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WHITEHEAD’S EARLY PHILOSOPHY OF MATHEMATICS AND
THE DEVELOPMENT OF FORMALISM∗

ROSEN LUTSKANOV

The design of this article is to provide clues for adequate appreciation of
the role that Whitehead’s Treatise on Universal Algebra with applications
(henceforth “TUA”) played in the development of the philosophical concep-
tions on the nature of mathematical knowledge. The elaboration of this topic
seems justified in view of the fact that the philosophical and mathematical
achievements of this work were largely destined to oblivion1 but must be
taken into account by any attempted interpretation of his later philosophy.
My principal claim is that one of the possible ways to evaluate properly the
impact of this work on the philosophy of mathematics is to render it as inter-
mediary between the early formalism of Peacock and the mature formalism
of Hilbert. The strategy pursued here is (§1) to motivate the introduction of
Whitehead’s TUA as part of the history of formalism, (§2) to sketch Pea-
cock’s approach to Symbolic Algebra and expose the problems that haunted
it since its very conception, (§3) to present Hilbert’s alternative approach that
allegedly solves the same problem though in rather different setting, (§4) to

∗I would like to express my deep gratitude to the organizers of the workshop dealing
with Whitehead’s philosophy of logic and mathematics that was held in September 25 (2008)
at the University of Liège. Thanks to Sebastien Gandon, Bruno Leclerq and Vesselin Petrov
for comments on a previous draft of this paper and to Ronny Desmet, who brought to my at-
tention Whitehead’s book review of Berkeley’s “Mysticism in Modern Mathematics” (1910).
Last but not least, I would like to acknowledge my debt to the anonymous referees of Logique
et Analyse whose substantial criticisms helped me to clarify some points and add some nec-
essary ramifications. I admit that it was not possible for me, at least at this point, to remove
some of the reasons for their discontent.

1 As Henry and Valenza have noted, in spite of its initial success, Whitehead’s Treatise
on Universal Algebra “has found little audience in twentieth century mathematics” (Henry
& Valenza, 1993, p. 157). We can attribute this fact to many different circumstances: White-
head’s repudiation of his own formalistic philosophy, the stunted development of the field of
universal algebra before Noether and Birkhoff’s contributions, the advent of logicism effected
by the overwhelming Principia Mathematica, and the rise of the Gibbs–Heaviside system of
vector analysis that overshadowed Whitehead’s alternative algebraic notation introduced in
TUA (Dawson, 2008, p. 77).
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162 ROSEN LUTSKANOV

explain why Whitehead’s Universal Algebra can be viewed as the unnoticed
missing link in the development of formalism.

***

(§1) Recently the range of significance of the term “formalism” — one of the
well-established brand labels in philosophy of mathematics — was some-
what blurred. The ranks of formalists were populated by new figures and
the history of formalism was prolonged backwards. This is mainly due to
Michael Detlefsen who in his recently published exquisite survey acknowl-
edged that “Formalism is not a single viewpoint concerning the nature of
mathematics. Rather, it is a family of related viewpoints sharing a com-
mon framework. The basic component of this framework is ... the recog-
nition of the nonrepresentational role of language in mathematical reason-
ing” (Detlefsen, 2005, pp. 236–237). The “nonrepresentational” character
of mathematics is guaranteed by two methodological assumptions dubbed
“creativism” (the idea that the essence of mathematics is its freedom to create
new symbolic forms disregarding the problem of the “evaluation of content”)
and “symbolism” (the liberal admittance of “nonsemantical uses of signs”)2

(Detlefsen 2005, p. 263). Furthermore, he identified the honorable bishop
Berkeley as the first exponent of this view and distinguished Peacock and
Hilbert as his most influential disciples. What strikes the eye here is the fact
that Detlefsen made no attempt to explore the development of formalism in
the considerable period of time which separates Peacock from Hilbert. Were
there any proponents of formalism in the interval between them? No doubt,
if we put aside the German pre-formalistic predecessors of Hilbert (some of
whom are mentioned in the concluding remarks below), one of the primary
suspects is Whitehead, who developed his universal algebra in Cambridge
as direct descendant of the algebraic school of Peacock, Gregory, Boole and

2 The creativist doctrine is probably the chief reason for the general appeal of formalism
because it completely removes the vexatious epistemological scruples that haunted mathe-
matics throughout its history. But it must not blind us to the fact that although the meaning of
mathematical signs does not come into play in formal derivations, it still is crucially important
for the construction of formal axiomatic systems which are usually devised with particular
interpretation in mind. Thanks to the anonymous referee who brought forth this point.
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Hamilton and shared with Hilbert a tutor3 and common pejorative appella-
tion.4 But to see how he fits in here, we first need to examine briefly the
views of the formalist top-liners: Peacock and Hilbert.

