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LOGIC IN WHITEHEAD’S UNIVERSAL ALGEBRA

JACQUES RICHE∗

Abstract
In his Treatise on Universal Algebra, 1898, A. N. Whitehead in-
tended to investigate all systems of symbolic reasoning related to
ordinary algebra on the basis of the algebras of Grassmann and
Hamilton, and on the basis of Boole’s Symbolic Logic. We con-
sider Whitehead’s version of the algebra of symbolic logic presented
there. Later on, in his last contribution to logic, he came back to
questions and problems related to Principia Mathematica. This was
the occasion for restating some of his positions on logic.

1. Introduction

Whitehead’s Treatise on Universal Algebra [38] is generally known by its
title only. But its importance and the role it played at the end of 19th century
should not be underestimated. It was published at a time a unifying survey
of the various systems of algebra that had started to develop in the works of
G. Boole, W. R. Hamilton, and H. Grassmann was strongly needed.
These authors had generated what Whitehead calls ‘extraordinary algebras’,
or, as they were also known, ‘multiple algebras’, algebras that deal with mul-
tiple quantity and do not respect all the laws of ordinary algebra. Hamilton’s
theory of Quaternions and Grassmann’s theory of Extension were popular
due to the hot debate surrounding the calculus of vector of which both the-
ories could claim to constitute the basis. Their algebraic offsprings had al-
ready been considered in Benjamin Peirce’s Linear Associative Algebra, an
original investigation and presentation of multiple algebras.
Here, we only consider Boole’s theory of the Laws of Thought and its cor-
responding algebraic theory as it is presented in the second Book of White-
head’s Treatise.

∗The author thanks Paul Gochet and Andrew Dawson as well as an anonymous referee
for their remarks and corrections. Of course, none of them is responsible for any error left.
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136 JACQUES RICHE

“The Algebra of Symbolic logic, viewed as a distinct algebra, is due to
Boole [who] does not seem in this work to fully realise that he had dis-
covered a system of symbols distinct from that of ordinary algebra.” [38]
(115) Boole’s theory was later investigated by Venn, Jevons, and C. S. Peirce.
“These investigations of Peirce form the most important contribution to the
subject of Symbolic Logic since Boole’s work.”, (115) in particular, Peirce’s
Logic of Relatives. Nevertheless these are not taken into account in the Trea-
tise.

Following the remarks of C. I. Lewis [21] related to the difficulty of pre-
cisely defining the notions and domains of logistic, symbolic logic, algebra
of logic, algebraic logic and calculus, we consider as subject matter of logic
the principles of general reasoning represented in a symbolic language and
developed deductively. Since this symbolic representation can be treated ac-
cording to the laws of algebra, such treatment of logic, as in Boole’s Inves-
tigation, has been called “algebra of symbolic logic” or “Boolean algebra”.
Until this later notion acquired its current specific signification with Tarski
in the 1930’s, this sort of treatment could also be called “algebraic logic”.
“The name Boolean algebra (or Boolean “algebras”) for the calculus orig-
inated by Boole, extended by Schröder, and perfected by Whitehead seems
to have been first suggered by Sheffer in 1913.” [15] (278) Indeed, although
C. S. Peirce referred to the algebra of symbolic logic as ‘Boolian algebra’, it
is only with Sheffer that Boole’s and related systems will be called Boolean
algebra(s). Still, Boole’s algebra is not exactly what we understand today
under the name Boolean algebra which mainly concerns the underlying al-
gebraic structure rather than the Boolean logic. [13] We will see that the
underlying algebraic structure of Boole’s system had already been clearly
observed by Whitehead soon after publication of his Treatise.

We start with Whitehead’s last contribution to logic, an article in which
he reasserts and makes clear some of his positions on logic. [44] In partic-
ular, his formalist and structuralist positions which are deeply rooted in his
Treatise and in the algebra of late 19th century, positions which are also in
agreement with the axiomatic investigations of Boolean algebras, and with
the developments of algebraic logic and of universal algebra of the time.

2. The business of logic: Propositions and Classes

According to G. Boole, “the business of Logic is with the relations of classes,
and with the modes in which the mind contemplates those relations.” [7]
(184)

These ‘relations of classes’ were primarily discussed early last century in
the context of the theory of “aggregates” or sets, and in relation to classes and
to numbers defined extensionally and intensionally by Frege and by Russell;
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for example, in the later’s Principles of Mathematics [33] and in Whitehead’s
and Russell’s Principia Mathematica. [43]
To some extent, two perspectives were then in opposition: that of mathemati-
cians and that of philosophers. In Principia, this appears in the opposition
of the calculus of propositions and the calculus of classes inherited from
Boolean algebra and Boolean logic.
Much later, in his last substantial contribution to logic, Whitehead, the math-
ematician, will come back to these questions in order to clarify his own posi-
tions and to answer a few critiques addressed to Principia. He thus defined a
class as follows: “A class is a composite entity arising from the togetherness
of many things in symmetrical connection with each other [...] A class is a
class if its members are “together”, it arises from that composition and any
member is as good as any other with respect to membership.” [44] (282)

There are various ways of ‘being together’, that is, various ways of build-
ing classes, and this makes ‘togetherness’ an ambiguous notion. The ex-
tensionalist Whitehead notes that the particular mode of ‘togetherness’ is
already an intension that infects the composite entity. Therefore, in mathe-
matics or in logic, logical ‘togetherness’ must be logically defined in order
to obtain a purely extensional composite entity.

There are also various logical ways of defining classes. Here is how White-
head builds his extensional classes: “Ec ! x” is selected as primary proposi-
tion about some object x. It is a true proposition whose subject is indicated
by “x” and it reads as “that unique individual object x”. Then, a mode of
togetherness is selected; here, as in the Principia, it is the primitive idea
“p∨ q”, i.e., p or q, where “∨” puts propositions together. And since White-
head analyzes complex propositions only in terms of constitutive subordinate
propositions in that same mode of togetherness, “∨” is replaced by “∪” as
symbol of ‘togetherness’ if constitutive propositions like “(p · q)” i.e., p and
q, have to be accommodated.

