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ADDING THE DISJUNCTIVE SYLLOGISM TO RELEVANT LOGICS
INCLUDING TW PLUS THE CONTRACTION

AND REDUCTIO RULES

JOSÉ M. MÉNDEZ, GEMMA ROBLES AND FRANCISCO SALTO

Abstract
In this paper, it is shown how to define a Routley-Meyer type ternary
relational semantics for relevant logics including contractionless
Ticket Entailment TW plus the contraction and reductio rules. Stan-
dard relevant logics such as E and R plus γ are among the logics
considered.

1. Introduction

As is known, the disjunctive syllogism is the rule

A
¬A ∨ B

B

The disjunctive syllogism is the rule Ackermann labels γ in his system Π′

of ‘strenge Implikation’ (cf. [1]).
According to the authors of [4], the Logic of Entailment E is the result

of dropping γ from Π′ (cf. [4] Chap. VIII). So, γ is not a rule of E, and
neither is it a rule of standard relevant logics such as Ticket Entailment T or
Relevance Logic R (cf. [3]). Nevertheless, one of the three major problems
concerning relevant logics listed by Anderson in 1963 was that of proving
the admissibility of γ (cf. [2]).

It is a well known fact that γ is admissible in some relevant logics among
which T, E and R are to be found (cf., e.g., [3], [7]).

In addition to T, E and R, TW is another important relevant logic in which
γ is admissible. The logic TW is, essentially, the result of dropping the
contraction axiom (C)

C. [A → (A → B)] → (A → B)
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and the reductio axiom (R)

R. (A → ¬A) → ¬A

from T.
Admissibility of γ in TW follows trivially by the primeness of this logic

(cf. [14]).
Now, there are at least three interesting logics between TW and T: TW

plus C (TWC); TW plus R (TWR), and TW plus C and R only as rules of
inference (TWcr). These three logics are different from each other, as it is
proved below (Proposition 2).

Admissibility of γ in TWC, TWR and TWcris, to our knowledge, open.
So, it is a task of some interest to try and provide a semantics for the result
of adding the rule γ to each one of these logics. In this sense, in [10] γ is
added as primitive to TWR, and it is shown how to define a Routley-Meyer
semantics for relevant logics including TWR plus γ. The aim of this paper
is to carry on a similar investigation on the logic TWcr. That is, we add
γ as primitive to TWcr, and then we show how to define a Routley-Meyer
semantics for relevant logics including TWcr plus γ.

As pointed out above, TWcr is the result of adding to TW the rules of
contraction (c)

c. ` A → (A → B) ⇒ ` (A → B)

and reductio (r)
r. ` A → ¬A ⇒ ` ¬A

A more intuitively conspicuous equivalent axiomatization of TWcr is, may-
be, the following (cf. Proposition 1 below): TWcris the result of adding to
TW the axiom modus ponens (m.p)

m.p. [A ∧ (A → B)] → B

and the principle of excluded middle (e.m)

e.m. A ∨ ¬A

Now, we think that two facts concerning TWcrγ and its extensions are re-
markable:

1. Addition of γ as primitive to R does not violate the variable sharing
property (vsp); addition of γ as primitive to E does not violate the
Ackermann Property (A.P).
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Anderson and Belnap prove with a set of eight-element matrices (cf.
[3], §22.1.3) that R has the vsp (so, that E has the vsp) and with a set
of ten-element ones that E has the A.P (cf. [3], §22.1.1). Now, as the
reader can readily check both sets of matrices satisfy γ.

Consequently, TWcrγ , as well as any of its extensions included in R
plus γ has the vsp; and any logic including TWcrγ and included in E
plus γ has both the vsp and the A.P.

2. Although TWcrγ and its extensions are, of course, closed by γ, theo-
ries built upon these logics are not, in general, closed by this rule.
Therefore, triviality does not necessarily follow in case of inconsis-
tency, and, so, these logics are adequate in dealing with inconsistent
situations (cf. Remark 4 below).

