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CUT-ELIMINATION AND COMPLETENESS IN DYNAMIC
TOPOLOGICAL AND LINEAR-TIME TEMPORAL LOGICS

NORIHIRO KAMIDE

Abstract
Two Gentzen-type sequent calculi Lω and L−

ω are introduced. Some
dynamic topological and linear-time temporal logics are subsumed
in Lω and L−

ω . The cut-elimination theorems for Lω and L−
ω and

the completeness theorem for L−
ω are uniformly proved based on an

embedding-based method.

1. Introduction

Dynamic topological logic (DTL), which is a combination of S4 and tempo-
ral logic, has recently been studied by several researchers (see e.g., [1, 8, 9,
10, 12]). DTL provides a context for studying the confluence of the topo-
logical semantics for S4, topological dynamics, and temporal logic [9]. Two
bimodal (next-interior) fragments of DTL, which are called S4F (functional)
and S4C (continuous), were first introduced by Artemov et al. [1]. In [1],
some Gentzen-type cut-free sequent calculi and Hilbert-type axiom schemes
were introduced for S4F and S4C, and the complete topological and Kripke-
type semantics were obtained for S4F and S4C. An alternative formulation
of cut-free sequent calculus for S4C was studied by Mints [12].

Trimodal DTLs were formalized semantically by Kremer and Mints [9],
combining the S4 modal operator � (interior) and the linear-time temporal
operators X (next), and G (globally or henceforth). Although sequent calculi
for S4F and S4C have been studied, sequent calculi for trimodal DTLs have
not been studied yet. The reasons may be that the trimodal DTL of home-
omorphism was shown to be not recursively axiomatizable by Konev et al.
[10], and that this logic requires the following infinitary axiom scheme [9]:

Gα ↔ α ∧ Xα ∧ XXα ∧ XXXα ∧ · · ·∞.

In this paper, two Gentzen-type cut-free sequent calculi Lω and L−
ω that can

derive this infinitary axiom scheme are introduced by combining linear-time
temporal logic and infinitary logic.
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Linear-time temporal logic (LTL), which has the temporal operators X, G
and F (eventually), has been studied by many researchers (see e.g., [3, 11, 13]
and the references therein). A Gentzen-type cut-free sequent calculus LTω

for LTL was introduced by Kawai [7]. Infinitary logic (IL), which has the in-
finitary conjunction

∧
and the infinitary disjunction

∨
, has been studied by

many logicians (see e.g., [6, 16] and the references therein). Gentzen-type
cut-free sequent calculi for IL and its modal extensions have also been stud-
ied. A sequent calculus, called here LKω, for IL was introduced and studied
in the 1950s. A sequent calculus, called here S4ω, for a modal extension of
IL was used as a base system for game theory [6].

The results of this paper are then summarized as follows. A new sequent
calculus Lω for a logic that includes S4F, S4C and the S4H of homeomor-
phism is introduced by combining LTω and S4ω. A sequent calculus L−

ω ,
which is an integration of LTω and LKω, is also introduced as the �-less
subsystem of Lω. The cut-elimination theorem for Lω is proved using a the-
orem for syntactically embedding Lω into S4ω. The completeness theorem
(w.r.t. Kripke semantics) for Lω cannot be shown since S4ω is known to be
Kripke-incomplete. The cut-elimination and completeness theorems for L−

ω

are proved uniformly by combining two theorems for syntactically and se-
mantically embedding L−

ω into LKω. The proposed embedding theorems are
regarded as modified extensions of the embedding theorem [5] of LTω into
LKω. An embedding-based cut-elimination proof for LTω was obtained in
[5]. However, an embedding-based completeness proof for LTω has not yet
been obtained. The proposed embedding-based completeness proof for L−

ω

is thus a new technical contribution of this paper. This technique can also be
applied to the completeness theorem for LTω.

The merits of the results of this paper are summarized as follows:

1. Lω and L−
ω give a natural sequent-style formalization for Kremer-

Mints’ infinitary axiom scheme for trimodal DTLs. Lω is a natural
extension of S4F, S4C, S4H, S4ω, LTω and LKω. L−

ω is a natural
extension of LTω and LKω.

