
“04yang”
2009/10/2
page 255

Logique & Analyse 207 (2009), 255–280

(STAR-BASED) FOUR-VALUED KRIPKE-STYLE SEMANTICS
FOR SOME NEIGHBORS OF E, R, T

EUNSUK YANG∗

Abstract
This paper investigates four-valued Kripke-style semantics (with
star (∗) operation) for three sorts of logics, which can be regarded as
paraconsistent, Ockham, and Boolean neighbors of the most famous
relevance systems E of Entailment, R of Relevance, and T of Ticket
Entailment. We first introduce some paraconsistent cousins of E

and R, provide Kripke-style semantics for them, and prove sound-
ness and completeness. We then further consider Kripke-style se-
mantics with star (∗) operation, briefly ∗-Kripke-style semantics, for
them. We next introduce some Ockham neighbors of E and R. Af-
ter providing Kripke-style semantics for them, we prove soundness
and completeness. We finally introduce several Boolean neighbors
of E, R, and T. We provide ∗-Kripke-style semantics for not merely
the Boolean neighbors but also the Ockham neighbors, and prove
soundness and completeness.

1. Introduction: PL, OL, and BL

After Kripke [12] gave semantics for the intuitionistic propositional logic
H of Heyting (as well as modal logics), so called Kripke semantics, several
semantics generalizing it have been provided. Let us call these kinds of se-
mantics Kripke-style semantics. Thomason [20] gave a Kripke-style seman-
tics for the Nelson’s system N of Constructible falsity by allowing partial
evaluations (“gaps” (N )). Dunn [5, 10] provided a Kripke-style semantics
for RM (the R of Relevance with mingle) by allowing non-functional eval-
uations (“gluts” (B )). He [10] especially gave several Kripke-style seman-
tics for systems such as Bc1, N1,0, BNc1,0, etc., by allowing non-functional
and/or partial evaluations, i.e., both B and N, and either B or N.

∗This work was supported by the Korea Research Foundation Grant KRF-2004-075-
A00009. I must thank the anonymous referee for his helpful comments.
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Smiley [2] and Dunn [10] gave a set of four-valued matrices characterizing
Efde (the first-degree entailment system of E of Entailment). They, however,
did not provide such matrices for (any neighbor of) E. We either have not
yet found the literature investigating such matrices for E or its neighbor(s).

One interesting point to remark is that the class of matrices of Efde, more
exactly the class of Smiley’s matrices for Efde, may characterize one neigh-
bor of E, which we shall call PE-R: PE-R consists of E plus the restricted
positive paradox (rP) minus the reductio (R). This system is not relevant
because it has rP (A10 below) and so allows irrelevance between A and
B in case A → B is a theorem.1 But PE-R is still paraconsistent in the
sense that it rejects the implicational and conjunctive forms of ‘absurdity’
(so called “spread laws”) A → (∼A → B) and (A ∧ ∼A) → B. Since a
set of four-valued matrices characterizes Efde, we can provide four-valued
Kripke-style semantics for PE-R. Then a natural concern arises about para-
consistent neighbors of other famous relevance systems such as R and T of
Ticket Entailment and four-valued Kripke-style semantics for them.

We shall here first introduce not merely the paraconsistent neighbor of E

PE-R, but such neighbors of R PRc-C, PRct-C. We provide Kripke-style se-
mantics for them, and prove soundness and completeness. (With respect to
(w.r.t.) T we do not know which system is to be such a neighbor. This is
an open problem left in this paper.) By PL, let us ambiguously denote the
above paraconsistent neighbors all together. We shall here further provide
Kripke-style semantics with star (∗) operation (used in Routley-Meyer se-
mantics for relevance logic), briefly ∗-Kripke-style semantics, for PL, and
prove soundness and completeness.

As is known to us, the relevance systems E, R, T all have de Morgan
negation. Algebraically, a de Morgan negation is an Ockham negation with
involution (A11 below). It satisfies the de Morgan’s laws and switches the
bounds, and so is a dual homomorphism. By ∼ and ¬, let us express de
Morgan negation and Ockham negation, respectively, to distinguish them.
Ockham negation has been investigated in algebraic semantics. For instance,
Urquhart [21] studied bounded distributive lattices with a dual homomorphic
operator, calling them Ockham lattices, and Dunn (e.g. [8, 9]) investigated
the Ockham negation as one of several negations based on distributive lat-
tices. This negation is interesting in that relevance systems having ¬ (in
place of ∼) can be still relevant because Ockham negation is weaker than de
Morgan negation, and so paraconsistent in the above sense. We shall next

1 We usually call a system relevant if it satisfies the strong relevance principle (SRP) in
[1] that ϕ→ ψ is a theorem only if ϕ and ψ share a propositional variable, and sometimes if
it satisfies the weak relevance principle (WRP) in [4] that ϕ→ ψ is a theorem only if either
(i) ϕ and ψ share a propositional variable or (ii) both ¬ϕ and ψ are theorems. PE-R is neither
strongly nor weakly relevant.
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introduce two systems OEe and OPRct-C below (see Section 4), which are
Ockham neighbors of E and R. (But we do not know either which system
can be such a neighbor of T.) Both of these are paraconsistent in the above
sense, and OEe further seems relevant in the strong sense above.2 Like PL,
by OL, let us ambiguously denote the above Ockham neighbors together. We
provide four-valued Kripke-style semantics for OL, and prove soundness and
completeness.

As is known to us, relevance systems can have the stronger negation
Boolean negation (expressing it by −) in place of de Morgan negation ∼
without collapsing to Classical Logic (CL). For instance, Meyer, Giambrone,
and Brady [15] introduced the classical version of RW (R minus Contrac-
tion) CRW having both ∼ and −, and provided a class of four-valued matri-
ces related to CRW.3 We shall finally introduce several Boolean neighbors
of E, R, and T. As PL and OL, by BL, let us ambiguously denote the Boolean
neighbors (in Section 5). We provide ∗-Kripke-style semantics for BL and
OL, and prove soundness and completeness.

For convenience, by L, we shall ambiguously express PL, OL, and BL all
together, if we do not need distinguish them, but context should determine
which logic (or system) is intended; by BOL, BL and OL together. Also, for
convenience, we shall adopt the notation and terminology similar to those in
[10], and assume familiarity with them.

We finally note that there has been another trend of four-valued seman-
tics for relevance logic (see e.g. Mares [13], Restall [16], and Routley
[17]), combining Routley-Meyer semantics for relevance logic (see Rout-
ley and Meyer [18, 19]) and Dunn’s four-valued semantics for the logic of
first-degree entailments (see Dunn [6]). These semantics use the ternary re-
lation R used in Routley-Meyer semantics for relevance logic. Let us call
these kinds of semantics Routley-Meyer-style semantics. As is known to
us, Routley-Meyer(-style) semantics are famous for semantics for relevance
logic. But our concern is Kripke-style semantics based on binary relation
in place of ternary relation. So we here do not deal with such four-valued
logics, i.e., four-valued Routley-Meyer-style semantics for the systems.

2 Note that RM (R-mingle) is relevant in the weak sense: it proves such formulas as ∼(A
→ A) → (B → B) so that the (i) of WRP does not hold in it. It is of interest that OEe rejects
such a formula. So, even though OEe has “R-mingle” as a theorem, it seems not merely
weakly but also strongly relevant.

