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ON THE TRANSPARENCY OF DEFEASIBLE LOGICS:
EQUIVALENT PREMISE SETS,

EQUIVALENCE OF THEIR EXTENSIONS,
AND MAXIMALITY OF THE LOWER LIMIT∗

DIDERIK BATENS, CHRISTIAN STRASSER, AND PETER VERDÉE†

Abstract
For Tarski logics, there are simple criteria that enable one to con-
clude that two premise sets are equivalent. We shall show that the
very same criteria hold for adaptive logics, which is a major ad-
vantage in comparison to other approaches to defeasible reasoning
forms.

A related property of Tarski logics is that the extensions of equiva-
lent premise sets with the same set of formulas are equivalent prem-
ise sets. This does not hold for adaptive logics. However, a very
similar criterion does.

We also shall show that every monotonic logic weaker than an
adaptive logic is weaker than the lower limit logic of the adaptive
logic or identical to it. This highlights the role of the lower limit for
settling the adaptive equivalence of extensions of equivalent premise
sets.

1. Formats for Logics for Plausible Reasoning

This paper has a specific and a more general aim. The specific aim is related
to determining whether two premise sets are equivalent with respect to logics
that explicate defeasible reasoning forms — henceforth DRF. We shall show
that adaptive logics are superior to other formats in this respect. The more
general aim is to highlight the advantages of the adaptive logic program with
respect to other approaches to DRF.

∗Research for this paper was supported by subventions from Ghent University and from
the Fund for Scientific Research – Flanders.

†Peter Verdée is a post-doctoral fellow of the Fund for Scientific Research – Flanders.
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282 DIDERIK BATENS, CHRISTIAN STRASSER AND PETER VERDÉE

Let us compare the situation with Tarski logics, logics the consequence
relation of which is Reflexive, Transitive and Monotonic. A variety of for-
mulations has been developed: axiomatic, Fitch-style, Gentzen-style, etc.
Each of these have their stronger points. The variety, however, is only ap-
parent. First, there are relatively standard procedures that, for most logics,
enable one to turn one formulation into another. Next, the different formu-
lations are at best different ways to characterize the same basic entity, viz.
the consequence relation, which assigns to every premise set a consequence
set. There are some differences in semantic styles as well. Again, these may
be reduced to each other, except that some logics require a more complex
semantics than others.

The situation is drastically different for logics that explicate DRF. Here
a variety of syntactic formulations have been tried out, each of them often
for some specific cases only. Many of these explications have no semantics,
others require unusual techniques.1 All this raises two central questions.

A first question is whether DRF require a variety of formulations. It is
indeed possible that the domain comprises reasoning forms that are so dif-
ferent from each other, that it is uninteresting or even impossible to forge
them into the same format. Suppose, however, that it is possible to charac-
terize all DRF by the same type of logic or logical approach. Then, presum-
ably, there will be several such approaches. If this is so, a second question
should be raised: Which are the advantages and weaknesses of the different
approaches?

It is the aim of the adaptive logic program to characterize all DRF in terms
of an adaptive logic in standard format (see Section 3). This was realized
for a variety of DRF, mostly by tackling such reasoning forms from scratch.
Many DRF have been decently described independently of the adaptive logic
program. Quite a few of these were characterized by an adaptive logic in
standard format — [5, 7, 12, 54] for handling inconsistent knowledge bases
as in [46, 13, 14]; [10] for the signed consequence relations from [15]; [18, 3]
for default reasoning and circumscription,2 documented in [2, 16, 29]; [49]
for rational closure from [26]; [51] for abstract argumentation from [19];
[43] for the belief merging protocols from [24]. Similarly for consequence
relations not described as such in the literature — [33, 32] for question evo-
cation from [55]; [39, 37, 36] for abduction as described in [1]; [44, 11]
for diagnosis from [45]; [35] for the notion of empirical progress from [25].

1 With respect to the semantics, useful unifying work was done by Shoham and asso-
ciates, for example [48, 23, 28]. This work is fully in line with the adaptive logic pro-
gramme: there is an algorithm for turning any semantic characterization in Shoham’s style
into an adaptive logic.

2 These are older results, not in standard format, that soon will be improved upon.
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For several Tarski logics, an adaptive logic was developed to circumvent
adding new premises (by tinkering) — [34] for the pragmatic structures from
[40, 17]; [52] and [27] on causality as in [42]; [50, 38] for the deontic logics
from [20, 21], and [53] for fuzzy logics. Those characterizations and ex-
tensions often require a translation to a different language. Where L is the
original ‘logic’ and AL is an adaptive logic, the characterization may have
the form: Γ `L A iff f(Γ) `AL f(A) where f is a function mapping formu-
las from the native language (for example the standard predicative language)
to a different language (for example a modal language).

The successes on the adaptive side do not entail that the first question
should be answered in the negative. All that follows is that adaptive logi-
cians were successful where one attempted to find such a characterization.
The attempts were not exhaustive with respect to the present literature and
new forms of defeasible logics may be discovered in the future. So the situ-
ation seems to justify that adaptive logicians continue their efforts, but it is
possible that they will only be able to unify part of all DRF.

Let us now turn to the second question. One of the arguments adduced
in favour of characterizations in terms of adaptive logics was precisely that
this enterprise has a strong unifying effect, especially as the standard for-
mat provides adaptive logics with a proof theory, a semantics, and all the
interesting parts of the metatheory. But obviously, unification is not the only
consideration that should be taken into account.

In the present paper we shall consider a type of argument that is related
to transparency. To be more precise, the argument concerns criteria for the
equivalence of premise sets. This requires some explanation.

Theories may have different formulations: the same theory may be pre-
sented in different ways. To make the matter more precise, let a theory T be
a couple 〈Γ, L〉, in which Γ is a set of statements (the non-logical axioms of
T ) and L is a logic. The claims made by the theory are CnL(Γ) = {A | Γ `L

A}. That T = 〈Γ, L〉 and T ′ = 〈Γ′, L〉 are different formulations of the same
theory obviously means that CnL(Γ) = CnL(Γ

′). Similarly, people talking
to each other about some subject may come to the conclusion that they fully
agree on the topic. If they are serious about the matter, they mean to say that
all one person believes on the subject is derivable from the statements made
(or agreed to) by the other. We may safely take it that the agreeing parties
share the underlying logic L, at least in the context of their present commu-
nication. So their agreement may be formally expressed by a statement of
the form CnL(Γ) = CnL(Γ

′). Where this statement holds true, we shall say
that Γ and Γ′ are L-equivalent premise sets.