Remark 1 :

1. The axiom m.p is sometimes labelled “pseudo-modus/ponens” in or-
der to distinguish it from the rule modus ponens.

2. The variable-sharing property (vsp) is the following: A logic S has
the vsp if in any theorem of S of the form A → B, A and B share at
least a propositional variable.

3. The Ackermann Property (AP) is the following: A logic S has the AP
if in any theorem of the form A → (B → C), A contains at least an
implicative formula (A is implicative iff it is of the form B → C).

Next, we turn to the structure of the paper.
As is known, the real difficulty in proving the admissibility of γ in rele-

vant logics lies in proving that every prime theory containing all theorems (of
the logic in question) and lacking a given formula has a negation-consistent,
complete subtheory with all theorems (of the logic in question) lacking the
same formula (cf., e.g., [3]). Proof of this fact (Lemma 4) for relevant logics
including TWcrγ is provided in Section 3 of the paper, its main section. Re-
garding this proof, we remark that consistency is here understood as “weak
consistency” (cf. [9]): if consistency were understood in the standard sense,
the completeness proof would not follow (cf. Remark 5).

Concerning the semantics here provided, we have adapted the “normal-
ization” strategy and the ideas and results of the “calculus of intensional
T-theories” firstly defined in [12] (see also [11]). So, in order to avoid, as
much as possible, unnecessary repetition of well known facts, knowledge of
Routley-Meyer semantics for relevant logics is presupposed. The structure
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of the paper is as follows. In §2, the logic TWcrγ and its semantics are pre-
sented. In §3, properties of TWcrγ-theories that are of interest for the aim of
the paper are studied, and the fundamental lemma (Lemma 4) is proved. In
§4, canonical models are defined and the completeness theorem for TWcrγ
is proved. We end the paper in §5 with a brief study of some extensions of
TWcrγ included in R-Mingle plus γ as primitive. Soundness and complete-
ness for these extensions are provided.

2. The logic TWcrγ and its semantics

As is known, The logic TW can be axiomatized as follows (cf. e.g., [5] or
[6]):

Axioms

A1. A → A

A2. (B → C) → [(A → B) → (A → C)]

A3. (A ∧ B) → A / (A ∧ B) → B

A4. [(A → B) ∧ (A → C)] → [A → (B ∧ C)]

A5. A → (A ∨ B) / B → (A ∨ B)

A6. [(A → C) ∧ (B → C)] → [(A ∨ B) → C]

A7. [A ∧ (B ∨ C)] → [(A ∧ B) ∨ (A ∧ C)]

A8. ¬¬A → A

A9. (A → ¬B) → (B → ¬A)

Rules

Modus ponens (MP): (` A → B & ` A) ⇒ ` B

Adjunction (Adj): (` A & ` B) ⇒ ` A ∧ B

Then, as remarked in §1, the logic TWcrγ is the result of adding to TW the
following rules: contraction (c)

c. ` A → (A → B) ⇒ ` (A → B)

reductio (r)
r. ` A → ¬A ⇒ ` ¬A
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and the disjunctive syllogism (γ)

γ. (` A & ` ¬A ∨ B) ⇒ ` B

We remark for further reference some theorems and rules of TWcrγ (a
proof is sketched to the right of each one of them).

T1. A → ¬¬A A1, A9
T2. (A → B) → (¬B → ¬A) A9, T1
T3. (¬A → B) → (¬B → A) A8, T2
T4. (¬A → ¬B) → (B → A) T1, T3
T5. (A → B) → [(B → C) → (A → C)] A2, T2, T4
T6. ¬(A ∧ B) ↔ (¬A ∨ ¬B) T2, T3
T7. (¬A ∧ ¬B) → ¬ (A ∨ B) A9
T8. ` A → (B → C) ⇒ ` (A ∧ B) → C c
T9. [A ∧ (A → B)] → B A1, T8