(§2) In his Treatise on Algebra (1830), Peacock introduced Symbolic Alge-
bra as “the science which treats of the combinations of arbitrary signs and
symbols by means of defined though arbitrary laws” (Peacocke, 1830), §78.
Moreover, as far as the “signs” and “symbols” employed in algebraic calcu-
lation have no provisory intended interpretation but the results of calculation
are supposed to be numerically interpretable in principle, he added in the
introduction that “[i]nterpretation is necessary for the final result of reason-
ing but need not be applied to the intermediate parts of the process which
leads to that result” (Peacocke, 1830, p. xiv). This means that the laws of the
science of algebra are subject to two general requirements: they have to be
“consistent” (as far as inconsistency implies non-interpretability) and “use-
ful” (which means that they have to obey certain arithmetic regularities5 ).
The satisfaction of the last requirement was seen to be guaranteed by the
so-called Principle of Permanence of Equivalent Forms (PPEF) according
to which “... if we discover an equivalent form in Arithmetical Algebra or
any other subordinate science, when the symbols are general in form though

3 Felix Klein: since 1885 Klein was Hilbert’s mentor and even directed his work on alge-
braic geometry (Rowe, 2003, p. 49) and at the same time was frequent guest of Whitehead’s
friend and colleague Andrew Forsyth at Trinity College and inspired his own work on non-
Euclidean geometry (Dawson, 2008, p. 69). This fact has crucial importance in the present
context, as far as Klein’s main methodological concern (codified in the so-called “Erlanger
Programm”) was to secure the unity of the constantly proliferating mathematical theories
while both Hilbert’s and Whitehead’s mathematical work may be seen as driven by the same
desire (Stump, 1997, p. 390). Formalism is a natural strategy in this setting because it seems
possible to extract the common core of mathematical theories through examination of the
invariant features of their formal presentation.

4 “Formalist”: It is commonly believed that Brouwer introduced the term “formalism”
in 1912 (in his inaugural lecture at the University of Amsterdam) just to ridicule Hilbert’s
philosophical views (Brouwer, 1913, p. 82), but as a matter of fact Whitehead rejected his
own “formalist” position two years before, in his first and only book review (Whitehead, The
Philosophy of Mathematics, 1910, p. 239).

5 The latter condition seems justified in view of the fact that symbolic algebra was viewed
as generalization of ordinary arithmetic that is not “useless and barren speculation” but as-
sumes the applicability of its results in the narrow domain of natural numbers. As Detlef-
sen himself noted, this can be spelled out in today’s mathematical parlance as the statement
that symbolic algebra has to be conservative extension of ordinary arithmetic (Detlefsen,
2005, p. 273). This seems reasonable because in the absence of general model theory “in-
terpretable” boils down to “arithmetically interpretable” which does not hold for people like
Hilbert who worked in a pretty different context.
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specific in their nature, the same must be an equivalent form, when the sym-
bols are general in their nature as well as in their form” (Peacocke, 1830),
§132. What has crucial importance here is that according to Peacock the
fact that a system of Symbolic Algebra conforms to PPEF does not imply
that its laws are justified by or founded on the laws of ordinary arithmetic.
On the contrary, Symbolic Algebra is a “science of suggestion”, its laws
are “arbitrary conventions”, its postulates — “arbitrary assumptions” (Pea-
cocke, 1830, pp. vii–viii). The reason is evident: conformance to PPEF is
necessary but not sufficient condition for applicability (i.e. validity in the
restricted domain of natural numbers) as far as there is an indefinite num-
ber of non-equivalent systems of Symbolic Algebra obeying the principle of
permanence but ostensibly devoid of numerical content.