2. A simple, easy and uniform proof of the cut-elimination and com-
pleteness theorems for L−

ω is obtained based on the syntactical and
semantical embedding theorems of L−

ω into LKω. This proof method
is also applicable to LTω.

3. A Baratella-Masini style cut-free 2-sequent calculi [2] for Lω and
L−

ω can easily be obtained by using the cut-elimination-preserving
translations proposed in [4], although this result is omitted in this
paper.
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2. Sequent calculus

The following list of symbols is adopted for the language of the underly-
ing logic: (countable) propositional variables p0, p1, . . ., → (implication),
¬ (negation),

∧
(infinitary conjunction),

∨
(infinitary disjunction), � (inte-

rior), X (next), G (globally) and F (eventually). Remark that the standard
binary connectives ∧ (conjunction) and ∨ (disjunction) are regarded as spe-
cial cases of

∧
and

∨
, respectively.

Definition 2.1 : Let F0 be the set of all formulas generated by the standard
finitely inductive definition with respect to {→,¬, �, X, G, F} from the set of
propositional variables. Suppose that Ft is already defined with respect to
t = 0, 1, 2, .... A non-empty countable subset Θ of Ft is called an allowable
set. The expressions

∧
Θ and

∨
Θ for an allowable set Θ are considered be-

low. We define Ft+1 from Ft ∪{
∧

Θt,
∨

Θt | Θ is an allowable set in Ft} by
the standard finitely inductive definition with respect to {→,¬, �, X, G, F}.
The set Fω, which is called the set of formulas, is defined by

⋃
t<ω Ft, and

an expression in Fω is called a formula. An expression of the form Γ ⇒ ∆
where Γ and ∆ are finite (possibly empty) sets of formulas is called a se-
quent.

Greek lower-case letters α, β, ... are used to denote formulas, and Greek
capital letters Γ, ∆, ... are used to represent finite (possibly empty) sets of
formulas. For any ] ∈ {�, X, G, F}, an expression ]Γ is used to denote the
set {]γ | γ ∈ Γ}. The symbol ω is used to represent the set of natural num-
bers. Lower-case letters i, j and k are used to denote any natural numbers.
An expression Xiα for any i ∈ ω is defined inductively by (X0α := α) and
(Xn+1α := XXnα).

Sequent calculi Lω and L−
ω are then introduced below.

Definition 2.2 : (Lω and L−
ω ) The initial sequents of Lω are of the form: for

any propositional variable p,

Xip ⇒ Xip.

The inference rules of Lω are of the form:

Γ ⇒ ∆, α α, Σ ⇒ Π

Γ, Σ ⇒ ∆, Π
(cut) Γ ⇒ ∆

Σ, Γ ⇒ ∆, Λ
(we)

Γ ⇒ Σ, Xiα Xiβ, ∆ ⇒ Π

Xi(α→β), Γ, ∆ ⇒ Σ, Π
(→left)

Xiα, Γ ⇒ ∆, Xiβ

Γ ⇒ ∆, Xi(α→β)
(→right)
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Γ ⇒ ∆, Xiα

Xi¬α, Γ ⇒ ∆
(¬left)

Xiα, Γ ⇒ ∆

Γ ⇒ ∆, Xi¬α
(¬right)

Xiα, Γ ⇒ ∆ (α ∈ Θ)

Xi(
∧

Θ), Γ ⇒ ∆
(
∧

left)
{ Γ ⇒ ∆, Xiα }α∈Θ

Γ ⇒ ∆, Xi(
∧

Θ)
(
∧

right)

{ Xiα, Γ ⇒ ∆ }α∈Θ

Xi(
∨

Θ), Γ ⇒ ∆
(
∨

left)
Γ ⇒ ∆, Xiα (α ∈ Θ)

