ ∼kα

∼i
�Γ ⇒ ∼k

�α
(�righteo).



“04kamide”
2012/2/26
page 70

i

i

i

i

i

i

i

i

70 NORIHIRO KAMIDE

Then, the embedding theorem of MLω into a sequent calculus for S4 can
be shown in a natural way, and using this theorem, the cut-elimination the-
orem for MLω can also be shown. The corresponding condition on � in the
embedding function f is

f(∼i(�α)) := �f(∼iα) for any i ∈ ω.

A Kripke semantics for MLω is defined below. A structure 〈M, R〉 is a stan-
dard S4-type Kripke frame, i.e., M is a non-empty set and R is a transitive
and reflexive binary relation on M . Valuations {|=i}i∈ω are mappings from
the set of all formulas to the power set of M . For example, the condition on
� is defined as follows: for any i ∈ ω,

x |=i �α iff ∀y ∈ M [xRy implies y |=i α].

The validity of a formula and that of a sequent can be defined naturally,
and the soundness and completeness theorems w.r.t. this semantics can be
shown for MLω in a standard way. Obviously, MLω is associated with ILω

by the Gödel-McKinsey-Tarski translation. This fact is analogous to the
relationship between S4 and intuitionistic logic.
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