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HYPERREAL EXPECTED UTILITIES AND PASCAL’S WAGER

FREDERIK HERZBERG

Abstract
This paper re-examines two major concerns about the validity of
Pascal’s Wager: (1) The classical von Neumann-Morgenstern The-
orem seems to contradict the rationality of maximising expected
utility when the utility function’s range contains infinite numbers
(McClennen 1994). (2) Apparently, the utility of salvation can-
not be reflexive under addition by real numbers (which some inter-
pretations of Pensées §233 demand) and strictly irreflexive under
multiplication by scalars < 1 at the same time (Hájek 2003).

Robinsonian nonstandard analysis is used to establish a hyper-
real version of the von Neumann-Morgenstern Theorem: an affine
utility representation theorem for internal, complete, transitive, in-
dependent and infinitesimally continuous preference orderings on
lotteries with hyperreal probabilities. (Herein, a preference rela-
tion � on lotteries is called infinitesimally continuous if and only
if for all x ≺ y ≺ z, there exist hyperreal, possibly infinites-
imal, numbers p, q such that the “perturbed preference ordering”
px+ (1− p)z ≺ y ≺ qx+ (1− q)z holds. Infinitesimal Continuity
is hence a much weaker condition than continuity.) This Hyperreal
von Neumann-Morgenstern Theorem yields a hyperreal version of
the Expected Utility Theorem — affirming a conjecture by Sobel
(1996). This responds to objection (1).

To address objection (2), a convex linearly ordered superset S of
the reals whose maximum is both reflexive under addition by finite
numbers and strictly irreflexive under multiplication by scalars < 1
is constructed.

If the Wagerer is indifferent among the pure outcomes except sal-
vation (an orthodox soteriological position) and her preference or-
dering satisfies certain rationality axioms, then this preference or-
dering can be represented through an S-valued (not just hyperreal-
valued) utility function. This result responds to objections (1) and
(2) simultaneously.
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70 FREDERIK HERZBERG

Behold, I set before you the
way of life and the way of
death.

But your happiness? Let us weigh the
gain and the loss in wagering that God is.
Let us estimate these two chances. If you
gain, you gain all; if you lose, you lose
nothing. Wager, then, without hesitation
that He is.

Jeremiah 21,8 Blaise Pascal, Pensées, §233
(King James Version) (Trotter translation)

1. Introduction

1.1. The context of Pascal’s Wager

Pascal’s Wager [Pensées §233] is a Christian apologetic argument.1 It is,
however, meant to address individuals who already hold certain beliefs about
the supernatural (cf. Rescher 1985), which explains the strength of some of
the argument’s premises (see Subsection 1.2):

First, the subjective probability for the existence of the Christian God is as-
sumed to be positive and non-infinitesimal. (Otherwise the argument would
no longer be valid, cf. Oppy 1990 and Hájek 2003, see also Footnote 5.)

Secondly, the audience is assumed to consider the Christian faith the only
viable alternative to atheism for themselves. (Otherwise they might as well
become attracted to any religion that promises paradise to its followers. Sev-
eral variants of this so-called many-gods objection have been studied sys-
tematically by Bartha 2007.)

From a theological perspective, it is important to note that Pascal did not
expect that anyone who is convinced of the conclusion of the argument could
earn their salvation themselves — let alone by merely accepting the rational-
ity of some gambling strategy.2 To the contrary, Pascal’s (Jansenist) theology
places great emphasis on grace and predestination.

The purpose of this apologetic argument is, therefore, simply to “incite to
the search after God” [Pensées §181].

1 The context of Pensées §233, in particular Pensées §181, implies that the Wager is
an argument of Christian apologetics, not specifically Jansenist or Catholic apologetics.
(Jansenism was the Roman Catholic, later considered heterodox, sect to which Pascal be-
longed.) It is not addressing Christian believers without an attachment to Jansenism or Ro-
man Catholicism, but rather individuals who lack interest in a personal faith (hence Section
III of the Pensées is entitled “Of the necessity of the Wager”) or lean towards agnosticism or
atheism.

2 Cf. Pascal in Pensées §240.
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1.2. The structure of the Wager. Mixed strategies

Pascal’s argument — directed at someone who is choosing between either
Christianity or atheism and, in addition, assigns positive, non-infinitesimal
probability to the existence of the Christian God — can be formalised as
follows:

(1) Premise: One has to wager for or against God, and the payoff of the
wager is as follows:

Christian God exists Christian God
(with some probability p� 0) does not exist

Wager for God I f2

Wager against God f3 f4

Herein, I denotes an infinitely large number3 , f2, f3, f4 are finite4 ,
and p� 0 means that p is non-infinitesimal5 .

(2) Premise: Reason demands to maximise expected utility.

(3) Conclusion: Reason demands to wager for God.
Formalisations of the Wager have to identify I mathematically in some

proper superset6 S ) R of the field of the reals.
Now, in order to clarify Premise 2, one needs to define what kind of

choices the Wagerer is allowed to make. In this paper, we allow the Wagerer
to base his/her decision to wager for or against God on a random event of
some probability q. (For instance, by tossing a coin to determine what to wa-
ger for.) Such a strategy is called a mixed strategy of chance q. In his prized
critique of Pascal’s Wager, Hájek (2003) has demanded that mixed strate-
gies should also be taken into account, because if mixed strategies yielded
the same expected utility as wagering directly for God’s existence, then the
conclusion of Pascal’s Wager (that reason demands to wager for God) would
no longer hold. However, we will find that mixed strategies yield strictly

3 I.e., I > n holds for every n ∈ N.

4 I.e. |f2| , |f3| , |f4| ≤ n for some n ∈ N.

5 I.e., there exists some n ∈ N such that p > 1

n
. Zero probabilities would make the

argument invalid straightaway, and infinitesimal probabilities would require a sufficiently
high utility of salvation in order to preserve the validity of the argument, cf. Oppy (1990) and
Hájek (2003).

6 For arbitrary sets R, S, we say that S is a superset of R if and only if R is a subset of
S.



“05herzberg”
2011/2/28
page 72

i

i

i

i

i

i

i

i

72 FREDERIK HERZBERG

lesser expected utility than outright wagering for God’s existence in suitable
formalisations of S, thus meeting Hájek’s (2003) challenge.

If one were to exclude the possibility of mixed strategies, the decision of
the Pascalian Wagerer amounts to the choice of one of two continuum-size
sets of lotteries — for each value for the probability p of God’s existence,
she has to choose between two possible lotteries (wagering for or against
God).

As we do allow for mixed strategies, the Wagerer has to choose one contin-
uum-size set of lotteries among a continuum of continuum-size set of lotter-
ies. For, there is a continuum of possible lotteries — one for each value for
the chance that he wagers for God — for each value for the probability p of
God’s existence.

Thus, Premise 2 can now be phrased as follows: Let 〈p̄, q̄〉 denote the lot-
tery where the probability that the Christian God exists is p̄ and the probabil-
ity that the Wagerer actually wagers for Him is q̄. Then, for every p̄ ∈ (0, 1]
(excluding infinitesimal probabilities p̄, see Premise 1), a rational Wagerer
must strictly prefer 〈p̄, 1〉 over 〈p̄, q̄〉 for any q̄ < 1.

This statement is exactly what the Pascalian must prove (in some formal
setting) in order to justify Premise 2.

1.3. Two concerns about Pascal’s Wager

Pascal’s Wager faces at least two major challenges: (1) McClennen’s deci-
sion-theoretic objection, and (2) Hájek’s dilemma.

(1) McClennen (1994) points out that Premise 2, the rationality of max-
imising expected utility, lacks a decision-theoretic justification (such
as the von Neumann-Morgenstern Theorem) since the Wagerer’s util-
ity function is allowed to take infinite values: For, the classical
von Neumann-Morgenstern Theorem only says that a preference or-
dering on lotteries can be represented by a real-valued expected util-
ity function if and only if the preference ordering has certain prop-
erties, among them continuity. Now, on the one hand, continuous
preference-orderings are inconsistent with infinite utilities (which
Pascal’s Wager entails), and on the other hand, the Pascalian wants
to allow for infinite (not just real-valued) expected utility functions.
Hence, the Pascalian cannot justify Premise 2 through classical util-
ity theory. Instead, a new expected utility theorem is needed in order
to defend Premise 2.

(2) Hájek (2003) contends that there is a dilemma for any conceivable
mathematical (re)formulation of the Wager: On the one hand, a his-
torically faithful reading of Pascal’s Pensées §233 demands that the
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utility of salvation be reflexive under addition by real numbers.7 On
the other hand, the utility of salvation must be (strictly) irreflexive
under multiplication by probabilities > 0,8 in order to ensure that
one can distinguish between the expected utility of outright wager-
ing for God and mixed strategies (where the Wagerer only ends up
wagering for God with some probability p > 0, cf. Duff 1986).
Hence, one must find a convex linearly ordered set which contains
the reals and has a maximum that is both reflexive under addition by
reals and strictly irreflexive under multiplication by positive scalars
< 1. However, Hájek thought that this is impossible: “[There are] no
prospects for characterizing a notion of the utility of salvation that is
reflexive under addition without being reflexive under multiplication
by positive, finite probabilities” (Hájek 2003 [p. 49]).

1.4. Outline of the argument

In a recent paper, Bartha (2007) proposed a new formalisation of Pascal’s
Wager, based on generalised utility ratios, which addresses both McClen-
nen’s objection and Hájek’s dilemma. The aim of this article is to demon-
strate how McClennen’s objection and Hájek’s dilemma can also be ad-
dressed by means of one-place hyperreal9 -valued utility functions; if one
drops the requirement of reflexivity under addition, this approach can be
simplified even further.

In particular, we shall prove:
(1) There is an expected-utility representation theorem for hyperreal util-

ity functions: Every standard-definable, complete, transitive, inde-
pendent and infinitesimally continuous preference relation can be
represented by a hyperreal-valued affine utility function. (See Sec-
tion 2, in particular the Hyperreal Expected Utility Theorem 3.)

(2) There are two candidates for a mathematical model of the Wagerer’s
utility function where the maximal utility is both reflexive under ad-
dition and irreflexive under multiplication by positive probabilities.

7 This means that x + I = I for all real numbers x. In Appendix B, we shall reexamine
this claim and see that, in fact, irreflexivity under addition may be more in accordance with
Pascal’s theology.

8 This means qI < I for all q ∈ [0, 1).

9 The hyperreals — in the sense of Robinsonian (1966, 1996) nonstandard analysis —
form a real-ordered, non-Archimedean field which is usually constructed as the ultrapower
of the reals with respect to a non-principal ultrafilter. The non-Archimedean property entails
that the hyperreals includes infinitesimals and infinitely large numbers — as well as all real
numbers.
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74 FREDERIK HERZBERG

(See Subsection 3.3 and Appendix C.) In particular, there exists a
superset SRA−IM of the reals — motivated by the hyperreals — on
which both convex combinations as well as a linear order can be de-
fined in a mutually consistent manner, and the maximum of SRA−IM

is reflexive under addition without being reflexive under multipli-
cation by positive probabilities. We shall also prove an expected-
utility representation theorem, under fairly restrictive conditions, for
SRA−IM-valued utility functions.