Γ ⇒ ∆, Xi(
∨

Θ)
(
∨

right)

where Θ is an allowable set,

Xiα, Γ ⇒ ∆

Xi
�α, Γ ⇒ ∆

(�left) Xi
�Γ ⇒ Xkα

Xi
�Γ ⇒ Xk

�α
(�right)

Xi+kα, Γ ⇒ ∆

XiGα, Γ ⇒ ∆
(Gleft)

{ Γ ⇒ ∆, Xi+jα }j∈ω

Γ ⇒ ∆, XiGα
(Gright)

{ Xi+jα, Γ ⇒ ∆ }j∈ω

XiFα, Γ ⇒ ∆
(Fleft)

Γ ⇒ ∆, Xi+kα

Γ ⇒ ∆, XiFα
(Fright).

L−
ω is obtained from Lω by deleting {(�left), (�right)}.

It is remarked that the contraction rules

α, α, Γ ⇒ ∆

α, Γ ⇒ ∆

Γ ⇒ ∆, α, α

Γ ⇒ ∆, α

are not used in L−
ω and Lω since the antecedents and conclusions of sequents

are sets of formulas.

Definition 2.3 : (S4ω and LKω) A sequent calculus S4ω for an infinitary ver-
sion of the modal logic S4 is obtained from Lω by deleting (Gleft), (Gright),
(Fleft), (Fright) and replacing i, k by 0 (i.e., deleting every occurrence of X).
The modified inference rules for S4ω by replacing i, k by 0 are denoted by
labeling “0” in superscript, e.g., (→left0). A sequent calculus LKω for clas-
sical infinitary logic is obtained from S4ω by deleting (�left0) and (�right0).

The following cut-elimination theorem is well-known (see e.g., [16, 6] and
the references therein).

Proposition 2.4 : Let L be S4ω or LKω. The rule (cut) is admissible in cut-
free L.
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An expression L ` S or ` S is used to denote the fact that a sequent S is
provable in a sequent calculus L.

Note that the rules (
∧

right), (
∨

left), (Gright) and (Fleft) have infinite
premises. The sequents of the form: Xiα ⇒ Xiα for any formula α are
provable in cut-free Lω and cut-free L−

ω . This fact is proved by induction on
the complexity of α. Hence, in the following discussion, these sequents are
sometimes regarded as the initial sequents of Lω and L−

ω .

Proposition 2.5 : Let L be Lω or L−
ω . The rule

Γ ⇒ ∆
XΓ ⇒ X∆

(Xregu)

is admissible in cut-free L.

Proof. By induction on the proofs P of Γ ⇒ ∆ in cut-free L. �

An expression α ⇔ β is used as an abbreviation of two sequents α ⇒ β
and β ⇒ α.

Proposition 2.6 : The following sequents are provable in cut-free Lω and
cut-free L−

ω : for any formulas α, β, any allowable set Θ and any i ∈ ω,

1. Xi(α→β) ⇔ Xiα→Xiβ,

2. Xi¬α ⇔ ¬Xiα,

3. Xi(]Θ) ⇔ ](XiΘ) where ] ∈ {
∧

,
∨
},

4. Gα ⇔
∧
{Xiα | i ∈ ω},

5. Fα ⇔
∨
{Xiα | i ∈ ω},

6. Gα ⇒ Xα,

7. Gα ⇒ XGα,

8. Gα ⇒ GGα,

9. α, G(α→Xα) ⇒ Gα (time induction).

The following sequents are provable in cut-free Lω: for any formula α and
any i ∈ ω,

10. Xi
�α ⇔ �Xiα.

Proof. We show some cases.
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(4):

{ Xi
α ⇒ Xi

α }Xiα∈{Xiα | i∈ω}

{ Gα ⇒ Xi
α }Xiα∈{Xiα | i∈ω}

(Gleft)

Gα ⇒
∧
{Xi

α | i ∈ ω}
(
∧

right)

{ Xj
α ⇒ Xj

α }j∈ω

{
∧
{Xi

α | i ∈ ω} ⇒ Xj
α }j∈ω

(
∧

left)

∧
{Xi

α | i ∈ ω} ⇒ Gα
(Gright).

