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CONSTRUCTIVE DISCURSIVE LOGIC WITH STRONG NEGATION

SEIKI AKAMA, JAIR MINORO ABE AND KAZUMI NAKAMATSU

Abstract
Jaskowski’s discursive logic (or discussive logic) is the first formal
paraconsistent logic which is classified as a non-adjunctive system.
It is now recognized that discursive logic is not generally appropri-
ate for paraconsistent reasoning. To improve it in a constructive set-
ting, we propose a constructive discursive logic with strong negation
CDLSN based on Nelson’s constructive logic N−. In CDLSN ,
discursive negation is defined similar to intuitionistic negation and
discursive implication is defined as material implication using dis-
cursive negation. We give an axiomatic system and Kripke seman-
tics with a completeness proof. We also discuss some advantages of
the proposed system over other paraconsistent systems.

1. Introduction

Jaskowski’s discursive logic (or discussive logic) is the first formal paracon-
sistent logic which is classified as a non-adjunctive system; see Jaskowski [3].
Discursive logic can be motivated by the nature of our ordinary discourse.
That is, in a discourse, several participants exist and have some information,
beliefs, and others.

In this regard, truth is formalized by means of the sum of opinions supplied
by participants. Even if each participant has consistent information, some
participant could be inconsistent with other participants.

This amounts to supposing that A∧ ∼ A does not hold while both A and
∼ A do. This means that the so-called adjunction, i.e. from ` A,` B to `
A∧B is invalid. Jaskowski modeled the idea founded on modal logic S5 and
reached the discursive logic in which adjunction and modus ponens cannot
hold. In addition, Jaskowski introduced discursive implication A →d B as
♦A → B satisfying modus ponens.

The rest of this paper is as follows. Section 2 is devoted to an exposition
Jaskowski’s discursive logic. In section 3, we introduce constructive discur-
sive logic with strong negation CDLSN with an axiomatic system. Section
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4 outlines a Kripke semantics. We establish the completeness theorem. The
final section gives some conclusions.

2. Jaskowski’s Discursive Logic

Discursive Logic was proposed by a Polish logician S. Jaskowski [3] in 1948.
It was a formal system J satisfying the conditions: (a) from two contra-
dictory propositions, it should not be possible to deduce any proposition;
(b) most of the classical theses compatible with (a) should be valid; (c) J
should have an intuitive interpretation.

Such a calculus has, among others, the following intuitive properties re-
marked by Jaskowski himself: suppose that one desires to systematize in
only one deductive system all theses defended in a discussion. In general,
the participants do not confer the same meaning to some of the symbols.
One would have then as theses of a deductive system that formalize such
a discussion, an assertion and its negation, so both are “true" since it has
a variation in the sense given to the symbols. It is thus possible to regard
discursive logic as one of the so-called paraconsistent logics.

Jaskowski’s D2 contains propositional formulas built from logical sym-
bols of classical logic. In addition, possibility operator ♦ in S5 is added.
Based on the possibility operator, three discursive logical symbols can be
defined as follows:

discursive implication: A →d B =def ♦A → B
discursive conjunction: A ∧d B =def ♦A ∧ B
discursive equivalence: A ↔d B =def (A →d B) ∧d (B →d A)

Additionally, we can define discursive negation ¬dA as A →d false.
Jaskowski’s original formulation of D2 in [3] used the logical symbols: →d

,↔d,∨,∧,¬, and he later defined ∧d in [4].
The following axiomatization due to Kotas [5] has the following axioms

and the rules of inference.

Axioms

(A1) �(A → (¬A → B))
(A2) �((A → B) → ((B → C) → (A → C))
(A3) �((¬A → A) → A)
(A4) �(�A → A)
(A5) �(�(A → B) → (�A → �B))
(A6) �(¬�A → �¬�A)

Rules of Inference

(R1) substitution rule
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(R2) �A, �(A → B)/�B
(R3) �A/��A
(R4) �A/A
(R5) ¬�¬�A/A

There are other axiomatizations of D2, but we omit the details here.

3. Constructive Discursive Logic with Strong Negation

The gist of discursive logic is to use the modal logic S5 to define discursive
logical connectives which can formalize a non-adjunctive system. It follows
that discursive logic can be seen as a paraconsistent logic, which does not
satisfy explosion of the form: {A,¬A} |= B for any A and B, where |= is a
consequence relation. We say that a system is trivial iff all the formulas are
provable. Therefore, paraconsistent logic is useful to formalize inconsistent
but non-trivial systems.