The admission of non-interpretable subsidiary expressions was vital for the
newly born science of Symbolic Algebra and was later adopted by Boole,
who affirmed in his Laws of Thought (1854) that “the validity of a conclu-
sion arrived at by symbolical process of reasoning, does not depend upon
our ability to interpret the formal results which have presented themselves
in the different stages of the investigation” (Boole, 1854, pp. 67–68). How-
ever, the second generation of Cambridge algebraists that applied Peacock’s
mathematical techniques to the study of logic was equally dissatisfied of
the impossibility to justify mathematically the use of non-interpretable ele-
ments. It was not Boole, but De Morgan that expressed their common dis-
content: “We have shown the symbol

√

−a to be void of meaning, or rather
self-contradictory and absurd. Nonetheless, by means of such symbols a
part of algebra is established which is of great utility. It depends upon the
fact, which must be verified by experience, that the common rules of algebra
may be applied to these expressions without leading to any false results. An
appeal to experience of this nature appears to be contrary to the first princi-
ples laid down at the beginning of this work. We cannot deny that it is so
in reality, but it must be recollected that it is but a small and isolated part
of an immense subject” (De Morgan, 1910, p. 51). So, both Peacock and
his followers admitted that even if we conform to the principle of perma-
nence we can get no proper epistemological ground for the use of Symbolic
Algebra employing numerically non-interpretable elements. That is why,
the succeeding generations of mathematicians sought to justify mathemat-
ical speculation through philosophical reflection (predominantly in a neo-
Kantian fashion). Hamilton, for example, conceived Algebra as a “Science
of Pure Time” and noted that it is to be grounded on a priori intuitions,6

6 “The argument to the conclusion that the notion of time can be unfolded into an inde-
pendent Pure Science or that a Science of Pure Time is possible, rests chiefly on the existence
of certain a priori intuitions, connected with that notion of time” (Hamilton, 1837).



“02lutskanov”
2011/6/5
page 165

i

i

i

i

i

i

i

i

WHITEHEAD’S EARLY PHILOSOPHY OF MATHEMATICS – FORMALISM 165

while Cayley invited his fellow thinkers to “put the doctrine of Imaginaries
upon a sound philosophical basis” just like Kant did for the negative ones
in his Über die negativen Grössen in der Weltweisheit.7 Later the solutions
proposed by Hamilton and Cayley were severely criticized; in particular, the
latter was condemned for being “in search of a philosophy”: “Cayley overtly
asks the question, ‘What is the meaning of an imaginary point?’ after having
carefully explained to us how mathematicians are led analytically, i.e. by
algebraic symbolism, to the notion of imaginary points. If the explanation
is a real one, what more can philosophy do for us in the matter?” (Berke-
ley, 1910, p. 69). In sum, the whole development starting with Peacock’s
Treatise and culminating in the works of Boole, De Morgan, Hamilton and
Cayley seemed flawed because they (overtly or not) recognized the impos-
sibility to justify intra-mathematically the mathematician’s recourse to non-
interpretable algebraic forms (paradigmatically, imaginary numbers). This
obstacle was removed by Hilbert and his pupils who wrestled with the same
problem, provoked by the use of finitely non-interpretable set-theoretic enti-
ties (the so-called ‘transfinite elements’).

(§3) Following Detlefsen’s juxtaposition, it is easy to detect the similarities
between Peacock’s Symbolic Algebra and Hilbert’s Proof Theory: (a) like
Peacock, Hilbert made a distinction between real [finite] and ideal [transfi-
nite] elements in mathematics; (b) also like Peacock, he saw this distinction
as being at least partially a distinction between those parts of mathemat-
ics that purport to express an independently given reality, and those parts of
mathematics that are pure creations of the mind whose purpose is to preserve
mathematical reasoning in a simple and inferentially efficient form; (c) like
Peacock again, Hilbert subscribed to an essentially Berkeleyan conception
of language, a conception according to which the cognitive significance of
some parts or uses of language lies in their capacity to guide reasoning or in-
ference without essential adversion to some particular interpretation; (d) fi-
nally, just like Peacock, Hilbert accepted the existence of two basic con-
straints on the use of symbolical methods in mathematics — namely, that
they have to be consistent and “useful”, i.e. interpretable in the contentu-
ally meaningful domain of mathematical discourse (Detlefsen, 2005, p. 291).
Furthermore, the comparison between the two approaches can be based on
the following features of Hilbert’s metamathematical program that qualify
it as paradigmatically formalistic: (a) Hilbert conceived mathematical proof
as “purely formal manipulation of definite signs according to fixed rules”

7 This queer suggestion can be found in his Presidential Address to the British Asso-
ciation read in September 1883, which was published later in the eleventh volume of his
Collected Mathematical Works (Cayley, 1896, p. 434).