(9): ....
{α, G(α→Xα) ⇒ Xkα}k∈ω

α, G(α→Xα) ⇒ Gα
(Gright)

where Lω ` α, G(α→Xα) ⇒ Xkα for any k ∈ ω is shown by mathemat-
ical induction on k as follows. The base step is obvious using (we). The
induction step can be shown as follows.

.... ind.hyp.

α, G(α→Xα) ⇒ Xkα Xk+1α ⇒ Xk+1α

α, G(α→Xα), Xk(α→Xα) ⇒ Xk+1α
(→left)

α, G(α→Xα), G(α→Xα) ⇒ Xk+1α
(Gleft)

where the last sequent of this proof is equivalent to the sequent α, G(α→Xα)
⇒ Xk+1α.

(10):

Xiα ⇒ Xiα

Xi
�α ⇒ Xiα

(�left)

Xi
�α ⇒ �Xiα

(�right)

Xiα ⇒ Xiα

�Xiα ⇒ Xiα
(�left)

�Xiα ⇒ Xi
�α

(�right).

�

In the following, we give some remarks on Proposition 2.6.

1. The sequents listed in (1)–(3) and (10) correspond to the charac-
teristic axioms for some next-interior fragments of DTL. In fact, a
Hilbert-style axiomatization of S4C is obtained from that of S4 by
adding the following axiom schemes and inference rule:

(a) X(α ◦ β) ↔ Xα ◦ Xβ where ◦ ∈ {→,∧,∨},

(b) X¬α ↔ ¬Xα,

(c) X�α→�Xα,
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(d)
α

Xα
.

2. In particular, the sequents of the forms X�α ⇒ �Xα and �Xα ⇒
X�α listed in (10) respectively correspond to the continuous axiom,
which characterizes the continuity property of the function f on the
topological space X of the underlying dynamic topological system
(X, f), and the homeomorphism axiom, which characterizes the open
mapping property of f in (X, f). If a function is a continuous open
bijection, then the function is called a homeomorphism. For details,
see [8] and the references therein.

3. In order to prove the sequents listed in (10), we need the fact that the
parameters i and k in (�right) and (�left) can be different. Indeed,
the applications of (�right) in the left and right proof figures in the
proof of (10) correspond to the cases k = 0 and k = i, respectively.

4. The sequents listed in (4) and (5) correspond to the characteristic ax-
ioms for a full DTL with a homeomorphism f on a topological space
X . Intuitively, (4) and (5) are respectively interpreted as follows [10]:
for a given subset V of X ,

(a) GV :=
⋂
{f−i(V ) | i ∈ ω}

(b) FV :=
⋃
{f−i(V ) | i ∈ ω}

where f−i means the i-times iteration of the inverse mapping of f .

5. The sequents listed in (6)–(9) correspond to the characteristic axioms
for LTL.

In the following, we present a comparison of other sequent systems.

1. A sequent calculus S4FG [1] for S4F is obtained from a standard se-
quent system for S4 by adding (Xregu). The rules (→right), (→left)
and (�left) were shown to be admissible in cut-free S4FG [1].

2. A sequent calculus S4CG [1] for S4C is obtained from S4FG by
adding the rule of the form:

�X�α, Γ ⇒ ∆

X�α, Γ ⇒ ∆
.
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3. Mints’ sequent calculus for S4C is similar to S4CG, and uses the rule
of the form

B ⇒ α
B ⇒ �α

where B is a set of formulas of the form Xi
�α. It is noted that this

rule dose not allow to derive the sequent �Xα ⇒ X�α of home-
omorphisms. In order to derive such a sequent, the rule (�right)
proposed in this paper is needed.

4. A sequent calculus for a bimodal version of DTL with a homeomor-
phism, called S4H in [8], is then regarded as the {→,∧,∨, �, X}
fragment of Lω.

5. Kawai’s LTω [7] for LTL is obtained from Lω by deleting (�left),
(�right) and replacing the {

∧
,
∨
} rules by the standard binary {∧,∨}

rules. The cut-elimination and completeness theorems for LTω was
shown in [7] using Schütte’s method.