A question arises. Most works on discursive logic utilize classical logic
and S5 as a basis. However, we do not think that these are essential. For
instance, an intuitionist hopes to have a discursive system in a constructive
setting. This is a topic explored in this paper.

To make the idea formal, it is worth considering Nelson’s constructive
logic with strong negation N− of Almukdad and Nelson [1]. In N−, ∼
denotes strong negation satisfying the following axioms:

(N1) ∼∼ A ↔ A
(N2) ∼ (A ∧ B) ↔ (∼ A∨ ∼ B)
(N3) ∼ (A ∨ B) ↔ (∼ A∧ ∼ B)
(N4) ∼ (A → B) ↔ (A∧ ∼ B)

and the axiomatization of the intuitionistic positive logic Int+ with modus
ponens (MP), i.e. A, A → B/B as the rule of inference.

Note here that N− is paraconsistent in the sense that ∼ (A∧ ∼ A) and
(A∧ ∼ A) → B do not hold.

If we add (N0) to N−, we have N of Nelson [6].

(N0) (A∧ ∼ A) → B

In N , intuitionistic negation ¬ can be defined as follows:

¬A =def A → ∼ A

If we add the law of excluded middle: A∨ ∼ A to N , the resulting system
is classical logic.
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Indeed, N− is itself a paraconsistent logic, but can also be accommodated
as a version of discursive logic.

Now, we introduce the constructive discursive logic with strong negation
CDLSN . It diverges in two ways from D2: (1) it does not take classical
logic as its starting point; and (2) it does not use the possibility operator ♦
as a modality, but a negation with modal operators.

CDLSN can be defined in two ways. One is to extend N− with discursive
negation ¬d. The other is to weaken intuitionistic negation in N−. We adopt
the first approach.

Here, we fix the language of the logics which we use in this paper. The
language of Int+ is defined as the set of propositional variables and log-
ical symbols: ∧ (conjunction), ∨ (disjunction) and → (implication). The
language of Int is the extension of that of Int+ with ¬ (intuitionistic nega-
tion). The language of N− is the extension of that of Int+ with ∼ (strong
negation). The language of CDLSN is the extension of N− with ¬d (dis-
cursive negation). Additionally, we use the logical constant false as the
abbreviation of ∼ (A → A).

We believe that CDLSN is (constructive) improvement of D2. First,
CDLSN uses Int+ rather than classical logic as the base. Second, CDLSN
simulates modality in D2 by negations, although D2 needs the possibility
operator.
¬d is similar to ¬, but these are not equivalent. The motivation of in-

troducing ¬d is to interpret discursive negation as the negation used by an
intuitionist in the discursive context. Unfortunately, intuitionistic negation is
not a discursive negation. And we need to re-interpret it as ¬d. Based on ¬d,
we can define →d and ∧d.

Discursive implication →d and discursive conjunction ∧d can be respec-
tively introduced by definition as follows.

A →d B =def ¬dA ∨ B
A ∧d B =def ∼ ¬dA ∧ B

Observe that A → (∼ A → B) is not a theorem in CDLSN while A →
(¬dA → B) is a theorem in CDLSN . The axiomatization of CDLSN is
that of N− with the following three axioms.

(CDLSN1) ¬dA → (A → B)
(CDLSN2) (A → B) → ((A → ¬dB) → ¬dA)
(CDLSN3) A → ∼ ¬dA

Here, an explanation of these axioms may be in order. (CDLSN1) and
(CDLSN2) describe basic properties of intuitionistic negation. By
(CDLSN3), we show the connection of ∼ and ¬d. The intuitive interpre-
tation of ∼ ¬d is like possibility under our semantics developed below.
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¬d is weaker than ¬. Vorob’ev [8] proposed a constructive logic having
both strong and intuitionistic negation. It extends N with the following two
axioms:

∼ ¬A ↔ A
∼ A → ¬A, where A is atomic

If we replace (CDLSN3) by the axiom of the form ∼ ¬dA ↔ A and add
the axiom ∼ A → ¬dA, then ¬d agrees with ¬. Thus, it is not possible to
identify ¬ and ¬d in our axiomatization.