Sameness of theories and mutual agreement are important matters. If two
theories are the same, everything proved from one of them may be carried
over immediately to the other. If two people actually agree about some sub-
ject, they are able to predict everything the other believes about the subject
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and they may rely on this, for example in arguments about other topics. Yet,
it is obvious that offering a direct proof of CnL(Γ) = CnL(Γ

′) is out of the
question. Put in a more precise way, it is impossible for humans to enumer-
ate all members of CnL(Γ) and to demonstrate for each of them that it is
also a member of CnL(Γ

′).3 Humans rely on shortcuts in order to establish
CnL(Γ) = CnL(Γ

′).
In Section 2, we shall consider three common criteria for deciding that

CnL(Γ) = CnL(Γ
′). These criteria will be shown to be correct for Tarski

logics. We shall show, however, that these criteria cannot be applied to cer-
tain popular formulations of DRF and that no alternatives for the criteria
seem available. This will lead to the question whether there are correspond-
ing criteria for adaptive logics. The answer is rather astonishing: the very
same criteria may be applied in the case of adaptive logics. This seems a
strong argument in favour of the adaptive program.

In Section 6, we shall also consider a related question. Suppose that Γ and
Γ′ are L-equivalent. Does it follow that Γ ∪ ∆ and Γ′ ∪ ∆ are L-equivalent
premise sets? If two people study the same theory, but possibly a different
formulation of it, and both extend their formulation with the same set of
statements, we might expect that the extensions are also L-equivalent. The
answer to the question will be shown to be positive for Tarski logics, but
negative for most defeasible logics presented in the literature. It will turn out
that the answer is also negative for adaptive logics. However, in the case of
adaptive logics, the answer is positive for a criterion that is extremely close
to the considered one. Let L′ be weaker than L iff CnL′(Γ) ⊂ CnL(Γ) for
some Γ and CnL′(Γ) ⊆ CnL(Γ) for all Γ and let L′ be stronger than L iff
L is weaker than L′. The L-equivalence of the extensions is warranted if the
two premise sets are L′-equivalent, where L′ is any Tarski logic weaker than
L. We shall also present a criterion that is specific for adaptive logics and
comes very handy for many premise sets.

The lower limit logic of adaptive logics is always a Tarski logic. As it is
a constitutive element of the adaptive logic, it is natural to inquire whether
it plays a specific role with respect to the criteria for equivalence of premise
sets and for the equivalence of their extension. In Section 7, we shall show
that the lower limit logic plays indeed a privileged role: if L is a monotonic
logic and L is weaker than the adaptive logic or the adaptive consequence set
is closed under L, then L is weaker than the adaptive logic’s lower limit logic
or identical to it.

3 In the text, we neglect some border cases, which are irrelevant to the present discussion,
for example the case in which CnL(Γ) is either empty or trivial.
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The conclusion will be that adaptive logics are not only attractive because
of their unifying power, but also because they have certain properties which
warrant a transparent handling of premise sets.

This paper does not and cannot aim at establishing a final conclusion. As
we said before, new DRF may be discovered in the future. Still, the pa-
per offers a strong argument for adaptive logics (and against some other
approaches to DRF) and the argument relies on the best present insights.

2. Equivalent Premise Sets

Let us start with some conventions. The set of closed formulas of the consid-
ered language will be called W . A logic L is a function L : ℘(W) → ℘(W),
in other words a logic L assigns to every premise set Γ a consequence set,
which is denoted by CnL(Γ). A logic is a Tarski logic iff it fulfils the fol-
lowing three properties:

Reflexivity: Γ ⊆ CnL(Γ).

Transitivity: If Γ′ ⊆ CnL(Γ) then CnL(Γ
′) ⊆ CnL(Γ).

Monotonicity: CnL(Γ) ⊆ CnL(Γ ∪ Γ′).

Definition 1 : Γ and Γ′ are L-equivalent premise sets iff CnL(Γ) = CnL(Γ
′).

If L is a Tarski logic, three simple criteria for the L-equivalence of premise
sets are available:

C1 If Γ′ ⊆ CnL(Γ) and Γ ⊆ CnL(Γ
′), then Γ and Γ′ are L-equivalent.

C2 If L′ is a Tarski logic weaker than L, and Γ and Γ′ are L′-equivalent,
then Γ and Γ′ are L-equivalent.

C3 If every CnL(∆) is closed under a Tarski logic L′ (viz. CnL′(CnL(∆))
= CnL(∆) for all ∆), and Γ and Γ′ are L′-equivalent, then Γ and Γ′

are L-equivalent.

Criterion C1 states that, in order for Γ and Γ′ to be L-equivalent, it is
sufficient that all members of Γ are L-derivable from Γ′ and vice versa. In
terms of theories: if T and T ′ have the same underlying logic L and all
axioms of T are L-derivable from T ′ and vice versa, then the two axiom
sets are L-equivalent — T and T ′, if different, are different formulations
of the same theory. A still different rendering proceeds in terms of mutual
agreement. Suppose that two persons state their views about some subject
in an exhaustive way — all one of them holds true about that subject is
derivable from the statements made by this party. If each party then agrees
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with everything the other said on the subject, one may conclude that they
have the same view on the subject. C1 is an immediate consequence of the
Transitivity of L.