6. A 2-sequent calculus 2Sω for LTL, which is a natural extension of
the usual sequent calculus, was introduced by Baratella and Masini,
and the cut-elimination and completeness theorems for this calculus
were proved based on an analogy between LTL and Peano arithmetic
with ω rule [2]. A direct syntactical equivalence between LTω and
2Sω was shown by introducing the translation functions that preserve
cut-free proofs of these calculi [4]. Baratella-Masini-style cut-free 2-
sequent calculi can also be obtained for Lω and L−

ω .

7. The rule (Xregu) was first introduced by Artemov et al. [1] for for-
malizing S4F and S4C. This rule is more expressive than the follow-
ing standard inference rule for the modal logic K:

Γ ⇒ α
�Γ ⇒ �α

in which X is represented by �. The corresponding logic for the
propositional LK with (Xregu), which was called KF, is identified as
characteristic for total (serial) and functional (deterministic) binary
relations in the Kripke semantics. Axioms for KF were introduced by
Prior in the 1950s as the axioms for the modality that can represent
“tomorrow it will be the case that.” For more information on KF, see
e.g., [1, 14, 15] and the references therein. The system Lω is thus
also regarded as an extension of the sequent calculus for KF.

8. L−
ω is regarded as an integration of both LTω and LKω. Thus, L−

ω is a
sequent calculus for a natural extension of both LTL and IL.
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3. Cut-elimination

Definition 3.1 : We fix a countable non-empty set Φ of propositional vari-
ables, and define the sets Φi := {pi | p ∈ Φ} (1 ≤ i ∈ ω) and Φ0 := Φ of
propositional variables where p0 = p. The language LLω

(or the set of for-
mulas) of Lω is defined using Φ, →,¬,

∧
,
∨

, �, X, G and F in the same way
as in Definition 2.1. The language LS4ω

of S4ω is defined using
⋃

i∈ω Φi,
→,¬,

∧
,
∨

, � in a similar way as in Definition 2.1.
A mapping f from LLω

to LS4ω
is defined as follows.

1. f(Xip) := pi ∈ Φi (i ∈ ω) for any p ∈ Φ (especially, f(p) := p ∈
Φ),

2. f(Xi(α→β)) := f(Xiα)→f(Xiβ),

3. f(Xi¬α) := ¬f(Xiα),

4. f(Xi(]Θ)) := ]f(XiΘ) where Θ is an allowable set, ] ∈ {
∧

,
∨
},

and f(XiΘ) is the result of replacing every occurrence of a formula
α in XiΘ by an occurrence of f(α),

5. f(Xi
�α) := �f(Xiα),

6. f(XiGα) :=
∧
{f(Xi+jα) | j ∈ ω},

7. f(XiFα) :=
∨
{f(Xi+jα) | j ∈ ω}.

We also define the languages LL−ω
(for L−

ω ) and LLKω
(for LKω) as the �-

less sublanguages of LLω
and LS4ω

, respectively. A mapping f from LL−ω
to

LLKω
is obtained from the above defined mapping by deleting the condition

5. We also use the same name f for this mapping.

An expression f(Γ) denotes the result of replacing every occurrence of
a formula α in Γ by an occurrence of f(α), e.g., if Γ ≡ {α, β, γ}, then
f(Γ) ≡ {f(α), f(β), f(γ)}.

Theorem 3.2 : (Syntactical embedding) Let Γ and ∆ be sets of formulas in
LLω

, and f be the mapping defined firstly in Definition 3.1. Then:

1. Lω ` Γ ⇒ ∆ iff S4ω ` f(Γ) ⇒ f(∆).

2. Lω − (cut) ` Γ ⇒ ∆ iff S4ω − (cut) ` f(Γ) ⇒ f(∆).

Let Γ and ∆ be sets of formulas in LL−ω
, and f be the mapping defined

secondly in Definition 3.1. Then:

1. L−
ω ` Γ ⇒ ∆ iff LKω ` f(Γ) ⇒ f(∆).
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2. L−
ω − (cut) ` Γ ⇒ ∆ iff LKω − (cut) ` f(Γ) ⇒ f(∆).