Hence, each of the challenges by McClennen and Hájek can be addressed
separately. The combination of Hájek’s dilemma and McClennen’s critique
is potentially troublesome for the Pascalian. However, we shall prove that
under additional hypotheses on the Wagerer’s metaphysical stance, the range
of this utility function can even be chosen as the linearly-ordered convex
set SRA−IM whose maximum is both reflexive under addition and strictly ir-
reflexive under multiplication, thus answering at the same time McClennen’s
objection and Hájek’s dilemma. Besides, in an appendix to this paper, we
shall argue that despite its philosophical merits and faithfulness to Pascal’s
statement in Pensées §233, the reflexivity under addition of the utility of
salvation is in tension with other aspects of Pascalian theology.

We close the Introduction with three remarks about our use of hyperreal
expected utilities.

In order to apply the Hyperreal Expected Utility Theorem to Pascal’s Wa-
ger, we must assume that the Pascalian Wagerer has a completely defined
preference relation over lotteries with arbitrary hyperreal chances. This does,
of course, by no means entail that the Wagerer is assumed to assign infinites-
imal probability to the existence of God — which would be inconsistent with
Premise 1. It only means that the Wagerer is able to compare those lotteries
where the probability for the event that he wagers for God while God does
not exist is hyperreal (e.g. infinitesimal) with other lotteries.

Also, it has been argued that there is some “arbitrariness” in modelling
subjective utility of salvation of a given human individual by some partic-
ular infinite hyperreal (cf. Hájek 2003 and Bartha 2007). The Hyperreal
Expected Utility Theorem clarifies that this degree of freedom simply re-
flects an ubiquitous phenomenon in decision theory with cardinal prefer-
ences: Von Neumann-Morgenstern utility functions are only unique up to a
positive factor and a shift by an additive scalar.

Finally, one might argue that modelling the Wagerer’s maximal utility by
an infinite hyperreal amounts to cutting human utility at a somewhat arbitrary
level and thus represents a philosophical problem. This would then be an-
other reason, in addition to the reflexivity under addition, why the Wagerer’s
utility function should be modelled as SRA−IM-valued rather than hyperreal-
valued. However, whilst the Wagerer’s personal salvation cannot be topped
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in utility by anything earthly, one should think that even a saved Wagerer’s
utility can be increased through the salvation of her loved ones. Therefore,
there are good reasons to model the Wagerer’s maximal utility through an
infinite value which can be naturally improved upon, such as an infinite
hyperreal. This argument also casts some additional doubt on the assump-
tion of reflexivity under addition — in addition to the concerns expressed in
Appendix B.

2. The Hyperreal Expected Utility Theorem

In order to justify Premise 2, i.e. the rationality of maximising expected util-
ity whilst permitting infinite values in the utility function’s range, a decision-
theoretic argument is required. The classical decision-theoretic justification
of the rationality of maximising expected utility invokes the expected-utility
representation theorem of von Neumann and Morgenstern (1980) who “[re-
construed] the utility concept” (Jeffrey 1992 [p. 171]). The theorem asserts
that a certain set of rationality axioms (transitivity, completeness, continu-
ity, independence) on an individual’s preference ordering among lotteries
is equivalent to the existence of an affine real-valued utility function which
represents the preference ordering — whilst every affine function on the set
of lotteries can be viewed as an expectation operator on the set of random
utility values corresponding to the lotteries. In other words, a preference or-
dering among lotteries satisfies certain rationality axioms if and only if it is
derived from some real-valued expected utility function. Unfortunately for
the Pascalian, infinite utility values are outside the scope of von Neumann
and Morgenstern’s theorem.

However, as explained by Bartha (2007) [p. 10], reflexivity under multi-
plication (i.e. the axiom that x · I = I for all x > 0) is responsible for the
inconsistency of infinite utilities with the hypotheses of the von Neumann-
Morgenstern Theorem. Thus, since both infinite hyperreals and infinite sur-
real numbers10 are (strictly) irreflexive under multiplication, there may be
some hope to counter the first objection if I is a hyperreal or a surreal num-
ber.

To the present author, it is unclear how to develop a von Neumann-Morgen-
stern Theorem for surreal utilities and thus to respond to McClennen’s ob-
jection through a surreal formalisation of the Wager.

10 The surreal numbers — in the sense of Conway’s (1966) On numbers and games —
form a real-ordered, non-Archimedean field, which is essentially constructed as the set of
Dedekind cuts of (signed) ordinals. This construction is parallel to the classical construction
of the real numbers via signed Dedekind cuts except that one starts from the semi-ring of
ordinals rather than from the semi-ring of natural numbers.
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76 FREDERIK HERZBERG

By means of Robinson’s (1966, 1996) nonstandard analysis, we shall prove
a von Neumann-Morgenstern Theorem for hyperreal-valued utility func-
tions (Hyperreal von Neumann-Morgenstern Theorem, Theorem 1) and de-
rive from there a rigorous decision-theoretic justification for the rationality
of maximising hyperreal expected utility (Hyperreal Expected Utility Theo-
rem, Theorem 3). Another non-Archimedean extension of the von Neumann-
Morgenstern Theorem was established by Herzberg (2009).

Hence, if the utility of salvation in Pascal’s Wager is modeled by positive
infinite hyperreals, then nonstandard analysis provides a response to Mc-
Clennen’s objection.

The Hyperreal von Neumann-Morgenstern Theorem (Theorem 1) follows
easily from the classical Expected Utility Theorem of von Neumann and
Morgenstern. Indeed, if ∗ denotes a nonstandard embedding11 from the
standard universe into the nonstandard universe, then one can prove the
following equivalence theorem, which is an easy consequence of apply-
ing the so-called Transfer Principle to the standard Expected Utility The-
orem of von Neumann and Morgenstern in Jensen’s (1967) formulation.
The Transfer Principle asserts that any formula ϕ [a1, . . . , an] with bounded
quantifiers and parameters a1, . . . , an from the original standard universe
is true if and only if the formula ϕ [∗a1, . . . ,

∗an] is true. As an exam-
ple, the Transfer Principle, when applied to the ordered field axioms for
(R,+,−,×,÷, 0, 1, <), proves that (∗R, ∗+, ∗−, ∗×, ∗÷, ∗0, ∗1, ∗ <) is an
ordered field, too.

In the statement of the following Theorem 1 (Hyperreal von Neumann-
Morgenstern Theorem), we employ the notion of internality in the sense of
nonstandard analysis. Internal means to be an element of the ∗-image of a
standard set — and this is also equivalent to being definable by a formula

11 This is an embedding of the superstructure over the reals into the superstructure of
a non-Archimedean model of the ordered field of the reals — usually obtained via an ul-
trafilter construction — which satisfies the Transfer Principle, the Countable Saturation
Principle and the Internal Definition Principle. (The superstructure V (M) over some set
M is defined via V0 = M , Vn+1(M) = Vn(M) ∪ P (Vn(M)) for all n ∈ N0 and
V (M) =

⋃
∞

n=0
Vn(M).) The Transfer Principle states the following: Any first-order propo-

sition φ[a1, . . . , an] of set theory that treats the reals as atoms and has only bounded quanti-
fiers (and parameters a1, . . . , an from the superstructure over the reals), holds if and only if
the proposition φ [∗a1, . . . ,

∗an], sometimes also referred to as ∗φ[a1, . . . , an] (the ∗-image
of the formula φ[a1, . . . , an]), holds in the nonstandard universe. The Countable Saturation
Principle states that any decreasing countable chain of nonempty internal sets, i.e. sets that
are elements of ∗-images of (standard) sets, must have a nonempty intersection. The Internal
Definition Principle says that any subset of an internal set that is defined via a set-theoretic
formula with internal parameters is itself internal. There are even definable (over Zermelo-
Fraenkel set theory with the Axiom of Choice) nonstandard extensions of the superstructure
over the reals, cf. Herzberg (2008a, 200b).
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of set theory which treats the reals as atoms and has internal, e.g. standard,
parameters.

A ∗-linear space is an internal linear space over the field ∗R. Furthermore,
an internal subset X of a ∗-linear space is ∗-convex if and only if px+ (1 −
p)y ∈ X for all x, y ∈ X and p ∈ ∗[0, 1]. Finally, an internal function
U : X → ∗R, defined on some ∗-convex set X is called ∗-affine if and
only if U (px+ (1 − p)y) = pU(x) + (1 − p)U(y) for all x, y ∈ X and
p ∈ ∗[0, 1]. Note that these definitions are consistent with the terminology
regarding ∗-images of formulae in Footnote 11, when applied to the formal
definitions of being a linear space or a convex set or an affine function; this
consistency is crucial for the proof of the Theorem which relies on the use
of the Transfer Principle.

Also, ∗(0, 1] and ∗(0, 1) denote the sets of hyperreals x satisfying 0 < x ≤
1 and 0 < x < 1, respectively. This definition, again, is consistent with the
Transfer Principle outlined in Footnote 11.

Theorem 1 : (Hyperreal von Neumann-Morgenstern Theorem) Let X be an
internal12 ∗-convex subset of a ∗-linear space, and let � be an internal bi-
nary relation ⊆ X ×X . There exists a ∗-affine function U : X → ∗R such
that

U(x) ≤ U(y) ⇐⇒ x � y

holds for all x, y ∈ X if and only if � possesses all of the following proper-
ties:

(1) Completeness. For all x, y ∈ X , either x � y or y � x.
(2) Transitivity. For all x, y, z ∈ X with x � y and y � z, one has

x � z.
(3) Infinitesimal Continuity. For all x, y, z ∈ X with x ≺ y ≺ z,13 there

exist hyperreals p, q ∈ ∗(0, 1) such that

px+ (1 − p)z ≺ y ≺ qx+ (1 − q)z.

(4) Independence. For all x, y, z ∈ X and every p ∈ ∗(0, 1], the relation
x � y is equivalent to px+ (1 − p)z � py + (1 − p)z.

12 Since all models in applications of nonstandard analysis are (standard parts) of internal
objects (otherwise, it is impossible to obtain any information on these objects via the Transfer
Principle), the requirement of internality is even in general not a relevant restriction. (Cf.
also Herzberg 2007.) But, as we shall see later on, we can even circumvent the notion of
internality for the purposes of this article.

13 For any x, y ∈ X , we write x ≺ y if x � y but y 6� x. If � is complete, then x ≺ y if
and only if y 6� x.
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Proof. See Appendix A. �

Herein, the interpretation of x � y should be read as ‘x is not preferred
over y’ or ‘either y is preferred over x or they are equivalent’.

The first two properties are just the weak order axioms14 .
When we compare Infinitesimal Continuity with ordinary continuity15 of

binary relations on convex spaces, we find that (0, 1) has been replaced by
∗(0, 1). In particular, we may choose p infinitesimally close to 1 and q in-
finitesimally close to 0 in the definition of Infinitesimal Continuity. This
corresponds to an infinitesimal perturbation x′ = px+ (1− p)z of x and an
infinitesimal perturbation z′ = qx+ (1− q)z of z. In other words, Infinites-
imal Continuity asserts the existence of a hyperreal (possibly infinitesimal)
perturbation, while ordinary continuity asserts the existence of a real, non-
infinitesimal perturbation. Hence, Infinitesimal Continuity is a much weaker
condition than the ordinary continuity axiom in the sense of Jensen (1967).