We use ` A to mean that A is a theorem in CDLSN . Here, the notion of
a proof is defined as usual. Let Γ = {B1, ..., Bn} be a set of formulas and A
be a formula. Then, Γ ` A iff ` Γ → A.

Notice that ¬d has some similarities with ¬, as the following lemma indi-
cates.

Lemma 1: The following formulas are provable in CDLSN .

(1) ` A → ¬d¬dA
(2) ` (A → B) → (¬dB → ¬dA)
(3) ` (A ∧ ¬dA) → B
(4) ` ¬d(A ∧ ¬dA)
(5) ` (A → ¬dA) → ¬dA

Proof. Ad(1): From (CDSLN1) and Int+ (i.e. ` (A → (B → C)) →
(B → (A → C))), we have (i).

(i) ` A → (¬dA → A)

(ii) is an instance of (CDLSN2).

(ii) ` (¬dA → A) → ((¬dA → ¬dA) → ¬d¬dA)

(iii) is a theorem of Int+ (i.e. ` (A → B) → ((B → C) → (A → C)))

(iii) ` (A → (¬dA → A)) → (((¬dA → A) → ((¬dA → ¬dA)
→ ¬d¬dA)) → (A → ((¬dA → ¬dA) → ¬d¬dA)))

From (i) and (iii) by (MP), we have (iv).

(iv) ` (((¬dA → A) → ((¬dA → ¬dA) → ¬d¬dA))
→ (A → ((¬dA → ¬dA) → ¬d¬dA)))

From (ii) and (iv) by (MP), we have (v).

(v) ` A → ((¬dA → ¬dA) → ¬d¬dA))



“06akama”
2011/9/5
page 400

i

i

i

i

i

i

i

i

400 SEIKI AKAMA, JAIR MINORO ABE AND KAZUMI NAKAMATSU

By ` (A → (B → C)) → (B → (A → C)), we can derive (vi).

(vi) ` (¬dA → ¬dA) → (A → ¬d¬dA)

Since ` A → A, we have (vii).

(vii) ` ¬dA → ¬dA

From (vi) and (vii) by (MP), we can finally obtain (viii).

(viii) ` A → ¬d¬dA

Ad(2): By (CDLSN2), we have (i).

(i) ` (A → B) → ((A → ¬dB) → ¬dA)

(ii) is a theorem of Int+.

(ii) ` (¬dB → (A → ¬dB)) → (((A → ¬dB) → ¬dA)
→ (¬dB → ¬dA))

(iii) is an instance of A → (B → A), which is the axiom of Int+.

(iii) ` ¬dB → (A → ¬dB)

From (ii) and (iii) by (MP), (iv) is obtained.

(iv) ` ((A → ¬dB) → ¬dA) → (¬dB → ¬dA)

(v) is a theorem of Int+.

(v) ` ((A → B) → ((A → ¬dB) → ¬dA)
→ ((((A → ¬dB) → ¬dA) → (¬dB → ¬dA))
→ ((A → B) → (¬dB → ¬dA)))

From (i) and (v) by (MP), (vi) can be proved.

(vi) ` ((A → ¬dB) → ¬dA) → (¬dB → ¬dA))
→ ((A → B) → (¬dB → ¬dA))

From (iv) and (vi) by (MP), we can reach (vii).

(vii) ` (A → B) → (¬dB → ¬dA)

Ad(3): By (CDLSN1), we have (i).

(i) ` ¬dA → (A → B)

From ` (A → (B → C)) → (B → (A → C)), we can derive (ii).
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(ii) ` A → (¬dA → B)

Since ` (A → (B → C)) → ((A ∧ B) → C), we have (iii).

(iii) ` (A → (¬dA → B)) → ((A ∧ ¬dA) → B)

From (ii) and (iii) by (MP), we can obtain (iv).

(iv) ` (A ∧ ¬dA) → B

Ad(4): By (3), we have (i) and (ii).

(i) ` (A ∧ ¬dA) → B
(ii) ` (A ∧ ¬dA) → ¬dB

From (CDLSN2), (iii) holds.

(iii) ((A ∧ ¬dA) → B) → (((A ∧ ¬dA) → ¬dB) → ¬d(A ∧ ¬dA))

From (i) and (iii) by (MP), we have (iv).

(iv) ((A ∧ ¬dA) → ¬dB) → ¬d(A ∧ ¬dA)

From (ii) and (iv) by (MP), we can derive (v).