Proof. We show only the case for Lω. Since the case (2) can be obtained as
the subproof of the case (1), we show only (1) in the following.

(=⇒): By induction on the proof P of Γ ⇒ ∆ in Lω. We distinguish the
cases according to the last inference of P , and show some cases.

Case (Xip ⇒ Xip): The last inference of P is of the form: Xip ⇒ Xip. In
this case, we obtain S4ω ` f(Xip) ⇒ f(Xip), i.e., S4ω ` pi ⇒ pi (pi ∈ Φi).

Case (�right): The last inference of P is of the form:

Xi
�Γ ⇒ Xkα

Xi
�Γ ⇒ Xk

�α
(�right).

By induction hypothesis, we have S4ω ` f(Xi
�Γ) ⇒ f(Xkα), i.e., S4ω `

�f(XiΓ) ⇒ f(Xkα). Then, we obtain

....
�f(XiΓ) ⇒ f(Xkα)

�f(XiΓ) ⇒ �f(Xkα)
(�left0)

where �f(XiΓ) ⇒ �f(Xkα) coincides with f(Xi
�Γ) ⇒ f(Xk

�α) by the
definition of f .

Case (Gleft): The last inference of P is of the form:

Xi+kα, Γ ⇒ ∆

XiGα, Γ ⇒ ∆
(Gleft).

By induction hypothesis, we have S4ω ` f(Xi+kα), f(Γ) ⇒ f(∆), and hence
obtain:

....
f(Xi+kα), f(Γ) ⇒ f(∆) (f(Xi+kα) ∈ {f(Xi+jα) | j ∈ ω})

∧
{f(Xi+jα) | j ∈ ω}, f(Γ) ⇒ f(∆)

(
∧

left0)

where
∧
{f(Xi+jα) | j ∈ ω} coincides with f(XiGα) by the definition of

f .
Case (Gright): The last inference of P is of the form:

{ Γ ⇒ ∆, Xi+jα }j∈ω

Γ ⇒ ∆, XiGα
(Gright).
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By induction hypothesis, we have S4ω ` f(Γ) ⇒ f(∆), f(Xi+jα) for all
j ∈ ω. Let Θ be {f(Xi+jα) | j ∈ ω}. We obtain

....
{ f(Γ) ⇒ f(∆), f(Xi+jα) }f(Xi+j

α)∈Θ

f(Γ) ⇒ f(∆),
∧

Θ
(
∧

right0)

where
∧

Θ coincides with f(XiGα) by the definition of f .
(⇐=): By induction on the proof Q of f(Γ) ⇒ f(∆) in S4ω. We distin-

guish the cases according to the last inference of Q. We show only some
cases.

Case (cut): The last inference of Q is of the form:

f(Γ1) ⇒ f(∆1), β β, f(Γ2) ⇒ f(∆2)

f(Γ1), f(Γ2) ⇒ f(∆1), f(∆2)
(cut).

Since β is in LS4ω
, we have the fact β = f(β). This fact can be shown by

induction on β. Then, by induction hypothesis, we have: Lω ` Γ1 ⇒ ∆1, β
and Lω ` β, Γ2 ⇒ ∆2. We then obtain the required fact: Lω ` Γ1, Γ2 ⇒
∆1, ∆2 by using (cut) in Lω.

Case (
∧

right0):
Subcase (1): The last inference of Q is of the form:

{ f(Γ) ⇒ f(∆), f(Xiα) }f(Xi
α)∈f(XiΘ)

f(Γ) ⇒ f(∆),
∧

f(XiΘ)
(
∧

right0)

where
∧

f(XiΘ) coincides with f(Xi(
∧

Θ)) by the definition of f . By
induction hypothesis, we have Lω ` Γ ⇒ ∆, Xiα for all Xiα ∈ XiΘ, i.e.,
for all α ∈ Θ. Then, we obtain

....
{ Γ ⇒ ∆, Xiα }α∈Θ

Γ ⇒ ∆, Xi(
∧

Θ)
(
∧

right).