Our Independence axiom says that a preference relation x � y is pre-
served if x and y are both mixed with another lottery and the same, possibly
hyperreal, probability p. Whilst this is a stronger axiom than ordinary inde-
pendence in the sense of Jensen (for, it replaces (0, 1] by the larger set ∗(0, 1]
in the definition of independence for binary relations on convex spaces), it is
clearly the natural extension of the ordinary independence axiom to lotteries
with hyperreal chances.

Theorem 2 : (Internal Expected Utility Theorem) LetW be an internal finite-
dimensional linear space over the field ∗R of the hyperreals, let x1, . . . , xm ∈
W , and consider Y = {

∑m
i=1 pixi : p1, . . . , pm ∈ ∗[0, 1],

∑m
i=1 pi = 1}.

Let � be an internal binary relation ⊆ Y × Y . If the relation � satisfies all
the axioms of (1) Completeness, (2) Transitivity, (3) Infinitesimal Continuity
and (4) Independence, then there exist hyperreals u1, . . . , um such that

m∑

i=1

pixi �
m∑

i=1

qixi ⇐⇒
m∑

i=1

piui ≤
m∑

i=1

qiui

whenever p1, q1, . . . , pm, qm ∈ ∗[0, 1] with
∑m

i=1 pi = 1 and
∑m

i=1 qi = 1.

Proof. See Appendix A. �

14 In the terminology of Jensen 1967, the first two axioms characterise complete
preorderings.

15 The Continuity axiom is also known as the Archimedean property (cf. e.g. Jensen
1967).
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The hypothesis of internality of the relation � may be replaced by a stron-
ger, but conceptually more accessible assumption: standard-definability un-
der a basis choice. �, a relation on some subset Y of an n-dimensional
linear space W over ∗R (n ∈ N) is said to be standard-definable under a
basis choice if there exist

• an isomorphism ψ : W ' ∗Rn (a bijective map that commutes both
with addition and with multiplication by hyperreals) and

• a first-order formula ϕ (x1, . . . , xn, y1, . . . , yn) in which the canon-
ical extensions (∗-images) of maps from RM to RN (for any M,N ∈
N), as well as equality ‘=’ and the order relation ‘<’ may occur, with
free variables x1, . . . , xn, y1, . . . , yn and constants from ∗R

such that
∀v, w ∈ Y (x � y ⇐⇒ ϕ [ψ(v), ψ(w)])

(in other words: �=
{
〈v, w〉 ∈ Y 2 : ϕ [ψ(v), ψ(w)]

}
).

In particular, ϕ (x1, . . . , xn, y1, . . . , yn) may be any formula from the lan-
guage of ordered rings16 . Since, however, the theory of real-ordered fields
admits quantifier elimination (which can, for instance, be proved via the
so-called Tarski-Seidenberg Principle, cf. e.g. Bochnak, Coste, Roy 1998
[Proposition 5.5.2] or Marker 2002 [Theorem 3.3.15]), this would simply
mean that there are polynomials fi,j (i ≤ M , j ≤ N ) in the variables
X1, . . . , Xn, Y1, . . . , Yn with coefficients from ∗R such that

�=

M⋃

i=1

N⋂

j=1

{
〈v, w〉 ∈ Y 2 : fi,j (ψ(v), ψ(w)) ≥ 0

}
.

Note that whenever χ : ∗Rn ' ∗Rn is an automorphism of the linear
space ∗Rn over ∗R and f : ∗R2n → ∗R is defined via canonical extensions
of maps from RM to RN as well as constants from ∗R, then f ◦χ can also be
defined that way. (The reason is that χ itself is definable, since it is a linear
map from a finite-dimensional linear space onto itself.) Hence, the choice
of ψ is irrelevant: It can be replaced by χ ◦ ψ and thus by an arbitrary other
isomorphism between W and ∗Rn (as linear spaces over ∗R).

Every relation on an internal linear space that is standard-definable under
a basis choice is internal; the converse, however, is not true.

This new concept of standard-definability under a basis choice allows to
us state the following Theorem, which does no longer invoke the concept of

16 The operations in the language of ordered rings are addition, subtraction and multipli-
cation; the relations in this language are equality ‘=’ and the order relation ‘<’. Cf. e.g.
Marker 2002.
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internality, as an immediate corollary to Theorem 2. This theorem affirms a
conjecture by Sobel (1996).

Theorem 3 : (Hyperreal Expected Utility Theorem) LetW be a finite-dimen-
sional linear space over the field ∗R of the hyperreals, let x1, . . . , xm ∈ W
and suppose Y = {

∑m
i=1 pixi : p1, . . . , pm ∈ ∗[0, 1],

∑m
i=1 pi = 1} (the

convex hull of x1, . . . , xm over ∗R). Let � be a binary relation ⊆ Y × Y
and assume � to be standard-definable under a basis choice. If the relation
� on Y satisfies all the axioms of (1) Completeness, (2) Transitivity, (3)
Infinitesimal Continuity and (4) Independence, then there exist hyperreals
u1, . . . , um such that

m∑

i=1

pixi �
m∑

i=1

qixi ⇐⇒
m∑

i=1

piui ≤
m∑

i=1

qiui

whenever p1, q1, . . . , pm, qm ∈ ∗[0, 1] with
∑m

i=1 pi =
∑m

i=1 qi = 1.

Proof. See Appendix A. �

Note that the statement of the Hyperreal Expected Utility Theorem (Theo-
rem 3) does not involve the notion of an internal set any longer — in contrast
to, e.g. the Hyperreal von Neumann-Morgenstern Theorem (Theorem 1).

The Hyperreal Expected Utility Theorem shows that expected hyperreal-
valued utility functions represent preference orderings among lotteries based
on a finite set of pure outcomes and nonstandard probabilities — provided
that we impose certain natural conditions which are, apart from definability
or internality, the direct analogues (the ∗-images) of the original von Neu-
mann-Morgenstern conditions.

Hyperreal-valued utility functions have also been studied by Skala (1974),
Kannai (1992) and Lehmann (2001), in chronological order. Lehmann’s
(2001) article is also concerned with nonstandard von Neumann-Morgenstern
utility functions, but only allows for standard probabilities, which leads to a
different representation theorem. Kannai (1992) shows that every convex
preference ordering admits a concave utility function, provided one chooses
an appropriate nonstandard extension of the reals as the range of the util-
ity function. Skala’s (1974) results are, to the author’s knowledge, the most
relevant in the literature to the subject of this article. Skala, in refuting Fish-
burn’s (1971) impression that game theory with non-Archimedean utilities is
“rather barren”, constructs utility functions that represent mean groupoids. A
mean groupoid is a generalisation of a convex set on which a complete tran-
sitive order is defined. This more general approach leads, however, when
applied to our setting, to a significantly weaker result than our Hyperreal
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von Neumann-Morgenstern Theorem. In particular, Skala’s (1974) represen-
tation theorem [Theorem 9] only works in one direction. More importantly,
general weighted sums of pure outcomes as considered in the Hyperreal Ex-
pected Utility Theorem, are even undefined in the mean groupoid setting.

3. Resolving Hájek’s dilemma

3.1. Reflexivity under Addition and Pascal’s soteriology

In Subsection 1.3, we mentioned that Hájek (2003) reads Pascal as assuming
that the reward of salvation, I , is reflexive under addition, i.e. it does not
change when a positive utility is added onto it:

∀x ∈ R x+ I = I

(which may also be read as a definition of addition of reals onto I).
As an example, consider the most simple contemporary formalisation of

Pascal’s Wager — where the Wagerer’s utility function takes values in the
set of the extended real numbers R∪{±∞} with their natural ordering. The
utility of salvation is I = +∞. Recalling the convention that x + ∞ =
+∞ for every x ∈ R, the condition of Reflexivity under Addition is clearly
satisfied.

It should be noted at this point that there are good theological reasons not
to interpret Pascal’s Pensées §233 as stating that I should be reflexive under
addition.17 Furthermore, we have already argued in the introduction that
even a saved Wagerer’s utility could be improved upon through the salvation
of others. This would then particularly favour a model of the wager where I
is a hyperreal or surreal number.

Another argument which Hájek (2003) gave against modelling the utility
of salvation by a particular positive infinite hyperreal I was that the choice
of I would be somewhat “arbitrary”. However, the “arbitrariness” in the

17 For, reflexivity under addition directly contradicts a major and widely-held thesis in
Biblical soteriology (in particular in Roman Catholicism, but by far not limited to it), viz. the
belief that there is some hierarchy in Heaven: Not all of those who are saved will a priori
receive the same reward on Judgement Day. In particular, it might be possible that Pascal
himself shared that opinion: In Appendix B.2 we shall argue that Pascal seems to accept
the soteriological claims of the New Testament in their literal meaning. These speak plainly
about a hierarchy in Heaven, and hence of a non-trivial ordering of the utility associated
with salvation. (Moreover, a distinctive of Jansenist doctrine of justification is salvation by
grace alone and, at the same time, a hidden judgement.) Prior to these deliberations, in
Appendix B.1, we shall reconsider Hájek’s argument that Pascal viewed the utility of the
saved as reflexive under addition and discuss some of the questions that it raises.
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choice of I only reflects the “arbitrariness” in the choice of the hyperreal ex-
pected utility function U , which is only unique up to S-continuous monotone
∗-affine transformations, as a closer look at the Hyperreal Expected Utility
Theorem reveals. In other words, the “arbitrariness” in the choice of I is no
different from the “arbitrariness” of the classical expected-utility functions
of von Neumann and Morgenstern, which are also only unique up to mono-
tone affine transformations. (One could even go beyond this and argue that
all cardinal utility functions are somewhat arbitrary, as they always allow for
scaling.) Hence, the arbitrariness of the choice of I as some positive infi-
nite hyperreal is conceptually as innocent as the “arbitrariness” of choosing
a classical von Neumann-Morgenstern expected utility function. (In some
sense it is simply a matter of scaling the range of a cardinal utility function.)
Moreover, one should observe that in the setting of Pascal’s wager, such a
kind of arbitrariness may even be desirable for philosophical reasons, since
in the setting of Pascal’s wager it is God who determines the exact utility
level that a given individual believer receives. All that the Wagerer can de-
duce from the Biblical revelation (and Pascal’s interpretation thereof) is that
this utility level will be infinite, but certainly not its exact size.

Despite these points, Hájek’s interpretation of Pensées §233 (as demand-
ing reflexivity under addition) has some appeal. Therefore, we shall accept
the tension between this interpretation and other aspects of Pascal’s theology
for a moment and provide a solution to Hájek’s dilemma.

3.2. Irreflexivity under Multiplication

In our presentation of Pascal’s Wager (see Subsection 1.2), the Wagerer is
allowed to adopt mixed strategies: The Wagerer may base his decision to
wager for or against God on some random event of non-infinitesimal proba-
bility q > 0 (e.g. through dicing, tossing coins etc.). Such a strategy will be
called mixed strategy of chance q.