3 To me it is not clear whether they considered such matrices as the matrices character-
istic for CRW. They did not exactly mention it and not provide soundness and completeness
results for CRW using such matrices. In fact, the set of matrices they considered in it does
not characterize CRW because the matrix for implication further satisfies “R-mingle”, which
CRW drops.
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2. PL

2.1. Axiomatizations of PL

For convenience, we present the axiomatic systems for PL using the follow-
ing axiom schemes and rules of inference with defined connective: (df1) A
↔ B := (A → B) ∧ (B → A). For the remainder we shall follow the custom-
ary notation and terminology. The formula A of the form B → C is called
strict. We use the axiom systems to provide a consequence relation.4

AXIOM SCHEMES
A1. (A → B) → ((B → C) → (A → C)) (suffixing)
A2. (A → (A → B)) → (A → B) (contraction)
A3. ((A → A) → B) → B (specialized assertion)
A4. (A ∧ B) → A, (A ∧ B) → B (∧-elimination)
A5. ((A → B) ∧ (A → C)) → (A → (B ∧ C)) (∧-introduction)
A6. A → (A ∨ B), B → (A ∨ B) (∨-introduction)
A7. ((A → C) ∧ (B → C)) → ((A ∨ B) → C) (∨-elimination)
A8. (A ∧ (B ∨ C)) → ((A ∧ B) ∨ (A ∧ C)) (distributive law)
A9. (2A ∧ 2B) → 2(A ∧ B), where 2A := (A → A) → A
A10. A → (B → A), where A strict (restricted positive paradox)
A11. ∼∼A ↔ A (double negation)
A12. (A → B) → (∼B →∼A) (contraposition)
A13. (A → B) ↔ (∼A ∨ B), where A, B strict (restricted material

biimplication)
A14. A → A (self-implication)
A15. (A → (B → C)) → (B → (A → C)) (permutation)
A16. A → (B → A) (positive-paradox)
A17. (A → B) ∨ (B → A) (chain)
A18. ∼(A ∧ B) ↔ (∼A ∨ ∼B) (negated conjunction)
A19. ∼(A ∨ B) ↔ (∼A ∧ ∼B) (negated disjunction)
A20. ∼(A → B) ↔ (A ∧ ∼B) (negated implication)
A21. t

A22. A ↔ (t → A).

4 Note that PE-R has the Modal Deduction Theorem because it proves A10, A14, and
“self-distribution” (A → (B → C)) → ((A → B) → (A → C)) (see [7]). See Hacking [11] for
the axiomatizations (of modal logics) by using strict implication in place of modal connective
2. Each PRc-C and PRct-C has the Classical Deduction Theorem because it has A16 instead
of A10.

As is known to us, E is a system whose implication satisfies both relevance and necessity.
Because of this modal property, it has strict formulas. We here note that PE-R not only has
such strict formulas but also requires the restricted positive paradox (A10 below). Since PE-R
has this paradox, it is not a relevance logic.
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{1} = T

{0, 1} = B

{0} = F

{ } = N

Figure 1. The lattice 4

RULES
A → B, A ` B (modus ponens, MP)
A, B ` A ∧ B (adjunction, AD).

SYSTEMS
PE-R: A1 to A13, MP, AD;
PRc-C: A1, A2, A4 to A8, A11, A13 to A19, MP, AD;
PRct-C: PRc-C plus A20 to A22 minus A13.

These systems all do not prove the “reductio” (R). A13 ensures that for any
strict formulas in PE-R and PRc-C, the customary definitions of connectives
in CL holds since such a formula has as its evaluations just T and F and
so satisfies Boolean properties (see the matrices for →PE and →PRc1 in
Table 1). The propositional constant t is thought of as conjunction of all true
sentences.

For convenience, “∼”, (“−”, “¬”,) “→”, “∧”, and “∨” are used ambigu-
ously as propositional connectives and as algebraic operators, but context
should make their meaning clear.

2.2. Kripke-style semantics for PL

Let us regard an “evaluation” to be a function from sentences to sets of two
values, including the set having no truth values to account for underdetermi-
nation and both truth values to account for overdetermination. We regard a
four-valued matrix as a lattice and call it the lattice 4; and express each set
of value(s) { }, {0}, {1}, and {0, 1} by N, F, T, and B, respectively (see
Figure 1). Each matrix for ∼, ∧, ∨, and → can be defined as in Table 1
(+ indicates the designated value(s), and →PE , →PRc1, and →PRc2 are for
PE-R, PRc-C, and PRct-C, respectively).

Note that PE-R and PRc-C have one designated value T, and yet PRct-C
has two designated values T and B, where B corresponds to t. Thus, to
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∼ ∧ T+ B (+) N F
T+ F T+ T B N F
B (+) B B (+) B B F F
N N N N F N F
F T F F F F F

∨ T+ B (+) N F →PE T+ B N F
T+ T T T T T+ T F F F
B (+) T B T B B T T F F
N T T N N N T F T F
F T B N F F T T T T

→PRc1 T+ B N F →PRc2 T+ B+ N F
T+ T T F F T+ T B N F
B T T F F B+ T B N F
N T T T T N T T T T
F T T T T F T T T T

Table 1. Four-valued matrices for evaluations of PL

express it ambiguously, we put B (+) in place of B+ in the tables for ∼, ∧,
and ∨.

Next, as in [10], let us define evaluations. An evaluation into 4 is a func-
tion v from sentences into 4 such that v(∼A) = ∼v(A), v(A ∧ B) = v(A)
∧ v(B), v(A ∨ B) = v(A) ∨ v(B), and v(A → B) = v(A) → v(B). (To dis-
tinguish the implications, we use in Table 1 →PE , →PRc1, and →PRc2 for
PE-R, PRc-C, and PRct-C, respectively. But if we need not distinguish them,
by → we shall ambiguously express them all together.) As the labeling of
Figure 1 reveals, we can view 4 as consisting of subsets of the usual two true
values. Thus, equivalently an evaluation can be regarded as a map v from
sentences into the powerset of {1, 0} (see below).

For a functional evaluation we never have both 0, 1 ∈ v(A). For a total
evaluation we always have at least one of 0, 1 ∈ v(A). We write 


v
1 A for 1

∈ v(A), and 

v
0 A for 0 ∈ v(A). We call a matrix characteristic for a calculus

when a formula A is provable in case it assumes designated value(s) for every
assignment of values to its variables. We parameterize an evaluation in the
way familiar from modal logic, writing v(A, α), α 


v
1 A, α 


v
0 A.

We define a frame to be a structure S = (ζ, U, v), where ζ ∈ U and v is
a partial order (p.o.) on U. Especially w.r.t. PRc-C and PRct-C, v is also
connected in the sense that α v β or β v α, and so a linear order (l.o.) on
U. Following Dunn [10], we regard from now on U as a set of “states of
information”, and for α, β ∈ U, α v β means that the information of α is
included in that of β. By Σ, we denote the class of all frames.
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We assume that there are denumerably many atomic sentences, and that
the class of Sentences is defined inductively from these in the usual manner,
utilizing the connectives ∼, ∧, ∨, and →. A PL-evaluation on a frame S is a
function v(A, α) from Sentences × U into 4 subject to conditions below. We
denote the set of these evaluations by ValPL and write α 


v
1 A for 1 ∈ v(A,

α), and α 

v
0 A for 0 ∈ v(A, α). In context, we often leave the superscript v

implicit.

((Atomic) Hereditary Conditions (HC)) For any atomic sentence p,
(HC1) α 


v
1 p and α v β =⇒ β 


v
1 p;

(HC0) α 

v
0 p and α v β =⇒ β 


v
0 p.