“02lutskanov”
2011/6/5
page 166

i

i

i

i

i

i

i

i

166 ROSEN LUTSKANOV

which does depend on their contentual interpretation;8 (b) Hilbert strived to
detach mathematical reasoning from its intuitive origins by viewing the ba-
sic notions of mathematical theories not as referring to some independently
existing entities but as implicitly defined by the axioms of the theory in ques-
tion; (c) Hilbert differentiated between “real” (intuitively interpretable) and
“ideal” (intuitively non-interpretable) elements of the theory squarely in line
with the traditional algebraic discrimination between “real” and “imaginary”
numbers.

The most important difference between Peacock and Hilbert, however, stems
from the fact that the latter emphasized the importance of one particular
kind of consistency proofs (dubbed “finitistic”) and suggested that the use
of expanded mathematical systems containing ideal elements can be justi-
fied by such proof of consistency (a claim that Peacock would never accept
as plausible). In his famous Mathematical Problems lecture Hilbert main-
tained that “if it can be proved that the attributes assigned to the concept can
never lead to a contradiction by the application of finite number of logical
processes, I say that the mathematical existence of the concept is thereby
proved”9 (Hilbert, Mathematical problems, 1902). In fact, Hilbert claimed
that the finitistic consistency proof establishes “reliability” (or “usefulness”):
“such a finitistic consistency proof would entail that the infinistic mathemat-
ics could never prove a meaningful real statement that would be refutable
in finitistic mathematics, and hence that infinistic mathematics is reliable”
(Raatikainen, 2003, p. 160). In other words, the consistency proof actually
establishes the conservativity of transfinite (ideal) mathematics over its finite
(real) fragment, i.e. the fact that whenever a ‘real’ proposition can be proved
by ‘ideal’ means, it can also be proved by ‘real’, finitary means (Zach, 2003,
pp. 88–92). That is why, in his Münster lecture Über das Unendliche Hilbert
affirmed that “there is a condition, a single but absolutely necessary one, to
which the use of the method of ideal elements is subject, and that is the proof
of consistency; for, extension by the addition of ideals is legitimate only if
no contradiction is thereby brought about in the old, narrower domain, that
is, if the relations that result for the old objects whenever the ideal objects

8 Let us recollect here that Peacock used for the same purpose the nearly logically equiv-
alent expression “science which treats of the combinations of arbitrary signs and symbols by
means of defined though arbitrary laws”.

9 As is well known, the idea that the existence of some set of mathematical objects can be
derived from the consistency of the formal axiomatic system which characterizes them, and
that their existence in turn bestows meaning or intended interpretation to the “formula game
of pure mathematics” was severely criticized by Frege in his correspondence with Hilbert
(Bochenski, 1970, pp. 292–293).
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are eliminated are valid in the old domain” (Hilbert, 1926). In other words,
Hilbert realized that (pace Peacock) there is specific kind of proof of consis-
tency (finitary proof of consistency) establishing simultaneously the consis-
tency and the “usefulness” (in other words, conservativity) of the expanded
systems of mathematics. Such a proof of consistency serves the task of justi-
fying intra-mathematically the use of ‘ideal objects’ thus making their extra-
mathematical (that is to say, philosophical) justification superfluous. So it
occurs that the final outcome of the development of Hilbert’s Program (in its
canonic Bernaysean presentation) was intended to be the complete separa-
tion of mathematics from philosophy effected by the internal methodologi-
cal justification of mathematical knowledge: “We must make the concept of
mathematical proof itself the object of an [mathematical] investigation just
as ... philosopher criticizes reason itself” (Hilbert, 1918) because “The task
falling to metamathematics vis-à-vis the system of mathematics is analogous
to the task which Kant ascribed to the critique of reason vis-à-vis the system
of philosophy”10 (Bernays, 1930). Thus the gravest difficulty haunting pure
mathematics was solved, the philosophical ratification of mathematical the-
ories was conceived as superfluous, and accordingly nothing was standing in
the way of the (purportedly) metaphysically neutral system-building of pure
mathematics.

(§4) What was the role that played Whitehead in the whole story? In a
nutshell, I am prepared to argue that he provided the historically first at-
tempt, predating the development of Hilbert’s program with more than two
decades,11 to render consistency proofs as providing epistemological sanc-
tion for the systems of pure mathematics. First of all, while writing TUA
he was arch-formalist, just like Peacock before him and Hilbert after him.
Moreover, he was part of Cambridge’s algebraic lineage and was aware of
the difficulties it presented.12 So it is not strange at all, that he himself pro-
pounded a solution, and even a revolutionary one. First of all, in the opening
chapter of TUA (bearing the name On the nature of a calculus) he demar-
cated the subject of pure mathematics in broadly formalist fashion arguing
that (a) mathematics is formal (“the meaning of propositions forms no part of

10 Translated in English by Paolo Mancosu and Ian Mueller for The Bernays Project.

11 It is true that Hilbert stressed the importance of consistency proofs in his 1900 Paris
address, but the rigorous development of his program implementing a model-theoretical ren-
dering of consistency and precisely delimited finite standpoint had to wait for more than two
decades (Raatikainen, 2003, pp. 157–158).