Criterion C2 states that if two premise sets are equivalent with respect
to a Tarski logic weaker than L, then they are equivalent with respect to
L. It is easily seen that C2 holds for all Tarski logics L. Suppose indeed
that the antecedent of C2 is true. As CnL′(Γ) ⊆ CnL(Γ), CnL′(Γ) ∪ Γ ⊆
CnL(Γ) by the reflexivity of L and hence CnL(CnL′(Γ) ∪ Γ) ⊆ CnL(Γ)
by the transitivity of L. So, by the monotonicity of L, CnL(CnL′(Γ) ∪
Γ) = CnL(Γ). Finally, as CnL′(Γ) ∪ Γ = CnL′(Γ) by the reflexivity of
L′, CnL(CnL′(Γ)) = CnL(Γ). By the same reasoning CnL(CnL′(Γ′)) =
CnL(Γ

′). As CnL′(Γ) = CnL′(Γ′), CnL(Γ) = CnL(Γ
′).

Criterion C3 is related to the fact that we expect operations under which L-
consequence sets are closed to define a logic that is weaker than L or identical
to it, which triggers C2. If, for all ∆, A ∧ B ∈ CnL(∆) just in case A ∈
CnL(∆) and B ∈ CnL(∆), then we expect Γ∪ {p∧ q} and Γ∪ {p, q} to be
L-equivalent premise sets.

Incidently, that L′ is a Tarski logic is essential for both C2 and C3. If L′

were an arbitrary logic, these criteria would not hold. To see this, let W
be the set of closed formulas of the standard language, let CL be classical
logic and let L′ be defined by CnL′(Γ) = {A ∈ Γ | for all B ∈ W , B /∈
CnCL({A}) or B ∈ Γ}. In words, the L′-consequence set of Γ are those
members of Γ of which all CL-consequences are members of Γ. Obviously, it
holds for all ∆ that CnL′(∆) ⊆ CnCL(∆) and also that CnL′(CnCL(∆)) =
CnCL(∆). However, there are infinitely many Γ for which no A ∈ Γ is such
that CnCL(A) ⊆ Γ. For all of them CnL′(Γ) = CnL′(∅) but CnCL(Γ) 6=
CnCL(∅).

Obviously, C1 may be combined with C2 or C3. Thus if L′ is a Tarski
logic weaker than L, Γ′ ⊆ CnL′(Γ) and Γ ⊆ CnL′(Γ′), then Γ and Γ′ are
L-equivalent.

Let us now turn to defeasible logics. Consider first the Strong (also called
Inevitable) and Weak consequence relations from [46] — see also [13].
Given a possibly inconsistent set of premises Γ, ∆ ⊆ Γ is a maximal con-
sistent subset of Γ iff ∆ is consistent and, for all A ∈ Γ − ∆, ∆ ∪ {A}
is inconsistent. Γ `Strong A iff A is a CL-consequence of every maximal
consistent subset of Γ and Γ `Weak A iff A is a CL-consequence of some
maximal consistent subset of Γ.

It is easily seen that C1 does not hold for the Weak consequence relation.
Here is an example: {p, q,¬p} ⊆ CnWeak ({p ∧ q,¬p}) and {p ∧ q,¬p} ⊆
CnWeak ({p, q,¬p}), but ¬p ∧ q ∈ CnWeak ({p, q,¬p}) whereas ¬p ∧ q /∈
CnWeak ({p ∧ q,¬p}). It is also easily seen that C3 does not hold for the
Strong consequence relation. Let LC be the Tarski logic that consists, apart
from the Premise rule, of the rules Adjunction and Simplification. All Strong
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consequence sets are closed under LC, viz.

CnStrong(Γ) = CnLC(CnStrong(Γ))

for all Γ. However,

CnLC({p, q,¬p}) = CnLC({p ∧ q,¬p})

but

CnStrong({p, q,¬p}) 6= CnStrong({p ∧ q,¬p}),

for example p, q,¬p `Strong q whereas p ∧ q,¬p 0Strong q.
For an example of a logic for which C2 does not hold, we shall remain

close to the Rescher-Manor consequence relations, adding a (weak) Schotch-
Jennings flavour — see for example [47]. A partition of Γ is a set of sets
{Γ1, Γ2, . . .} such that Γ = Γ1 ∪ Γ2 ∪ . . . and Γi ∩ Γj = ∅ for all differ-
ent i, j ∈ {1, 2, . . .}. A partition {Γ1, Γ2, . . .} of Γ is consistent iff every
Γi is consistent. Obviously, Γ has a consistent partition iff all A ∈ Γ are
consistent. The regular partitions of Γ are the consistent ones or, if there are
no consistent ones, all partitions of Γ. Define: A ∈ CnR(Γ) iff there is a
regular partition {Γ1, Γ2, . . .} of Γ and an i such that A ∈ CnCL(Γi). Define
CnQ(Γ) = CnP(CnR(Γ)), in which P is full positive CL. If {Γ} is a regular
partition of Γ, CnQ(Γ) = CnCL(Γ); if some A ∈ Γ is inconsistent, CnQ(Γ)
is trivial; if Γ is inconsistent but all A ∈ Γ are consistent, CnQ(Γ) is incon-
sistent but non-trivial, border cases aside. Note that P is a Tarski logic and
that it is weaker than Q, viz. CnP(Γ) ⊆ CnQ(Γ) for all Γ.

C2 does not hold for the defeasible logic Q. Indeed, P is a Tarski logic
weaker than Q and CnP({p,¬p}) = CnP({p ∧ ¬p}), but CnQ({p ∧ ¬p})
is trivial whereas CnQ({p,¬p}) is not.

These examples are rather ‘generous’ because the situation is actually
worse for certain systems describing DRF. For example for the many kinds
of default logics the criteria C1–3 should be reformulated in order to make
a chance to be applicable. The set of defaults has to enter the picture and
‘facts’ and defaults are to some extend exchangeable. The situation is simi-
lar for many other logics that characterize DFR, even for the very transparent
pivotal-assumption consequences defined in [31].



“05batens_strasser_verdee”
2009/10/2
page 288

i

i

i

i

i

i

i

i

288 DIDERIK BATENS, CHRISTIAN STRASSER AND PETER VERDÉE

3. A Brief Introduction to the Standard Format

Adaptive logics adapt themselves to the premise set they are applied to. The
logic adapts itself: it depends on the premise set whether a specific appli-
cation of an inference rule is or is not correct. The present most attractive
description of adaptive logics is called the standard format, appearing from
[6] on and most extensively studied in [8], to which we refer for details and
metatheoretic proofs. Nearly all known adaptive logics have been phrased in
standard format.