This restriction, Whitehead insists, shows that it is structure and not truth
value that matters and that these structural relations apply to classes defined
as special cases of propositions: assuming that the ‘togetherness’ of two
members of a class, “x” and “y”, is defined in terms of ‘togetherness’ of the
propositions “Ec ! x” and “Ec ! y” and that it is expressed with the symbol
“∪”, then “Ec ! x ∪ Ec ! y” is the class with members “x” and “y”. This is
thus a sort of proposition whose structure alone and not the truth value mat-
ters. With a symbol “=” for equivalence of class membership and another
symbol “≡” for truth value equivalence, a class is defined as a true propo-
sition which can be reduced by equivalence transformations to a form like
“Ec ! x ∪ Ec ! y ∪ Ec ! z . . .”
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138 JACQUES RICHE

Adding appropriate definitions and postulates in elaborating his theory of
classes, Whitehead displays a system essentially equivalent to a Boolean for-
mulation of the system of Symbolic Logic of Principia Mathematica. Con-
tinuing, he reconsiders several aspects of this work, clarifying and intro-
ducing various corrections with respect to the notions of numbers, relations,
arithmetical operations and derived numbers.
The larger logical and mathematical context is studied in much details in
I. Grattan-Guinness [12] while the full Whiteheadian context is found in
V. Lowe [22].

3. The Scope of Logic: the Mingling of Forms

These considerations of Whitehead correspond to “a conception of the scope
of Logic which was obscured by the dominant Aristotelian theory. The con-
cept was adumbrated by Plato, ... [who] points out the importance of a
science of the mingling of forms. This doctrine of the study of logical struc-
tures and of structures of structures, has been introduced into contemporary
Logic by Prof. H. M. Sheffer. Mathematics (as currently understood) and the
doctrine of classes form one preliminary division of it. In an enlarged sense
of the term the whole topic may be termed ‘mathematics’. ” [44] (294–295)

This study of logical structures amounts to the study of logical forms and
their composition from subordinate forms; the general study of structures
concerns the articulation of these logical forms and their inter-relations by
means of inference rules.
Here, Whitehead sees the logical theory as “the general study of structures
which are definable by the use of the apparatus of notions which lie within
its scope [...] classes, relations, number-systems”. And in this study, “the
notion of truth-value remains in the background.” [44] (296–297)

Whitehead attributes to Sheffer alone the introduction of this study of
structures in logic. There may be two reasons to this. In Principia Mathe-
matica, Whitehead and Russell had introduced a logical theory in which
elementary propositions were combined by means of two connectives, more
precisely, two primitive propositional functions, negation and disjunction. In
the introduction to the second edition in 1925, Russell remarks that the intro-
duction by Sheffer [35] of a unique connective which replaces all the other
connectives, the Sheffer stroke or ‘incompatibility’ defined as the negation
of the logical conjunction (‘not both’), had been “The most definite improve-
ment from work in mathematical logic” [43] (xiii) since the first edition.
Earlier, in “A Boolian algebra with one constant”, circa 1880, C. S. Peirce
had anticipated Sheffer, and in 1902, in “The simplest mathematics”, this
idea reappears with the unique connective, the Peirce arrow ↓ (‘neither ...
nor’), the negation of the logical disjunction. Of course, this connective has
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the same structural effect as the Sheffer stroke.
These works of C. S. Peirce were unpublished at the time of Principia and
although Whitehead may have heard of them since they appeared shortly be-
fore his [44], he does not mention them.
But there is more than a new single connective behind Whitehead’s attribu-
tion to Sheffer. Continuing his introduction, Russell mentioned that “a new
and very powerful method in mathematical logic has been invented by Dr.
H. M. Sheffer.” [43] (xv), but it was too late to take advantage of it because it
would require a complete rewriting of the work, a task that is recommended
to Sheffer himself! Indeed, although some of Sheffer’s ideas had been circu-
lated in a mimeographed paper, “The General Theory of Notational Relativ-
ity”, 1921, hardly anything on his new method had been published.

Continuing with logical structures and logical forms, Whitehead recalls
that in Principia Mathematica, logic amounts to the study of propositional
forms like a∨b and a·bwhose arguments are propositions, and to the investi-
gation of the mingling of these forms. The propositions that appear in these
forms are true or not depending on the value of their variables and on the
characteristics of the form they exemplify. He thus distinguishes three char-
acteristics that he calls “validation-values” (295): the propositional forms
may be validating or invalidating, that is, in virtue of their form, any propo-
sition that illustrates these forms is true or it is false. Or the propositional
forms can be neutral, that is, the propositions that exemplify them can be true
or false depending on their content. For example, a formula of propositional
logic like “a · b ⊃ a” is validating, “a · ∼a” is not, and “a · b” is neutral. The
propositions of algebra share the same validation-values.

Whitehead remarks that the authors of the first edition of Principia Mathe-
matica had not noticed this interpretation of what he calls ‘real variables’,
while in the second edition, their use, and thus the ‘validation-values’, was
prevented by the introduction of universal quantifiers. A consequence is that
without validation-values, logical inference lost its justification. Indeed, as
Whitehead shows, a proposition like “(∀a)(∀b)(a · b) ⊃ b” is no longer
treated differently from any other proposition like “(∀x), x is three months
from Christmas ⊃ x is September 25”, which happens to be true. But it is
not true in virtue of its form because the valuation-value of its logical form,
φx ⊃ ψx, as any other simple forms, is neutral. And “It requires a ‘min-
gling’ of forms to produce validating, or invalidating, forms.” (296)
Since logical analysis consists in the decomposition of propositions into sub-
ordinate constitutive propositional forms like a∨b and a·bwhose validation-
value is neutral, Whitehead calls the ‘general question of implication’ the
question of knowing whether some validation-values of some of these consti-
tutive propositional forms determine the validation-values of the other forms.
“Thus implication is primarily a relationship between propositional forms.”
(296) and the classical syllogism is an example of this relationship. We will
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come back to the theory of syllogisms in considering Whitehead’s algebra
of symbolic logic as it is presented in his Treatise.

We have focused on the structural aspects emphasized by Whitehead in
this article. Before turning to the context in which this article was produced,
we may remark that in this paper, Whitehead’s main goal was to found the
notion of class on a purely logical basis that could be used in defining the
mathematical notions. Indeed, Principia Mathematica had not solved all
difficulties, in particular that of constructing arithmetics on such a logical
basis. In relation to these difficulties, Whitehead mentions that his former
Ph.D. student W. V. O. Quine had proposed another approach to the study of
structure that would appear as his [31]. In his Forword to the book, White-
head writes that it is “A landmark in the history of the subject” (ix). It orig-
inated in a research program which started with Carnap’s Logical Syntax of
Language. It will later give rise, in 1937, to the New Foundations, Quine’s
revision of the type theory of Principia Mathematica and his most important
contribution to set theory.

4. Logic and Universal Algebra at Harvard

In a historical overview of the mathematics at Harvard, Garrett Birkhoff [5]
describes in details the intellectual context in which Whitehead wrote the
remarks exposed in the preceding paragraphs. Today’s field of “Universal
Algebra” originates in Birkhoff’s work [3] who borrowed the name from the
title of A. N. Whitehead’s Treatise. If Birkhoff presented his work on lattices
under that name, it is because the title of Whitehead seemed appropriate to
him. Indeed, it was concerned with the logic of the symbolic method, and
Birkhoff saw in symbol manipulation the essence of algebra. [3] [4] Related
aspects of this history of universal algebra can be found in [32].