In order to apply Premise 2 in that setting, the Pascalian must prove that
the expected utility of any mixed strategy of chance q < 1 is less than the
the expected utility of outright wagering for God (the “mixed strategy” of
chance 1). As we will see, this is only possible if one has

∀q ∈ [0, 1) qI < I,

an axiom called (Strict) Irreflexivity under Multiplication.
For, suppose there existed some q < 1 such that qI = I , and consider

a mixed strategy of chance q. Then the conditional expected utility, con-
ditioned with respect to God’s existence, of the mixed strategy would be
qI + (1− q)f3 = I + (1− q)f3. If f3 is non-negative, this would be at least
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as much as I , the conditional expected utility associated with outright wa-
gering for God. Hence, if there was some q < 1 such that qI = I , then the
expected utility of the mixed strategy of chance q would always be at least
as much as expected utility of outright wagering for God. (In other words, if
such a q exists, then the corresponding mixed strategy would be co-optimal.
Put more bluntly: Flipping some suitably biased coin about whether to wager
for or against God maximises utility equally well as faith proper.)

This reasoning in favour of (Strict) Irreflexivity under Multiplication is due
to Duff (1986) and has been reiterated by Hájek (2003) as well as Bartha
(2007); it must be taken into account by every formalisation of the Wager
which allows the Wagerer to adopt a mixed strategy.

As Hájek (2003) and Bartha (2007) noted, any formalisation of the Wa-
ger where I is a hyperreal or surreal number automatically satisfies Strict
Irreflexivity under Multiplication (and hence is not susceptible to the reason-
ing above). We shall not replicate Hájek’s argument here, since it appears to
tacitly assume that f2 > f4. Instead, we give a new proof. Recall, for this
sake, that whenever J is a surreal or hyperreal number the implication

(1) J infinite ⇒ ∀r � 0 rJ infinite

(wherein, as before, a� bmeans that b−a is positive and non-infinitesimal)
holds for all J . From here, we can readily deduce that regardless of the exact
values for f2, f3, f4 (provided they are finite) mixed strategies always carry
an infinitely lesser reward than outright wagering for God. Indeed, observe
that choosing to wager for God yields expected utility pI+(1−p)f2, whilst
choosing to Wager for God with some probability q yields expected utility
p (qI + (1 − q)f3)+ (1−p) (qf2 + (1 − q)f4). The difference between the
former and the latter value is

(2) p(1 − q) (I − f3) + (1 − p)(1 − q) (f2 − f4) .

Now, whenever f2, f3, f4 are finite and p� 0 as well as q � 1, the first ad-
dend is always positive infinite (due to implication (1) applied to J = I− f3

and r = p(1 − q)) whilst the second addend is finite. Hence the difference
in expected utility between outright wagering for God and a mixed strategy
is always positive, even infinite. Therefore, mixed strategies where the prob-
ability of wagering against God is non-infinitesimal always carry a lesser
reward if I is some positive infinite hyperreal or surreal utility. Hence, Strict
Irreflexivity under Multiplication holds whenever I is an infinite hyperreal
or surreal number. (Hájek’s original argument tacitly assumed that f2 > f4

and proved that the difference in expected utility between outright wagering
for God and a mixed strategy of chance q is strictly decreasing in q and zero
for q = 1, which proves that mixed strategies are suboptimal.)
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However, neither hyperreals nor surreals are reflexive under addition in ∗R
or No (the field of surreal numbers, i.e. the Dedekind completion of the field
generated by the semi-ring of ordinals), respectively. Thus, we have yet to
show that there exists a set S of utilities of the Wagerer in which the utility
of salvation satisfies both Reflexivity under Addition and Strict Irreflexivity
under Multiplication.

This will be accomplished in Subsection 3.3: We will construct a convex
linearly ordered set S := SRA−IM containing the reals which does satisfy
both Reflexivity under Addition and Strict Irreflexivity under Multiplica-
tion.18 Moreover, even Premise 2 can be defended for SRA−IM-valued util-
ity functions (as we saw in the discussion of Corollary 6) under additional
hypotheses on the Wagerer’s soteriological presuppositions. Hence, for-
malising Pascal’s Wager through an SRA−IM-valued utility function allows
to respond to McClennen’s (1994) decision-theoretic objection and Hájek’s
dilemma at the same time.

3.3. A model for S with Strict Irreflexivity under Multiplication and Reflex-
ivity under Addition for all infinite utilities

We shall construct a linearly-ordered set S ) R such that the maximum
I ∈ S, the utility of salvation, has the property of Irreflexivity under Multi-
plication and Reflexivity under Addition. Furthermore, taking convex com-
binations of elements of S will be defined in a way that is consistent with
the linear order on S. Taking convex combinations with 0 will implicitly de-
fine an operation of multiplication by elements of [0, 1], furthermore it will
define an operation of addition for some pairs of elements of S. These oper-
ations are, as we will see, associative as well as commutative and satisfy the
law of distributivity. Hence the set S defined in this Subsection is a rather
well-behaved model for the set of possible utilities of a Pascalian Wagerer.

Irreflexivity under Multiplication and Reflexivity under Addition for I im-
ply, via the law of distributivity (in the form q(x+y) = qx+qy for q ∈ (0, 1]
and x, y ∈ S), Reflexivity under Addition for qI . Indeed,

∀x ∈ R ∀q ∈ (0, 1] qx+ qI = q(x+ I) = qI,

hence (inserting x = y/q): y + qI = qI for all y ∈ R. Thus, qI ∈ S must
be reflexive under addition for all q ∈ (0, 1].

18 In Appendix C, we construct another linearly ordered superset of the reals which satis-
fies Reflexivity under Addition and Strict Irreflexivity under Multiplication, but the ordering
is inconsistent with mixing the utilities of mixed strategies. Also, it is not clear how to defend
Premise 2 when S is the set constructed in Appendix C.
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Hence a natural candidate for S is

(3) S := SRA−IM := R ∪ {qI : q ∈ (0, 1]} .

So, in addition to the maximal utility I := 1I , there is a continuum of other
infinite utilities, each denoted by qI for some q ∈ (0, 1). (In all of this
subsection, R and its subintervals may be replaced by ∗R. This would allow
to consider nonstandard probabilities as well.)

In order to develop decision theory under risk with this set of utilities,
we need to be able to form convex combinations of elements of S. For
x, y ∈ R ⊂ S, convex combinations shall be defined in the ordinary way.
For x ∈ R, q ∈ (0, 1] and r ∈ [0, 1], we define

(1 − r)x+ r(qI) = (rq)I

(with the convention — typical for probability theory — that 0I = 0), in
line with associativity of multiplication and Reflexivity under Addition for
(rq)I . Finally, for q, q′ ∈ (0, 1] and r ∈ [0, 1] we set

(1 − r)qI + r(q′I) =
(
(1 − r)q + rq′

)
I.

This implicitly defines addition for some pairs of elements in S (viz. for
those 〈x, y〉 ∈ S2 where x ∈ R or y ∈ R or 〈x, y〉 = 〈qI, q′I〉 wherein
q+ q′ ∈ [0, 1] with q+ q′ = 1) is not closed under addition, e.g. I + I is un-
defined), and it also defines multiplication by elements of [0, 1] (simply take
y = 0 as the second element of a convex combination). It is an easy exercise
to check that the law of distributivity holds, and that both multiplication by
elements of [0, 1] and addition are associative as well as commutative.

Moreover, one can extend the linear order < on the reals to S by setting

∀q ∈ (0, 1] ∀x ∈ R qI > x

(thus making each qI infinite and hence S non-Archimedean) and

qI < rI ⇔ q < r

for all q, r ∈ (0, 1].
The strict ordering < is preserved by multiplication by elements of (0, 1],

i.e.
∀x, y ∈ S ∀r ∈ (0, 1] x < y ⇒ rx < ry
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and the weak ordering ≤ is preserved by addition:

∀x, y, z ∈ S x < y ⇒ x+ z ≤ y + z.

(Note that if x < y are reals, then x + qI = qI = y + qI , hence addition
by qI , for any q ∈ (0, 1] does not preserve the strict ordering.) The strict
ordering < is preserved, however, by adding a real.

These observations yield that forming convex combinations is consistent
with the strict ordering <:

∀x, y ∈ S ∀r ∈ (0, 1) x < y ⇒ x < rx+ (1 − r)y < y.

(One can easily prove this directly as well: The right-hand side obviously
holds whenever x, y ∈ R or both x = qI and y = q′I for some q, q′ ∈ (0, 1].
It also holds whenever x ∈ R and y = qI for some q, q′ ∈ (0, 1], since then
rx+ (1 − r)y = (1 − r)qI is infinite, but dominated by y = qI .)

Finally, mixed strategies do not yield optimal utility in this setting: The
expected utility of wagering for God with probability q ∈ (0, 1) equals
p (qI + (1 − q)f3)+(1−p) (qf2 + (1 − q)f4) whilst the expected utility of
outright wagering for God is pI +(1− p)f2, and, as we see from expression
(2), the difference between the two expected utilities is

(1 − q) (p (I − f3) + (1 − p) (f2 − f4)) .

Recalling that f2, f3, f4 are finite and in light of the Reflexivity under Ad-
dition for I and pI , we obtain that the expected utility of wagering for God
with probability q ∈ (0, 1) is (1 − q)pI , which is strictly less than I .

Now we shall provide a decision-theoretic foundation for the use of
SRA−IM-valued utility functions. In the following theorem, Y is a linear
space, B ⊆ Y a subset, x1 ∈ B, B0 := B \ {x1}, whilst X and X0 denote
the convex hulls of B and B0, respectively.

Theorem 4 : Let � be a binary relation on X , and suppose � is complete,
transitive, continuous and independent. Assume x1 � x0 ∼ y0 for all
x0, y0 ∈ B. Then, there exists a function Ū : X → SRA−IM such that

∀p ∈ [0, 1] ∀x0 ∈ X0 Ū (px1 + (1 − p)x0) = 1 + pI

(thus Ū (x0) = 1 and Ū (px1) = pI for all p ∈ (0, 1], x0 ∈ X0) and

∀x, y ∈ X x � y ⇐⇒ Ū(x) ≤ Ū(y).
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The following lemma is used in the proof of Theorem 4.

Lemma 5 : Let � be a binary relation on X0 that is complete, transitive
and independent. Suppose x ∼ y for all x, y ∈ B0. Then x ∼ y for all
x, y ∈ X0.

(The proofs can again be found in Appendix A.)
One of the advantages of choosing S = SRA−IM is that the infinite value

I is not specified any further. It is simply an entity outside R for which
convex combinations with reals, multiplication with scalars between 0 and
1 and also an order relation can be naturally defined (as outlined above).
For this reason, no charges of “arbitrariness” can be brought against using
S = SRA−IM, while the axioms used to characterise the relations among
S = SRA−IM (in particular the relation of I to R, e.g. the transitivity rule,
the axioms of irreflexivity under multiplication and reflexivity under addition
etc.) are still mathematically natural or philosophically necessary.

