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FITCH–STYLE NATURAL DEDUCTION FOR MODAL
PARALOGICS∗

HANS LYCKE

Abstract
In this paper, I will present a Fitch–style natural deduction proof
theory for modal paralogics (modal logics with gaps and/or gluts for
negation). Besides the standard classical subproofs, the presented
proof theory also contains modal subproofs, which express what
would follow from a hypothesis, in case it would be true in some
arbitrary world.

1. Introduction

Modal paralogics (MPL) are obtained by adding the standard modal opera-
tors � (necessity) and ♦ (possibility) to paralogics. The latter are logics that
deviate from classical logic by allowing for gaps and/or gluts with respect to
the logical connectives (see Batens [1, 2, 4] for a thorough characterization
of paralogics). Despite the fact that paralogics may allow for gaps and/or
gluts with respect to all connectives, I will only consider paralogics with
gaps and/or gluts for negation. In other words, in the MPL I will discuss,
negation behaves either paraconsistently (gluts), paracompletely (gaps), or
both (gluts and gaps).

In case the negation behaves paraconsistently, MPL do not validate infer-
ences based on the ex falso quodlibet–schema (A,∼A ` B). As a conse-
quence, they do not leap into triviality in face of inconsistent theories. This
is an advantage, for a lot of real–life theories are inconsistent (e.g. scientific
theories, bodies of law, belief bases, ... — for some examples, see Norton
[13, 14], Priest [16] and Priest & Routley [18]). Nonetheless, these theories
are often (judged to be) the best ones available at a particular time. Hence,
as long as no better replacement theories come around, the old ones are still
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versity. In particular, it is based on part of my PhD–dissertation [12, ch. 4]. I am indebted to
Diderik Batens and an anonymous referee for helpful comments.
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194 HANS LYCKE

being used. To do so in a non–trivial way, a paraconsistent (modal) logic is
needed.

On the other hand, in case the negation behaves paracompletely, MPL
do not validate the law of excluded middle (` A ∨ ∼A). Whether or not
this is a valid law of logic, is subject of heavy debate (especially between
classical and intuitionistic logicians, see e.g. Brock & Mares [5, pp. 88–90],
Read [19, ch. 8]). As this is not the purpose of this paper, I will not plead
for nor against the acceptance of the law of excluded middle, I will merely
assume that, at least in some cases, it is quite plausible to drop it (some nice
arguments can be found in Dummett [7]).

The aim of this paper is to present a Fitch–style natural deduction proof
theory for MPL. Besides the standard classical subproofs, the proof the-
ory also contains modal subproofs, which express what would follow from
a hypothesis, in case it would be true in an arbitrary world. More specif-
ically, modal subproofs resemble the strict subproofs introduced by Fitting
[8, 9], and Hawthorne [11]. Nonetheless, there are some striking differences
between my approach and theirs as well.

Overview. In section 2, I will characterize the logic KōN, a particularly weak
modal paralogic. In section 3, I will present a Fitch–style natural deduc-
tion proof theory for KōN, point out the differences with the proof theories
of Fitting and Hawthorne, and prove soundness and completeness. Finally,
in section 4, I will present Fitch–style natural deduction proof theories for
numerous extensions of the logic KōN, thereby showing that the presented
proof system is of a general kind.

2. The Modal Paralogic KōN

The logic KōN is the modal extension of the paralogic CLōN (for people
not acquainted with paralogics, see Batens [3] or Lycke [12, ch. 4]). This
implies that the logic KōN is a weak modal paralogic. More specifically,
the KōN–negation is extremely weak. Not only is it both paraconsistent and
paracomplete, it also doesn’t validate double negation, any of the De Morgan
laws (modal analogues included), nor replacement of logically equivalent
formulas inside the scope of a negation (e.g. ∼(p ∧ q) 0 ∼(q ∧ p)).

Language Schema. The language LM of the logic KōN is obtained by adding
the modal operators � (necessity) and ♦ (possibility) to the (standard) propo-
sitional language L (see table 1). The set of well–formed modal formulas
WM is defined in the usual way.
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FITCH–STYLE NATURAL DEDUCTION FOR MODAL PARALOGICS 195

language letters connectives set of formulas
L S ∼,∧,∨, = W
LM S ∼,∧,∨, =, �, ♦ WM

Table 1. The languages L and LM.

As table 1 clearly shows, equivalence (≡) is not included in the language
LM. The only reason why it is not included, is because it will not be dis-
cussed in this paper. However, in case equivalence is characterized as a de-
fined connective, it can be added to the language in a fairly straightforward
way.

Definition 1 : (A ≡ B) =df (A = B) ∧ (B = A).

Semantic Characterization. Let the set N ⊂ WM be the union of the sets
{∼A | A ∈ S}, {∼∼A | A ∈ WM}, {∼(A ∧ B) | A, B ∈ WM},
{∼(A ∨ B) | A, B ∈ WM}, {∼(A = B) | A, B ∈ WM}, {∼�A |
A ∈ WM}, and {∼♦A | A ∈ WM}. Because all its elements are negation
formulas, N is called the negation set of the logic KōN. In fact, for the logic
KōN, N is the set of all negation formulas of LM. However, this is not the
case for all MPL, as will be shown later on (in section 4.2).

A KōN–model M for the language LM is defined as a 4–tuple < W, w0, R,
v >, with W a set of worlds, w0 the actual world, R an arbitrary accessibility
relation on W , and v : S ∪ N × W 7→ {0, 1} an assignment function.