(v) ` ¬d(A ∧ ¬dA)

Ad(5): By (CDLSN2), we have (i).

(i) ` (A → A) → ((A → ¬dA) → ¬dA)

(ii) is a theorem of Int+.

(ii) ` A → A

From (i) and (ii) by (MP), we can obtain (iii).

(iii) (A → ¬dA) → ¬dA

It should be, however, pointed out that the following formulas are not prov-
able in CDLSN .

6`∼ (A∧ ∼ A)
6` A∨ ∼ A
6` (A → B) → (∼ B →∼ A)
6` ¬d¬dA → A
6` A ∨ ¬dA
6` (¬dA → A) → A
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6` ∼ ¬dA → A
6` A →d A

4. Kripke Semantics

It is possible to give a Kripke semantics for CDLSN which is a discursive
modification of that for N provided by Thomason [7]. Let PV be a set of
propositional variables and p be a propositional variable, and For be a set
of formulas. A CDLSN -model is a tuple 〈W, w0, R, V 〉, where W 6= ∅ is
a set of worlds, w0 ∈ W satisfying ∀w(w0Rw), R ⊆ W × W is a reflexive
and transitive relation, and V : PV × W → {0, 1} is a partial valuation
satisfying:

V (p, w) = 1 and wRv ⇒ V (p, v) = 1
V (p, w) = 0 and wRv ⇒ V (p, v) = 0

for any formula p ∈ PV and w, v ∈ W . Here, V (p, w) = 1 is read “p is
true at w" and V (p, w) = 0 is read “p is false at w", respectively. Both truth
and falsity are independent statuses given by a constructive setting.

We can now extend V for any formula A, B in a tandem way as follows.

V (∼ A, w) = 1 iff V (A, w) = 0.
V (A ∧ B, w) = 1 iff V (A, w) = 1 and V (B, w) = 1.
V (A ∨ B, w) = 1 iff V (A, w) = 1 or V (B, w) = 1
V (A → B, w) = 1 iff ∀v(wRv and V (A, v) = 1 ⇒ V (B, v) = 1)
V (¬dA, w) = 1 iff ∀v(wRv ⇒ V (A, v) = 0)
V (∼ A, w) = 0 iff V (A, w) = 1
V (A ∧ B, w) = 0 iff V (A, w) = 0 or V (B, w) = 0
V (A ∨ B, w) = 0 iff V (A, w) = 0 and V (B, w) = 0
V (A → B, w) = 0 iff V (A, w) = 1 and V (B, w) = 0
V (¬dA, w) = 0 iff ∃v(wRv and V (A, v) = 1)

Additionally, we need the following condition:

V (A∧ ∼ A, w) = 1 for some A and some w.

This condition is used to invalidate (A∧ ∼ A) → B, and guarantees the
paraconsistency of ∼ in CDSLN .

Here, observe that truth and falsity conditions for ∼ ¬dA are implicit in
the above clauses from the equivalences such that V (∼ ¬dA, w) = 1 iff
V (¬dA, w) = 0, and V (∼ ¬dA, w) = 0 iff V (¬dA, w) = 1. One can claim
that ∼ ¬d behaves as a modality. In this regard, we do not need to introduce
a possibility operator into CDLSN as a primitive.
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We say that A is valid, written |= A, iff V (A, w0) = 1 in all CDLSN
models. Let Γ = {B1, ..., Bn} be a set of formulas. Then, we say that Γ
entails A, written Γ |= A, iff Γ → A is valid.

Lemma 2 states the monotonicity of valuation in a Kripke model.

Lemma 2: The following hold for any formula A which is not of the form
∼ ¬dB, and any worlds w, v ∈ W .

V (A, w) = 1 and wRv ⇒ V (A, v) = 1,
V (A, w) = 0 and wRv ⇒ V (A, v) = 0.

Proof. By induction on A.
ad(∼): Suppose V (∼ A, w) = 1 and wRv. Then, we have that V (A, w) = 0
and wRv. By induction hypothesis (IH), we have that V (A, v) = 0, i.e.
V (∼ A, v) = 1.

Suppose V (∼ A, w) = 0 and wRv. Then, we have that V (A, w) = 1 and
wRv. By (IH), we have that V (A, v) = 1, i.e. V (∼ A, v) = 0.