Truth and falsity conditions for compound sentences are then given by the
following clauses:

(∼1) α 
1 ∼A ⇐⇒ α 
0 A;
(∼0) α 
0 ∼A ⇐⇒ α 
1 A;
(∧1) α 
1 A ∧ B ⇐⇒ α 
1 A and α 
1 B;
(∧0) α 
0 A ∧ B ⇐⇒ α 
0 A or α 
0 B;
(∨1) α 
1 A ∨ B ⇐⇒ α 
1 A or α 
1 B;
(∨0) α 
0 A ∨ B ⇐⇒ α 
0 A and α 
0 B;
(→1PE) α 
1 A → B⇐⇒ ∀β w α, (i) (β 
1 A =⇒ β 
1 B), &

(ii) (β 
0 B =⇒ β 
0 A);
(→1PR) α 
1 A → B⇐⇒ (i) of (→1PE);
(→0PER1) α 
0 A → B⇐⇒ α 6
1 A → B;
(→0PR2) α 
0 A → B⇐⇒ α 
1 A and α 
0 B.

Note that (→1PE) and (→1PR) are truth conditions for PE-R and both
PRc-C and PRct-C, respectively; (→0PER1) and (→0PR2) are falsity condi-
tions for both PE-R and PRc-C, and PRct-C, respectively.

A formula A is PL-valid in a frame S = (ζ, U, v) if and only if (iff) ∀v ∈
ValPL, ζ 


v
1 A. Let Θ be the class of frames. A sentence A is PL-valid, in

symbols |=PL A, iff ∀S ∈ Θ, A is PL-valid in S.
Given a class of models MPL for PL, we can define (simple truth preserv-

ing, corresponding to |=1,) consequence as follows:

Definition 1 : Γ |=PL A iff for all models M = (ζ, U, v, v) ∈ MPL, if ζ 

v
1 B

for all B ∈ Γ, then ζ 

v
1 A.
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2.3. Soundness and completeness for PL

Let `PL A be the theoremhood of A in PL. First we note the following
lemma, which is useful for the verification of each instance of the axiom
schemes in Proposition below:

Lemma 1 : (Hereditary Lemma) For any sentence A, (i) if α 

v
1 A and α v

β, then β 

v
1 A, and (ii) α 


v
0 A and α v β, then β 


v
0 A.

Proof. It is by straightforward induction on the length of A. �

Proposition 1 : (Soundness) If `PL A, then |=PL A.

Proof. The rules of PL are MP and AD. Both of these obviously preserve
truth, i.e., PL-validity. (For the former, look at (→1) and recall that v is
reflexive; for the latter, look at (∧1).) Thus the proof reduces to showing that
each instance of the axiom schemes is valid in all frames, i.e., PL-valid.

To show this, w.r.t. PE-R we verify its characteristic axiom scheme A10
as an example: in checking for ζ 
1 (A → B) → (C → (A → B)), it suffices
to show that if ζ v α then

(i) α 
1 A → B only if α 
1 C → (A → B), and
(ii) α 
0 C → (A → B) only if α 
0 A → B.

For (i), to show α 
1 C → (A → B) we assume that β 
1 C and show that β

1 A → B. Since α v β and α 
1 A → B by the supposition, it is immediate
by Lemma 1. For (ii), let us suppose toward contradiction that α 6
0 A → B.
Then by (→0PER1), α 
1 A → B, and by (i), α 
1 C → (A → B). Thus by
(→0PER1), α 6
0 C → (A → B), which is contrary to the supposition that α

0 C → (A → B).

The verification of the other axiom schemes is left to the reader. �

We prove the completeness of PL by using the well-known Henkin-style
proofs for modal logic, but with prime theories in place of maximal theories.
To do this, we define some theories. We interpret `PL as the deducibility
consequence relation of the logic PL. By a PL-theory, we mean a set Γ of
sentences closed under deducibility, i.e., closed under MP and AD; by a
prime PL-theory, a theory Γ such that if A ∨ B ∈ Γ, then A ∈ Γ or B ∈ Γ;
and by a trivial PL theory, the entire set of sentences of PL. Let ⊥ be the
conjunction of all sentences. If a theory includes ⊥, it is trivial. If not, it is
non-trivial.

As Dunn states in Remark 4 in [10], we note that a PL-theory Γ contains
all of the theorems of PL. Thus it is what has been called a “regular theory”
in the relevance logic literature. This means that Γ is never empty. In the
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results below, there is no role either for trivial PL theories. Hence, by a “PL
theory” we mean a non-trivial one.

Let a canonical PL-frame be a structure S = (ζcan, Ucan, vcan), where
ζcan is any (non-trivial) prime PL theory, Ucan is the set of prime PL theories
extending ζcan, and vcan is ⊆ restricted to Ucan.

As we mentioned above, we take the ideas of proofs from the Henkin-
style completeness proofs. Thus, note that the base ζcan is constructed as a
prime PL-theory that excludes nontheorems of PL, i.e., excludes A such that
not `PL A. The partial orderedness and linear orderedness of a canonical
PL-frame depends on ⊆ restricted on Ucan. Then, first, it is obvious that

Proposition 2 : A canonical PL-frame is partially ordered.

Proposition 3 : Each canonically defined PRc-C-frame and PRct-C-frame is
connected (and hence linearly ordered).

Proof. By Proposition 26 in [10]. �

Next we define a canonical evaluation as follows:

(1) 1 ∈ vcan(A, α) ⇐⇒ A ∈ α;
(2) 0 ∈ vcan(A, α) ⇐⇒∼A ∈ α.

From this, we can get the Canonical Evaluation Lemma below for the com-
pleteness of PL.

Lemma 2 : (Canonical Evaluation Lemma) vcan is an evaluation.

Proof. The Hereditary Conditions (HC1) and (HC0) are obvious. Thus, we
show that the canonical evaluation vcan satisfies the truth and falsity condi-
tions above.

For (∼1), we must show

α 

V can
1 ∼A iff α 


V can
0 A.

Let α 

V can
1 ∼A. Then, by (1) and (2), α 


V can
1 ∼A iff ∼A ∈ α iff α 


V can
0

A.
For (∼0), we must show

α 

V can
0 ∼A iff α 


V can
1 A.

Its proof is analogous to that of (∼1).
(∧1) and (∨1) are immediate.
For (∧0), we must show
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α 

V can
0 A ∧ B iff α 


V can
0 A or α 


V can
0 B.

Let α 

V can
0 A ∧ B. Then by (2), α 


V can
0 A ∧ B iff ∼(A ∧ B) ∈ α. Thus,

by using A18 (as a theorem w.r.t. PE-R), we get ∼(A ∧ B) ∈ α iff ∼A ∨ ∼B
∈ α and thus ∼A ∈ α or ∼B ∈ α by primeness. Hence, by (2), ∼A ∈ α or
∼B ∈ α iff α 


V can
0 A or α 


V can
0 B.

For (∨0), we must show

α 

V can
0 A ∨ B iff α 


V can
0 A and α 


V can
0 B.

Its proof is analogous to that of (∧0).
For (→1PE), we must show

α 

V can
1 A → B iff ∀β w α, (i) (β 


V can
1 A =⇒ β 


V can
1 B) &

(ii) (β 

V can
0 B =⇒ β 


V can
0 A), and

for (→1PR), we must show

α 

V can
1 A → B iff ∀β w α(β 


V can
1 A =⇒ β 


V can
1 B).