An adaptive logic AL is defined by a triple:

(1) A lower limit logic LLL: a reflexive, transitive, monotonic, and com-
pact logic that has a characteristic semantics and contains CL (Clas-
sical Logic).

(2) A set of abnormalities Ω : a set of LLL-contingent formulas, char-
acterized by a (possibly restricted) logical form F which contains at
least one logical symbol.

(3) An adaptive strategy: Reliability or Minimal Abnormality.

The lower limit logic is the stable part of the adaptive logic; anything
that follows from the premises by LLL will never be revoked. The lower
limit logic is an extension of CL because it contains all the classical sym-
bols (noted as ¬̌,∨̌,∧̌, ⊃̌, ∃̌, ∀̌, and =̌) next to its standard symbols (noted
without check).4 In standard applications, the classical symbols do not oc-
cur in the premises or in the conclusion. Their function is technical and
metatheoretical. Abnormalities are supposed to be false, ‘unless and until
proven otherwise’. Strategies are ways to cope with derivable disjunctions
of abnormalities: an adaptive strategy picks one specific way to interpret the
premises as normally as possible.5

Two typical examples of adaptive logics are the inconsistency-adaptive
logics CLuNr and CLuNm . They are defined as follows. The lower limit
logic is CLuN (Classical Logic allowing for gluts with respect to Negation),
viz. full positive CL with (A ⊃ ¬A) ⊃ ¬A added as the only axiom for the

4 Actually, we only use the checked symbol where the corresponding symbol of the stan-
dard language has a different meaning than the CL-symbol.

5 Apart from Reliability and Minimal Abnormality, several strategies were developed
mainly in order to characterize consequence relations from the literature in terms of an adap-
tive logic. All those strategies can be reduced to Reliability or Minimal Abnormality under a
translation.
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standard negation, and extended with classical negation ¬̌.6 While A ∨ ¬A
is a CLuN-theorem, A ∧ ¬A is CLuN-contingent. The set of abnormalities
Ω comprises all formulas of the form ∃(A ∧ ¬A) (the existential closure of
A ∧ ¬A). The strategies are respectively Reliability and Minimal Abnor-
mality — see below. The resulting adaptive logics will be called CLuNr and
CLuNm .

Incidentally, if the lower limit logic is extended with an axiom that declares
all abnormalities logically false, one obtains the upper limit logic ULL. If
a premise set Γ does not require that any abnormalities are true, the AL-
consequences of Γ are identical to its ULL-consequences. The upper limit
logic of CLuNr and of CLuNm is CL.

In the expression Dab(∆), ∆ is a finite subset of Ω and Dab(∆) denotes
the classical disjunction of the members of ∆. Dab(∆) is called a Dab-
formula. Dab(∆) is a minimal Dab-consequence of Γ iff Γ `LLL Dab(∆)
whereas Γ 0LLL Dab(∆′) for any ∆′ ⊂ ∆. Where Dab(∆1), Dab(∆2), . . .
are the minimal Dab-consequences of Γ, U(Γ) = ∆1 ∪ ∆2 ∪ . . . The
set U(Γ) comprises the abnormalities that are unreliable with respect to Γ.
Where M is a LLL-model, Ab(M) is the set of abnormalities verified by M .

Definition 2 : A LLL-model M of Γ is reliable iff Ab(M) ⊆ U(Γ).

Definition 3 : Γ �ALr A iff A is verified by all reliable models of Γ.

Definition 4 : A LLL-model M of Γ is minimally abnormal iff there is no
LLL-model M ′ of Γ such that Ab(M ′) ⊂ Ab(M).

Definition 5 : Γ �ALm A iff A is verified by all minimally abnormal models
of Γ.

The two strategies are not as different as the above treatment may suggest.
A choice set of Σ = {∆1, ∆2, . . .} is a set that contains an element out of
each member of Σ. A minimal choice set of Σ is a choice set of Σ of which
no proper subset is a choice set of Σ. Where Dab(∆1), Dab(∆2), . . . are the
minimal Dab-consequences of Γ, Φ(Γ) is the set of minimal choice sets of
Σ = {∆1, ∆2, . . .}. It can be shown that a LLL-model M of Γ is minimally
abnormal iff Ab(M) ∈ Φ(Γ).

Adaptive logics have not only a semantics, but also a dynamic proof theory
— see for example [9] for some theory. An annotated AL-proof consists of
lines that have four elements: a line number, a formula, a justification and a

6 Suitable axioms are (A ⊃ ¬̌A) ⊃ ¬̌A and A ⊃ (¬̌A ⊃ B). The other classical
symbols are stipulated to be identical to the corresponding standard symbols.
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condition. Where

A ∆

abbreviates that A occurs in the proof as the formula of a line that has ∆ as
its condition, the (generic) inference rules are:

PREM If A ∈ Γ: . . . . . .
A ∅

RU If A1, . . . , An `LLL B: A1 ∆1

. . . . . .
An ∆n

B ∆1 ∪ . . . ∪ ∆n

RC If A1, . . . , An `LLL B∨̌Dab(Θ) A1 ∆1

. . . . . .
An ∆n

B ∆1 ∪ . . . ∪ ∆n ∪ Θ

We shall need to consider stages of proofs, which are lists of lines obtained
by applications of the three above rules, with the usual understanding that the
justification of a line should only refer to lines preceding it in the list. The
empty list will be considered as stage 0 of every proof. Where s is a stage,
s′ is an extension of s iff all lines that occur in s occur in the same order in
s′. A (dynamic) proof is a chain of stages. Here comes a peculiarity required
by the Minimal Abnormality strategy. Normally, the extension of a stage
is obtained by appending lines. This is not required here. The added lines
may be inserted, provided that the justification of every line refers only to
preceding lines. A line inserted between lines 4 and 5 may, for example, be
numbered 4.1.7

That A is derivable on the condition ∆ may be interpreted as follows: it
follows from the premise set that A or one of the members of ∆ is true.
As the members of ∆, which are abnormalities, are supposed to be false,
A is considered as derived, unless and until it shows that the supposition
cannot be upheld. The precise meaning of “cannot be upheld” depends on
the strategy, which determines the marking definition (see below) and hence
determines which lines are marked at a stage. If a line is marked at a stage,
its formula is considered as not derived at that stage.