Subcase (2): The last inference of Q is of the form:

{ f(Γ) ⇒ f(∆), f(Xi+jα) }f(Xi+j
α)∈{f(Xi+j

α) | j∈ω}

f(Γ) ⇒ f(∆),
∧
{f(Xi+jα) | j ∈ ω}

(
∧

right0)
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where
∧
{f(Xi+jα) | j ∈ ω} coincides with f(XiGα) by the definition of

f . By induction hypothesis, we have Lω ` Γ ⇒ ∆, Xi+jα for all Xi+jα ∈
{Xi+jα | j ∈ ω}, i.e., for all j ∈ ω. Then, we obtain

....
{ Γ ⇒ ∆, Xi+jα }j∈ω

Γ ⇒ ∆, XiGα
(Gright).

�

Theorem 3.3 : (Cut-elimination) Let L be Lω or L−
ω . The rule (cut) is admis-

sible in cut-free L.

Proof. We show only the case for Lω. Suppose Lω ` Γ ⇒ ∆. Then, we
have S4ω ` f(Γ) ⇒ f(∆) by Theorem 3.2 (1), and hence S4ω − (cut) `
f(Γ) ⇒ f(∆) by Proposition 2.4. By Theorem 3.2 (2), we obtain Lω −
(cut) ` Γ ⇒ ∆. �

4. Completeness

Let Γ be a set {α1, ..., αm} (m ≥ 0) of formulas. Then, Γ∗ represents α1 ∨
· · · ∨ αm if m ≥ 1, and otherwise ¬(p→p) where p is a fixed propositional
variables. Also Γ∗ represents α1 ∧ · · · ∧ αm if m ≥ 1, and otherwise p→p
where p is a fixed propositional variables. The symbol ≥ or ≤ is used to
represent a linear order on ω.

A semantics for L−
ω is defined below.

Definition 4.1 : Let Θ be an allowable set. Timed valuations I i (i ∈ ω) are
mappings from the set of all propositional variables to the set {t, f} of truth
values. Then, timed satisfaction relations |=i α (i ∈ ω) for any formula α
are defined inductively by:

1. |=i p iff I i(p) = t for any propositional variable p,

2. |=i

∧
Θ iff |=i α for any α ∈ Θ,

3. |=i

∨
Θ iff |=i α for some α ∈ Θ,

4. |=i α→β iff not-(|=i α) or |=i β,

5. |=i ¬α iff not-(|=i α),

6. |=i Xα iff |=i+1 α,
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7. |=i Gα iff |=j α for any j ≥ i,

8. |=i Fα iff |=j α for some j ≥ i.

A formula α is called L−
ω -valid if |=0 α holds for any timed satisfaction

relations |=i (i ∈ ω). A sequent Γ ⇒ ∆ is called L−
ω -valid if so is the

formula Γ∗→∆∗.

A semantics for LKω is defined below.

Definition 4.2 : Let Θ be an allowable set. A valuation I is a mapping from
the set of all propositional variables to the set {t, f} of truth values. A
satisfaction relation |= α for any formula α is defined inductively by:

1. |= p iff I(p) = t for any propositional variable p,

2. |=
∧

Θ iff |= α for any α ∈ Θ,

3. |=
∨

Θ iff |= α for some α ∈ Θ,

4. |= α→β iff not-(|= α) or |= β,

5. |= ¬α iff not-(|= α).

A formula α is called LKω-valid if |= α holds for any satisfaction relation
|=. A sequent Γ ⇒ ∆ is called LKω-valid if so is the formula Γ∗→∆∗.

As well known, the following completeness theorem holds for LKω.

Proposition 4.3 : For any sequent S, LKω ` S iff S is LKω-valid.