T10. (` A → B & ` A → ¬B) ⇒ ` ¬A A9, T2, r
T11. ¬(A ∧ ¬A) A3, T10
T12. (` A → B & ` ¬A → B) ⇒ ` B T2, T3, T10, A8
T13. A ∨ ¬A A5, T12

In addition, we have γ in the form

γ′. (` A & ` ¬(A ∧ B)) ⇒ ` ¬B γ, T6

Now, let TWmpem be the result of adding to TW the modus ponens ax-
iom (m.p) T9 and the principle of excluded middle (e.m) T13. We note the
following:

Proposition 1 : TWcr and TWmpem are deductively equivalent logics.

Proof. (1) TWmpem is deductively included in TWcr: T9 and T13 are the-
orems of TWmpem. (2) We prove that the converse also holds: (2.a) c is a
rule of TWmpem. Suppose ` A → (A → B). By A2 and T9, ` [A →
[A ∧ (A → B)]] → (A → B). By A1, A4, Adj and the hypothesis,
` A → [A ∧ (A → B)]. So, A → B. (2.b) r is a rule of of TWmpem.
First, prove T10 with A9, T2 and T11. Now, suppose ` A → ¬A. Then,
` ¬A is immediate by A1 and T10. �



“03mendez-robles-salto”
2011/9/2
page 348

i

i

i

i

i

i

i

i

348 JOSÉ M. MÉNDEZ, GEMMA ROBLES AND FRANCISCO SALTO

On the other hand, we remark the following (cf. §1):

Proposition 2 :

1. The following are not derivable in TWcrγ:

i. [(A → A) → B] → B

ii. [A → (A → B)] → (A → B)

iii. (A → ¬A) → ¬A

iv. ` A ⇒ ` (A → B) → B

2. The following are not derivable in TWRγ: i, ii, iv and T9.

3. The following are not derivable in TWCγ: i, iii, iv, T13.

Proof. By MaGIC, the matrix generator developed by J. Slaney (see [15]).
�

Therefore, it follows from Proposition 2 that TWCγ , TWRγ , and TWcrγ are
independent from each other.

Next, we shall define TWcrγ-models. But, before doing this, we shall recall
the definition of a TW-model (cf. e.g., [13]).

Definition 1 : A TW-model is a structure 〈K, O, R, ∗, �〉 where O is a
subset of K, R is a ternary relation on K, and ∗ a unary operation on K
subject to the following definitions and postulates for all a, b, c, d ∈ K:

d1. a ≤ b =df (∃x ∈ O)Rxab

d2. R2abcd =df (∃x ∈ K)(Rabx & Rxcd)

P1. a ≤ a

P2. (a ≤ b & Rbcd) ⇒ Racd

P3. R2abcd ⇒ (∃x ∈ K)(Rbcx & Raxd)

P4. a = a ∗ ∗

P5. Rabc ⇒ Rac ∗ b∗
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Finally, � is a (valuation) relation from K to the formulas of the proposi-
tional language such that the following conditions are satisfied for all propo-
sitional variables p, wff A, B and a ∈ K

(i). (a ≤ b & a � p) ⇒ b � p

(ii). a � A ∧ B iff a � A and a � B

(iii). a � A ∨ B iff a � A or a � B

(iv). a � A → B iff for all b, c ∈ K (Rabc & b � A) ⇒ c � B

(v). a � ¬A iff a∗ 2 A

A formula A is TW-valid (�TW A) iff a � A for all a ∈ O in all models.
We note the following:

Theorem 1 : (Soundness and completeness of TW) `TW A iff �TW A.

Proof. See, e.g., [13]. �

Next, we shall define TWcrγ-models.

Definition 2 : A TWcrγ-model is a structure 〈K, O, R, ∗, �〉 where K, O,
R, ∗, � are defined similarly as in a TW-model except for the addition of the
following postulates:

P6. Raaa

P7. a ∈ O ⇒ a∗ ≤ a

P8. a ∈ O ⇒ a ≤ a∗

A formula is TWcrγ-valid (�TWcrγ
A) iff a � A for all a ∈ O in all models.