We now set out to present the marking definitions. Dab(∆) is a minimal
Dab-formula at stage s of an AL-proof iff Dab(∆) has been derived at that

7 An alternative, which we shall not consider in this paper, is to renumber all lines after
the insertion and to adjust the old line numbers in the justifications.
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stage on the condition ∅ whereas there is no ∆′ ⊂ ∆ for which Dab(∆′) has
been derived on the condition ∅.

Consider a proof from Γ at stage s and let Dab(∆1), . . . , Dab(∆n) be
the minimal Dab-formulas at that stage. Us(Γ) = ∆1 ∪ . . .∪∆n and Φs(Γ)
is the set of minimal choice sets of {∆1, . . . , ∆n}.

Definition 6 : Marking for Reliability: Line l is marked at stage s iff, where
∆ is its condition, ∆ ∩ Us(Γ) 6= ∅.

Definition 7 : Marking for Minimal Abnormality: Line l is marked at stage s

iff, where A is derived on the condition ∆ on line l, (i) there is no ϕ ∈ Φs(Γ)
such that ϕ ∩ ∆ = ∅, or (ii) for some ϕ ∈ Φs(Γ), there is no line on which
A is derived on a condition Θ for which ϕ ∩ Θ = ∅.

This reads more easily: where A is derived on the condition ∆ on line l,
line l is unmarked at stage s iff (i) there is a ϕ ∈ Φs(Γ) for which ϕ∩∆ = ∅
and (ii) for every ϕ ∈ Φs(Γ), there is a line at which A is derived on a
condition Θ for which ϕ ∩ Θ = ∅.

A formula A is derived at stage s of a proof from Γ iff it is the formula of
a line that is unmarked at that stage. Marks may come and go as the proof
proceeds. So one also wants to define a stable notion of derivability, which
is called final derivability.

Definition 8 : A is finally derived from Γ on line l of a stage s iff (i) A is the
second element of line l, (ii) line l is not marked at stage s, and (iii) every
extension of the stage in which line l is marked may be further extended in
such a way that line l is unmarked.

Definition 9 : Γ `AL A (A is finally AL-derivable from Γ) iff A is finally
derived on a line of a proof from Γ.

In Definition 8, s may be taken to be a finite stage for both strategies. For
the Reliability strategy, the definition may moreover be taken to refer to finite
extensions only. For Minimal Abnormality the definition should be required
to refer to finite as well as to infinite extensions, as was shown in [4, p. 479].

The intuitive notion behind final derivability is the existence of a proof that
is stable with respect to an unmarked line l: A is derived on line l and line l
is unmarked in the proof and in all its extensions. However, for some AL, Γ,
and A, only an infinite proof from Γ in which A is the formula of a line l is
stable with respect to line l.

Definition 8 has an attractive game-theoretic interpretation — see espe-
cially [9]. The proponent has shown that A is finally derived on line l iff,
whenever the opponent extends the proof in such a way that line l is marked,
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the proponent is able to extend the extension further in such a way that line
l is unmarked. Note that the preceding sentence refers to all possible exten-
sions. So it can only be established by a reasoning in the metalanguage.

Before closing this section, we list, for future reference, some theorems
that are proven in [8]. The original numbers are mentioned in brackets.

Theorem 1 : Γ ⊆ CnAL(Γ). (Reflexivity) [Th. 11.2]

Theorem 2 : CnAL(CnAL(Γ)) = CnAL(Γ). (Fixed Point) [Th. 11.6–7]

Theorem 3 : If Γ′ ⊆ CnAL(Γ) then CnAL(Γ) = CnAL(Γ ∪ Γ′). [Th. 11.10]

Note that Theorem 3 is an immediate consequence of the following two

• Cautious Monotonicity (if Γ′ ⊆ CnAL(Γ) then CnAL(Γ) ⊆ CnAL(Γ∪
Γ′)) [Th. 11.12]

• Cumulative Transitivity (if Γ′ ⊆ CnAL(Γ) then CnAL(Γ ∪ Γ′) ⊆
CnAL(Γ)) [Th. 11.11].

Theorem 4 : Γ `ALm A iff, for every ϕ ∈ Φ(Γ), there is a ∆ ⊂ Ω such that
∆ ∩ ϕ = ∅ and Γ `LLL A∨̌Dab(∆). [Th. 8]

Theorem 5 : CnLLL(Γ) ⊆ CnALr (Γ) ⊆ CnALm (Γ) ⊆ CnULL(Γ). [Th. 11.1]

From here on, “adaptive logic” will always refer to an adaptive logic in
standard format.

4. Equivalent Premise Sets and Adaptive Logics

It was proved that all adaptive logics have the properties Reflexivity, Cu-
mulative Transitivity, Cautious Monotonicity, and Fixed Point. From this it
is easily provable that C1–C3 hold for all of them. Note that each of the
three criteria greatly simplifies the identification of equivalent premise sets
(or theories).

Theorem 6 : C1 holds for all adaptive logics.

Proof. Suppose that Γ′ ⊆ CnAL(Γ) and Γ ⊆ CnAL(Γ
′). By Theorem 3,

CnAL(Γ) = CnAL(Γ∪ Γ′) and CnAL(Γ
′) = CnAL(Γ∪ Γ′). So CnAL(Γ) =

CnAL(Γ
′). �
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The following lemma establishes that C2 and C3 are coextensive whenever
L is reflexive and CnL(Γ) is a fixed point.