4. Application to Pascal’s Wager

In the previous two sections we have refuted McClennen’s point about de-
cision theory with infinite utilities and (for special cases) solved Hájek’s
dilemma in general terms. We shall now apply this to the Pascal’s Wager.
We start with a corollary to the Hyperreal Expected Utility Theorem. All
proofs can be found in Appendix A.

If x1, . . . , xm ∈ ∗Rn, then the convex hull of x1, . . . , xm over ∗R is the set
{

m∑

i=1

pixi : p1, . . . , pm ∈ ∗[0, 1],

m∑

i=1

pi = 1

}

,

and the convex hull of {x1, . . . , xm} over R is defined as
{

m∑

i=1

pixi :
m∑

i=1

pi = 1, p1, . . . , pm ∈ [0, 1]

}

.

Corollary 6 : Let x1, . . . , xm ∈ ∗Rn, let V and Y be the convex hulls of
x1, . . . , xm over R and ∗R, respectively, and let � be an internal binary
relation ⊆ Y × Y that satisfies the axioms of Completeness, Transitivity,
Infinitesimal Continuity and Independence (cf. Theorem 1). Then, the re-
striction of � to V is transitive, complete and independent. Furthermore,
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there are f1, . . . , fm ∈ ∗R such that

m∑

i=1

pixi �
m∑

i=1

qixi ⇐⇒
m∑

i=1

pifi ≤
m∑

i=1

qifi(4)

whenever p1, q1, . . . , pm, qm ∈ ∗[0, 1] with
∑m

i=1 pi = 1 and
∑m

i=1 qi = 1.
If, moreover, x1 � x2 ∼ · · · ∼ xm

19 , then f2 = · · · = fm can be
any hyperreal and f1 can be any hyperreal > f2 (e.g. f1 positive infinite,
f2 = · · · = fm = 1).

Let us now apply the Corollary 6 to Pascal’s Wager. n = 2 and m = 4.
Recall that 〈p̄, q̄〉 is the lottery described in Subsection 1.2, where p̄ is the
subjective probability for the existence of the Christian God and q̄ is the
probability that the Wagerer chooses to wager for Him. Hence, for the rest
of this section:

(1) x1 = 〈1, 1〉 represents the pure outcome where the Christian God
exists and is wagered for.

(2) x2 = 〈0, 1〉 represents the pure outcome where the Christian God
does not exist, but is nevertheless wagered for.

(3) x3 = 〈1, 0〉 represents the pure outcome where the Christian God
exists, but is wagered against.

(4) x4 = 〈0, 0〉 represents the pure outcome where the Christian God
does not exist and is wagered against.

We now rephrase Corollary 6 in non-technical terms: Whenever the Wa-
gerer’s preference relation is

• transitive
• complete (on the space of lotteries with hyperreal chances),
• unaffected by infinitesimal perturbations (Infinitesimal Continuity),
• unaffected by mixing with other lotteries (Independence), and
• internal, e.g. definable through standard functions with hyperreal

parameters,
there are cardinal utilities {f1, . . . , f4} associated with the four pure out-
comes x1, . . . , x4, and for any two lotteries

∑4
i=1 pixi and

∑4
i=1 qixi, the

first lottery is not preferred over the first if and only if the expected utility
from the first lottery (

∑4
i=1 pifi) is less than or equal to the expected utility

from the second lottery (
∑4

i=1 qifi). If we interpret the assumptions on the
Wagerer’s preference relation as rationality axioms, then we obtain indeed
that reason demands the maximisation of expected utility.

19 We write x ∼ y if both x � y and y � x.
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In particular, outright wagering for God is strictly preferable to any mixed
strategy of chance q̄ � 1:

Corollary 7 : Assume the hypotheses of Corollary 6. Suppose, in addition,
that n = 2, m = 4, that f1 is a positive infinite hyperreal, and that f2, f3, f4

are finite. Then for all p̄, q̄ ∈ ∗[0, 1] such that both p̄ and 1 − q̄ are non-
infinitesimal,

〈p̄, q̄〉 ≺ 〈p̄, 1〉.

Before we consider the special case where f2 = f3 = f4, let us note the
following points about the use of hyperreals in formalising Pascal’s Wager:

• The axiom of Completeness requires the preference relation to be de-
fined between lotteries with hyperreal (including infinitesimal)
chances for each of the pure outcomes (e.g. the event that the Wa-
gerer wagers for God and the existence of God). This has no conse-
quences whatsoever for the Wagerer’s subjective probability for the
existence of God; it does by no means imply that the Wagerer as-
signs a non-real or even infinitesimal probability to the existence of
the Christian God (which would contradict Premise 1). In applying
the Hyperreal Expected Utility Theorem to the Pascalian Wagerer,
we merely require him to have a preference realation that is defined
over lotteries with hyperreal — including infinitesimal — subjective
probabilities for the existence of God and for the event that the Wa-
gerer actually wagers for Him.

• Corollary 6 is a consequence of the Hyperreal Expected Utility The-
orem and hence ultimately of the classical Expected Utility Theorem
of von Neumann and Morgenstern. Therefore, as was already dis-
cussed in Subsection 3.1, the “arbitrariness” of modelling f1 = I , the
subjective utility of salvation of a given human individual, by some
particular infinite hyperreal (an objection of Hájek 2003 and Bartha
2007 against the use of hyperreals as values for I) is due to the fact
that von Neumann-Morgenstern utility functions are only unique up
to a positive factor (and a shift by an additive scalar). Hence, this “ar-
bitrariness” merely reflects a typical property of decision-theoretic
cardinal utility functions, and moreover there are sound theological
reasons for accepting such an “arbitrariness” in order to save the tran-
scendence of God’s judgement.

However, a Wagerer might nevertheless not be prepared to impose
such an arbitrary cut-off on her utility in her model. Therefore, we
will now construct, under additional assumptions on the Wagerer’s
preferences, an expected-utility representation of the Wagerer’s pref-
erence ordering where the Wager’s utility function takes values in the
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set S = R ∪ {rI : r ∈ (0, 1]}, wherein I is conceived as represent-
ing an infinite number. (This superset of the reals can be closed under
convex combinations in a natural way, and in can be linearly ordered
in a manner that is consistent with convex combinations.)

If f2 = f3 = f4 = 1 and f1 is a positive infinite hyperreal I and the
Wagerer’s preference ordering � satisfies the hypotheses of Corollary 6,
then the following Corollary 8 shows that � can be represented through
an SRA−IM-valued utility function. We recall that SRA−IM is the set R ∪
{rI : r ∈ (0, 1]}, on which a linear order as well as convex combinations
which respect the linear ordering can be defined naturally (see Equation (3)
in Subsection 3.3 and the discussion surrounding it).

In fact, the following Corollary 8 overlaps with a simpler theorem — The-
orem 9 below — about the representation of preference orderings by means
of SRA−IM-valued utility functions.

Corollary 8 : Assume the hypotheses of Corollary 6, suppose that n = 2 and
m = 4 as well as x1 � x2 ∼ x3 ∼ x4. We may put f1 = f2 = f3 = 1 and
f4 = I for some infinite hyperreal I . Then

4∑

i=1

pixi �
4∑

i=1

qixi ⇐⇒
4∑

i=1

pifi ≤
4∑

i=1

qifi in SRA−IM

whenever p1, q1, . . . , p4, q4 ∈ [0, 1] with
∑4

i=1 pi =
∑4

i=1 qi = 1.
Also, for all p̄, q̄ ∈ [0, 1],

〈p̄, q̄〉 ≺ 〈p̄, 1〉.

The hypotheses of Corollary 6 (and hence of Corollary 8) entail that � can
even compare lotteries with arbitrary hyperreal (e.g. infinitesimal) chances.
Corollary 8 provides a SRA−IM-valued expected-utility representation of the
restriction of this preference relation � to lotteries with standard, real
chances.

The following theorem, a special case of Theorem 4, is similar to Corol-
lary 8. It can be proved without any reference to nonstandard analysis or the
hyperreals. Whilst it does not require the preference ordering to be defined
for hyperreal chances (let alone being internal), it does assume that the pref-
erence ordering is continuous. This assumption simply reflects that there is
a continuum of infinite utilities in SRA−IM (one for each lottery with chance
q > 0) and thus is not problematic.

Recall that x1 := 〈1, 1〉, x2 := 〈0, 1〉, x3 := 〈1, 0〉, and x4 := 〈0, 0〉.
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Theorem 9 : Let X = [0, 1]2 and let � be a binary relation on X . Suppose
� is complete, transitive, continuous and independent. Assume x1 � x2 ∼
x3 ∼ x4. Denote the convex hull of {x2, x3, x4} by X0, and consider the
function Ū : X → SRA−IM given by

∀p ∈ [0, 1] ∀x0 ∈ X0 Ū (px1 + (1 − p)x0) = 1 + pI,

thus Ū (x0) = 1 and Ū (px1) = pI for all p ∈ (0, 1], x0 ∈ X0. Then

∀x, y ∈ X x � y ⇐⇒ Ū(x) ≤ Ū(y).

Proof of Theorem 9. Apply Theorem 4 to B = {x1, . . . , x4}. �

This theorem again yields (even under simpler assumptions than those of
Corollary 8), that outright wagering for God is strictly preferable to any
mixed strategy with chance q̄ < 1:

Corollary 10 : Under the assumptions of Theorem 9,

∀p̄ ∈ (0, 1] q̄ ∈ [0, 1) 〈p̄, q̄〉 ≺ 〈p̄, 1〉.

Note that the maximum I of SRA−IM is both reflexive under addition and
strictly irreflexive under multiplication. Hence, if f2 = f3 = f4, one can
respond, based on Corollary 8 and the more general Theorem 9, to both
McClennen’s objection and Hájek’s dilemma by using a single-valued util-
ity function, viz. a utility function with values in SRA−IM. The SRA−IM-
valued utility representation of the Wagerer’s preferences seems philosoph-
ically much more adequate than the ∗R-valued utility representation, since
SRA−IM has a maximum (viz. I , the utility of salvation), whereas ∗R has
none. Hence, the maximal utility of the Wagerer, when measured through
an SRA−IM-valued utility function, is just the maximum of SRA−IM, whilst a
∗R-valued utility function would cut off the Wagerer’s utility at a somewhat
arbitrary value in ∗R (as was argued above).

The philosophical interpretation of the equality f2 = f3 = f4 is, of course,
that the Wagerer is indifferent among all pure outcomes except salvation. It
can be decomposed into the following two orthodox theological proposi-
tions. The first proposition is Reformed theology’s view of hell; the sec-
ond proposition is supported by Jesus’ promises in Matthew 6,33 and Mark
10,30:

(1) Separation from God as judgement for non-believers: f3 = f4 holds
if the Wagerer believes that the Christian God would not punish those
who choose not to have fellowship with Him, but simply “leaves
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them alone”, i.e. as “well”-off (viz. f3) as they were if there was
no God (f4).

