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THE MODAL PREDICATE LOGIC OF REAL TIME

M.J. CRESSWELL

Abstract
The paper presents a simple proof of an early result by Dana Scott
that the modal predicate logic of real time cannot be recursively
axiomatized.

The two most plausible structures that we may attribute to linear time are
that time is discrete or that time is dense and continuous. The significance
of this for modal predicate logic arises from work by Dana Scott around
1967. Scott’s results were not available in published form until Gabbay et
al 1994, see pp. 129–135, though they were circulated in the 1970s in the
form of mimeographed notes by Hans Kamp. What Scott shewed was that
neither the predicate logic of discrete time, nor the predicate logic of real
time is axiomatizable. In other words no completeness theorem is possible,
no matter how many axioms we add — under the sole proviso that the axioms
can be specified in an effective (mechanical) manner.1 The case of the modal
predicate logic of integer time is covered by the incompletability results of
Cresswell 1997, and the present note should be read in conjunction with that
article. The purpose of this note is to shew how to use the method of the
1997 paper to provide an easy proof of Scott’s result for the mono-modal
predicate logic of real time.2

1 van Benthem 1993, p. 11, cites Scott and Lindström as independently obtaining that
“The full modal predicate logic over the integers or the reals (with arbitrary individual do-
mains attached at each point) is not effectively axiomatizable.” (He does not give a reference
for the Lindström result.) The semantics of the present note assumes a constant domain and
validates the Barcan Formula (BF).

2 Reynolds’s result covers more general structures than just the real line, but the tech-
niques he uses are similar to those used here. As pointed out in Cresswell 1997 (p. 331f)
Scott’s result for real time does not give an incompletability result for the predicate logic
based on the modal propositional logic of the real numbers. For this reason the result for real
time presented in this note is not as strong as the result for integer time which follows from
Cresswell 1997. Both Reynolds’s and Scott’s results are stated for bi-modal logics, but their
methods, as shewn here, are applicable to the mono-modal predicate logic of real time.
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4 M.J. CRESSWELL

The idea behind Scott’s proof is surprisingly simple. Begin with a frame
in which W is the real numbers. Then shew how each w ∈ W may be as-
signed a ‘level’ — which is an item in the domain of individuals in a model
based on that frame. Then use the resources of first-order predicate logic to
give these items the structure of arithmetic. This is where the assignment
of levels comes in. If each number has a distinct level it may be shewn
that even though there are infinite distances between the real numbers yet
the continuity property shews that there is no infinite distance between their
levels.

Let Lϕ be a language of modal LPC with a monadic predicate ϕ, where,
intuitively, ϕx is true at w iff x denotes the ‘level’ of w. Assume the defini-
tions and axioms from p. 326f of Cresswell 1997. In particular, <ϕ, succes-
sor and zero are defined as

Def
< x <ϕ y =df (L(ϕy ⊃ Mϕx) ∧ M(ϕx ∧ ∼Mϕy))

Def
S Sxy =df (x <ϕ y ∧ ∼∃z(x <ϕ z ∧ z <ϕ y))

Def
0 0x =df L(ϕx ⊃ Lϕx)

Let Ax be the conjunction of the following wff:

Ax
ϕ ∀xMϕx ∧ L∃xϕx ∧ ∀x∀yL((ϕx ∧ ϕy) ⊃ x = y)

Ax
lin ∀x∀y(x <ϕ y ∨ y <ϕ x ∨ x = y)

Ax
S ∀x∃y x <ϕ y

Ax
0 ∃x 0x

Ax
P ∀x(∼0x ⊃ ∃ySyx)

This is the Axiom set on p. 327 of Cresswell 1997 except that the first ax-
iom, Axϕ, has two additional conjuncts, which ensure that there is at least
one world at every level, and that every world is at exactly one level. Ax has
a model in the reals, for suppose that 〈W,R,w*〉 is a sub frame of the real
numbers generated by w*, where w1Rw2 iff w2 < w1.3 Each real number
can be given a level a ∈ D in the following way. Let 〈W,R,D,V〉 be a model
based on 〈W,R,w*〉 in which D is the natural numbers and V(ϕ) is defined
using an order-preserving 1-1 function π from D into W. Put 〈a,w〉 ∈ V(ϕ)
iff π(a-1) < w ≤ π(a). It is easy to check that Vµ(Ax,w*) = 1 for every
assignment µ. Following Cresswell 1997 I write a ≈ w for 〈a,w〉 ∈ V(ϕ) to
indicate that w is of level a, and a <∗ b iff, for every w such that w*Rw, if

3 The reason why R is the converse of < is connected with some features of the frames
used on p. 325 of Cresswell 1997, and is not relevant to the issues of this paper. I have
retained it merely so that the results of Cresswell 1997 can apply directly to the present case.
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THE MODAL PREDICATE LOGIC OF REAL TIME 5

b ≈ w then there is some w′ ∈ W, such that a ≈ w′ and wRw′, but not vice
versa, i.e. there is some w such that w*Rw and a ≈ w and there is no w′ ∈
W, such that b ≈ w′ and wRw′. Now note that theorems 3–5 (p. 327) hold
where 〈W,R,D,V〉 is a model based on any transitive frame generated by w*,
such that Vσ(Ax,w*) = 1 for some assignment σ. Suppose in addition that
〈W,R,w*〉 is linear, so that if w 6= w′ then either wRw′ or w′Rw.