Next, we prove:

Theorem 2 : (Soundness of TWcrγ) If `TWcrγ
A, then �TWcrγ

A.

Proof. Given Theorem 1, we just have to prove that c, r and γ preserve
validity, which can be shown by P6, P7 and P8, respectively. �

To end this section, we note the following:

Proposition 3 : Let A be a theorem of TWcrγ . Then, ¬A is false in every
a ∈ O in all models.
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Proof. Let A be a theorem and a be any member in an arbitrary model. If
a � ¬A, then a∗ 2 A by clause v. But, a � A by Theorem 2. So, a∗ � A by
P8. Therefore, a 2 ¬A for every a ∈ O in all models. �

3. Completeness of TWcrγ I. TWcrγ-theories. The fundamental lemma

We begin by recalling some definitions. A TWcrγ-theory is a set of formu-
las closed under adjunction and provable TWcrγ-entailment. That is, a is
a TWcrγ-theory if whenever A, B ∈ a, then A ∧ B ∈ a; and if whenever
A → B is a theorem of TWcrγ and A ∈ a, then B ∈ a. Next, let a be TWcrγ-
theory. Then, a is prime if whenever A ∨ B ∈ a, then A ∈ a or B ∈ a; a
is regular iff all theorems of TWcrγ belong to it; finally, a is w-inconsistent
(inconsistent in a weak sense) iff ¬A ∈ a, A being a theorem of TWcrγ (a is
w-consistent — consistent in a weak sense — iff it is not w-inconsistent).

We shall refer by Kt to the set of all TWcrγ-theories; and by KP
t to the set

of all prime TWcrγ-theories. We note the following:

Proposition 4 :

1. Let a be a member in Kt. Then a is w-consistent iff for no theorem
of TWcrγ of the form ¬A, A ∈ a.

2. Let a be a regular member in Kt. Then a is w-consistent iff a does
not contain some contradiction.

Proof. 1: immediate by T1. 2: let a be a regular element in Kt. Then, (a) if
¬B ∈ a, B being a theorem of TWcrγ , a contains the contradiction B ∧¬B.
(b) If a contains some contradiction, say A ∧ ¬A, then a is w-inconsistent
by (a) (cf. T11). �

Notice, however, that if regularity is not present, w-consistency and con-
sistency in the customary sense of the term are not necessarily equivalent in
the case of TWcrγ-theories.

Next, we set:

Definition 3 : For any a ∈ KP
t , a∗Pt = {A | ¬A /∈ a}.

Then, we have:

Lemma 1 :

1. ∗Pt is an operation on KP
t .
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2. For any a ∈ KP
t and wff A, ¬A ∈ a∗Pt iff A /∈ a.

3. For any A ∈ KP
t , if a is regular, then a∗Pt is w-consistent.

Proof. (1) By T2, T6 and T7. (2) By A8 and T1 (cf., e.g., [13] in respect
of (1) and (2)). (3) Suppose a is a regular member in KP

t . If a∗Pt is w-
inconsistent, then ¬A ∈ a∗Pt for some theorem A. By (2), A /∈ a contra-
dicting the regularity of a. �

Next, we prove two first primeness lemmas and then, the fundamental
(primeness) lemma.

Lemma 2 : Let a be a w-consistent member in Kt. Then, there is some w-
consistent x in KP

t such that a ⊆ x.