In order to apply the mapping f in Definition 3.1, we assume the lan-
guages which are based on LL−ω

and LLKω
by constructing Φ and

⋃
i∈ω Φi,

respectively.

Lemma 4.4 : Let f be the mapping defined in Definition 3.1. For any timed
satisfaction relation |=i (i ∈ ω), there exists a satisfaction relation |= such
that for any formula α in LL−ω

,

|=i α iff |= f(Xiα).

Proof. Let Φ be a set of propositional variables and Φi be the set {pi | p ∈ Φ}
of propositional variables with p0 := p.

Suppose that

Ii (i ∈ ω) are mappings from Φ to {t, f}.
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Suppose that

I is a mapping from
⋃

i∈ω

Φi to {t, f}.

Suppose moreover that

Ii(p) = t iff I(pi) = t.

Then, the claim is proved by induction on the complexity of α.
• Base step:
Case (α ≡ p ∈ Φ): |=i p iff I i(p) = t iff I(pi) = t iff |= pi iff |= f(Xip)

(by the definition of f ).
• Induction step:
Case (α ≡

∧
Θ where Θ is an allowable set) |=i

∧
Θ iff |=i β for any β ∈

Θ iff |= f(Xiβ) for any β ∈ Θ (by induction hypothesis) iff |= f(Xiβ) for
any f(Xiβ) ∈ f(XiΘ) iff |=

∧
f(XiΘ) iff |= f(Xi

∧
Θ) (by the definition

of f ).
Case (α ≡

∨
Θ where Θ is an allowable set): Similar to Case (α ≡

∧
Θ

where Θ is an allowable set).
Case (α ≡ α1→α2): |=i α1→α2 iff not-(|=i α1) or |=i α2 iff not-(|=

f(Xiα1)) or |= f(Xiα2) (by induction hypothesis) iff |= f(Xiα1)→f(Xiα2)
iff |= f(Xi(α1→α2)) (by the definition of f ).

Case (α ≡ ¬β): |=i ¬β iff not-(|=i β) iff not-(|= f(Xiβ)) (by induction
hypothesis) iff |= ¬f(Xiβ) iff |= f(Xi¬β) (by the definition of f ).

Case (α ≡ Xβ): |=i Xβ iff |=i+1 β iff |= f(Xi+1β) (by induction hypoth-
esis) iff |= f(XiXβ).

Case (α ≡ Gβ): |=i Gβ iff |=j β for any j ≥ i iff |= f(Xjβ) for any
j ≥ i (by induction hypothesis) iff ∀k ∈ ω [|= f(Xi+kβ)] iff |= γ for any
γ ∈ {f(Xi+kβ) | k ∈ ω} iff |=

∧
{f(Xi+kβ) | k ∈ ω} iff |= f(XiGβ) (by

the definition of f ).
Case (α ≡ Fβ): Similar to Case (α ≡ Gβ). �

Lemma 4.5 : Let f be the mapping defined in Definition 3.1. For any satis-
faction relation |= and any i ∈ ω, there exists a timed satisfaction relation
|=i such that for any formula α in LL−ω

,

|= f(Xiα) iff |=i α.

Proof. Similar to the proof of Lemma 4.4. �

Theorem 4.6 : (Semantical embedding) Let f be the mapping defined in Def-
inition 3.1. For any formula α in LL−ω

, α is L−
ω -valid iff f(α) is LKω-valid.
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Proof. By Lemmas 4.4 and 4.5. We take 0 for i. �

Combining Theorems 3.2 and 4.6, we can derive the following complete-
ness theorem for L−

ω .

Theorem 4.7 : (Completeness) For any sequent S, L−
ω ` S iff S is L−

ω -valid.

Proof. Let Γ ⇒ ∆ be S and α be Γ∗→∆∗. It is sufficient to show that L−
ω

` ⇒ α iff α is L−
ω -valid. We show this as follows. L−

ω ` ⇒ α iff LKω `
⇒ f(α) (by Theorem 3.2) iff f(α) is LKω-valid (by Proposition 4.3) iff α is
L−

ω -valid (by Theorem 4.6). �
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