THEOREM 3* If b <∗ a and a ≈ w and b ≈ w′ then wRw′.4

Proof. If b <∗ a and a ≈ w and b ≈ w′ then by theorem 3 and the irreflexive-
ness of <∗ we have w 6= w′. By the definition of <∗, given that b <∗ a and
b ≈ w′, there is no w ∈ W such that a ≈ w and w′Rw. So, by the linearity of
R, wRw′. �

Where 0* is the unique a ∈ D such that Vµ(0x,w*) = 1, let N be a subset of
D such that a ∈ N iff a = 0* or 0* <∗ a and there are only finitely many b
such that 0* <∗ b <∗ a. The following theorem corresponds with theorem 6
on p. 328 for the case where 〈W,R,w*〉 is a sub-frame of the real numbers
generated by w*, and Ax is true at w*:

THEOREM 6* N = D

Proof. Suppose N 6= D. For every w ∈ W, Axϕ guarantees that there is ex-
actly one a ∈ D such that 〈a,w〉 ∈ V(ϕ), and so every w ∈ W has exactly
one level. Divide W into two sets. Let A be all those w ∈ W whose levels
are finitely far from 0*. Obviously for any w ∈ W either w ∈ A or w ∈
W−A, and by Axlin and theorem 3* if w1 ∈ A and w2 ∈ W−A then w2Rw1.
If 〈W,R,w*〉 is continuous then there will be a wA ∈ W which is either the
greatest member of A or the least member of W−A. Suppose the former.
Then wA has a level, say a, which is finitely far from 0. Take then some w
whose level is a + 1. Theorem 3* shews that since a <∗ a+1, if a ≈ wA and
a+1 ≈ w then wRwA. But w ∈ A. So A cannot have a greatest member. So
suppose wA is the least member of W−A. Then it will have a level b, where
b is infinitely far from 0*. But then there will be some w with wARw whose
level is b − 1, which is also infinitely far from 0*. �

4 Starred theorem numbers are used for a theorem which corresponds with the similarly
numbered theorem in Cresswell 1997, bearing in mind that these results have been adapted
to real number frames.
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6 M.J. CRESSWELL

From this point on the proof follows the material on pp. 328–330 of Cress-
well 1997. For readers without immediate access to that work I shall list
without proof some of the more important results:

THEOREM 7* 〈D,<∗〉 is isomorphic with 〈Nat,<〉

THEOREM 8* Vµ(Sxy,w*) = 1 iff µ(x) + 1 = µ(y) and
Vµ( 0x,w*) = 1 iff µ(x) = 0.

Now assume that Lϕ contains two additional predicates ϕ+ and ϕ×. These
are both three-place predicates, and they represent addition and multiplica-
tion. We require two additional axioms for these predicates

Ax
+ ∀x∀y ∃1zϕ+xyz ∧ ∀x∀y∀z ∀y′∀z′(( 0 y ⊃ ϕ+xyx) ∧

((Syy′ ∧ Szz′ ∧ ϕ+xyz) ⊃ ϕ+xy′z′))
Ax

× ∀x∀y∃1zϕ×xyz ∧ ∀x∀y∀z∀y′∀z′(( 0y ⊃ ϕ×xyy) ∧
((Syy′ ∧ ϕ+zxz′ ∧ ϕ×xyz) ⊃ ϕ×xy′z′))

Let Axarith be (Ax ∧ Ax+ ∧ Ax×). Now consider a first-order (non-modal)
language of arithmetic Larith whose only predicates are ϕ+ and ϕ×. Let
〈Nat,Varith〉 be the intended (arithmetical) model of Larith, i.e., 〈a,b,c〉 ∈
Varith(ϕ+) iff a + b = c and 〈a,b,c〉 ∈ Varith(ϕ×) iff a × b = c. It is known
that the class of wff valid in 〈Nat,Varith〉 is not recursively axiomatizable.5

Every wff of Larith is also a wff of Lϕ.

COROLLARY 12* If 〈W,R,w*〉 is a sub frame of the real numbers generated
by w* and 〈W,R,D,V〉 is a BF model based on 〈W,R,w*〉
and for some assignment σ, Vσ(Axarith,w*) = 1, then for
any wff α of Larith, Vµ(α,w*) = 1 for every µ iff α is
valid in 〈Nat,Varith〉.

THEOREM 13* If 〈W,R〉 is the real numbers then the set of wff valid in
all BF-models based on 〈W,R〉 is not recursively axioma-
tizable.

Proof. Let 〈W,R,D,V〉 be a model satisfying Axarith in which 〈W,R,w*〉 is
the real numbers generated from w*. Then for any assignment µ, and any w
∈ W, Vϕ∗

µ (Axarith,w) = 1. By corollary 12, if α is not valid in 〈Nat,Varith〉
then for some µ, Vϕ∗

µ (α,w) = 0, and so, Vϕ∗
µ (Axarith ⊃ α,w*) = 0. But

5 See the table on p. 250 of Enderton 1972.
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THE MODAL PREDICATE LOGIC OF REAL TIME 7

〈W,R,D,V〉 is based on the real numbers, and so Axarith ⊃ α is not valid on
a frame for the real numbers. Conversely, suppose that Axarith ⊃ α is not
valid on a frame for the real numbers. Then there is a model 〈W,R,D,V〉
based on a frame for the real numbers generated by some w* ∈ W, such that,
for some assignment µ, Vµ(Axarith ⊃ α,w*) = 0. Since Vµ(Axarith,w*) = 1
and Vµ(α,w*) = 0, by corollary 12, α is not valid in 〈Nat,Varith〉. But then
if the predicate logic of the real numbers were recursively axiomatizable the
class of wff valid in 〈Nat,Varith〉 would be recursively axiomatizable. So the
predicate logic of the real numbers is not recursively axiomatizable. �
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