Earlier, while at Johns Hopkins, C. S. Peirce had based Boolean alge-
bra on the concept of partial order or containment. This had influenced
E. Schröder’s work which, in turn, influenced Dedekind and his notion of
lattice that Birkhoff rediscovered in the early thirties.
Peirce’s interests in logic also influenced E. V. Huntington who had studied
in Germany and who worked on systems of postulates for various mathemat-
ical structures, including what would be soon today’s Boolean algebra. His
early work clearly anticipated the modern notions of relational structure and
algebraic structure.
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4.1. Axioms and postulates

The Euclidean axiomatic method often presented as a model of formal rigor
had already been introduced into Logic at the end of the 17th century. Al-
though the axioms of elementary geometry subjected to scrutiny had given
rise to non-Euclidean geometries and shaken the foundations of geometry,
Hilbert’s investigations did consider the axiomatic method as a way out of
the foundational crisis in mathematics.
Before him, Peano [24] already relied on this method to provide an early
axiomatization of arithmetics. In Peano’s work, the influence of H. Grass-
mann as well as that of Dedekind who followed Frege to reduce arithmetics
to logic were not negligible.

C. S. Peirce was also influential through his various articles on the algebra
of logic [27], [29], [30], in which he develops algebraically the deductive
apparatus of logic. He sees the main problem of logic as that of produc-
ing a method for the discovery of methods in mathematics. “The algebra
of logic should be self-developed, and arithmetic should spring out of logic
instead of reverting to it.” [29] (186) In his [28], he thus sketches his arith-
metics founded on the natural order of the integers and the operations ‘+’
and ‘−’, with the aim of showing that elementary arithmetic propositions
are “strictly syllogistic consequences from a few primary propositions.” (85)
As remarked by a reviewer, the axiomatic system presented there has been
proved equivalent to both Peano’s and Dedekind’s systems in [36].

Around the turn of the century, in American mathematics, E. H. Moore de-
fended the axiomatic method under the name “postulational method”. [23]
Moore had studied under Weierstrass in Berlin and his method originates in
the works of Peano and Hilbert on the foundation of Geometry. Moore em-
phasized the notion of process in mathematics and considered his work as
an application of Boole’s conceptions, as well as of logical analysis based
on Peano’s formalism and on Cantor’s theory of classes, to the theory of
continuous functions.

At the time of Moore’s writings, various sets of independent properties
or postulates for various mathematical theories like groups, fields, and ge-
ometry had already been found. Moore demanded not only to provide their
existential theories, that is, an interpretation of their postulates, but also to
determine sets of completely independent fundamental properties or postu-
lates of these theories.
Although Moore’s method did not attract much interest from mathemati-
cians and was mainly developed in his “Chicago School of Mathematics”, it
influenced several of his pupils who would be prominent later on.

Indeed, Huntington who had also been influenced by C. S. Peirce was one
of early proponents of the method. [14] Later on, in the 1930s, he inspired
the new generation of algebraists — the generation of Garrett Birkhoff —
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who took a renewed interest in the postulational method. Thus, Huntington
[16] tried to encourage “further work in the direction of a definitive set of
postulates for the theory of deduction.” (92), a problem that he found math-
ematically as justified as that of finding postulates for Boolean algebra.
In [15], he observed that more than 30 systems of postulates had been pro-
posed for Boolean algebra. Then, for comparison with that of Principia
Mathematica, he put forward a new system of postulates that fulfills Moore’s
requirements. Diamond’s set of postulates [11] is another example of such
a system. There, calling Huntington’s original system of postulates for the
algebra of logic [14] the “Whitehead-Huntington set of postulates for the
Boole-Schröder algebra of logic.”, (940) he reminded that A. N. Whitehead
was probably the first to exhibit these postulates and he followed Bernstein’s
earlier opinion: “Of the various sets of postulates that have been given for
Boolean logic the most elegant and natural is the set of Huntington’s based
on Whitehead’s ‘formal laws’.” [1] (458) Huntington will advertise again
the method of postulates in [18], a presentation based on his earlier [14].
In order to support his claims in favor of the postulational method in logic
and in mathematics, he starts with the comparison of two concrete and intu-
itive systems, one geometrical, the other propositional, and he shows how to
build an abstract system which encompasses the main features of both. As
we will see now, this abstract system happens to be a Boolean algebra, an
algebra originally devised to investigate problems in the logic of classes and
propositions.

4.2. The algebra and the logic

Let thus A,B,C, . . . be regions in a square; let A′ be the region outside
regionA and call it its complement. LetAB be the region common toA and
to B. Then, looking at the initial square, it is easy to see that

1: If A and B are regions, AB is a region.
2: If A is a region, A′ is a region.
3: AB = BA
4: (AB)C = A(BC)
5: (A′B)′(A′B′)′ = A
6: If Z is the null region, ZA = Z
7: If U is the whole square, AU = A
8: If AB = A then A is in B and inversely.
9: etc...

Now, let P,Q,R, . . . be propositions or statements assumed to be true. Let
PQ be the joint proposition “P and Q” asserting that P and Q are true and
let P ′ be the contradictory of proposition P , asserting that P is false. Then,
as in the preceding geometrical case, one can see that
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1: If P and Q are propositions, PQ is a proposition.
2: If P is a proposition, P ′ is a proposition.
3: PQ = QP
4: (PQ)R = P (QR)
5: (P ′Q)′(P ′Q′)′ = P
6: If Z is the contradiction PP ′, ZP = Z
7: If U is any necessarily true proposition, PU = P
8: If PQ = P then P implies Q and inversely.
9: etc...

From these intuitive symbolic representations of concrete situations, an
abstract (algebraic and logical) system is easily constructed. First, replace
the notion of region by that of class (K); then, give some relation that tells
when members of the class represented by some symbols (a, b, c, . . .) are
equivalent or not; next, give some operations (+, · , . . .) on those symbols
that allow to associate them in certain ways. The conditions imposed on the
symbols are now the postulates or the axioms. And these have to respect
some conditions of consistency and independence. (Rather than the symbol
“·”, we use concatenation.)