Proof. (Cf. the proof of Proposition 9 in [8]). Define from a a maximal
w-consistent theory x such that a ⊆ x. If x is not prime, then there are wff
A, B such that A ∨ B ∈ x, A /∈ x, B /∈ x. Define the set [x, A] = {C |
∃D[D ∈ x & `TWcrγ (A ∧ D) → C]. Define [x, B] similarly. It is not
difficult to prove that [x, A] and [x, B] are theories strictly including x. By
the maximality of x, they are w-inconsistent. That is, ¬C ∈ [x, A], ¬D ∈
[x, B] for some theorems C and D. By definitions, we have `TWcrγ (A ∧
E) → ¬C, `TWcrγ (B ∧E′) → ¬D for some E, E ′ ∈ x. By basic theorems
of TWcrγ , `TWcrγ [(A∨B)∧ (E ∧E ′)] → (¬C ∨¬D). So, ¬C ∨¬D ∈ x,
and by T6, ¬(C ∧D) ∈ x. But by Adj, `TWcrγ C ∧D. Therefore, if x is not
prime, it would be w-inconsistent, which is impossible. �

Lemma 3 : Let a ∈ Kt and A be a wff such that A /∈ a. Then, there is some
x in KP

t such that a ⊆ x and A /∈ x.

Proof. By a “maximizing” argument (see, e.g., [13]). �

Lemma 4 : (The fundamental lemma) Let a be a regular member in Kt and
A be a wff such that A /∈ a. Then, there is a w-consistent, regular element x
in KP

t such that A /∈ x.

Proof. Assume the hypothesis of Lemma 4. By Lemma 3, there is a (reg-
ular) member y in KP

t such that a ⊆ y and A /∈ y. By Lemma 1(1)
and Lemma 1(3), y∗Pt is a w-consistent member in KP

t . Moreover, by
Lemma 1(2), ¬A ∈ y∗Pt. Now, consider the following set of formulas
z = {B | ∃C, D[`TWcrγ C & D ∈ y∗Pt & `TWcrγ (C ∧ D) → B]}.
It is easily shown that z is a regular TWcrγ-theory such that y∗Pt ⊆ z.
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Moreover, z is w-consistent. For suppose ¬B ∈ z for some theorem B.
Then, `TWcrγ (C ∧ D) → ¬B for some theorem C and D ∈ y∗Pt. By A9,
`TWcrγ B → ¬(C∧D). So, `TWcrγ ¬(C∧D) by MP, whence `TWcrγ ¬D by
γ′. But, then, y∗Pt would be w-inconsistent (cf. Proposition 4(1)), which is
impossible. Therefore, z is w-consistent. Next, by Lemma 2, z is extended
to a w-consistent, prime, regular, TWcrγ-theory u. As ¬A ∈ u (¬A ∈ y∗Pt

and y∗Pt ⊆ z ⊆ u), A /∈ u (otherwise, u would be w-inconsistent. Cf.
Proposition 4(2)). Therefore, u is the required x in the statement in Lemma
4. �

An immediate corollary of Lemma 4 is:

Corollary 1 : Let 0TWcrγ A, then there is a w-consistent, prime, regular
TWcrγ-theory T such that A /∈ T .

4. Completeness of TWcrγ II. Canonical models

Let T be a w-consistent, regular element in KP
t . a is a T-theory iff it is a

set of formulas closed under adjunction and T-entailment (a is closed under
T-entailment if whenever A → B ∈ T and A ∈ a, then B ∈ a for any wff
A, B). (We are, of course, following [12]).

It is proved:

Lemma 5 :

1. T is a T-theory.

2. If a is a T-theory, then a is a TWcrγ-theory.

Proof. (1) It suffices to prove that T is closed by T-entailment, which is im-
mediate by T9. (2) It suffices to prove that a is closed by TWcrγ-entailment.
So, suppose `TWcrγ A → B and A ∈ a. As A → B ∈ T and a is closed by
T-entailment, B ∈ a. �

Notice that, of course, the converse of Lemma 5 (2) does not generally
hold. Next, canonical models are defined.