Lemma 1 : If L is reflexive, CnL(Γ) is a fixed point (CnL(Γ) = CnL(CnL(Γ))
for all Γ), and L′ is reflexive and monotonic, then CnL′(CnL(Γ)) = CnL(Γ)
for all Γ iff CnL′(Γ) ⊆ CnL(Γ) for all Γ. (Closure Lemma)

Proof. Suppose that the antecedent is true. So, for all Γ, Γ ⊆ CnL(Γ) by
the reflexivity of L and hence, for all Γ, CnL′(Γ) ⊆ CnL′(CnL(Γ)) by the
monotonicity of L′. We have to prove an equivalence.
⇒ Suppose that, for all Γ, CnL′(CnL(Γ)) = CnL(Γ). Γ ⊆ CnL(Γ) by the

reflexivity of L. So CnL′(Γ) ⊆ CnL′(CnL(Γ)) by the monotonicity of L′.
From this and the supposition follows that, for all Γ, CnL′(Γ) ⊆ CnL(Γ).
⇐ Suppose that, for all Γ, CnL′(Γ) ⊆ CnL(Γ) and hence CnL′(CnL(Γ)) ⊆

CnL(CnL(Γ)). As CnL(Γ) is a fixed point, it follows that CnL′(CnL(Γ)) ⊆
CnL(Γ) for all Γ. So, by the reflexivity of L′, CnL′(CnL(Γ)) = CnL(Γ) for
all Γ. �

Theorem 7 : C2 and C3 hold for all adaptive logics.

Proof. C2 and C3 are coextensive for all adaptive logics because of Lemma
1 together with Theorems 1 and 2. It suffices to prove that C2 holds for all
adaptive logics. Suppose that the antecedent of C2, CnL′(Γ) ⊆ CnAL(Γ),
holds true for all Γ. As AL is reflexive (Theorem 1), it follows that

Γ ∪ CnL′(Γ) ⊆ CnAL(Γ) .

From this, by Theorem 3,

CnAL(Γ) = CnAL(Γ ∪ CnL′(Γ)) ,

whence, as L′ is reflexive,

CnAL(Γ) = CnAL(CnL′(Γ)) .

By the same reasoning

CnAL(Γ
′) = CnAL(CnL′(Γ′)) .

So, as CnL′(Γ) = CnL′(Γ′) by the supposition,

CnAL(Γ) = CnAL(Γ
′) .

�
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Note that, for every adaptive logic AL, LLL is a Tarski logic weaker than
AL. So if two premise sets are LLL-equivalent, they are also AL-equivalent
in view of C2. For some premise sets, however, one needs to rely directly on
C1. An example is that CnCLuNm ({p}) = CnCLuNm ({p∨ (q∧¬q)}). While
CnCLuN({p}) 6= CnCLuN({p ∨ (q ∧ ¬q)}), it is easy enough to show that
{p} `CLuNm p ∨ (q ∧ ¬q) and that {p ∨ (q ∧ ¬q)} `CLuNm p.

5. Characterizations Under a Translation

Some readers may be puzzled by our claim that criteria C1–3 hold for the
characterization of a DRF in terms of an adaptive logic while they do not
hold for other characterizations — see Section 1. The reason is that the
former characterizations are realized under a translation. In order to make
this paper more self-contained, we present two examples. Consider first the
logic Q from Section 2, restricting the discussion to the propositional level.

Let B abbreviate �♦. Where T is the well-known modal logic of Feys —
see, for example, [22]8 — let the modal logic Tm be defined by (i) the lower
limit T, (ii) the set of abnormalities Ω = {(BA∧BB)∧¬B(A∧B) | A, B ∈
W}, and (iii) Minimal Abnormality. It is provable that, where B1 ∧ . . .∧Bn

is the conjunctive normal form of A and ΓB = {BC | C ∈ Γ}, Γ `Q A iff
ΓB `Tm BB1 ∧ . . . ∧ BBn.

Note that every minimal Dab-formula that is T-derivable from ΓB com-
prises only one disjunct.9 This means that, for statements of the form ΓB `Tm

BB1 ∧ . . . ∧ BBn, Minimal Abnormality and Reliability boil down to the
Simple strategy. Thus the marking definition may be simplified to: a line is
marked iff some member of its condition has been derived on the empty con-
dition. Similarly, a T-model M of ΓB is a Tm -model of ΓB iff Ab(M) =
⋂

{Ab(M ′) | M ′ is a T-model of ΓB} = {A ∈ Ω | ΓB `T A}.
Let us now turn to the fact that C2 does not hold for Q — for example P-

equivalence does not warrant Q-equivalence — whereas C2 holds for Tm in
view of Theorem 7. This opposition obviously derives from the fact that Tm

distinguishes between B(p ∧ ¬p), which has no T-models, and Bp ∧ B¬p,
which does, whereas Q blurs this distinction. For example {p,¬p} is P-
equivalent to {p ∧ ¬p}, whereas {Bp, B¬p} is not T-equivalent to {B(p ∧
¬p)}.

8 Except that, in order to define Γ �T A, a T-model is defined as M = 〈W, w0, R, v〉
with w0 ∈ W and M is said to verify A iff vM (A, w0) = 1.

9 The property does not hold for all premise sets but is typical for premise sets ΓB with
Γ a set of modal-free formulas.
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The situation is similar for the Strong and Weak consequence relations,
which were employed to illustrate the non-applicability of C1 and C3. Here
we only consider the Strong consequence relation. Let the premises be for-
mulated with classical negation, ¬̌. Let Γ¬¬̌ = {¬¬̌A | A ∈ Γ} and let
W 6¬ be the set of closed formulas that do not contain ¬ (but may contain
¬̌). It was proved in [5]10 that CnStrong(Γ) = CnCLuNm (Γ¬¬̌) ∩ W 6¬.
Note that Theorems 1–3 hold for CnCLuNm (Γ), but that they do not hold
for the consequence relation that maps Γ to CnCLuNm (Γ¬¬̌) ∩ W 6¬. Thus
if p ∧ q, ¬̌p ∈ Γ, neither of them will be in CnStrong(Γ); ¬¬̌(p ∧ q) and
¬¬̌¬̌p will be members of both Γ¬¬̌ and CnCLuNm (Γ¬¬̌) but obviously not
of CnCLuNm (Γ¬¬̌) ∩ W 6¬. Note also that the required translation does not
complicate the applicability of C1–C3.