Ad(∧): Suppose V (A ∧ B, w) = 1 and wRv. Then, we have V (A, w) = 1
and V (B, w) = 1. By (IH), V (A, v) = 1 and V (B, v) = 1, i.e. V (A ∧
B, v) = 1.

Suppose V (A ∧ B, w) = 0 and wRv. Then, we have V (A, w) = 0 or
V (B, w) = 0. By (IH), V (A, v) = 0 or V (B, v) = 0, i.e. V (A∧B, v) = 0.

Ad(∨): Suppose V (A∨B, w) = 1 and wRv. Then, we have V (A, w) = 1 or
V (B, w) = 1. By (IH), V (A, v) = 1 or V (B, v) = 1, i.e. V (A∨B, v) = 1.

Suppose V (A ∨ B, w) = 0 and wRv. Then, we have V (A, w) = 0 and
V (B, w) = 0. By (IH), V (A, v) = 0 and V (B, v) = 0, i.e. V (A ∨ B, v) =
0.

Ad(→): Suppose V (A → B, w) = 1 and wRv. Then, we have ∀v(wRv and
V (A, v) = 1 ⇒ V (B, v) = 1). By (IH) and the transitivity of R, ∀z(vRz
and V (A, z) = 1 ⇒ V (B, z) = 1), i.e. V (A → B, v) = 1.

Suppose V (A → B, w) = 0 and wRv. Then, we have V (A, w) = 1
and V (B, w) = 0. By (IH), V (A, v) = 1 and V (B, v) = 0, i.e. V (A →
B, v) = 0.

Lemma 2 does not hold for the formula of the form ∼ ¬dA. We can easily
construct a counter model. We only treat the case of V (∼ ¬dA, w) = 1. The
case of V (∼ ¬dA, w) = 0 is similar. Assume that V (∼ ¬dA, w) = 1 and
wRv. Then, V (¬dA, w) = 0 iff ∃u(wRu and V (A, u) = 1). Now, suppose
that there exists a world t distinct from u such that vRt and a valuation
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such that V (A, t) = 0. This means that V (∼ ¬dA, v) = 0. Thus, V (∼
¬dA, w) = 1 and wRv, but V (∼ ¬dA, v) = 0.

We think that the fact is intuitive because ∼ ¬dA behaves as possibility.
There are no reasons for possibility in discourse to satisfy the monotonicity.

Next, we present a soundness theorem.

Theorem 3: (soundness) ` A ⇒ |= A.

Proof. It suffices to check that (CDLSN1), (CDLSN2) and (CDLSN3) are
valid and (MP) preserves validity. The proof of preservation of validity under
(MP) is well-known in constructive and intuitionistic logic. Thus, we here
prove the validity of three axioms.

Ad(CDLSN1): Suppose it is not valid. Then, V (¬dA, w0) = 1 and V (A →
B, w0) 6= 1. From the first conjunct, ∀v(w0Rv ⇒ V (A, v) 6= 1) holds.
From the second conjunct, ∃v(w0Rv and V (A, v) = 1 and V (B, v) 6= 1).
However, V (A, v) = 1 and V (A, v) 6= 1 are contradictory.

Ad(CDLSN2): Suppose it is not valid. Then, V (A → B, w0) = 1 and
V (A → ¬dB, w0) = 1 and V (¬dA, w0) 6= 1. From the first conjunct,
∀v(w0Rv and V (A, v) = 1 ⇒ V (B, v) = 1) holds. From the second
conjunct, ∀v(w0Rv and V (A, v) = 1 ⇒ V (¬dB, v) = 1) iff ∀v(wRv and
V (A, v) = 1 ⇒ ∀z(vRz ⇒ V (A, z) 6= 1). From the third conjunct,
∃v(w0Rv and V (A, v) = 1 holds. However, V (A, v) = 1 and V (A, z) 6= 1
for any z such that vRz are contradictory.

Ad(CDLSN3): Suppose it is not valid. Then, V (A, w0) = 1 and V (∼
¬dA, w0) 6= 1. From the second conjunct, we have V (¬dA, w0) 6= 0 iff
∀v(w0Rv ⇒ V (A, v) 6= 1). However, V (A, w0) = 1 and V (A, v) 6= 1 for
any v such that w0Rv are contradictory.

Theorem 3 can be generalized as a strong form, i.e. Γ ` A ⇒ Γ |= A.