Definition 4 : Let T be a w-consistent, regular element in KP
t . We shall

refer by KT to the set of all T-theories, and RT is defined as follows: for
all a, b, c ∈ KT and wff A, B, RT abc iff (A → B ∈ a & A ∈ b) ⇒
B ∈ c. Now, let KP

T be the set of all prime T-theories, OP
T , the set of all

w-consistent, regular, prime T-theories, and RPT and ∗PT the restriction to
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KP
T of RT and ∗Pt, respectively. Finally, �

PT is defined as follows: for
any a ∈ KP

T , a �
PT A iff A ∈ a. Then, a TWcrγ-canonical model is the

structure
〈

KP
T , OP

T , RPT , ∗PT , �
PT

〉

.

Remark 2 : The essential difference between TWcrγ-canonical models and
those for standard relevant logics is that in the latter OP

T is the set of all
prime, regular, but not necessarily w-consistent, theories.

Remark 3 : ∗PT is an operation on KP
T . It can be proved in a similar way to

which it was proved that ∗Pt is an operation on KP
t (cf. Lemma 1).

Now, in order to prove that a canonical model is in fact a model, we have
to prove:

1. The set OP
T is not empty, which follows immediately from Lemma 4.

2. Clauses (i)-(v) are satisfied by any canonical model, which can be
proved, similarly, as in the semantics for standard relevant logics (cf.,
e.g., [13]).

3. Postulates P1-P8 hold in any canonical model. That P1-P6 hold can
be proved, similarly, as in the standard semantics (cf., .e.g., [13]). So,
let us prove that P7 and P8 hold, which follows immediately from the
following Lemma:

Lemma 6 :

1. Let a be a w-consistent member in KP
T . Then, a ⊆ a∗PT .

2. Let a be a regular member in KP
T . Then, a∗PT ⊆ a.

Proof. 1: Suppose, for reductio, A ∈ a but A /∈ a∗PT for some wff A.
Then, ¬A ∈ a and so, A ∧ ¬A ∈ a, contradicting the w-consistency of a
(cf. Proposition 4(1)). 2: Suppose, for reductio, A ∈ a∗PT but A /∈ a for
some wff A. Then, ¬A /∈ a by definition of ∗PT . By the primeness of a,
A ∨ ¬A /∈ a, contradicting its regularity. �

Now, the completeness theorem is immediate:

Theorem 3 : (Completeness of TWcrγ) If �TWcrγ A, then `TWcrγ A.
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Proof. Suppose 0TWcrγ A. By Corollary 2, there is a w-consistent, regular
element T in KP

T such that A /∈ T . Build up a canonical model upon T . As
A /∈ T , T 2

PT A, i.e., 2TWcrγ A. �

We end this section with two remarks.

Remark 4 : Let a be a w-consistent member in KP
T . Then, a is closed by

γ: suppose A ∈ a, ¬A ∨ B ∈ a for wff A, B. As ¬A /∈ a (a is w-
consistent), B ∈ a by primeness. Notice, however, that TWcrγ-theories are
not in general closed by γ. Thus, for example, the canonical members in KP

T

(so, the elements in KP
t ) are not in general closed by γ.

Remark 5 : Weak-consistency is the concept of consistency to which the logic
TWcrγ is adequate. (On the notions, cf. the introduction in [9]). If consis-
tency is understood in the standard sense, Lemma 2 is not provable. For
suppose a is consistent, and extend a to a maximal consistent theory x. If x
is not prime, theories [x, A] and [x, B] are inconsistent (cf. proof of Lemma
2). So, `TWcrγ (A∧C) → (D∧¬D), `TWcrγ (B∧C ′) → (D′∧¬D′) for some
C, C ′ ∈ x. Then, `TWcrγ [(A∨B)∧ (C ∧C ′)] → [(D∧¬D)∨ (D′ ∧¬D′)].
So, [(D ∧ ¬D) ∨ (D′ ∧ ¬D′)] ∈ x. Now, ¬(D ∧ ¬D) ∧ ¬(D′ ∧ ¬D′) is a
theorem (T11 and Adj). So, ¬[(D∧¬D)∨ (D′ ∧¬D′)] is also a theorem by
T7. Therefore, x is clearly w-inconsistent, but not inconsistent because we
don’t know if it is regular.