The following set of postulates, the Whitehead-Huntington postulates of
[11] and [14] is then easy to understand:

0: There is an a and there is a b in K s.t. a 6= b
1a: a+ b is in K if a, b are in K
1b: ab is in K if a, b are in K
2a: For all a in K, there is a Z such that a+ Z = a
2b: For all a in K, there is a U such that aU = a
3a: a+ b = b+ a whenever a, b, a+ b and b+ a are in K
3b: ab = ba whenever a, b, ab and ba are in K
4a: a+ bc = (a+ b)(a+ c) whenever a, b, c, bc, a+ b, a+ c, etc. are in

K
4b: a(b+ c) = ab+ ac whenever a, b, c, b+ c, ab, ac, etc. are in K
5: If U and Z exist and are unique, there are a, a′ s.t. a + a′ = U and
aa′ = Z

We will see that in his Treatise [38], in the second Book devoted to the
algebra of logic, Whitehead gave an essentially similar set of postulates, as
well as a similar intuitive interpretation. First, he gave a set of postulates
or formal laws that adds to the preceding set the following postulates (the
numbering continues that of the intuitive postulates):

8a: a+ a = a (idempotence)
8b: aa = a (idem)

10a: a+ (ab) = a (absorption)
13a: (a+ b) + c = a+ (b+ c) (associativity of addition)
13b: (ab)c = a(bc) (associativity of multiplication)
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Next, Whitehead proposed a second set of postulates that contains, in addi-
tion to [2ab], [3ab], [4ab], [10a] and [13ab], the following four:

9a: a+ U = U
9b: aZ = Z

10b: a(a+ b) = a
11: if a′ ∈ Z, a+ a′ = U and aa′ = Z

Z and U stand for ‘null’ and ‘universe’ which can also be represented by
Peano’s

∧
and

∨
or by Boole 0 and 1. Whitehead used 0 and i.

4.3. Leftover Problems

Following that original work of Whitehead and Huntington, various attempts
at formalizing the postulates of Boolean algebra as well as those of logic
were made by B. A. Bernstein, P. Henle, and several others, like Sheffer who
was mentioned earlier. The goal was to obtain satisfactory sets of postulates
for logic that also respect the conditions of independence and consistency,
conditions already fulfilled in Huntington’s [14].

For example, although Whitehead and Huntington had given their ax-
iomatic or postulational foundation to the logic of classes, none had been
given to the logic of propositions. This will be done by B. A. Bernstein
in [2]. There, he remarks that Boole who had created “the mathematical
sciences now known as the logic of classes and the logic of propositions.”
(472) had developed these logics as theories of primary or concrete propo-
sitions (like “snow is white”) and secondary or abstract propositions (like
“it is true that snow is white”). These theories, as improved by Peirce and
Schröder, may be called, after Sheffer, Boolean algebras.” (472) But, Bern-
stein continues in notes, Boole was wrong in stating that the formal laws of
his primary propositions are identical to those of the secondary propositions.
Schröder made another mistake in thinking that it sufficed to add to any set
of postulates for the logic of classes a postulate saying that the logic con-
sists of two elements (i.e., the logic of propositions being thus the algebra of
truth-values) to obtain a set of independent postulates for the logic of propo-
sitions. And, even Principia Mathematica was defective with respect to the
independence of the set of primitives of its theory of deduction. As we know
today, failure in interpretation and in distinguishing the object language and
the metalanguage can explain these problems.

C. S. Peirce had already been introduced to logicians by C. I. Lewis, [21]
but the publication of his work had only started at the end of the 1920’s.
We have seen with G. Birkhoff, that the rediscovery of Peirce’s work by the
new generation of American algebraists in the early thirties also raised their
interest in foundational issues related to logic.
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For example, Huntington, again, will make use of the method of postu-
lates to show the equivalence of the Hilbert-Bernays system with that of
the Principia. [17] During this time, numerous results in universal algebra
were coming out, all in a perspective that was definitely structural. At that
time also, Whitehead had been a faculty member at Harvard, and it is in that
context that he wrote his remarks. [44] But the story had started much earlier
at Cambridge.

5. Logic, Algebra and Universal Algebra at Cambridge

Whitehead’s Treatise on Universal Algebra, with applications [38] has
played a role more important than generally thought. Before embarking
with Russell on the joint enterprise of writing Principia Mathematica, the
reference for logic of the next century, the Treatise can be seen as a last
19th century attempt at the edification of the “mathesis universalis”. And it
certainly has its place in the history of logic and algebra.

5.1. The Forefathers

One way to consider universal algebra is to see it originating first in
W. R. Hamilton’s investigations of

√
−1, and in the consequences drawn

from there, the hypercomplex numbers. [32] In particular, it first appeared
and developed in the algebraic investigation of these numbers by J. J. Sylves-
ter on the basis of Cayley’s matrices, and in Whitehead’s application of
Grassmann’s algebra in his Treatise.√

−1 also motivated the development of ordinary algebra in the works of
Peacock, Gregory, De Morgan and Boole. Algebra, that had been consid-
ered as “universal arithmetic” since Newton’s time, was transforming into
symbolical algebra. For example, with A. De Morgan, algebra is the science
of uninterpreted symbols and their laws of combination by the mechanical
processes of a calculus. [10]
Shortly after Hamilton’s Quaternions and Grassmann’s Ausdehnungslehre,
both published in 1844, G. Boole’s Mathematical Analysis of Symbolic Logic,
being an Essay toward a Calculus of Deductive Reasoning appeared. [6]
Boole is mainly known for his Investigation of the Laws of Thought on which
are Founded the Mathematical Theories of Logic and Probabilities, [8] the
complete exposition of his theory. But his earlier book, published the year
that saw the publication of De Morgan’s Formal Logic: or, the Calculus of
Inference, Necessary and Probable, [10] is no less important. This book, the
“Mathematical Analysis”, will give rise to what will later be called Boolean
algebra and — not forgetting Leibniz’s contributions — it can be considered
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as the beginning of modern algebra as well as of algebraic and mathematical
logic.

From this point on, logic will be conceived of as a calculus whose object,
the processes of thought, is submitted to mathematical operations on logical
symbols. It is the difficult issue defended by Boole of the laws of logic being
the laws of thought that attracted the attention and prompted a large debate.
The aim of Boole in [6], [8], [9], was to use the symbolical method to inves-
tigate, in the logical calculus, the operations and laws of the mind by which
reasoning is performed. This investigation would not only elucidate what
thought is, the laws of thought corresponding to the laws of operating with
logical symbols, but it would also give a foundation to logic. If there is a
calculus of logic or if logic is developed under the form of a calculus, it is
because there exists a formal analogy between the processes of logic and the
operations of mathematics. Moreover, the processes of symbolical reason-
ing are independent of their interpretation and of the symbolic representation
and use of symbols and belong to the relations of thought and language.