These are by Lemma 29 in [10].
For (→0PER1), we must show

α 

V can
0 A → B iff α 6
V can

1 A → B.

By (2), 
V can
0 A → B iff ∼(A → B) ∈ α. Then, since w.r.t. PE-R and PRc-C

strict formulas have Boolean properties, ∼(A → B) ∈ α iff A → B 6∈ α, and
thus α 6
V can

1 A → B by (1).
For (→0PR2), we must show

α 

V can
0 A → B iff α 


V can
1 A and α 


V can
0 B.

Let 

V can
0 A → B. By using (2) and A20, we can obtain that 


V can
0 A →

B iff ∼(A → B) ∈ α iff A ∧ ∼B ∈ α. Then by (∧1), A ∧ ∼B ∈ α iff A
∈ α and ∼B ∈ α, and so by (1) and (2), iff α 


V can
1 A and α 


V can
0 B, as

desired. �

Let us call a model M, = (ζ, U, v, v), for PL, a PL model. Then, by
Lemma 2 the canonically defined (ζcan, Ucan, vcan, vcan) is a PL model.
Thus, since, by construction, ζcan excludes our chosen nontheorem A and
the canonical definition of |= agrees with membership, we can state that for
each nontheorem A of PL, there is a PL model in which A is not ζcan |= A.
It gives us the (weak) completeness for PL as follows.

Theorem 1 : (Weak completeness) If |=PL A, then `PL A.
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Next, let us prove the strong completeness of PL. As R+ in [3], we define
A to be a PL consequence of a set of formulas Γ iff for every PL model,
whenever α |= B for every B ∈ Γ, α |= A, for all α ∈ U. Let us say that
A is PL deducible from Γ iff A is in every PL theory containing Γ. Where
∆ is a set of formulas not necessarily a theory, ∆ ` A can be thought of as
saying that A is deducible from the ‘axioms’ ∆. The set of {A: ∆ ` A} is
intuitively the smallest theory containing the axioms ∆, and we shall label it
as Th(∆). Then,

Proposition 4 : If Γ 6`PL A, then there is a prime theory ζ such that Γ ⊆ ζ
and A /∈ ζ.

Proof. Let PL be PRc-C and PRct-C. Take an enumeration {An: n ∈ ω} of
the well-formed formulas of PL. We define a sequence of sets by induction
as follows:

ζ0 = {A′: Γ `PL A′}.
ζi+1 = Th(ζi ∪ {Ai+1}) if it is not the case that ζi, Ai+1 `PL A,

ζi otherwise.

Let ζ be the union of all these ζn’s. It is easy to see that ζ is a theory not
containing A. We can also show that it is prime.

Suppose toward contradiction that B ∨ C ∈ ζ and B, C /∈ ζ. Then the
theories obtained from ζ ∪ B and ζ ∪ C must both contain A. It follows that
there is a conjunction of members of ζ ζ ′ such that ζ ′ ∧ B `PL A and ζ ′ ∧ C
`PL A. Note that `PL A → B iff A `PL B since each of PRc-C and PRct-C
has the Classical Deduction Theorem. Then, by A7 and MP, we get (ζ ′ ∧ B)
∨ (ζ ′ ∧ C) `PL A. And we obtain ζ ′ ∧ (B ∨ C) `PL A by prefixing (as a
theorem), A8, and MP. From this we get that A ∈ ζ, which is contrary to our
supposition.

Proof of the case that PL is PE-R is analogous. �

Thus by using Lemma 2 and Proposition 4, we can show its strong complete-
ness as follows.

Theorem 2 : (Strong completeness) If Γ |=PL A, then Γ `PL A.
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3. ∗-Kripke-style semantics for PL

3.1. Semantics

We briefly consider ∗-Krikpe-style semantics for PL, in an analogy to Krikpe-
style semantics for PL. As in Section 2, we can define evaluations. An eval-
uation into 4 is a function v from sentences into 4 as above. We especially
need to define a frame because it additionally has a unary operator ∗. A
frame is a structure S = (ζ, U, v, ∗), where (ζ, U, v) is the same as above,
and ∗ is a unary operation on U that satisfies the following postulate(s):

p1. α∗∗ = α
p2. α v β =⇒ β∗ v α∗

We borrow the ∗ operation from Routley-Meyer semantics for relevance
logic. A frame for PE-R satisfies both p1 and p2 and yet each frame for
PRc-C and PRct-C just p1.

A PL-evaluation (on a frame S) is the same as in Section 2 except the truth
and falsity conditions for negation. We instead take as truth and falsity con-
ditions for negation the following ones.

(∼∗
1) α 
1 ∼A ⇐⇒ α 
0 A ⇐⇒ α∗ 6
1 A;

(∼∗
0) α 
0 ∼A ⇐⇒ α 
1 A ⇐⇒ α∗ 6
0 A.

The other definitions such as validity (on a frame S) and consequence rela-
tion for PL are almost the same as in Section 2.

3.2. Soundness and completeness

Let `PL A be the theoremhood of A in PL. We first prove Hereditary Lemma.

Lemma 3 : (Hereditary Lemma) For any sentence A, (i) if α 

v
1 A and α v

β, then β 

v
1 A, and (ii) if α 


v
0 A and α v β, then β 


v
0 A.

Proof. It is by straightforward induction on the length of A. We prove as
an example the case that A = ∼B and α 


v
0 A for PE-R, using p2. Let us

suppose that α 

v
0 ∼B and α v β. Then by (∼∗

0), α∗ 6
v
0 B. Thus by p2 and

inductive hypothesis (IH), β∗ 6
v
0 B. Hence, β 


v
0 ∼B by (∼∗

0). �

As we can see in proof of this lemma, we can drop the parts α 
0 A and
α 
1 A in (∼∗

1) and (∼∗
0), respectively, w.r.t. PE-R, but can not w.r.t. PRc-C
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and PRct-C because the frames for these two systems do not have p2. Then
as in Section 2 we can prove soundness of PL, i.e., Proposition 1 above.

We define a canonical PL-frame to be a structure S = (ζcan, Ucan, vcan,
∗can), where (ζcan, Ucan, vcan) is the same as above and ∗can is ∗ restricted
to Ucan. We call a frame fitting for PL if each semantical postulate holds
for the (corresponding negation) axiom scheme of PL. Where α is a prime
theory, let α∗ be the set of every formula A such that ∼A does not belong to
α, i.e.,

(3) α∗ = {A: ∼A /∈ α}.5

Then we need to show that the canonically defined PL-frame is a frame fit-
ting for PL as follows.

Proposition 5 : The canonically defined PL-frame is a frame fitting for PL.

Proof. For p1, we first assume A ∈ α∗∗. Then by (3), A ∈ α∗∗ iff ∼A /∈ α∗

iff ∼∼A ∈ α, and thus iff A ∈ α by A11.
For p2, we first take vcan as v restricted to Ucan, with v as below:

(4) α v β iff for any formulas A, B of PL, if A → B ∈ ζcan and A ∈ α,
then B ∈ β.

Next, let us suppose α vcan β. We assume that A → B ∈ ζcan and A ∈ β∗,
and show that B ∈ α∗. Suppose toward contradiction that B /∈ α∗. Then by
(3), ∼B ∈ α. Thus by (4), ∼A ∈ β since by A12 ∼B → ∼A ∈ ζcan and
α vcan β. Hence by (3), A /∈ β∗, which is contrary to the supposition. �

Now we prove the Canonical Evaluation Lemma below for the complete-
ness of PL. Note that PL has the same definition of the canonical evaluation
as in Section 2. Note also that the base ζcan is constructed as a prime PL-
theory that excludes nontheorems of PL.