(2) Utility-neutral sanctification: f2 = f4 holds if the Wagerer assumes
that he does not have to make any sacrifices for his faith on earth that
would reduce his overall utility (through mental peace, joy, fellow-
ship with other believers etc.). Any sacrifices that he makes will, at
least in the long run, result in an offsetting increase in utility, even
without special divine intervention. If God does not exist and he wa-
gers for Him nevertheless, he is just as well-off (viz. f2) as he would
be if he decides otherwise (f4).

In summary, if the Wagerer’s view of the Christian gospel entails these
two propositions, she will be indifferent among all pure outcomes except
salvation, and therefore, by Corollary 8 and Theorem 9, reason demands
that she wagers for God and that her preference ordering can be represented
through an SRA−IM-valued utility function. There are two sets of rationality
axioms on the Wagerer’s preference ordering which yield this result: Either

• the Wagerer’s preference ordering is complete for lotteries with real
chances, is transitive, is unaffected by real perturbations (Continu-
ity), and is unaffected by mixing with other real-chance lotteries (In-
dependence), or

• the Wagerer’s preference ordering is complete for lotteries with hy-
perreal chances, is transitive, is unaffected by infinitesimal perturba-
tions (Infinitesimal Continuity), is unaffected by mixing with other
lotteries (Independence), and is internal (e.g. definable through stan-
dard functions with hyperreal parameters).

If f2 = f3 = f4, one can also prove the validity of Pascal’s Wager via
the (game-theoretic) principle of stochastic dominance, based on either an
SRA−IM-valued or a hyperreal-valued utility function.

At the end of this Section, we should recall that we only studied the
special case f2 = f3 = f4 = 1 after we had accepted that the use of
hyperreal-valued utility functions in formalising Pascal’s wager is contro-
versial (on the grounds of infinite hyperreals’ irreflexivity under addition
and their “arbitrariness”) and looked for other ways to meet both McClen-
nen’s decision-theoretic objection and Hájek’s dilemmas. The present author
thinks nevertheless that the objections against the use of hyperreal-valued
expected utility functions can be answered for mathematical and theologico-
philosophical reasons and that on the contrary there are excellent reasons to
employ hyperreal-valued expected utility functions in formalising Pascal’s
wager (see Subsection 3.1). Well, and in a formalisation based on hyperreal
expected utility functions, the validity of Pascal’s wager can be maintained
in general, not just in the special case f2 = f3 = f4 = 1.
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5. Conclusion

We have shown that the concept of hyperreal expected utility has a sound
decision-theoretic basis: Under some natural conditions on the preference
orderings, expected hyperreal-valued utility functions on convex sets repre-
sent preference orderings among lotteries based on a finite set of pure out-
comes and hyperreal probabilities.

This is good news for the Pascalian since Pascal’s Wager — and most of
its generalisations, such as the many-gods wagers studied by Bartha (2007)
—, only allow a finite number of pure outcomes. In the original Wager, there
are just four pure outcomes: the Wagerer believes in God and God exists, or
he does not wager for Him, although He exists, or he does wager for Him,
whilst He does not exist, or he does not wager for Him, nor does He exist.

Therefore, a formalisation of Pascal’s argument by means of hyperreals is
consistent with a decision theory that incorporates nonstandard probabilities,
whilst every internal (nonstandard) probability measure canonically induces
a standard real-valued probability measure. (In particular, if one composes a
nonstandard probability measure on a finite set with the standard part map20 ,
one obtains a standard probability measure on that finite set21 ).

The Hyperreal Expected Utility Theorem (Theorem 3) provides a gen-
eral decision-theoretic justification of hyperreal-valued expected utility func-
tions. Thus, one may now consider, in the spririt of Bartha’s (2007) conclu-
sion (“Beyond Pascal’s Wager” [pp. 39-41]), the use of hyperreal stochastic
utilities in other situations where either an infinite good is at stake, or where
intolerable outcomes should be avoided, or where both Kantian and utilitar-
ian deliberations seem to have their point.

In addition, we have constructed — motivated by the hyperreals — a con-
vex linearly ordered superset S = SRAIM of the reals which has a maximum
that is both reflexive under addition by finite numbers and strictly irreflexive
under multiplication by scalars < 1, thereby proposing a way out of Hájek’s
dilemma.

Moreover, if one assumes that the Wagerer is indifferent among all pure
outcomes except salvation (f2 = f3 = f4 in the notation of the Wagerer’s

20 Let r be a hyperreal number such that r is S-bounded, i.e. there exists some standard
natural number N ∈ N with −N ≤ r ≤ N . Then, due to the Hausdorff property of the
order topology on R, there exists a unique real number s, which minimises |r − s| among
all s ∈ R. This s is then denoted ◦r and referred to as the standard part of r. The function
st : r 7→ ◦r is called the standard part map.

21 This is just a special case of a general construction: Any internal probability function
can be extended to a (σ-additive) probability measure with standard values, as was shown by
Loeb (1975). Almost all contributions to probability theory using nonstandard methods rely
on this basic result of Loeb (1975).
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payoff matrix), which e.g. follows from all those theological systems (nota
bene, on the Wagerer’s part) where judgement just means separation from
God and where sanctification is utility-neutral, then Theorem 9 shows that
the preference ordering can be represented by a utility function whose range
is contained in the aforementioned convex linearly ordered set S.

Summing up, we have determined under which hypotheses one can simul-
taneously refute two major arguments against Pascal’s Wager, viz. McClen-
nen’s decision-theoretic objection and Hájek’s dilemma, through a formali-
sation with a single-valued utility function whose range is a certain superset
S reals: Aside from rationality axioms on the preference ordering, one has
to impose the assumption of f2 = f3 = f4 (in the notation of the Wagerer’s
payoff matrix above), which can be upheld if the Wagerer views sanctifi-
cation as utility-neutral and believes that the Christian God will judge non-
believers by “mere” separation from Him. However, the most elegant — and
for mathematical, decision-theoretic, philosophical and theological reasons
perhaps most suitable — formalisation of Pascal’s wager is probably the one
based on hyperreal expected utility functions.

Appendix A. Proofs

Proof of the Hyperreal von Neumann-Morgenstern Theorem (Theorem 1).
The (standard) Expected Utility Theorem of von Neumann and Morgenstern
about preference relations on convex sets says the following: A binary rela-
tion on any convex subset X of a linear space satisfies the axioms of com-
pleteness, transitivity, continuity and independence if and only if there exists
some affine function U : X → R such that the estimate U(x) ≤ U(y) is
equivalent to x � y (for all x, y ∈ X).

We shall apply the Transfer Principle to this Expected Utility Theorem.
Note, for this purpose, that the Transfer Principle also yields that the ∗-image
of the set of binary relations on convex subsets of linear spaces is just the set
of internal binary relations on ∗-convex subsets of ∗-linear spaces.

Hence, applying the Transfer Principle to the standard Expected Utility
Theorem leads to the following result: Any internal binary relation on a ∗-
convex subset of a ∗-linear space is ∗-complete, ∗-transitive, ∗-continuous
and ∗-independent if and only if there exists a ∗-affine function U : X → ∗R
satisfying

∀x, y ∈ X U(x) ≤ U(y) ⇔ x � y.

But, ∗-transitivity is the same as transitivity, and ∗-completeness is the
same as completeness. Furthermore, if we apply the Transfer Principle to
the definitions of continuity and independence (for standard binary relations
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on convex sets), we obtain that ∗-continuity is the same as Infinitesimal Con-
tinuity, and ∗-independence is the same as Independence. This completes the
proof of the Theorem.

�

Proof of the Internal Expected Utility Theorem (Theorem 2). By the Hyper-
real von Neumann-Morgenstern Theorem (Theorem 1), there exists a ∗-
affine function U : Y → ∗R which represents �. Since U (

∑m
i=1 pixi) =

∑m
i=1 piU (xi) holds for all p1, . . . , pm,∈

∗[0, 1] with
∑m

i=1 pi = 1, we may
simply put ui := U (xi) for every i ∈ {1, . . . ,m}. �

Proof of the Hyperreal Expected Utility Theorem (Theorem 3). First, sup-
pose Y = {

∑m
i=1 pixi : p1, . . . , pm ∈ ∗[0, 1],

∑m
i=1 pi = 1} and � is an

internal binary relation ⊆ Y × Y . We have to show that the Hyperreal
von Neumann-Morgenstern Theorem (Theorem 1) may be applied in the
setting of the Hyperreal Expected Utility Theorem (Theorem 3).

For this sake, note that if n = dim∗RW is the dimension of W as a linear
space over the field ∗R, then W is isomorphic (over ∗R) to ∗Rn. Let us
denote this isomorphism by ψ : W ' ∗Rn.

If y1, . . . , ym are elements of an arbitrary ∗-linear space Z, then the set

C (y1, . . . , ym) :=

{

z ∈ Z : ∃p1, . . . , pm ∈ ∗[0, 1]

(
m∑

i=1

pi = 1, z =
m∑

i=1

piyi

)}

is internally defined and therefore — according to the Internal Definition
Principle22 — itself an internal set. Moreover, it is closed under convex
combinations with weights from ∗R. Hence it is a ∗-convex set (the ∗-convex
hull of y1, . . . , ym).

Since ψ is an isomorphism, we find that

(5) ψ (Y ) =

{

z ∈ ∗R
n : ∃p1, . . . , pm ∈ ∗[0, 1]

(
m∑

i=1

pi = 1, z =
m∑

i=1

piψ (xi)

)}

.

22 See Footnote 11.
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Therefore, the observation of the previous paragraph may be applied to
C (ψ (x1) , . . . , ψ (xm)) = ψ(Y ). Hence X := ψ (Y ) is a ∗-convex sub-
set of the ∗-linear space ∗Rn.

Now, the internality of � on Y ensures that the relation �X , defined by

ξ1 �X ξ2 :⇔ ψ−1 (ξ1) � ψ−1 (ξ2) ,

is also internal (and if � is standard-definable under a basis choice, �X will
have that property, too: �X=

{
〈x, y〉 ∈ X2 : ϕ (x, y)

}
). Since the formula

ϕ only involves the canonical extensions (∗-images) of standard maps as
well as equality and the order relation, �X is internally defined and thus,
according to the Internal Definition Principle, internal.

Thus, we may apply the Hyperreal von Neumann-Morgenstern Theorem
(Theorem 1) to the set X = ψ (Y ) and the relation �X on X . Observe that
�X satisfies the axioms of Completeness, Transitivity, Infinitesimal Conti-
nuity and Independence if and only if the relation � on Y satisfies them
(because ψ is an isomorphism and thus commutes with ∗-convex combina-
tions, i.e. convex combinations with weights from ∗R). Furthermore, the
equivalence assertion

∀ξ1, ξ1 ∈ X ξ1 �X ξ2 ⇔ U (ξ1) ≤ U (ξ2)

is true if and only if

∀y1, y2 ∈ Y y1 � y2 ⇔ U (ψ (y1)) ≤ U (ψ (y2)) .

Hence, after we have applied the Hyperreal von Neumann-Morgenstern
Theorem to X and �X , we actually obtain the following statement: The
relation � on Y satisfies the axioms of Completeness, Transitivity, Infini-
tesimal Continuity and Independence if and only if there is some ∗-affine
function U : ψ (Y ) → ∗R with

∀y1, y2 ∈ Y y1 � y2 ⇔ U (ψ (y1)) ≤ U (ψ (y2)) .