Boole applies the symbolical method to mathematics and discusses its
value in [9]. He notes the importance of considering that the method makes
visible the connexion of language with thought. Indeed, in this method, the
operations are separated from their objects by a mental abstraction and “are
expressed by symbols in whose laws the laws of the operations themselves
are represented.” (381) Boole proceeds to show this on the example of ap-
plying this symbolic method to the operations involved in solving differential
equations. The method reveals a formal analogy, or a similitude of relations,
between the differential equations and the algebraic expressions subjected to
various laws that determine their forms.
The laws of symbols are determined from the corresponding operations per-
formed in thought. But, while the formal rules of two systems of symbols
may agree, their interpretation may differ, or only one of them may represent
real operations of thought. Nevertheless, Boole maintains that the processes
of symbolical reasoning are independent of the conditions of their interpre-
tation. And, this shows that the principle of symbolic representation and use
of symbols, whether a priori or acquired by experience, is not a mathemati-
cal principle but “claims a place among the general relations of Thought and
Language.” [9] (399)

5.2. A. N. Whitehead’s Universal Algebra

Whitehead writes that his Treatise of Universal Algebra, is “a thorough in-
vestigation of the various systems of Symbolic Reasoning allied to ordinary
Algebra.” [38] (v)
In the same way as Benjamin Peirce who had initiated the comparison of
the symbolic structure of the algebraic systems in [25], Whitehead intends to
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study and to compare the systems of William Rowan Hamilton’s Quaternions
Theory, Hermann Grassmann’s Calculus of Extension and George Boole’s
Symbolic Logic.

5.2.1. Generalised algebra

According to V. Lowe, Generalised Algebra was the title originally chosen
for this Treatise but Whitehead eventually preferred to borrow a more appro-
priate title, Universal Algebra, from J. J. Sylvester. [22] (191)

Whitehead writes that his goal was to expose a generalized conception of
space whose properties and operations would lead to a uniform method of
interpretation of the various algebras that would thus appear “as systems of
symbolism, and also as engines for the investigation of the possibilities of
thought and reasoning connected with the abstract general idea of space.”
[38] (v)

Volume one of the Treatise is divided into seven Books. The first book
which relies heavily on Grassmann’s ideas exposes the principles of alge-
braic symbolism, the nature of a calculus, the manifolds, and the principles
of universal algebra. The second Book is devoted to the algebra of symbolic
logic, and the rest of the volume is concerned exclusively with the study and
applications of Grassmann’s Calculus.

The collaboration with B. Russell imposed to postpone the edition of the
second volume. It was eventually planned as Volume IV of the Principia
Mathematica, but it never appeared. [22]
This volume should have contained the comparison of Hamilton’s theory
of Quaternions with Benjamin Peirce’s Linear Associative Algebra of 1870,
later published with notes and additions by his son, Charles Saunders. [26]
It is important to notice, a referee remarked, that Benjamin’s work is exclu-
sively an algebra, whereas under Charles’ notes and appendix, it is shown
how to classify algebras in terms of the logic of relations. That is, on the
basis of his father’s work [25], Charles [28] demonstrated that linear and
multilinear algebras could all be reduced to interpretations of the logic of
relations.

Whitehead considered ordinary algebra of his time as a “set of proposi-
tions, inter-related by deductive reasoning, and based upon conventional
definitions which are generalizations of fundamental conceptions.” [38] (viii)
In introducing his new field of universal algebra, he knew that it could be
considered as uninteresting and useless as investigation tool in the same way
as symbolic logic had appeared to logicians, a simple branch of mathemat-
ics, and conversely. Nevertheless, he wanted to show that it is a branch
of Mathematics as serious as any other because, according to him, and re-
peating Benjamin Peirce first sentence of [25], “Mathematics in its widest
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signification is the development of all types of formal, necessary, deductive
reasoning.” (vi)
Mathematics is formal because the meaning of its propositions is not taken
into account. It is necessary because “the business of mathematics is simply
to follow the rule.” (vi) And the reasoning is deductive because it is based
on definitions that have only to be consistent and complete. Definitions in
mathematics are existential or conventional. They refer to existing things in
the world or they are obtained by abstraction from a set of interrelated things.

Traditionally, the object of mathematics had always been number, quan-
tity, and ordinary space; but the discovery of complex numbers — defined
conventionally — and the introduction of complex quantities in ordinary al-
gebra extended the ordinary quantities to generalized entities. This implied,
not only the development of new algebras, but also the creation of a new
science that “has relations to almost every event, phenomenal or intellectual
which can occur.” Indeed, Whitehead dreamed of mathematics constructing
a calculus adapted to reasoning with respect to each domain of thought or
external experience. This new extended ordinary algebra was a first step,
and it concerns universal algebra provided that “the newly invented algebras
[...] exemplify in their symbolism or [...] represent in their interpretation
interesting generalizations of important systems of ideas, and [be] useful en-
gines of investigation.” (viii)
The goal of Whitehead in his Treatise is thus to investigate these new alge-
bras; among them, the algebra of symbolic logic.

5.2.2. Calculus and manifolds

A calculus is defined as “The art of the manipulation of substitutive signs ac-
cording to fixed rules, and of the deduction therefrom of true propositions”.
(4)
Coming back to the definitions, conventional definitions are abstracted from
a set of objects in various consistent and defined relations by an act of imag-
ination. Although they are conventional, they must keep some connections
with existing things if they have to be used as basis for founding mathemat-
ics. Indeed, the language of mathematics uses substitutive signs; these signs
are manipulated by rules, and the application of these rules must be such that
in the resulting state “when the signs are interpreted in terms of the things
for which they are substituted, a proposition true of the things that are rep-
resented” (4) results. This constitutes a calculus. Its signs are symbols and
in its use, the calculus is interpreted.
In a calculus, the propositions used in the deductions have the form of equiv-
alence assertions. And, in agreement with Lotze and Bradley, equivalence
is not identity, ‘=’ is not the same as ‘is’. A calculus based on propositions
asserting identities would only result in identities while equivalence implies
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non-identity. In the equation 2+3 = 3+2, 2+3 is not identical to 3+2 be-
cause “the order of the symbols is different in the two combinations, and this
difference of order directs different processes of thought.” Thus, the equation
asserts that “these different processes of thought are identical as far as the
total number of things thought of is concerned.” (6) In order to distinguish
the two members of the equation, Whitehead names one the ‘truism’ and the
other the ‘paradox’: they are identical with respect to the number 5, but they
are also different objects. In assertions of equivalence in a calculus, only the
second aspect matters, i.e., that two things which are different are equivalent.
And it is the process of derivation from events, either phenomenal or mental,
of one thing, for example, 5, from other things, 2 and 3, that allows to judge
the equivalence because this process which manifests the operations of the
mind is in the domain of application of a calculus.