6. Extension of Equivalent Premise Sets

Let us now turn to the announced related problem: the equivalence of exten-
sions of equivalent premise sets. In this respect adaptive logics do not behave
like Tarski logics. At first sight, they seem to behave just as strangely as other
formal approaches to DRF.

Fact 1 : If L is a Tarski logic, then CnL(Γ1) = CnL(Γ2) warrants that
CnL(Γ1 ∪ ∆) = CnL(Γ2 ∪ ∆).

Fact 2 : CnAL(Γ1) = CnAL(Γ2) does not warrant that CnAL(Γ1 ∪ ∆) =
CnAL(Γ2 ∪ ∆).

That the second fact holds follows immediately from the following example:

CnCLuNm ({p}) = CnCLuNm ({p ∨ (q ∧ ¬q)}) but
CnCLuNm ({p, q ∧ ¬q}) 6= CnCLuNm ({p ∨ (q ∧ ¬q), q ∧ ¬q}).

Note that the example may be adjusted to any adaptive logic in which clas-
sical disjunction is present or definable. The example clearly indicates the
most straightforward reason why the fact holds. The formula q ∧ ¬q is an
abnormality and hence is supposed to be false ‘unless and until proven oth-
erwise’. The original premise sets are equivalent because p∨ (q ∧¬q) is the
only premise of the second premise set and its minimal abnormal interpreta-
tion leads to p. If, however, q ∧ ¬q is added to the premise sets,{p, q ∧ ¬q}
still gives us p because CLuNm is reflexive, but p is not derivable from

10 The paraconsistent negation is there written as ∼ (here as ¬) and the classical negation
as ¬ (here as ¬̌).
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{p ∨ (q ∧ ¬q), q ∧ ¬q} because this extended premise set requires q ∧ ¬q to
be true and has the same CLuNm -consequences as {q∧¬q}. To the negative
fact corresponds a positive result which is very similar to it.

Theorem 8 : If L is a Tarski logic weaker than AL and CnL(Γ1) = CnL(Γ2),
then CnAL(Γ1 ∪ ∆) = CnAL(Γ2 ∪ ∆) for all ∆.

Proof. Suppose that the antecedent is true. In view of the reflexivity of L,
(i) ∆ ⊆ CnL(Γ1 ∪ ∆) and (ii) CnL(Γ1) = CnL(Γ2) warrants that Γ2 ⊆
CnL(Γ1). As L is monotonic, it follows that Γ2 ∪ ∆ ⊆ CnL(Γ1 ∪ ∆). So
Γ2 ∪ ∆ ⊆ CnAL(Γ1 ∪ ∆) in view of CnL(Γ1 ∪ ∆) ⊆ CnAL(Γ1 ∪ ∆). By
the same reasoning Γ1 ∪∆ ⊆ CnAL(Γ2 ∪∆). But then, in view of Theorem
6, CnAL(Γ1 ∪ ∆) = CnAL(Γ2 ∪ ∆). �

For adaptive logics there is a weaker alternative for Fact 1. For this, we
need another definition.

Definition 10 : A set of formulas Θ is an AL-monotonic extension of a set of
formulas Γ iff Γ ⊂ Θ and CnAL(Γ) ⊆ CnAL(Θ).

Theorem 9 : If Γ1 ∪∆ is an AL-monotonic extension of Γ1 and Γ2 ∪∆ is an
AL-monotonic extension of Γ2, then CnAL(Γ1) = CnAL(Γ2) warrants that
CnAL(Γ1 ∪ ∆) = CnAL(Γ2 ∪ ∆)

Proof. Suppose CnAL(Γ1) = CnAL(Γ2), Γ1∪∆ is an AL-monotonic exten-
sion of Γ1 and Γ2 ∪ ∆ is an AL-monotonic extension of Γ2. By definition
10, the second supposition implies that

CnAL(Γ1) ⊆ CnAL(Γ1 ∪ ∆) .

In view of the reflexivity of adaptive logics

∆ ⊆ CnAL(Γ1 ∪ ∆) .

From the two previous results, one obtains immediately that

CnAL(Γ1) ∪ ∆ ⊆ CnAL(Γ1 ∪ ∆) ,

and with Theorem 3

CnAL(Γ1 ∪ ∆) = CnAL(CnAL(Γ1) ∪ ∆ ∪ Γ1) .
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In view of the reflexivity of AL, Γ1 ⊆ CnAL(Γ1), whence:

CnAL(Γ1 ∪ ∆) = CnAL(CnAL(Γ1) ∪ ∆) .

With the same reasoning, the following is provable

CnAL(Γ2 ∪ ∆) = CnAL(CnAL(Γ2) ∪ ∆) .

The supposition implies that CnAL(CnAL(Γ1) ∪ ∆) = CnAL(CnAL(Γ2) ∪
∆), whence

CnAL(Γ1 ∪ ∆) = CnAL(Γ2 ∪ ∆) .

�

There are criteria for deciding whether an extension is AL-monotonic. The
criteria depend on the strategy, which is the third element of the adaptive
logic AL. The criteria we introduce below may be not the sharpest possible
ones, but it is obvious that they are correct. Let Γ be the original premise set
and Γ′ the extended premise set.

For the Reliability strategy, the criterium reads: If Γ ⊆ Γ′ and U(Γ′) ⊆
U(Γ) then Γ′ is an AL-monotonic extension of Γ. In words: if every abnor-
mality that is unreliable with respect to Γ′ is also unreliable with respect to
Γ, then Γ′ is an AL-monotonic extension of Γ. In terms of the proof theory,
this means that every unmarked line in a proof from Γ remains unmarked if
the premise set is extended to Γ′. This warrants that the final consequences
of Γ are also final consequences of Γ′. Obviously, some lines that are marked
in a proof from Γ may be unmarked in a proof from Γ′. The effect of this
is that the latter premise set has more, but not less, consequences than the
former.