Lemma 4 : (Canonical Evaluation Lemma) vcan is an evaluation.

Proof. We need more to show that the canonical evaluation vcan satisfies the
truth and falsity conditions (∼∗

1) and (∼∗
0).

For (∼∗
1), we must additionally show

α 

V can
1 ∼A iff α∗ 6
V can

1 A.

5 The primeness of α∗ can be proved as follows: let A, B 6∈ α∗. Then ∼A, ∼B ∈ α. Thus
by AD, ∼A ∧ ∼B ∈ α, and so ∼(A ∨ B) ∈ α by A19 (as a theorem w.r.t. PE-R) and MP.
Hence, A ∨ B 6∈ α∗. Therefore, if A ∨ B ∈ α∗, then A ∈ α∗ or B ∈ α∗.
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Let α 

V can
1 ∼A. Then by (1) and (3), α 


V can
1 ∼A iff ∼A ∈ α iff A 6∈ α∗

iff α∗ 6
V can
1 A.

For (∼∗
0), we must additionally show

α 

V can
0 ∼A iff α∗ 6
V can

0 A.

Its proof is analogous to that of (∼∗
0). �

As the PL model above, let us call a model M for PL a PL model. Then
by Lemma 4, the canonically defined (ζcan, Ucan, vcan, ∗can, vcan) is a PL
model. Thus since, by construction, ζcan excludes our chosen nontheorem A
and the canonical definition of |= agrees with membership, we can say that
for each nontheorem A of PL, there is a PL model in which A is not ζcan

|= A. It gives us the (weak) completeness for PL, i.e., Theorem 1 above.
Also, by using Lemma 4 and Proposition 4 above, we can show its strong
completeness, i.e., Theorem 2 above.

4. OL

As is known to us, R proves (5) 2A ↔ A, E one direction (6) 2A → A, i.e.,
left to right of (5), and T no directions, i.e., neither left to right of (5) nor
right to left of (5). Based on this fact, we from now on distinguish Ockham
(and Boolean) neighbors of R, E, and T.

4.1. Axiomatizations and Kripke-style semantics for OL

We here briefly consider axiomatizations and Krikpe-style semantics for OL
in an analogy to those for PL in Section 2. For the axiomatizations of OL,
we additionally consider the following axiom schemes:6

AXIOM SCHEMES
A23. (A → B) → (A → (A → B)) (expansion)
A24. (A → B) → (¬A ∨ B), where A, B strict (restricted material

implication)
A25. (A ∧ ¬B) → ¬(A → B) (refutation)
A26. (¬(A → B) ∧ (A → B)) → (A ∧ ¬B) (special absurdity).

SYSTEMS
OEe: A1 to A9, A12, A18, A19, A21, A23 to A26, MP, AD;

6 OPRct-C has the Classical Deduction Theorem as PRc-C and PRct-C above, and OEe
that of E (see [7]).
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¬ →OEe T+ B+ N F
T+ F T+ T F F F
B+ T B+ T B F F
N F N T F T F
F T F T T T T

Table 2. Four-valued matrices for evaluations of OL

OPRct-C: positive part of PRct-C plus A18 to A20, MP, AD.

We regard an evaluation to be a function from sentences to sets of two
values as above. Each matrix for ∧ and ∨ for OL is the same as ∧ and ∨,
respectively, in Table 1, and each matrix for ¬ and → is as in Table 2. (+
indicates the designated values, and →OEe is for OEe. OPRct-C has the
same matrix for implication as PRct-C, i.e., →PRc2.)

Note that w.r.t. any formula A of the form ¬B, the customary definitions
of connectives in CL can be used in OL since such formulas have Boolean
properties (see the matrix for ¬ in Table 2).

Next, as in Section 2, we can define evaluations. We here just note that
for OPRct-C, a frame is linear (i.e., in a frame v is a l.o. on U), and that an
OL-evaluation is the same as PL-evaluation in Section 2 except the truth and
falsity conditions for negation, and falsity condition for implication of OEe
(see below). (Truth conditions for each implication of OEe and OPRct-C are
the same as (→1PE) and (→1PR), respectiely, in Section 2. Falsity condition
for the implication of OPRct-C is the same as (→0PR2).)

(¬1) α 
1 ¬A ⇐⇒ α 
0 A;
(¬0) α 
0 ¬A ⇐⇒ α 6
0 A;
(→0OEe) α 
0 A → B ⇐⇒ (i) α 6
1 A → B, or

(ii) α 
1 A and α 
0 B.

The other definitions such as validity (in a frame S) and consequence relation
for OL are almost the same as in PL.

4.2. Soundness and completeness for OL

Let `OL A be the theoremhood of A in OL. It is easy to prove Hereditary
Lemma (see Lemma 1). We prove soundness of OL.

Proposition 6 : (Soundness) If `OL A, then |=OL A.
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Proof. We verify A25 and A26 for OEe as examples.
For A25, we must show that (i) α 
1 A ∧ ¬B only if α 
1 ¬(A → B), and

(ii) α 
0 ¬(A → B) only if α 
0 A ∧ ¬B.
For (i), let α 
1 A ∧ ¬B. By (∧1) and (¬1), α 
1 A and α 
0 B. Then by

(→0OEe), α 
0 A → B, and so by (¬1), α 
1 ¬(A → B), as desired. For
(ii), first note that by (¬0) and (→0OEe), α 
0 ¬(A → B) iff α 6
0 A → B iff
(a) α 
1 A → B and (b) α 6
1 A or α 6
0 B. Suppose toward contradiction
that α 6
0 A ∧ ¬B. Then by (∧0), α 6
0 A and α 6
0 ¬B. But this can not be
the case: let α 6
0 A. By (→1PE), α 6
0 B, and so by (¬0), α 
0 ¬B, which
contradicts α 6
0 ¬B. Let α 6
0 ¬B. By (¬0), α 
0 B and so by (→1PE), α

0 A, which contradicts α 6
0 A.

For A26, we must show that (i) α 
1 ¬(A → B) ∧ (A → B) only if α 
1

A ∧ ¬B, and (ii) α 
0 A ∧ ¬B only if α 
0 ¬(A → B) ∧ (A → B).
For (i), let α 
1 ¬(A → B) ∧ (A → B). By (∧1), α 
1 ¬(A → B) and α


1 A → B, and by the first and (¬1), α 
0 A → B. Then by (→0OEe), either
α 6
1 A → B, or α 
1 A and α 
0 B. But since α 
1 A → B and so the first
can not be the case, α 
1 A and α 
0 B. Then, by (¬1) and (∧1), α 
1 A
∧ ¬B, as desired. For (ii), we show contrapositively that α 6
0 ¬(A → B) ∧
(A → B) only if α 6
0 A ∧ ¬B. Then we may instead show that either α 
0

¬(A → B) ∧ (A → B) or α 6
0 A ∧ ¬B. We show the first. Suppose toward
contradiction that α 6
0 ¬(A → B) ∧ (A → B). By (∧0), α 6
0 ¬(A → B)
and α 6
0 A → B. But this can not be the case because by (¬0), α 6
0 ¬(A
→ B) implies that α 
0 A → B, contrary to α 6
0 A → B.