The notion of a manifold has a geometrical origin in the works of H. Grass-
mann and B. Riemann. It is on this notion that Whitehead builds up his ab-
stract and generalised notion of space. It is generalised in the sense that,
given its definition, a manifold can be constituted of the musical notes as
well as of the colors of the spectrum, or the points of ordinary space.
Indeed, various things may share a common property; and they can all have
that property in different modes. Call each separate mode of possessing that
property an element. Then, the set of these elements is the manifold of the
property.
Various relations exist between the various modes of a property, that is, there
are relations between objects which possess a same property in different
modes; these relations define how they possess the property, that is, how the
objects differ. The axioms from which all relations between all elements
of a manifold can be logically deduced are called the characteristics of the
manifold. To give an example of a manifold, Whitehead considers the empty
space with respect to a system of coordinates: a point is a mode of the prop-
erty ‘spatiality’ and the axioms of geometry constitute its characteristics.
“It is the logical deductions from the characteristics of a manifold which are
investigated by means of a calculus.” (14)

5.3. The Algebra of Symbolic logic

“Universal Algebra is the name applied to that calculus which symbolizes
general operations [...] called addition and multiplication.” (18) This is the
short characterization of the principles of universal algebra given by White-
head.
These principles depend on general definitions of the processes of addition
and multiplication which hold for all branches of universal algebra. There
are also special definitions of special kinds of addition and multiplication
whose investigation constitutes special branches of universal algebra. Each
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of these branches is a special algebraic calculus or a special algebra. Oth-
erwise, except for these special operations, algebra is ordinary algebra and
its manifolds, whose elements can be added and multiplied, i.e., whose el-
ements comply with the laws defining these operations, are called algebraic
manifolds.

These operations of addition and multiplication defined by their usual
properties (commutativity, associativity, etc.) do not vary with the different
algebras. But a difference appears when a term is added to itself (multiplied
by itself): while ordinary algebra distinguishes a and a+a (a and aa), the al-
gebra of symbolic logic, the algebra of Boole’s Investigations, identifies the
two. The reason is simple and is found in the interpretation of the calculus.

When developing the symbolism of a calculus, Whitehead suggests to keep
its interpretation simple and to develop it concurrently with the algebra. In
order to keep the interpretation of the algebra of symbolic logic simple, he
considers only intersection or non-intersection of regions of space.
Thus, similarly to the intuitive interpretation of the postulates in 4.2, consider
the elements of the algebraic manifold of the algebra of symbolic logic as
regions of space. Let the terms representing the elements now represent the
mental act of apprehending the regions they represent. Then the operation
of addition corresponds to the act of apprehending in the mind the region
represented by all terms added. A term added to itself, a + a, is presented
twice to the mind for apprehension, but it cannot be duplicated since the
region represented by a+a remains always the same, i.e., a. Hence, a+a =
a.
While, as usual, commutativity and associativity are required in defining
addition, distributivity and absorption are also required for multiplication.
Indeed, multiplying terms results in a term representing the entire region
common to all terms multiplied. If abc is such a term, it represents the
region contained at once in a, b, and c. Apprehending first region ab imposes
to apprehend region a, then region b, and then the region which is their
interesection. Obviously, this process satisfies distributivity and absorption,
a+ ab = a.

We end up with two kinds of addition and multiplication, the numerical
and the non-numerical addition and multiplication; thus, with two kinds of
algebras, the numerical kind (genus) of algebra characterized by the equa-
tions a+ a = 2a and aa = a2, and the non-numerical algebra characterized
by a+ a = a, and aa = a.

“The Algebra of Symbolic logic is the simplest possible species of its genus
and has accordingly the simplest interpretation in the field of deductive
logic.” (29)

This algebra of symbolic logic is not all of the field of deductive logic but it
is the only non-numerical algebra that has been developed. It is amenable to
algebraic treatment because it is an algebra of extension, that of concepts and
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propositions conceived as multiplicities and, as we have seen, its operations
of addition and multiplication respect the various properties of commutativ-
ity, associativity, distributivity of multiplication over addition, idempotence
and absorption.
In addition, and according to the intuitive interpretation, the null element,
0, represents the non-existence of a region; and the universe, i, is the entire
space. Obviously, they are such that a + 0 = a and ai = a. A special ele-
ment is added, symbolized by ′; it is such that a′ is the complement of a, that
is, the b such that a+ b = i and ab = 0. And also, a+ a′ = i and 0a′ = 0.
Moreover, the duality of the operations + and · discovered independently by
C. S. Peirce and Schröder, the duality of the null and universal classes of
elements, and Boole’s translation of any algebraic function into polynomials
and normal forming of logical equations are all respected.
Note that Whitehead considers the other duality of the operators, that cor-
responding to division and substraction which is sometimes useful. As ex-
pected, associativity is a problem for substraction, and that keeps these op-
erators out of considerations in this algebra.
Finally, this algebra of logic is essentially, as Whitehead writes, the “algebra
in all essential particulars ... invented and perfected by Boole” in his “Laws
of Thought”.

In the intuitive interpretation of the algebra, elementary and complex prop-
ositions are interpreted in terms of regions and relations between these re-
gions, that is, in terms of the algebraic manifold and its submanifolds. Since
the symbolic treatment of these relations has analogies with the theory of in-
equalities of ordinary algebra while having also some properties of algebraic
equations, Whitehead introduces two symbols to express these relations: one
for incidence (subset), x (= y, and one for inclusion (the reverse), y )= x
which are defined in terms of equality: if x (= y then x = yx, and con-
versely. (See the table in the next subsection). Actually, he borrows from
Schröder the symbol of subsumption and he remarks that it is from the re-
lation of containment, )=, that C. S. Peirce deduced his theory of symbolic
logic, i.e., his algebra of logic. (C. S. Peirce used the symbol of inference
A −< C to express the primary mode of relation between two propositions;
it means that every state of things in which a proposition of the antecedent
class A is true is a state of things in which the corresponding propositions of
the consequent class C are true). [27], [30]

Whitehead develops in two chapters the methods of construction of sym-
bolic equations from symbolic terms and the method of solution of algebraic
equations which the analogy between logical and algebraic equations re-
quires.
The first chapter is concerned with the methods to solve equations of the al-
gebra of logic in one and several unknowns. One may note here the existence
of fields of equations, i.e. domains of value for the evaluation of variables or
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unknown of the equations.
In the next chapter, existential expressions are introduced. These are expres-
sions containing symbols, j or ω, that assert the existence, or that limit the
extension of the regions, that is, symbols such that x.j represents “x exists”
(i.e., is not 0) and x+ω represents “x is not all of i”. Then, the symbol ≡ is
used in place of = to mean that the regions on either sides of the symbol are
not only the same but, also, that the existential information of the right-hand
side can be deduced from the left-hand side.
This existential notation can be extended further with the help of umbral or
shadow letters, i.e. Greek characters attached to their corresponding Roman
characters, called regional letters, and indicating where the adjoined symbols
of the algebra are assumed to exist. For example, xα means that “regions x
and a overlap”, i.e., xα implies xa.j but it only denotes the region x.