For the Minimal Abnormality strategy, the criterium reads: If Γ ⊆ Γ′ and
Φ(Γ′) ⊆ Φ(Γ), then Γ′ is an AL-monotonic extension of Γ. This criterium
is most easily understood from a semantic point of view. The antecedent
warrants that every AL-model of Γ′ is an AL-model of Γ and hence verifies
every formula verified by all AL-models of Γ.

It is instructive to illustrate the difference between the two criteria in terms
of CLuNr and CLuNm . Let Γ = {(p∧¬p)∨ (q ∧¬q), (p∧¬p)∨ (r ∧¬r),
s∨ (p∧¬p), s∨ (q ∧¬q)} and let Γ′ = Γ∪{q ∧¬q}. As U(Γ) = U(Γ′) =
{p ∧ ¬p, q ∧ ¬q, r ∧ ¬r}, Γ′ is a CLuNr -monotonic extension of Γ. Note,
however, that Φ(Γ) = {{p ∧ ¬p}, {q ∧ ¬q, r ∧ ¬r}} whereas Φ(Γ′) =
{{q ∧ ¬q, p ∧ ¬p}, {q ∧ ¬q, r ∧ ¬r}}. So Γ′ is not a CLuNm -monotonic
extension of Γ and actually Γ `CLuNm s whereas Γ′

0CLuNm s.
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7. Maximality of the Lower Limit Logic

As LLL is a Tarski logic weaker than AL, Theorem 8 entails the following.

Corollary 1 : If CnLLL(Γ1) = CnLLL(Γ2), then CnAL(Γ1∪∆) = CnAL(Γ2∪
∆) for all ∆.

Obviously, the corollary can also be proved directly. As LLL is a Tarski
logic, CnLLL(Γ1) = CnLLL(Γ2) warrants that CnLLL(Γ1∪∆) = CnLLL(Γ2∪
∆) by Fact 1 and CnLLL(Γ1 ∪ ∆) = CnLLL(Γ2 ∪ ∆) warrants CnAL(Γ1 ∪
∆) = CnAL(Γ2 ∪ ∆) by Theorem 7.

We shall now prove that the lower limit logic LLL of an adaptive logic
AL is not only a Tarski logic that is weaker than AL but that actually every
monotonic logic L that is weaker than AL is weaker than LLL or identical to
LLL. In the proof of the following theorem we rely on the compactness of
LLL, but do not require L to be compact.

Theorem 10 : For all monotonic logics L weaker than ALm and for all Γ,
CnL(Γ) ⊆ CnLLL(Γ).

Proof. Suppose that L is a monotonic logic weaker than ALm and that there
is a Γ and a B for which the following three hold.

Γ 0LLL B (1)
Γ `L B (2)

Γ `ALm B (3)

Let Γ′ = {Dab(∆) | Γ `LLL B∨̌Dab(∆)}. In view of the definition of Γ′,
(1) entails (4); (5) follows from (2) by the monotonicity of L, and (6) follows
from (5) by the supposition.

Γ ∪ Γ′
0LLL B (4)

Γ ∪ Γ′ `L B (5)
Γ ∪ Γ′ `ALm B (6)

In view of Theorem 4, it follows from (6) and (4) that, for every ϕ ∈ Φ(Γ ∪
Γ′), there is a ∆ ⊂ Ω such that

Γ ∪ Γ′ `LLL B∨̌Dab(∆), ∆ 6= ∅ and ∆ ∩ ϕ = ∅ . (7)
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In view of the compactness and monotonicity of LLL there are Dab(∆1), . . . ,
Dab(∆n) ∈ Γ′ such that

Γ ∪ {Dab(∆1), . . . ,Dab(∆n)} `LLL B∨̌Dab(∆) . (8)

As Γ `LLL B∨̌Dab(∆i) for every i ∈ {1, . . . , n},

Γ `LLL B∨̌

(

ˇ∧n

i=1
Dab(∆i)

)

. (9)

From (8) follows

Γ ∪

{

ˇ∧n

i=1
Dab(∆i)

}

`LLL B∨̌Dab(∆), (10)

whence, by the Deduction Theorem,

Γ `LLL

(

ˇ∧n

i=1
Dab(∆i)

)

⊃̌(B∨̌Dab(∆)) . (11)

From (9) and (11) follows

Γ `LLL B∨̌Dab(∆) , (12)

whence Dab(∆) ∈ Γ′. But then every ϕ ∈ Φ(Γ ∪ Γ′) contains at least one
member of ∆, which contradicts (7). �

It follows from Theorem 5 that this result also holds when the third element
of AL is Reliability. Hence we obtain the following corollary.

Corollary 2 : Every monotonic logic L that is weaker than AL is weaker than
LLL or identical to LLL.

Lemma 1 gives us a further corollary.

Corollary 3 : If CnAL(Γ) is closed under a monotonic logic L, then L is
weaker than LLL or identical to LLL.

The upshot is that the lower limit logic LLL allows for very sharp applica-
tions of C2 and C3. Moreover, the lower limit logic is the strongest Tarski
logic L weaker than AL for which holds: if two premise sets are L-equivalent
and both are extended with the same set of formulas, then these extensions
are AL-equivalent. All this highlights the pivotal role of the lower limit logic.
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8. In Conclusion

We have proved that criteria C1–C3, which are standard for identifying
equivalent premise sets with respect to Tarski logics, also apply to adap-
tive logics. This is a major advantage of adaptive logics in comparison to
other formal approaches to defeasible reasoning forms because the criteria
are transparent and easy to check. This is especially so in view of the pivotal
role played by the lower limit logic.

With respect to extensions of equivalent premise sets, adaptive logics do
not behave like Tarski logics, but we have located a criterion that is simple
and close to that for Tarski logics — and moreover a criterion that is spe-
cific for adaptive logics. We have also shown that the strongest Tarski logic
weaker than an adaptive logic in standard format is its lower limit and that
the lower limit logic is the strongest Tarski logic under which the adaptive
consequence set is closed. This means that equivalence with respect to the
lower limit logic does not only provide a criterion for adaptive equivalence,
but also provides a maximally strong criterion for deciding that similar ex-
tensions of adaptively equivalent premise sets are adaptively equivalent.
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