The verification of the other axiom schemes is left to the reader. �

To prove the completeness of OL, we use almost the same Henkin-style
proofs as above. We define a canonical OL-frame to be a structure S = (ζcan,
Ucan, vcan) as in Section 2. We then prove the Canonical Evaluation Lemma
below for the completeness of OL. Note that OL has the same definition of
the canonical evaluation as in Section 2, but with ¬ in place of ∼.

Lemma 5 : (Canonical Evaluation Lemma) vcan is an evaluation.

Proof. We need more to show that the canonical evaluation vcan satisfies the
truth and falsity conditions of negation ¬, and falsity condition of implica-
tion for OEe.

For (¬1), we must show

α 

V can
1 ¬A iff α 


V can
0 A.

By (1) and (2), it is immediate.
For (¬0), we must show

α 

V can
0 ¬A iff α 6
V can

0 A.
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Note that any formula of the form ¬A has Boolean properties. Left to right
follows from non-triviality. Because, if not, i.e., ¬¬A ∈ α and ¬A ∈ α, by
AD ¬¬A ∧ ¬A = ⊥ ∈ α and so α is trivial. Right to left follows from the
theorem ¬A ∨ ¬¬A and primeness.

For (→0OEe), we must show

α 

V can
0 A → B iff (i) α 6
V can

1 A → B, or
(ii) α 


V can
1 A and α 


V can
0 B.

(Left to right) Let α 

V can
0 A → B. By (2), α 


V can
0 A → B iff ¬(A → B)

∈ α. Then if A → B ∈ α, by A26, AD, and MP, we can obtain that A ∧ ¬B
∈ α. Thus by (∧), A ∈ α and ¬B ∈ α, and so (ii) follows from (1) and (2).
If not, i.e., A → B 6∈ α, then (i) follows from (1).
(Right to left) Let α 6
V can

1 A → B. By (1), A → B 6∈ α. Since OEe proves
(A → B) ∨ ¬(A → B) (see A24), ¬(A → B) ∈ α by primeness. Thus by (2),
α 


V can
0 A → B. Let α 


V can
1 A and α 


V can
0 B. By (1), (2), and AD, A ∧

¬B ∈ α. Then by A25 and MP, we can obtain that ¬(A → B) ∈ α. Hence
by (2), α 


V can
0 A → B, as desired. �

In an analogy to the PL model above, let us call a model M for OL an OL
model. Then by Lemma 5, the canonically defined (ζcan, Ucan, vcan, vcan)
is an OL model. Thus, since, by construction, ζcan excludes our chosen
nontheorem A and the canonical definition of |= agrees with membership, we
can state that for each nontheorem A of OL, there is an OL model in which
A is not ζcan |= A. It gives us the (weak) completeness for OL. Let us further
consider strong completeness for OL. We can give the definition of an OL
consequence as in PL. Note that OPRct-C and OEe have the same deduction
theorems as PRc-C and E, respectively. Then, we can prove Proposition 4
w.r.t. OL by almost the same proof as above. Thus by using Lemma 5 and
Proposition 4 (w.r.t. OL), we can show its strong completeness.

5. BOL

5.1. Axiomatizations of BL and ∗-Kripke-style semantics for BOL

We briefly consider axiomatizations of BL and ∗-Krikpe-style semantics for
BOL as in PL. For the axiomatizations of BL, we additionally consider the
following axiom schemes and rules:7

7 BPE has the Modal Deduction Theorem as PE-R above; BPRc the Classical Deduction
Theorem as PRc-C, PRct-C, and OPRct-C above; each BEM and BEMe that of E as OEe;
and BRet that of R, i.e., the Enthymematic Deduction Theorem (see [7, 14]). Note that in
Boolean systems A29 is redundant because it can be proved using A28, A12, and MP.
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AXIOM SCHEMES
A27. A → (A → A) (R-mingle)
A28. (A ∧ −A) → B (absurdity)
A29. A → (B ∨ −B) (triviality)
A30. (A → B) → (−A ∨ B)
A31. (A → B) → ((A → B) → (−A ∨ B))
A32. −(A → B) → (−(A → B) → (A ∧ −B))
A33. (A ∧ −B) → ((A ∧ −B) →−(A → B))
A34. A → (A → A), where A strict (E-mingle).

RULES
A → B ` (B → C) → (A → C) (SF)
A → B ` (C → A) → (C → B) (PF)
A ` t → A (Rt).

SYSTEMS
BTMw-W: A4 to A8, A11, A12, A14, A27 to A29, A31, A33, MP to Rt;
BTMwc-W: BTMw-W plus A17, A32;
BEM: A1 to A9, A11, A12, A21, A28 to A30, A34, MP, AD;
BEMe: BEM plus A23;
BPE: BEM plus A10, A13;
BRet: A1, A2, A4 to A8, A11, A12, A14, A15, A21 to A23,

A28 to A30, MP, AD;
BPRc: BRet plus A16, A17, A31 to A33.

⊥ (conjunction of all (false) propositions) and > (disjunction of all (true)
propositions) can be defined as A ∧ −A and A ∨ −A, respectively. If a
system has one designated element T, t = >.

We regard an evaluation to be a function from sentences to sets of two
values as above. Each matrix for ∧ and ∨ for BOL is the same as in Table
1, and each matrix for − and → is as in Table 3. (Each →BTM , →BTMc,
→BEM , →BRe, and →BPRc is for BTMw-W, BTMwc-W, BEM, BRet, and
BPRc, respectively. Note that each →PE and →OEe in Tables 1 and 2 is also
for BPE and BEMe, respectively.)

Next, as in Section 3, we can define evaluations. An evaluation into 4 is
a function v from sentences into 4 such that v(−A) = −v(A), v(A ∧ B) =
v(A) ∧ v(B), v(A ∨ B) = v(A) ∨ v(B), and v(A → B) = v(A) → v(B). A
frame is a structure S = (ζ, U, v, ∗), where (ζ, U, v) is the same as above,
and ∗ is a unary operation on U that satisfies both p1 and p2 w.r.t. BL but
just p2 w.r.t. OEe and no postulates w.r.t. OPRct-C. Note that w.r.t. the
systems having A17, v is a l.o. on U. A BOL-evaluation is the same as the
PL-evaluation above except the truth and falsity conditions for negations −,
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− →BTM T+ B N F
T+ F T+ T N F F
B (+) N B T T F F
N B N T N T N
F T F T T T T

→BTMc T+ B N F →BEM T+ B+ N F
T+ T N B F T+ T F F F
B T T B B B+ T T F F
N T N T N N T F B F
F T T T T F T T T T
→BRe T+ B+ N F →BPRc T+ B+ N F
T+ T F N F T+ T F T F
B+ T B N F B+ T B T B
N T F T F N T N T N
F T T T T F T T T T

Table 3. Four-valued matrices for evaluations of BOL

¬, and some implications. (Truth condition for the implication of BTMw-W,
BEM, BEMe, OEe, BPE, and BRet is the same as (→1PE) in Section 2. The
(ii) of (→1PE) is the truth condition for BTMwc-W and BPRc, expressing
it by (→1BTRc). Falsity conditions for the implications of BPE, both BEMe
and OEe, and both BPRc and OPRct-C are the same as (→0PER1), (→0OEe),
and (→0PR2), respectively.)