5.4. Application of the Algebra to Logic

The second Book of the Treatise concludes with two chapters devoted to the
application of the algebra to “Formal Logic conceived as the Art of Deductive
Reasoning.” (99)

First, as Boole had done in his Investigation, [8] the algebraic calculus is
applied to the classical theory of syllogisms. While providing some author-
itative ancestry to his structural perspective, Whitehead’s formal position is
supported by similar convictions of Leibniz in his New Essays: “I consider
the invention of the form of syllogisms one of the most beautiful, and also one
of the most important, made by the human mind. It is a species of universal
mathematics [...] Now you must know that by arguments in form, I mean not
merely this scholastic mode of argument used in colleges, but all reasoning
which concludes by the force of the form ”. [20] (559)
This application to syllogisms is also an appropriate example of the notion
of implication as relationships between propositional forms that was men-
tionned earlier in section 3.

The algebra of logic applies easily to the syllogisms because a syllogism
can be represented as xy (= z, that is, from x and y, conclude y. Never-
theless, according to Whitehead, this form, as such, does not represent the
process of thought at work in a syllogism.

One may remember that the theory of syllogism is based on combina-
tions of the various forms of propositions or judgements traditionally la-
belled A,E, I,O to abbreviate the four traditional forms: “all a is a b”; “no
a is a b”; “some a is a b” and “some a is not a b”. Given what was said ear-
lier about the algebra and the existential expressions, it is easy to see in the
table below how these syllogistic forms translate into a form of the algebra
of symbolic logic. Of course, given the formal laws of this algebra, these
algebraic forms are not unique and have each other equivalent forms.



“01riche”
2011/6/6
page 153

i

i

i

i

i

i

i

i

LOGIC IN WHITEHEAD’S UNIVERSAL ALGEBRA 153

A All a is b : region a is included in b ≡ a (= b
E No a is b : no regions overlap ≡ ab = 0
I Some a is b : regions a and b overlap ≡ ab.j
O Some a is not b : regions a and b ′ overlap ≡ ab ′.j

In order to exclude meaningless forms, that is, forms such as in A, for
example, where in a (= b, one would have a = 0 or b = i (and even both),
the propositional form is transformed into an existential one: aj (= bj or
aj ≡ bj in the first case, and into a+ω (= b+ω or (a+ω) ≡ (a+ω)(b+ω)
in the second case. From these transformed forms, the other equivalent forms
can then be deduced by symbolic reasoning.

The traditional moods of syllogisms, the nineteen combinations of forms
considered as valid forms of reasoning, and whose conclusions can be
reached from premises by purely algebraic methods are thus investigated.
Of these, five forms having too strong premises are excluded and Whitehead
considers the symbolic equivalents of the fourteen moods retained.
Since the treatment of syllogisms amounts to the elimination of the mid-
dle term, the symbolic methods developed in the preceding chapters ap-
ply. To give an example, one mood in its simplest algebraic expression is
that which has the universal form A in the premises and in the conclusion.
Represented as [AAA], it is expressed as “b (= c, a (= b, therefore
a (= c” or, in one of its equivalent expression, as “b = bc, a = ab, there-
fore a = ab = abc = ac”. Applying the algebraic methods, the elimination
of b results in the symbolic equivalent ac′ = 0. And similarly, a symbolic
equivalent is obtained for each mood of the four figures.

Since the symbolic methods of the algebra permit to reach the conclusion
of syllogisms from their premises, the conclusion of any reasoning valid by
virtue of deductive logic can also be obtained by the same algebraic and
symbolic methods. On this ground, Whitehead makes the suggestion that
the processes at work in solving systems of equations of logical expressions
are a generalization of the processes of syllogism and, hence, he suggests to
generalize these processes to the whole of ordinary logic.

Doing so, Whitehead explicitly follows Boole’s Investigation program. In-
deed, with respect to equations, Boole’s “general problem” was to find a rule
such that “Given any equation connecting the symbols x, y, . . . , w, z, . . .”, it
determines “the logical expression of any class expressed in any way by the
symbols x, y, . . . in terms of the remaining symbols w, z, . . .&c.” [8] (140)
With respect to the systems of traditional categorical forms (A, E, I, O),
Boole saw “The processes of Formal logic [...] described as of two kinds,
viz., “Conversion” and “Syllogism.”” [8] (227) Conversion is the process of
converting any of these propositions into an equivalent form, an application
of a very general process in logic, “the determination of any element in any
proposition, [...] as a logical function of the remaining elements.” (230) Syl-
logism is the usual process of deducing from two such propositions having
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a term in common, a third proposition. Boole’s goal was to show that these
processes, often seen as universal types of reasoning, could be conducted
“upon the principles of the present treatise, and, viewing them thus in rela-
tion to a system of Logic” whose foundations “have been laid in the ultimate
laws of thought.” (228)

Thus, in Whitehead, these two processes applied to universal propositions
symbolised by equations and to particular propositions symbolised by exis-
tential propositions, are performed according to the rules of the algebra of
symbolic logic. These are rules of transformation and reduction of a gen-
eral form of a system of universal propositions involving one (or several)
unknown element(s), the other elements being known. That form of a sys-
tem is a set of n equations aix + bix

′ = cix + dix
′ (i ≤ i ≤ n). In order

to determine the unknown x, the required information is obtained in solving
the system of equations according to rules which do not concern us here.
Actually, this process essentially amounts to form two regions, A and B, out
of the regions involved in the system of propositions, and this amounts to
reorganise the original knowledge to express the new information conveyed
in the system. Formally, this amounts to a selection of certain regions de-
fined by inter-relations but, in practice, this process may add knowledge to
the definition of x.