Now, we give a completeness proof. We say that a set of formulas Γ∗ is
a maximal non-trivial discursive theory (mntdt) iff (1) Γ∗ is a theory, (2) Γ∗

is non-trivial, i.e. Γ∗ 6` B for some B, (3) Γ∗ is maximal, i.e. A ∈ Γ∗ or
A 6∈ Γ∗, (4) Γ∗ is discursive, i.e. ¬dA 6∈ Γ∗ iff ∼ ¬dA ∈ Γ∗. Here, discur-
siveness is needed to capture the property of discursive negation.

Lemma 4: For any mntdt Γ and any formula A, B, the following hold:

(1) A ∧ B ∈ Γ iff A ∈ Γ and B ∈ Γ
(2) A ∨ B ∈ Γ iff A ∈ Γ or B ∈ Γ
(3) A → B ∈ Γ iff ∀∆(Γ ⊆ ∆ and A ∈ ∆ ⇒ B ∈ ∆)



“06akama”
2011/9/5
page 405

i

i

i

i

i

i

i

i

CONSTRUCTIVE DISCURSIVE LOGIC WITH STRONG NEGATION 405

(4) ¬dA ∈ Γ iff ∀∆(Γ ⊆ ∆ ⇒ A 6∈ ∆)
(5) ∼ (A ∧ B) ∈ Γ iff ∼ A ∈ Γ or ∼ B ∈ Γ
(6) ∼ (A ∨ B) ∈ Γ iff ∼ A ∈ Γ and ∼ B ∈ Γ
(7) ∼ (A → B) ∈ Γ iff A ∈ Γ and ∼ B ∈ Γ
(8) ∼∼ A ∈ Γ iff A ∈ Γ
(9) ∼ ¬dA ∈ Γ iff ∃∆(Γ ⊆ ∆ and A ∈ ∆).

Proof. We only prove (4) and (9). Other cases are similarly justified from
the literature on constructive logic (cf. Thomason [7]).

Ad(4): ¬dA ∈ Γ iff (by axiom (CDLSN1)) A → B ∈ Γ iff (by Lemma 4
(3)) ∀∆(Γ ⊆ ∆ and A ∈ ∆ ⇒ B ∈ ∆). Since Γ is non-trivial, B 6∈ Γ for
some B. Thus, B ∈ ∆ does not always hold, i.e. ∀∆(Γ ⊆ ∆ and A ∈ ∆ ⇒
false) iff ∀∆(Γ ⊆ ∆ ⇒ A 6∈ ∆).

Ad(9): We prove it by contraposition from (4). Contraposition can derive
∃∆(Γ ⊆ ∆ and A ∈ ∆) by negating the left and right sides of (4). Then,
it is shown to be equivalent to ¬dA 6∈ Γ. By (discursiveness), ¬dA 6∈ Γ iff
∼ ¬dA ∈ Γ.

Based on the maximal non-trivial discursive theory, we can define a canon-
ical model (Γ,⊆, V ) such that Γ is a mntdt, ⊆ is the subset relation, and V
is a valuation satisfying the conditions that V (p, Γ) = 1 iff p ∈ Γ and that
V (p, Γ) = 0 iff ∼ p ∈ Γ.

Next lemma is a truth lemma.

Lemma 5: (truth lemma) For any mntdt Γ and any A, we have the following:

V (A, Γ) = 1 iff A ∈ Γ
V (A, Γ) = 0 iff ∼ A ∈ Γ

Proof. It suffices to check the case A = ¬dB.

V (¬dB, Γ) = 1 iff ∀∆ ∈ Γ∗(Γ ⊆ ∆ ⇒ V (B, ∆) 6= 1)
(IH) iff ∀∆ ∈ Γ∗(Γ ⊆ ∆ ⇒ B 6∈ ∆)
(Lemma 4 (4)) iff ¬dB ∈ Γ

V (¬dB, Γ) = 0 iff ∃∆ ∈ Γ∗(Γ ⊆ ∆ and V (B, ∆) = 1)
(IH) iff ∃∆ ∈ Γ∗(Γ ⊆ ∆ and B ∈ ∆)
(Lemma 4 (9)) iff ∼ ¬dB ∈ Γ

Then, we can state the (strong) completeness of CDLSN as follows:
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Theorem 6: (completeness) Γ |= A ⇒ Γ ` A.