(−∗
1) α 
1 −A ⇐⇒ α 6
1 A ⇐⇒ α∗ 6
1 A;

(−∗
0) α 
0 −A ⇐⇒ α 6
0 A ⇐⇒ α∗ 6
0 A;

(¬∗
1) α 
1 ¬A ⇐⇒ α 
0 A ⇐⇒ α∗ 6
1 A;

(¬∗
0) α 
0 ¬A ⇐⇒ α 6
0 A ⇐⇒ α∗ 6
0 A;

(→0BT ) α 
0 A → B ⇐⇒ ∃β w α(β 
1 A and β 6
1 B);
(→0BTc) α 
0 A → B ⇐⇒ α 
1 A and α 6
1 B;
(→0BEM ) α 
0 A → B ⇐⇒ (i) α 6
1 A → B, or

(ii) α 6
0 A and α 6
1 B;
(→0BR) α 
0 A → B ⇐⇒ (i) ∃β w α(β 6
0 A and β 
0 B), or

(ii) α 
1 A and α 
0 B.

Note that (→0BT ), (→0BTc), (→0BEM ), and (→0BR) are the falsity con-
ditions for BTMw-W, BTMwc-W, BEM, and BRet, respectively. Note also
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that in Boolean negation α∗ = α (see (−∗
1) and (−∗

0) above). The other defi-
nitions such as validity (in a frame S) and consequence relation for BOL are
almost the same as in PL.

Remark 1 : Let L be a logic satisfying the matrices for ∨ and ∧ in Table 1
and − in Table 3. Then to some readers it will give rise to a question as
to which matrix for → is needed for L to collapse to CL. Let A ⊃ B be the
“material implication”, i.e., (df2) A ⊃ B := −A ∨ B. We here note that the
matrices →PRc1 and →PRc2 in Table 1 satisfy (df2), i.e., v(A) → v(B) =
−v(A) ∨ v(B) (exercise). This means that both PRc-C and PRct-C having −
in place of ∼ prove A30 and its converse, and so collapse to CL. (Because
of this, we did not introduce such systems in this section.)

5.2. Soundness and completeness of BOL

Let `BOL A be the theoremhood of A in BOL. We first prove Hereditary
Lemma.

Lemma 6 : (Hereditary Lemma) For any sentence A, (i) if α 

v
1 A and α v

β, then β 

v
1 A, and (ii) if α 


v
0 A and α v β, then β 


v
0 A.

Proof. It is by straightforward induction on the length of A. We prove as an
example the case A = B → C and α 


v
0 A.

Suppose that α 

v
0 B → C and α v β. Then w.r.t. BTMwc-W, by

(→0BTc), α 

v
1 B and α 6
v

1 C, and so by (−∗
1), α 


v
1 −C. Then by IH,

β 

v
1 −C, and so by (−∗

1), β 6
v
1 C. Therefore, since β 


v
1 B by IH, β 


v
0 B

→ C by (→0BTc). W.r.t. OEe and OPRct-C, by (¬∗
1), α 


v
1 ¬(B → C), and

by IH, β 

v
1 ¬(B → C), and so by (¬∗

1), β 

v
0 B → C. �

Proposition 7 : (Soundness) If `BOL A, then |=BOL A.

Proof. We verify A32 for BTMwc-W and BPRc as an example.
For A32, we must show that α 
0 −(A → B) → (A ∧ −B) only if α 
0

−(A → B). W.r.t. BTMwc-W, we contrapositively assume that α 6
0 −(A
→ B) and show that α 6
0 −(A → B) → (A ∧ −B). Then by (→0BTc), it
suffices to show that α 6
1 −(A → B) or α 
1 A ∧ −B. We show that α 
1

A ∧ −B. By the supposition and (−∗
0), α 
0 A → B. Then, by (→0BTc), α


1 A and α 6
1 B, and so α 
1 −B by (−∗
1). Hence, by (∧1), α 
1 A ∧

−B, as required. W.r.t. BPRc, we instead show that either α 6
0 −(A → B)
→ (A ∧ −B) or α 
0 −(A → B). We prove the first one. Suppose toward
contradiction that α 
0 −(A → B) → (A ∧ −B). By (→0PR2), α 
1 −(A →
B) and α 
0 A ∧ −B. Then by (−∗

1) and (∧0), both (a) α 6
1 A → B and (b)
α 
0 A or α 
0 −B. By (→1BTRc), α 6
1 A → B iff (c) ∃β w α(β 
0 B and
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β 6
0 A). By Hereditary Lemma, (b) implies β 
0 A or β 
0 −B and thus
by (−∗

0), (d) β 
0 A or β 6
0 B. Hence (c) and (d) contradicts each other, and
so, since (a) is equivalent to (c) and (b) implies (d), (a) also contradicts (b).
Thus α 6
0 −(A → B) → (A ∧ −B), as required.

The verification of the other axiom schemes is left to the reader. �

To prove the completeness of BOL, we use the same Henkin-style proofs
as in Section 3. We have the same definitions of theories as in Section 3. We
define a canonical BOL-frame to be a structure S = (ζcan, Ucan, vcan, ∗can)
as in Section 3. We also call a frame fitting for BOL if each semantical pos-
tulate holds for the (corresponding negation) axiom scheme of BOL. Then,
by almost same proof as in Proposition 5, we can show that the canonically
defined BOL-frame is a frame fitting for BOL.

Now we prove the Canonical Evaluation Lemma below for the complete-
ness of BOL. Note that the base ζcan is constructed as a (non-trivial) prime
BOL-theory that excludes nontheorems of BOL.

Lemma 7 : (Canonical Evaluation Lemma) vcan is an evaluation.

Proof. We need more to show that the canonical evaluation vcan satisfies the
truth and falsity conditions of negations −, ¬, and truth condition of impli-
cation for both BTMwc-W and BPRc, and falsity conditions of implications
for BTMw-W, BTMwc-W, BEM, and BRet. (Note that truth and falsity
conditions of implication for BEMe are the same as OEe.)

For (−∗
1), we must show

α 

V can
1 −A iff α 6
V can

1 A iff α∗ 6
V can
1 A.

Let α 

V can
1 −A. Then by (1) and (3), α 


V can
1 −A iff −A ∈ α iff A /∈ α∗

iff α∗ 6
V can
1 A. Next, α 6
V can

1 A iff α∗ 6
V can
1 A can be proved as follows:

(left to right) let α 6
V can
1 A and thus A 6∈ α by (1). Then by (7) `BL B ∨

−B (it is easy to show (7)), regularity, and primeness, −A ∈ α. Thus by (3),
A 6∈ α∗, and so by (1), α∗ 6
V can

1 A. (right to left) let α∗ 6
V can
1 A and thus A

6∈ α∗ by (1). Then, by (7), regularity, and primeness, −A ∈ α∗, and so −−A
6∈ α by (3). Hence A11 ensures that A 6∈ α, and thus α 6
V can

1 A by (1).
For (−∗

0), we must show

α 

V can
0 −A iff α 6
V can

0 A iff α∗ 6
V can
0 A.

Its proof is analogous to that of (−∗
1).

For (¬∗
1), we must additionally show

α 

V can
1 ¬A iff α∗ 6
V can

1 A, and

for (¬∗
0), we must additionally show
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α 

V can
0 ¬A iff α∗ 6
V can

0 A.

By (1), (2), and (3), these two are immediate.
For (→1BTRc), we must show

α 

V can
1 A → B iff ∀β w α(β 


V can
0 B =⇒ β 


V can
0 A).