5. Extensions of TWcrγ

Consider the following axioms and semantical postulates:

A10. [A → (A → B)] → (A → B)

A11. [[(A → A) ∧ (B → B)] → C] → C

A12. A → [(A → B) → B]

A13. A → (A → A)

A14. (A → ¬A) → ¬A
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PA10. Rabc ⇒ R2abbc

PA11. (∃x ∈ Z)Raxa

(where for any a ∈ K, Za iff Rabc ⇒ (∃x ∈ O)Rxbc)
PA12. Rabc ⇒ Rbac

PA13. Rabc ⇒ (a ≤ c or b ≤ c)

PA14. Raa ∗ a

It is proved:

Proposition 5 : Given the logic TWcrγ and TWcrγ-semantics, PA10, PA11,
PA12, PA13 and PA14 are the corresponding postulates (c.p) to A10, A11,
A12, A13 and A14, respectively.

That is, Given the logic TWcrγ , PA10, PA11, PA12, PA13 and PA14 are
proved canonically valid with, respectively, A10, A11, A12, A13 and A14;
and given TWcrγ-semantics, A10, A11, A12, A13 and A14 are proved valid
with, respectively, PA10, PA11, PA12, PA13 and PA14.

Proof. It can be found (or easily derived from) in [13]. �

Some of the extensions of TWcrγ definable from A12-A16 are:

• TWCrγ : TWcrγ plus A10.

• EWCrγ : TWCrγ plus A11.

• Tγ : TWCrγ plus A14.

• Eγ : Tγ plus A11.

• Rγ : Eγ plus A12.

• RMγ : Rγ plus A13.

We note the following:

Remark 6 : A14 is not independent in Rγ and RMγ .

On the other hand, it is proved:

Proposition 6 : TWCrγ and Tγ (EWCrγ and Eγ; TWCrγ and EWCrγ) are dif-
ferent logics, the former being included in the latter.

Proof. The proof is by MaGIC: A14 is not provable in EWCrγ (so, neither is
it in TWCrγ); A11 is not provable in TWCrγ . �
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Now, define TWCrγ-models (EWCrγ-models, Tγ-models, Eγ-models, Rγ-
models, RMγ-models) in a similar way to which Tcrγ-models were defined,
except for the addition of the c.p to the axioms added in each logic. It is clear
that soundness and completeness of each one of the logics defined above
follow immediately from Theorems 2, 3 and Proposition 5.

We end the paper with a note. One could reasonably ask what is the point
of distinguishing between T (E, R, RM) and Tγ (Eγ , Rγ , RMγ) given that
both logics are equivalent as to theorems. Let us only remark the following
fact. Let S be a relevant logic in which γ is admissible, and Sγ be the result
of adding γ as primitive to S. Clearly, S and Sγ have one and the same set
of theorems, but they are not, stricto sensu, deductively equivalent: γ is not
derivable in S. Consequently, S and Sγ are not necessarily equivalent under
extensions as two deductively equivalent logics should be. Thus, take, for
instance, the logic TW. As remarked out above, γ is admissible in TW due to
the primeness of this logic. So, TW and TWγ are equivalent as to theorems.
But let TWem be the result of adding the principle of excluded middle T13 to
TW. Clearly, TWem is not prime. Then, TWem and TWemγ are not equivalent
as to theorems unless a proof (if there is one) of the admissibility of γ in
TWem not relying on the primeness of the logic is provided. To take another
example, it is a well known fact that γ is not admissible in some extensions
of R-Mingle (see [3], §29.4).

In this sense, we distinguish, for instance, between T (in which γ is ad-
missible) and Tγ (in which γ is derivable — it is added as a primitive rule),
no matter the fact that T and Tγ have one and the same set of theorems. And
no matter the fact (which is maybe more important) that T, E, R, RM etc. are
well established, venerable logics that no one wants to extend.

ACKNOWLEDGEMENTS

Work supported by research projects FFI2008-05859/FISO and FFI2008-
01205/FISO financed by the Spanish Ministry of Science and Innovation.