12 Whitehead’s friend Andrew Forsyth (the same who invited Klein to Cambridge) served
as editor of Cayley’s mathematical papers and wrote the foreword of the eleventh volume
where the now awkward sounding presidential address was published.
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the investigation”); because (b) it deals with substitutive signs (“a substitu-
tive sign is a means of not thinking about the meaning which it symbolizes”);
hence (c) it is a calculus (“the art of manipulation with substitutive signs”)
and can be studied “apart from any attention to the meaning to be assigned
to the sign”; finally (d) it is evident that, conceived in such a way it “avoids
the necessity of inference and replaces it by an external demonstration”13

(Whitehead, 1898, pp. 3–10). In this way it becomes clear that Whitehead,
just like Peacock before him and Hilbert after him, conceived mathemati-
cal demonstration not as intellectual operation on mental contents captured
by interpreted signs but as physical manipulation with (generally not inter-
pretable) marks on paper. Because of this fact his approach became vulnera-
ble to the difficulties indicated by De Morgan more than half a century ago:
“The difficulty is this: the symbol (−1)1/2 is absolutely without meaning
when it is endeavored to interpret it as a number; but algebraic transforma-
tions which involve the use of complex quantities of the form a + bi where
a and b are numbers and i stands for the above symbol, yield propositions
which do relate purely to number ... The difficulty was solved by observing
that ... the laws of Algebra ... depend entirely on the convention by which
it is stated that certain modes of grouping the symbols are to be considered
as identical” (Whitehead, 1898, p. 10). In other words, Whitehead’s way
to tackle with imaginaries was based on the discrimination between ‘pure
mathematics’ (“referring to the world of ideas created by convention”) and
‘applied mathematics’ (“referring to the world of existing things by the me-
diation of an act of abstraction”).14 The importance of this division lies in
the fact that the notions of pure mathematics have no existential import (be-
cause of its conventional character) while the notions of applied mathematics

13 The discrimination between “inference” and “external demonstration” was borrowed
from Bradley who mentioned that “When in ordinary fact some result can be seen and is
pointed out, perhaps no one would wish to call this ‘demonstration’. It is mere perceiving
or observation. It is called demonstration when, to see the result, it is necessary for us first
to manipulate the facts; when you show within and by virtue of a preparation you are said
to demonstrate. But if the preparation experiments outwardly, if it alters and arranges the
external facts, then the demonstration is not an inference. It is inference when the preparation
is ideal, where the rearrangement which displays the unknown fact is an operation in our
heads” (Bradley, 1883, p. 225).

14 This crucial distinction was stressed again by Whitehead even a decade later, when his
past allegiance with formalism was over: “In any consideration of the principles of mathe-
matics two distinct subjects should be kept separate — namely (1) the nature of mathematical
propositions considered in themselves apart from any admixture of particular application and
(2) the discussion of the groups of particular facts which are special cases of mathematical
truth. These two subjects are respectively the problem of the nature of mathematics, and
that of the applications of mathematics” (Whitehead, The Philosophy of Mathematics, 1910,
p. 235).
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have existential import (which is trivial consequence of the circumstance that
they are conceived as “referring to the world of existing things”). Further-
more, the lack of existential import of the axiomatically defined concepts of
pure mathematics implies that “they require for their verification no more
than a mere test of self-consistency” while the abstracted from experience
concepts of applied mathematics “require for their verification something
more than self-consistency, namely, truth” (Whitehead, 1898, p. vii). In ef-
fect, the epistemological innovation of Whitehead’s formalism (which, as we
mentioned earlier, was a predecessor of Hilbert’s variety of formalism) was
concerned with the realization that “Mathematical reasoning is deductive in
the sense that it is based upon definitions which, as far as the validity of rea-
soning is concerned (apart from any existential import), need only the test
of self-consistency. Thus no external verification of definitions is required in
mathematics, as long as it is considered merely as mathematics” (Whitehead,
1898, p. vi). Precisely here lies the motivation to view Whitehead’s position
as a formalist one: by discriminating rigorously between pure and applied
mathematics he rendered the first as abstract calculus whose locutions are
to be seen “nonsemantically”, i.e. as having no relation to meaning or truth
whatsoever. What is new here is that “p is consistent” is seen to imply not “p
is possibly true” (as was recognized at least from Leibniz onwards) but “p is
(simply) true” (in the just examined sense of abstract validity in the world of
ideas).