It is by Lemma 29 in [10].
For (→0BT ), we must show

α 

V can
0 A → B iff ∃β w α(β 


V can
1 A and β 6
V can

1 B).

(Left to right) Let α 

V can
0 A → B. By (2), α 


V can
0 A → B iff −(A → B)

∈ α. If (A → B) ∈ α, then by A28 we can obtain that A ∧ −B ∈ α. Thus
by (∧), (−∗

1), and (1), A ∈ α and B 6∈ α. This ensures that ∃β w α (β 

V can
1

A and β 6
V can
1 B) by (1). If (A → B) 6∈ α, then by (→1PE) and (1), there

is β w α such that either (a) A ∈ β and B 6∈ β or (b) −A 6∈ β and −B ∈ β.
If (a) is the case, by (1), it is immediate. Let (b) be the case. Since, by (−∗

1)
and (1), −A 6∈ β iff A ∈ β and −B ∈ β iff B 6∈ β, (b) is the same as (a). Thus
it directly follows from (1).
(Right to left) We contrapositively assume that α 6
V can

0 A → B and show
that ∀β w α(β 


V can
1 A only if β 


V can
1 B). Let α 6
V can

0 A → B. Then by
(2), −(A → B) 6∈ α, and so by (−∗

1) and (1), A → B ∈ α. Then by (→1PE)
and (1), ∀β w α, (a) A ∈ β only if B ∈ β and (b) −B ∈ β only if −A ∈ β.
Thus by (a) and (1), it is immediate that ∀β w α(β 


V can
1 A only if β 


V can
1

B).
For (→0BTc), we must show

α 

V can
0 A → B iff α 


V can
1 A and α 6
V can

1 B.

(Left to right) Let α 

V can
0 A → B. By (2), α 


V can
0 A → B iff −(A → B)

∈ α. Then by A32 and MP (twice), we can obtain that A ∧ −B ∈ α. Thus
by (∧), A ∈ α and −B ∈ α. Then, since −B ∈ α iff B 6∈ α as above, A ∈ α
and B 6∈ α. Hence by (1), α 


V can
1 A and α 6
V can

1 B, as desired.
(Right to left) Let α 


V can
1 A and α 6
V can

1 B. By (1), A ∈ α and B 6∈ α.
Then, by (∧), (−∗

1), and (1), A ∧ −B ∈ α. By A33 and MP (twice), we can
obtain that −(A → B) ∈ α. Hence by (2), 


V can
0 A → B, as wanted.

For (→0BEM ), we must show

α 

V can
0 A → B iff (i) α 6
V can

1 A → B, or
(ii) α 6
V can

0 A and α 6
V can
1 B.

Left to right and right to left of (i) are immediate. We prove right to left of
(ii). Let α 6
V can

0 A and α 6
V can
1 B. By (1) and (2), −A 6∈ α and B 6∈ α, and

so A ∧ −B ∈ α by (∧), (−∗
1), and (1). Note that BEM proves (8) (A ∧ −B)
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→ −(A → B) (to prove this, see A30 and A12). Then, since −(A → B) ∈
α, α 


V can
0 A → B by (2).

For (→0BR), we must show

α 

V can
0 A → B iff (i) ∃β w α(β 6
V can

0 A and β 

V can
0 B), or

(ii) α 

V can
1 A and α 


V can
0 B.

Proof of left to right is analogous to that of (→0BT ). For right to left, we
first assume (i). Then α 6
V can

1 A → B. By (1), A → B 6∈ α, and so by (1)
and (−∗

1), −(A → B) ∈ α. Hence by (2), α 

V can
0 A → B. Assume (ii). By

(∧), (1), and (2), A ∧ −B ∈ α. Then by (8) above, we can obtain that −(A
→ B) ∈ α. Thus by (2), 


V can
0 A → B, as desired. �

In an analogy to the PL model above, let us call a model M for BOL a
BOL model. Then, by Lemma 7 the canonically defined (ζcan, Ucan, vcan,
∗can, vcan) is a BOL model. Thus, since, by construction, ζcan excludes
our chosen nontheorem A and the canonical definition of |= agrees with
membership, we can say that for each nontheorem A of BOL, there is a BOL
model in which A is not ζcan |= A. It gives us the (weak) completeness for
BOL. Let us consider strong completeness for BOL except BTMw-W and
BTMwc-W. Note that we can give the definition of a BOL consequence
(except BTMw-W and BTMwc-W) as in PL.

Proposition 8 : If Γ 6`BOL A, then there is a prime theory ζ such that Γ ⊆ ζ
and A /∈ ζ.

Proof. We prove the case of BRet because it has a deduction theorem dif-
ferent from any other Boolean systems above. Let BOL be BRet. Take an
enumeration {An: n ∈ ω} of the well-formed formulas of BOL. We define a
sequence of sets by induction as follows:

ζ0 = {A′: Γ `BOL A′}.
ζi+1 = Th(ζi ∪ {Ai+1}) if it is not the case that ζi, Ai+1 `BOL A,

ζi otherwise.

Let ζ be the union of all these ζn’s. It is easy to see that ζ is a theory not
containing A. Also we can show that it is prime.

Suppose toward contradiction that B ∨ C ∈ ζ and B, C /∈ ζ. Then the
theories obtained from ζ ∪ B and ζ ∪ C must both contain A. It follows that
there is a conjunction of members of ζ ζ ′ such that ζ ′ ∧ B `BOL A and ζ ′ ∧
C `BOL A. Then, by the Enthymematic Deduction Theorem, `BOL (ζ ′ ∧ B
∧ t) → A and `BOL (ζ ′ ∧ C ∧ t) → A.8 Then, by AD, A7, and MP, `BOL

8 The Enthymematic Deduction Theorem is the following: for a theory ζ and formulas
A, B, ζ ∪ {A} ` B iff ζ ` (A ∧ t) → B (see [7, 14]).
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((ζ ′ ∧ B ∧ t) ∨ (ζ ′ ∧ C ∧ t)) → A. And we obtain `BOL ((ζ ′ ∧ t) ∧ (B ∨
C)) → A by prefixing (as theorem), A8, and MP. Note that if `BOL (A ∧ t)
→ B, then A `BOL B. Thus, ζ ′ ∧ (B ∨ C) `BOL A. From this we get that A
∈ ζ, which is contrary to our supposition.

Proof of the other cases is analogous. �

Thus by using Lemma 7 and Proposition 8, we can show its strong complete-
ness as follows.

Theorem 3 : (Strong completeness) If Γ |=BOL A, then Γ `BOL A.

6. Concluding remarks

We here introduced several systems, which can be regarded as paraconsistent
and Ockham neighbors of E and R, Boolean neighbors of E, R, and T, and
provided (star-based) four-valued Kripke-style semantics for them. But we
could not introduce paraconsistent and Ockham neighbors of T and corre-
sponding such (star-based) four-valued semantics. This is an open ptoblem
left in this paper.

Among the systems OEMe seems both relevant and paraconsistent in the
senses mentioned in Section 1; PE-R, PRc-C, PRct-C, and OPRct-C seem
paraconsistent but not relevant; and the other systems, i.e., the systems hav-
ing Boolean negation neither relevant nor paraconsistent. One way to obtain
relevance logics from the paraconsistent systems is to drop (restricted) posi-
tive paradox from each of them. But the above four-valued semantics do not
work any more for such systems. Instead, four-valued Routley-Meyer-style
semantics appear to be established for such systems. This fact must be clear
for some subsequent paper.
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