G. Robles is supported by Program Ramón y Cajal of the Spanish Ministry
of Science and Innovation.

We thank a referee of L&A for his/her comments and suggestions on a
previous version of this paper.

José M. Méndez:
Universidad de Salamanca

Campus Unamuno, Edificio FES, 37007, Salamanca, Spain
http://web.usal.es/sefus; http://www.usal.es/glf

E-mail: sefus@usal.es



“03mendez-robles-salto”
2011/9/2
page 357

i

i

i

i

i

i

i

i

ADDING THE DISJUNCTIVE SYLLOGISM TO RELEVANT LOGICS 357

Gemma Robles & Francisco Salto:
Dpto. de Psicología, Sociología y Filosofía

Universidad de León
Campus de Vegazana, s/n, 24071, León, Spain

E-mail: gemmarobles@gmail.com
E-mail: francisco.salto@unileon.es

REFERENCES

[1] W. Ackermann, “Begründung einer strengen Implikation”, Journal of
Symbolic Logic, 21/2, pp. 113–128, 1956.

[2] A. R. Anderson, “Some problems concerning the system E of Entail-
ment”, Acta Philosophica Fennica, Fasc. 16, pp. 7–18, 1963.

[3] A. R. Anderson, N. D. Jr. Belnap, Entailment. The Logic of Relevance
and Necessity, vol. I. Princeton University Press, 1975.

[4] A. R. Anderson, N. D. Jr. Belnap, J. M. Dunn, Entailment. The Logic of
Relevance and Necessity, vol. II. Princeton University Press, 1992.

[5] R. T. Brady, “Natural Deduction Systems for some Quantified Relevant
Logics”, Logique et Analyse, 27, pp. 355–377, 1984.

[6] R. T. Brady, “Semantic Decision Procedures for Some Relevant Logics,
Australasian Journal of Logic, 1, pp. 4–27, 2003.

[7] J. M. Dunn, G. Restall, “Relevance logics”, in D. Gabbay and F.
Guenthner, F. (eds.) Handbook of Philosophical Logic, vol. 6. Kluwer
Academic Publishers, Dordrecht, 2002, pp. 1–128.

[8] G. Robles, “The Basic Constructive Logic for Negation-Consistency”,
Journal of Logic Language and Information, 17/2, pp. 161–181, 2008.

[9] G. Robles, J. M. Méndez, “The basic constructive logic for a weak
sense of consistency”, Journal of Logic Language and Information,
17/1, 89–107, 2008.

[10] G. Robles, J. M. Méndez, “A Routley-Meyer Semantics for Relevant
Logics including TWR plus the Disjunctive Syllogism”, Logic Journal
of the IGPL, 19(1): 18–32, 2011.

[11] R. Routley, R. K. Meyer, “Semantics of Entailment III”,Journal of
Philosophical Logic, 1, pp. 192–208, 1972.

[12] R. Routley, R. K. Meyer, “Semantics of Entailment I”, in Leblanc, H.
(ed.), Truth, Syntax and Modality, North Holland, 1973, pp. 199–243.

[13] R. Routley, R. K. Meyer, V. Plumwood, R. T. Brady , Relevant Logics
and their Rivals, vol. 1, Atascadero, CA, Ridgeview Publishing Co.,
1982.

[14] J. Slaney, “Reduced Models for Relevant Logics without WI”, Notre
Dame Journal of Formal Logic, 28, pp. 395–407, 1987.



“03mendez-robles-salto”
2011/9/2
page 358

i

i

i

i

i

i

i

i

358 JOSÉ M. MÉNDEZ, GEMMA ROBLES AND FRANCISCO SALTO

[15] J. Slaney, MaGIC, Matrix Generator for Implication Connectives: Ver-
sion 2.1, Notes and Guide, Canberra, Australian National University,
1995. URL: http://users.rsise.anu.edu.au/~jks.