Finally, it is easy to see that the existence of a ∗-affine function U :
ψ (Y ) → ∗R with y1 � y2 ⇔ U (ψ (y1)) ≤ U (ψ (y2)) for all y1, y2 ∈ Y
implies the existence of the hyperreals u1, . . . , um as in the statement of the
Hyperreal Expected Utility Theorem: Given U : ψ(Y ) → ∗R, simply set

∀i ∈ {1, . . . ,m} ui := U (ψ (xi)) .
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Since U is ∗-affine, this already entails that

U

(
m∑

i=1

piψ (xi)

)

=
m∑

i=1

piui

for all p1, . . . , pm ∈ ∗[0, 1] with
∑m

i=1 pi = 1.
�

Proof of Lemma 5. Fix any x0 ∈ X0. Note that ∼ is transitive as � is tran-
sitive (in fact, ∼ is an equivalence relation). Therefore, whenever x, y ∼ x0,
we have x ∼ y and thus, by the independence of �, even

px+ (1 − p)y � py + (1 − p)y � px+ (1 − p)y,

hence px+(1−p)y ∼ py+(1−p)y = y ∼ x0 for all p ∈ [0, 1]. Therefore,
the set C0 := {x ∈ X0 : x ∼ x0} is convex. Moreover, B0 ⊆ C0, whence
C0 must even contain the convex hull ofB0. SoC0 ⊇ X0 and thusX0 = C0.
Hence, for all x, y ∈ X0 we already have x ∼ x0 ∼ y and therefore x ∼ y
(again by transitivity of ∼). �

Proof of Theorem 4. Since X0 is convex, the restriction of � to X0 is not
only complete and transitive, but independent, too. Therefore, Lemma 5
may be applied to � and we obtain that x ∼ y for all x, y ∈ X0.

By the classical von Neumann-Morgenstern Theorem, there exists an affine
function U : X → R such that

∀x, y ∈ X x � y ⇔ U(x) ≤ U(y).

For all x0, y0 ∈ X0, we have x1 � x0 ∼ y0 by Lemma 5 and therefore
U (x1) > U (x0) = U (y0). We may assume that U (x0) > 0 for all
x0 ∈ X0. This means that for all p, q ∈ [0, 1] and x0, y0 ∈ X0, one has
U (px1 + (1 − p)x0) > U (qx1 + (1 − q)y0) if and only if pU (x1) + (1 −
p)U (x0) > qU (x1) + (1 − q)U (y0) = qU (x1) + (1 − q)U (x0) which in
turn holds if and only if (p− q)U (x1) > (p− q)U (x0), and this inequality
is equivalent to p > q (since U (x1) > U (x0)).

Hence,

∀p, q ∈ [0, 1] ∀x0, y0 ∈ X0

U (px1 + (1 − p)x0) > U (qx1 + (1 − q)y0) ⇔ p > q.
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This readily yields

∀p ∈ [0, 1] ∀x0, y0 ∈ X0 U (px1 + (1 − p)x0) = U (px1 + (1 − p)y0) .

Therefore, there exists an increasing function v : [0, 1] → R such that

∀p ∈ [0, 1] ∀x0 ∈ X0 U (px1 + (1 − p)x0) = v(p).

SinceU is affine, v must be affine, too. Hence v(p) = v(0)+(v(1) − v(0)) p
for all p ∈ [0, 1].

It is clear that v(0) = min v = minU = U (x0) and v(1) = max v =
maxU = U (x1), so v(1) > v(0). Define now a function ϕ : R → S via

∀u ∈ R ϕ(u) = 1 +
u− v(0)

v(1) − v(0)
I

and
Ū := ϕ ◦ U.

Then, for all p ∈ [0, 1] and x0 ∈ X0,

Ū (px1 + (1 − p)x0) = ϕ ◦ U (px1 + (1 − p)x0) = ϕ (v(p))

= ϕ (v(0) + (v(1) − v(0)) p) = 1 + pI

Moreover, since ϕ is increasing andU is a von Neumann-Morgenstern utility
function, we obtain

∀x, y ∈ X x � y ⇔ Ū(x) ≤ Ū(y).

�

Proof of Corollary 6. By Theorem 3 there are f1 = u1, . . . , fm = um ∈ ∗R
such that the equivalence statement (4) holds. If x1 � x2 ∼ · · · ∼ xm, then
f1 > f2 = · · · = fm. Since the vector 〈u1, . . . , um〉 in Theorem 3 is only
unique up to affine transformations, f2 = · · · = fm can indeed be any given
hyperreal and f1 can be any hyperreal > f2. �

Proof of Corollary 7. Observe that for all p̄, q̄ ∈ ∗[0, 1], one has

〈p̄, q̄〉 = 〈p̄, p̄q̄〉 + 〈0, q̄ − p̄q̄〉

= p̄ (q̄〈1, 1〉 + (1 − q̄) 〈1, 0〉) + (1 − p̄) (q̄〈0, 1〉 + (1 − q̄) 〈0, 0〉)

= p̄ (q̄x1 + (1 − q̄)x3) + (1 − p̄) (q̄x2 + (1 − q̄)x4) .(6)
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Therefore, the equivalence statement (4) of Corollary 6 teaches that 〈p̄, q̄〉 ≺
〈p̄, 1〉 is equivalent to

(7) p̄ (q̄f1 + (1 − q̄)f3) + (1 − p̄) (q̄f2 + (1 − q̄)f4)
︸ ︷︷ ︸

=p̄q̄f1+p̄(1−q̄)f3+(1−p̄)(q̄f2+(1−q̄)f4)

< p̄f1 + (1 − p̄)f2,

which in turn is equivalent to

(8) p̄(1 − q̄)f3 + (1 − p̄) (q̄f2 + (1 − q̄)f4) − (1 − p̄)f2 < p̄ (1 − q̄) f1,

and this inequality holds obviously whenever f1 is positive infinite, f2, f3, f4

are finite and both p̄ > 0 and 1− q̄ > 0 are non-infinitesimal (since then the
left-hand side in inequality (8) is finite, while the right-hand side is positive
infinite). �

Proof of Corollary 8. 〈p̄, q̄〉 ≺ 〈p̄, 1〉 for all p̄, q̄ ∈ [0, 1] is an immediate
consequence of Corollary 7 (which imposed weaker assumptions).

Let p1, q1, . . . , p4, q4 ∈ [0, 1] in ∗R with
∑4

i=1 pi =
∑4

i=1 qi = 1. By the
choice of f1, . . . , f4, the estimate

∑4
i=1 pifi ≤

∑4
i=1 qifi is tantamount to

p2 + p3 + p4 + (1 − p2 − p3 − p4) I ≤ q2 + q3 + q4 + (1 − q2 − q3 − q4) I
(both in ∗R and in SRA−IM). Regardless whether we evaluate this latter es-
timate in ∗R or in SRA−IM, it holds if p1 ≤ q1 and it fails if p1 > q1, and is
thus equivalent to p1 ≤ q1.

Therefore, we obtain the following chain of equivalences:

4∑

i=1

pixi �
4∑

i=1

qixi ⇔
4∑

i=1

pifi ≤
4∑

i=1

qifi in ∗R ⇔ p1 ≤ q1

⇔
4∑

i=1

pifi ≤
4∑

i=1

qifi in SRA−IM.

�

Proof of Theorem 9. Apply Theorem 4 to B = {x1, . . . , x4}. �



“05herzberg”
2011/2/28
page 100

i

i

i

i

i

i

i

i

100 FREDERIK HERZBERG

Proof of Corollary 10. For all p̄, q̄ ∈ [0, 1], we have by Equation (6),

〈p̄, q̄〉

= p̄ (q̄x1 + (1 − q̄)x3) + (1 − p̄) (q̄x2 + (1 − q̄)x4)
= p̄q̄x1 + p̄ (1 − q̄)x3 + (1 − p̄) (q̄x2 + (1 − q̄)x4)

= p̄q̄x1 + (1 − p̄q̄)

(
p̄ (1 − q̄)

1 − p̄q̄
x3 +

q̄ (1 − p̄)

1 − p̄q̄
x2 +

(1 − p̄) (1 − q̄)

1 − p̄q̄
x4

)

︸ ︷︷ ︸

∈X0

(note that p̄(1−q̄)
1−p̄q̄

+ q̄(1−p̄)
1−p̄q̄

+ (1−p̄)(1−q̄)
1−p̄q̄

= 1), hence

∀p̄, q̄ ∈ [0, 1] Ū (〈p̄, q̄〉) = 1 + p̄q̄I.

Therefore, if p̄ ∈ (0, 1] and q̄ ∈ [0, 1), then

Ū (〈p̄, q̄〉) = 1 + p̄q̄I < 1 + p̄I = Ū (〈p̄, 1〉) ,

hence 〈p̄, q̄〉 6� 〈p̄, 1〉 by Theorem 9, so 〈p̄, q̄〉 ≺ 〈p̄, 1〉 due to the complete-
ness of �.

�

Appendix B. Reflexivity under Addition vs. Soterical Differentiation

B.1. Pascal on Reflexivity under Addition

As was mentioned in the Introduction, Hájek suggests that Pascal would have
required I , the utility associated with salvation, to be reflexive under addition
(and we have already indicated our disagreement with that statement):

(9) ∀x ∈ R>0 x+ I = I

(and thereby, by adding y = −x to both sides of the equation, even y+I = I
for all y ∈ R<0, hence y + I = I for every real y).

At first glance, Hájek’s interpretation of Pascal as assuming the Reflexiv-
ity under Addition is convincing. First, Reflexivity under Addition seems to
express that “Nothing could be better for you than your salvation” (Bartha
2007; note, however, even this sentence can be interpreted as being consis-
tent with graded utilities of salvation). Moreover, Pascal writes in the preface
to the Wager [Pensées §233]:
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Unity joined to infinity adds nothing to it, no more than one foot to
an infinite measure. The finite is annihilated in the presence of the
infinite, and becomes a pure nothing. [...]

The first sentence of this passage seems to support the axiom of Reflex-
itivity under Addition (9). The second sentence, however, explicates that a
finite number is nothing in the presence of — in other words: compared to
— an infinite value.

If we view this second sentence as an explanation of the first one, then we
are not forced to adopt the assumption of Reflexitivity under Addition.

Rather, we could postulate that S, the set of possible utilities of the Pas-
calian Wagerer, is a convex subset of an ordered field23 and satisfies for all I
in some nonempty proper subset Σ ( S the following estimate:

(10) ∀x ∈ R>0 ∀n ∈ N 0 <
x

I
<

1

n
.

In words, this means that for all x ∈ R>0 and I ∈ Σ, x
I

is a positive infinites-
imal. We may assume that the set Σ has been chosen as the maximal subset
of S with the property that all elements I ∈ Σ satisfy estimate (10).

Note that in this formalisation, Hájek’s (2003) axiom of I being an Over-
riding Utility, holds — provided we model the utilities of the saved by el-
ements of Σ and the values f2, f3, f4 (as defined in the Wagerer’s payoff
matrix in Premise 1) by S \ Σ. For, in order for someone to have an infinite
level of utility in this model, she must wager for God.