Proof. Assume Γ 6` A. Then, by Lindenbaum lemma, there is a mntdt
Γ such that A 6∈ Γ. By using a canonical model defined above, we have
V (A, Γ) 6= 1 by Lemma 5. Consequently, completeness follows.

Finally, we justify the formal properties of CDLSN as a discursive logic.
It is extremely important because we can understand the differences of
CDLSN and standard discursive logics like D2. As mentioned in section
1, Jaskowski suggested three conditions of discursive logics. We check them
here.

CDLSN is discursive. First, ∼ (A∧ ∼ A) does not hold. The explosion
also fails, i.e. A,∼ A 6` B. But, these hold for ¬d (cf. Lemma 1), and it is
not a problem because explosion should be valid for plausible discourses.

Note that the adjunction of the form ` A,` B ⇒ ` A ∧d B does not hold
in CDLSN . But, it holds for ∧.

Second, in CDLSN , most of the theses of constructive logic are valid.
Since CDLSN has a constructive base, it is different from D2 whose base
is classical logic.

Third, we can give an intuitive interpretation for CDLSN by means of
Kripke models as discussed below.

CDLSN is constructive because the law of excluded middle, which is
a non-constructive principle, does not hold. As discussed above, N− is a
constructive logic, and the fact is not surprising.

From our Kripke semantics given above, we can give an intuitive interpre-
tation of CDLSN . The interpretations of the logical symbols of N− are
obvious, and we concentrate on discursive logical symbols.

Here, it may be helpful to explain the interpretation by a brief example.
Consider a discourse which consists of several persons who are interested in
some subjects. Each person has knowledge about subjects, and a discourse
is plausibly expanded by adding other persons.

In this setting, a world in our semantics could be identified with a discourse
just given. So, the logical symbols can be interpreted with reference to a
discourse.

Since the interpretations of ¬d are crucial, we begin with it, namely

¬dA is true iff A is false in all plausible growing discourses,
¬dA is false iff A is true in some plausible growing discourse.

Here, the second clause corresponds to the possibility used in discursive
logic. Note here that the plausible growth of discourse implies the increase
of information (or knowledge) in view of constructive setting.

Other discursive logical symbols can be read as follows:
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A∧d B is true iff A is true in one discourse and B is true in another
plausible discourse.
A →d B is true iff if A is true in certain plausible discourse then B
is true in a discourse.

The interpretations of ∨d and ↔d can be obtained by definition. The im-
portant point here is that the primitive discursive connective is ¬d.

In our approach, two kinds of negations are used and it is necessary to
compare them. ∼ is a constructive negation which can express constructive
falsity of the proposition, whereas ¬d is a discursive negation of the propo-
sition with modal flavor.

They can express the possibility operator needed in discursive logic as
∼ ¬d. Here, ∼ behaves classical-like negation and ¬d modal-like negation.
We know in classical modal logic that ♦A ≡ −� − A holds. Here, − is
classical negation and ≡ is classical equivalence. It is therefore natural to
consider two negations in classical-like and modal-like way.

From the above discussion, CDLSN is shown to be a constructive dis-
cursive logic which is compatible with Jaskowski’s original ideas. It means
that a constructivist can formally perform discursive reasoning.

5. Concluding Remarks

We proposed a constructive version of discursive logic CDLSN with an
axiomatization and semantics. We set up it as a natural modification of Al-
mukdad and Nelson’s N− [1] with ¬d. We gave some formal properties of
CDLSN including completeness.

Alternatively, CDLSN can be interpreted as the system which weakens
intuitionistic negation ¬ in N−. However, the alternative formulation does
not affect the results in this paper. We believe that this system seems to be
new in the literature.

There are two advantages of the proposed system. First, it is constructively
intuitive because we have a Kripke semantics. In view of the incompleteness
of discourse, constructive approach seems attractive for discursive logic.

Second, it dispenses with modal operators to define discursive connec-
tives. In other words, the possibility operator used in standard discursive
logic can be replaced by the combination of two negations. However, it may
be possible to introduce other types of discursive connectives as primitives.

Although this paper focuses on theoretical aspects of constructive discur-
sive logic, the logic has many possible applications. For example, it may
be worth studying non-monotonic reasoning and multi-agent in constructive
discursive logic. We hope to report interesting applications of the proposed
logic in future papers.
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