Reference to undefined information or to what is known or not in reason-
ing introduces the last chapter devoted to the interpetation of propositions.
There, Whitehead applies the calculus to classical logic: “There is another
possible mode of interpreting the Algebra of Symbolic logic which forms an-
other application of the calculus to Logic.” [38] (108)

Indeed, in the calculus, any symbol represents a categorical proposition or
a complex proposition. A simple proposition is an assertion of a fact and
two propositions x, y are equivalent if assenting to one entails assent to the
other. A complex proposition tells that two or more simple propositions are
conjunctively true or that at least one of the propositions of the complex is
true. In the first case, it is a conjunctive complex represented as (abc . . .);
in the second case, a disjunctive one, (a + b + c + . . .). A proof is then
required that the operations of additions and multiplication of propositions
can be identified with the operations of the algebra of symbolic logic.
This is easily done by showing that the complexes follow the rules of the
algebra. As expected, a product is interpreted as a conjunction, and a sum
as a disjunction of propositions. With respect to the elements 0 and i, the
element 0 of the algebra corresponds to rejection of motives for assent to a
proposition; thus it corresponds to the rejection of the validity of the propo-
sition: x = 0 means that x does not enter the process of reasoning or the act
of assertion. The class of elements equal to 0 is the class of those elements
inconsistent with the propositions equal to i. These last are the propositions
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that have absoluteness of assent, conventionally or naturally. These propo-
sitions can be the “Laws of Thought of the Logic”; they are self-evident
propositions. Therefore, the elements of the class equal to 0 are the self-
contradictory or, as Whitehead calls them, the self-condemned propositions.
Then, obviously, for any proposition x and its negation, x′, x + i = i and
xi = x as well as xx′ = 0 and x+ x′ = i.

The first interpretation of the algebra of logic was restricted to classes
of propositions in relation of inclusion and exclusion. This second inter-
pretation of logic assumes the existence of some domain of knowledge from
which all consequences of some categoric proposition or set of such proposi-
tions in either conjunctive, disjunctive or hypothetical relations to each other
can be deduced. It is essentially a modification of the system of Boole, and
Whitehead claims that it can be taken as the appropriate system of symbolic
logic. Indeed, he shows that this interpretation includes the first one as par-
ticular case.
Similarly to Boole’s system, it is built on the fundamental principles of iden-
tity and non-contradiction symbolised in x2 = x and in xx′ = 0 (since
x′ = i − x). Although this second interpretation cannot exhibit the process
of thought at work in a syllogism, there is a way out devised by McColl.
It requires some precise analysis of predication and consists in analysing
propositions of any traditional form into a relation between other proposi-
tions. Taking the example of the traditional form A, “All A is B”, is analysed
as saying that the validity of what is called a primitive predication “It is A”
is equivalent to that of the conjunctive complex “It is A and It is B”, which
is thus represented as a = ab.

5.5. A Memoir on the Algebra of Symbolic logic

Shortly after the publication of his Treatise, Whitehead published “a purely
mathematical investigation concerning the Algebra of Symbolic Logic.”, [40]
(139) the algebra originating in Boole’s Laws of Thought and perfected by
Peirce and Schröder that he recommends as “the first object of mathematical
study.” because it is concerned with inclusion and exclusion of classes and
it is also the simplest of all algebraic systems. (139)

This memoir was written in order to show that many interesting math-
ematical properties of the algebra of symbolic logic had not been worked
out because attention was concentrated on its application to the operations
of logic. As examples, Whitehead mentions Venn’s Symbolic Logic (1881)
that considered the interpretation of the algebraic symbolism in logic, and
Peano’s school which used that symbolism “as a practical means for the
exact expression of deductive reasoning”. (140)

Whitehead thus continued his own investigation of the theory of Boolean
equations and the translation of Boolean functions into polynomials. Among
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other topics, he studied the conditions under which the transformations of a
function constitute a group.
Earlier, in 1899, in a communication at the Royal Society, [39] only pub-
lished as abstract, Whitehead had related the theory of finite groups to an al-
gebra, the algebra of groups of finite order that he compared to the Boolean
algebra of symbolic logic of his Treatise. Both algebras are non-numerical
algebras and they share several properties.

At the second International Congress of Mathematicians, coupled to the
first International Congress of Philosophy held in Paris in 1900, Whitehead
and Russell discovered Peano and his school of mathematics. This encounter
was decisive in the development of symbolic logic.
Soon after, in a paper written in 1901, Whitehead generalized his theory of
Boolean equations in terms of Peano’s notation and of Russell’s theory of re-
lations which he saw as “indispensable for the development of the theory of
Cardinal numbers...[they] form an epoch in mathematical reasoning.” [41]
(367) In order to deal with infinitely many variables, he applied his theory of
transfinite cardinal numbers. [41], [42] But this is another story.
Noteworthy in this last paper, and witness of Whitehead’s originality, his
definition of a ‘multiplicative class’ and the related theorem. Stated in a
readable form in Russell [33], it goes as follows: “Let k be a class of classes,
no two of which have any term in common. Form what is called the multi-
plicative class of k, i.e., the class each of whose terms is a class formed by
choosing one and only one term from each of the classes belonging to k.
Then the number of terms in the multiplicative class of k is the product of
all the numbers of the various classes composing k.” (119) This principle
would be soon famous as an axiom, but not under Whitehead’s name.

6. Conclusions

Christine Ladd, a student of J. J. Sylvester and C. S. Peirce at Johns Hop-
kins University in the 1880’s, wrote: “There are in existence five algebras of
logic, — those of Boole, Jevons, Schröder, McColl, and Peirce, — of which
the later ones are all modifications, [...], of that of Boole.” [19] (17) Some
years later, following the publication of his Treatise, the name of Whitehead
could have been added to the list. Or indeed, the list shortened if we lis-
ten to Huntington who referred to “The name Boolean algebra (or Boolean
“algebras”) for the calculus originated by Boole, extended by Schröder, and
perfected by Whitehead”. [15] (278)

J. Venn [37] considered that Boole had made the natural mistake of regard-
ing logic as a branch of mathematics, simply applying mathematical rules to
logical problems. Given his interpretation of the algebra of symbolic logic
in the context of his universal algebra, and the justification he gives to his
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approach, it is obvious that Whitehead did not make the same mistake.
According to C. I. Lewis [21] who wrote an extended account of Boole-
Schröder algebra of logic, Whitehead’s Treatise had been a most notable ad-
dition and improvement of the methods while “Jevons, in simplifying Boole’s
system, destroyed its mathematical form; Peirce, retaining the mathematical
form, complicated [...] the original calculus.” (118)

Lowe [22] writes that in 1905, a reviewer for the doctoral degree found
that Whitehead’s published work gave “new life to the study of symbolic
logic.” (263) This would appear in full light shortly after with the publica-
tion of Principia Mathematica, the joint work with Russell that had started
five years earlier.
Symbolic logic and algebraic logic will then continue to develop along their
own ways, and Boolean algebra, no longer Boole’s algebra of symbolic
logic, will later become the algebra known today by this name.
Several of the avenues opened by Whitehead will be forgotten, in particular,
universal algebra as he had devised it. His last paper on logic with which we
started, was a reminder of some of his essential conceptions that he left for
logicians to meditate on.
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