In particular, the axiom (10) is satisfied if
• S is the ordered field of hyperreal numbers and Σ the subset of posi-

tive infinite hyperreals, or
• S is the ordered field of surreal numbers and Σ the subset of positive

infinite surreal numbers.
In both of these ordered fields, ‘finite’ means being bounded by some n ∈ N.

23 An ordered field Q is a field on which a linear order is defined, in such a way that
addition of any element of the field preserves the order relation between two elements, and so
does multiplication by positive elements. A subset A ⊆ Q is called convex if and only if for
all x, y ∈ A and every p ∈ Q with 0Q <Q p <Q 1Q, one has p×Q x+Q (1Q −Q p)×Q y ∈
A. One is inclined to demand the convexity of the set of possible utilities of the Wagerer in
order to allow for mixed strategies.
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B.2. Pascal and Soterical Differentiation

Up to now, we have only argued that Pascal need not be read as supporting
the axiom of Reflexivity under Addition. But can he be interpreted as sub-
scribing to the principle that the Wagerer’s utility should have multiple levels
of infinite utility in its range (Soterical Differentiation)?

It is difficult to argue directly in favour of this. Given the apologetic nature
of most of his writings, Pascal has written next to nothing on eschatology
(not even in the Prophecies section, Section XI, of the Pensées), and his
soteriological comments are mainly concerned with matters of justification
and salvation, in particular the doctrine of grace and predestination. Also,
neither Cornelius Jansen, the founder of the Roman Catholic sect Pascal
belonged to — nor Augustine, the church father whose soteriology greatly
influenced Pascal and Jansen, seem to have published anything that would
either favour or contradict Soterical Differentiation.

It is important to note at this point that Pascal’s and Jansenism’s emphasis
on a justification by grace through faith (quite as the Protestant sola gratia),
as opposed to works, cannot be seen as an argument against Soterical Dif-
ferentiation. With the same right that God proves Himself gracious to some
and not to others, He may as well reward some of the saved more and some
less.

Strictly speaking, we can therefore only speculate what Pascal’s views re-
garding Soterical Differentiation might have been like. However, Pascal had
a very high appreciation of Scripture, even of what he terms “obscure pas-
sages”. For instance, in Pensées §575, he writes the following (which itself
consists half of indirect Scripture quotations)

All things work together for good to the elect [cf. Romans 8,28],
even the obscurities of Scripture; for they honour them because of
what is divinely clear. And all things work together for evil to the
rest of the world, even what is clear; for they revile such, because of
the obscurities which they do not understand [cf. 2nd Peter 3,16].

(Comments of the author in squared parentheses.) Similarly, in Pensées
§568, §579 as well as §889 (“the true guardians of the Divine Word have
preserved it unchangeably”) he defends the divine inspiration of the whole
of Scripture; he goes even further to claim, quoting Augustine, that “He who
will give the meaning of Scripture, and does not take it from Scripture, is an
enemy of Scripture” [Pensées §900].

However, the New Testament multiply mentions a hierarchy in Heaven.
For instance, in one of the first paragraphs of the Sermon on the Mount after
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the Benedictions, Jesus says:

Whosoever therefore shall break one of these least commandments,
and shall teach men so, he shall be called the least in the kingdom
of heaven: but whosoever shall do and teach them, the same shall be
called great in the kingdom of heaven. [Matthew 5,19 (King James
Version)]

In the same Gospel, Jesus teaches as follows:

Verily I say unto you, Among them that are born of women there
hath not risen a greater than John the Baptist: notwithstanding he
that is least in the kingdom of heaven is greater than he. [Matthew
11,11 (King James Version)]

What is translated as “least” in the New International Version or the King
James Version, would be �λάξιστος (the elative or superlative of µικρός) and
µικρότερος (comparative of µικρός), respectively in the original Greek New
Testament sources, clearly suggesting that there is a hierarchy in the ‘king-
dom of heaven’ (a term which refers to God’s dominion in the individual
lives of the faithful and in the corporate life of the church) and presumably
in Heaven, too. Outside the Gospel of Matthew, Soterical Differentiation can
be found in the book of Revelation:

And I saw thrones, and they sat upon them, and judgement was
given unto them: and I saw the souls of them that were beheaded
for the witness of Jesus, and for the word of God, and which had
not worshipped the beast, neither his image, neither had received
his mark upon their foreheads, or in their hands; and they lived and
reigned with Christ a thousand years. [Revelation 20,4 (King James
Version)]

The order in which those sharing power with Jesus Christ in the Millennium
are mentioned reflects the faithfulness they had displayed for His sake and
thus suggests a Millennial hierarchy and presumably a Heavenly hierarchy,
too. Note that there is agreement on these verses among all major textual
witnesses and early translations (cf. the critical apparatus of Nestle-Aland’s
Novum Testamentum Graece, 27th rev. ed.).

Given that central passages of the New Testament mention a hierarchy in
Heaven, it is reasonable to assume that Pascal would have approved of the
idea of Soterical Differentiation.
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It should be noted that under the Jansenist or Augustinian idea of pre-
destination, which Pascal subscribed to, “not only are the reasons for the
judgement hidden (which the Calvinists admit), but the judgement itself is
also” (cf. Miel 1969 [p. 105-106]) and therefore, the believers should “work
out [their] salvation with fear and trembling” (Miel 1969 [p. 105] citing
Philippians 2,12). Consequently (and this is even consistent with Calvin-
ism), humans may not know how much exactly, compared to other saved
ones, they will be rewarded in Heaven — all one can say is, that, in case of
salvation, it has to be an infinite value compared with any earthly utility.

Appendix C. An alternative way of resolving Hájek’s dilemma

In this Appendix, we construct a model for S where only the maximum sat-
isfies Reflexivity under Addition. However, this model for S is not covered
by the Corollary 6, whence it is susceptible to McClennen’s objection.

Let S, the set of possible utilities of a Pascalian Wagerer, be defined as

S = {〈1, 0〉} ∪ [0, 1) × R,

i.e. the union of the singleton {〈1, 0〉} with the set of all pairs of real numbers
where the first entry is ≥ 0 and < 1. (Here and in the following, R and its
various subintervals could again be replaced by any real-ordered field, thus
allowing, for instance, for nonstandard probabilities.)

The first coordinate should be seen as representing ‘heavenly utility’ and
the second coordinate ‘earthly utility” . In the payoff matrix of the Wager,
f2, f3, f4 ∈ {0} × R and I = 〈1, 0〉. The utility I = 〈1, 0〉 might be inter-
preted as the utility of someone who heeded Pascal’s advice and “wager[ed
for God] without hesitation”, thus not considering mixed strategies.

Let the total order < on S be just the lexicographic ordering:

∀ 〈x1, y1〉 , 〈x2, y2〉 ∈ S

〈x1, y1〉 < 〈x2, y2〉 ⇐⇒ x1 < x2 ∨ (x1 = x2 ∧ y1 < y2) .

Hence, 〈1, 0〉 is the strict maximum of S:

∀ 〈x, y〉 ∈ [0, 1) × R 〈x, y〉 < 〈1, 0〉.

Let the operation of addition in S be defined as follows:

∀ 〈x1, y1〉 , 〈x2, y2〉 ∈ [0, 1) × R

〈x1, y1〉 + 〈x2, y2〉 = 〈max {x1, x2} , y1 + y2〉
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and

∀ 〈x, y〉 ∈ S 〈x, y〉 + 〈1, 0〉 = 〈1, 0〉 + 〈x, y〉 = 〈1, 0〉.

In particular, I = 〈1, 0〉 is reflexive under addition. Multiplication by ele-
ments of [0, 1] will be defined as the ordinary multiplication on R2:

∀ 〈x, y〉 ∈ S p 〈x, y〉 = 〈px, py〉.

Hence, I = 〈1, 0〉 meets the requirement of Irreflexivity under Multiplica-
tion

∀p < 1 p〈1, 0〉 = 〈0, p〉 < 〈1, 0〉.

This entails that both S and the proper subset [0, 1)×R of S are closed under
addition as well as under multiplication by elements of [0, 1].

Having constructed S and observed that in this setting, the utility of salva-
tion, I , is both reflexive under addition and irreflexive under multiplication,
we close with the following remarks:

(1) Albeit exhibiting some resemblances to the set of vector-valued util-
ities considered by Hájek [Subsection 4.2, pp. 39-41], it is different
in that S contains just one value with maximal ‘heavenly utility’, viz.
I , the maximum of S itself.

(2) Adding up the overall utility of one individual with the utility of an-
other one, does not make much sense if salvation is at stake. This is
reflected by the ordering on S being inconsistent with addition: For,
if x3 ≥ x2 > x1 but y2 < y1, then both 〈x1, y1〉 < 〈x2, y2〉 and

〈x1, y1〉 + 〈x3, y3〉 > 〈x2, y2〉 + 〈x3, y3〉 .

For, the left hand side in the inequality then equals 〈x3, y1 + y3〉 and
the right hand side equals 〈x3, y2 + y3〉. Also, the ordering is obvi-
ously inconsistent with mixing the utilities of mixed strategies, i.e.
elements of (0, 1) × R: If p ∈ (0, 1) and 〈x1, y1〉 < 〈x2, y2〉 are
elements of (0, 1) × R, then we will have

〈x1, y1〉 > p 〈x1, y1〉 + (1 − p) 〈x2, y2〉

whenever (1 − p)x2 < x1. Hence, in order to estimate the utility
of a strategy that uses multiple random experiments, one must first
compute the overall probability that the Wagerer will, at the very end,
Wager for God.

(3) This, however, will lead to no further inconsistencies: The ordering
is consistent with mixing pure strategies: If p ∈ (0, 1) and 〈x1, y1〉 <
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〈x2, y2〉 are elements of {0} ×R∪ {〈1, 0〉} (since {0} ×R is the set
of utilities associated with wagering against God), then

〈x1, y1〉 < p 〈x1, y1〉 + (1 − p) 〈x2, y2〉 .

(4) Mixed strategies no longer yield maximal utility: The utility of wa-
gering for God with probability q is

p (q〈1, 0〉 + (1 − q) 〈0, yf3
〉) + (1 − p) (q 〈0, yf2

〉 + (1 − q) 〈0, yf4
〉) ,

wherein 〈0, yfi
〉 = fi for i ∈ {2, 3, 4}. This can be reduced to

〈pq, p(1 − q)yf3
〉 + 〈0, (1 − p)qyf2

+ (1 − p)(1 − q)yf4
〉

which equals

〈pq, p(1 − q) (yf3
) + (1 − p)qyf2

+ (1 − p)(1 − q)yf4
〉 < 〈1, 0〉 = I.

So, I is reflexive under addition, and mixed strategies are suboptimal.
There is no way to apply Corollary 6 to this set S. Therefore, it only pro-

vides a response to Hájek’s dilemma, but not to McClennen’s challenge. The
only possibility to respond to both Hájek and McClennen simultaneously is
via a SRA−IM-valued utility representation of the Wagerer’s preferences, as
stipulated in Corollary 8.
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