Consequently, no conceptual elucidation was conceived as necessary for the
properly defined ‘imaginary’ entities of abstract algebra: “Not only the prac-
tical men, but also men of letters and philosophers have expressed their be-
wilderment at the devotion of mathematicians to mysterious entities which
by their very name are confessed to be imaginary ... Are the incommen-
surable numbers properly called numbers? Are the positive and negative
numbers really numbers? Are the imaginary numbers imaginary, and are
they numbers? — are types of futile questions” (Whitehead, 1911, p. 87). In
this context it becomes important to note that in the beginning of XX century
the idea of the philosophical neutrality of pure mathematics was attributed
explicitly to Whitehead: “Mr. Whitehead’s eminence as a mathematician,
especially as a philosophical mathematician, made it necessary to examine
his views on this particular question [the justification of imaginary numbers]
... because these views have evidently to some extent imposed themselves on
mathematicians. This influence is very marked in the article Algebra of vol.
XXV of the Encyclopaedia Britannica [where it is said that] the progress
of analytical geometry led to a geometrical interpretation both of negative
and of imaginary quantities [and subsequently] it was at last realized that the
laws of algebra do not depend for their validity upon any particular interpre-
tation ... the only question is whether these laws do or do not involve any
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logical contradiction”15 (Berkeley, 1910, p. 83). So it seems obvious that
Whitehead was the first “philosophical mathematician” to claim that con-
sistency proofs provide epistemological justification for the implementation
of numerically non-interpretable signs in the formal systems of pure mathe-
matics. What Hilbert did was to add the ‘finiteness’ requirement motivated
by his own epistemological position expressly qualified as ‘finite standpoint’
(finite Einstellung).

***

I hope that what was said up to this point at least makes plausible the claim
that Whitehead’s role in the history of formalism is grossly underestimated;
that he was the first to suggest a possible way to free mathematics from the
reign of philosophy. When we become aware of this fact, many new and
equally important questions start to pop up, for example: (a) To what extent
his early (“formalist”) views on the nature of mathematics were preserved in
his later work?; (b) To what extent Whitehead’s formalism took part in the
shaping of Hilbert’s metamathematical program? It is strictly impossible to
answer these questions here, the most I can do is to provide some sketchy
and inconclusive suggestions. As far as the first question is concerned, there
are two things to be said. On the one hand, Whitehead expressly rejected his
earlier views on mathematics affirming that “the formalist position [adopted
in TUA], whilst it has the merit of recognizing an important problem, does
not give the true solution” (Whitehead, 1910, p. 239). On the other hand,
even in his Lowell lectures Whitehead stressed the importance of pure math-
ematics as general ontology which is in perfect accordance with his earlier
formalism.16 As far as the second question is concerned, no trustworthy
answers are available. It is certain that Whitehead met Hilbert at the Inter-
national Congress of Mathematicians that was held in Paris in 1900 but no

15 Whitehead wrote a crushing review of “Mysticism in modern mathematics” but nev-
ertheless accepted almost completely Berkeley’s assessment of TUA; moreover, Berkeley’s
book is important here only as an indication of the way TUA was understood (or misunder-
stood) in the first years of the XXth century.

16 According to the Lowell lectures, “The point of mathematics is that in it we have always
got rid of the particular instance, and even of any particular sorts of entities” (Whitehead,
Science and the Modern World, 1925, p. 31). But to say that mathematics does not study
“any particular sort of entity” is the same as to say that mathematics disregards the particular
meanings of the signs it manipulates with, which is the essence of formalism. Moreover, to
say that it does not study anything in particular is the same as to say that it studies everything
in general, which qualifies mathematics as some sort of general ontology. This interpretation
is perfectly in line with the conception of “speculative philosophy” as “generalized mathe-
matics”, that was presented in Whitehead’s major opus Process and Reality (Desmet, 2008).
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additional information about their encounter is readily available.17 What is
sure is that no history of formalism in particular (or of philosophy of mathe-
matics in general) could be regarded as complete without better appreciation
of Whitehead’s Treatise on Universal Algebra. It played important part in the
formation of XX century abstract mathematics and the general philosophical
outlook which shapes up and rounds off its theoretical practice.
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