The assignment function v of the model M is extended to a valuation func-
tion vM : WM×W 7→ {0, 1} by means of the following semantic postulates:

SP1 For A ∈ S: vM (A, w) = 1 iff v(A, w) = 1.
SP2 For ∼A ∈ N : vM (∼A, w) = 1 iff v(∼A, w) = 1.
SP3 vM (A ∧ B, w) = 1 iff vM (A, w) = 1 and vM (B, w) = 1.
SP4 vM (A ∨ B, w) = 1 iff vM (A, w) = 1 or vM (B, w) = 1.
SP5 vM (A = B, w) = 1 iff vM (∼A, w) = 1 or vM (B, w) = 1.
SP6 vM (�A, w) = 1 iff for all w′ ∈ W , if Rww′ then vM (A, w′) = 1.
SP7 vM (♦A, w) = 1 iff for some w′ ∈ W , Rww′ and vM (A, w′) = 1.

Finally, semantic consequence for the modal paralogic KōN is defined as
truth preservation at the actual world w0.

Notational Convention 1 : Where Γ = {B | B ∈ WM}, vM (Γ, w) = 1 iff for
all B ∈ Γ, vM (B, w) = 1.
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196 HANS LYCKE

Definition 2 : Γ �KōN A (A is a KōN–consequence of Γ) iff for all KōN–
models M : if vM (Γ, w0) = 1 then vM (A, w0) = 1.

Some explanation might be necessary. First of all, it is important to notice
that a KōN–assignment function v assigns a truth value not only to senten-
tial letters, but also to all elements of the set N — hence, to all negation
formulas. Secondly, because of SP2, the truth value of negation formulas
entirely depends on the assignment function. As a consequence, there is no
relation between the truth value of a negation formula ∼A and its positive
counterpart A. Any of the following combinations are possible:

∼A A
1 1
1 0
0 1
0 0

Because of the above, there are KōN–models in which a formula and its
negation are both true, as well as KōN–models in which they are both false.
Hence, in KōN, it is possible to express that the law of excluded middle
fails at some worlds (because there are models that falsify A ∨ ∼A at those
worlds), as does ex falso quodlibet (because there are models that verify
A ∧ ∼A at those worlds).

Moreover, it is now easy to see why so many of the classical inferences fail
for the KōN–negation (double negation, the De Morgan laws,...). For exam-
ple, consider replacement of logically equivalent formulas. If the equivalent
formulas are inside the scope of a negation, as for example for the formulas
∼(p∧ q) and ∼(q ∧ p), then it is not possible to replace the one by the other
(in this case p ∧ q by q ∧ p). For, suppose ∼(p ∧ q) is true, then ∼(q ∧ p)
will be false in some models, regardless of the truth value of p∧q (and q∧p).

∼(p ∧ q) ∼(q ∧ p)
1 1 1 1 1 1 1 1
1 1 1 1 0 1 1 1
1 1 0 0 1 1 0 0
1 1 0 0 0 1 0 0
1 0 0 1 1 0 0 1
1 0 0 1 0 0 0 1
1 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0
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FITCH–STYLE NATURAL DEDUCTION FOR MODAL PARALOGICS 197

Finally, it is also important to notice that the characterization of the KōN–
negation results in the truth of a negation formula ∼♦∼A being completely
independent of the truth of the formula �A. This obviously means that the
modal operators � and ♦ are not interdefinable in the logic KōN. However,
this is not the case for all modal paralogics. For, in case the negation is
strengthened (as in section 4.2), the modal operators become interdefinable
again.

3. Fitch–Style Natural Deduction

In this section, I will present a Fitch–style natural deduction proof theory
for the logic KōN, and I will prove that it is sound and complete w.r.t. the
semantic characterization of the previous section. However, before spelling
out the actual proof theory, some important remarks have to be made.

Modal Subproofs. The proof theory allows for two kinds of subproofs: clas-
sical subproofs and modal subproofs. The former are the standard kind of
subproofs, well–known from classical logic. The latter are specific for modal
(para)logics.

As usual, a subproof is started by introducing a new hypothesis, together
with a new vertical line on its left. This accounts for both kinds of subproofs,
classical and modal ones alike. However, modal subproofs are differentiated
from classical subproofs by writing a �–symbol next to their vertical line
(see table 2). Intuitively, modal subproofs express what would follow from

i A –;HYP i � A –;HYP�

... ... ... ... ... ...

Table 2. Classical and Modal Subproofs

the hypothesis if it were true in some arbitrary world.

Pseudo–Formulas. KōN–proofs do not only make use of well–formed for-
mulas (wffs). They also make use of pseudo–formulas:

Definition 3 : If A, B ∈ WM then S(A, B) and S�(A, B) are pseudo–
formulas of the modal language LM.
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198 HANS LYCKE

The pseudo–formulas S(A, B) and S�(A, B) express “the formula B is
derivable from the formula A in this world" and “the formula B is deriv-
able from the formula A in any world" respectively. In other words, pseudo–
formulas are to be considered as metatheoretic statements about derivability
that are used at the object–level. Because they express the possibility to de-
rive some formulas from others, it should come as no surprise that they are
used in the proof theory to represent the conclusions that can be drawn from
classical and modal subproofs respectively (see table 3). To be honest, the

i A –;HYP i � A –;HYP�

... ... ... ... ... ...
j B ... j B ...
j+1 S(A, B) CSP j+1 S�(A, B) CSP�

Table 3. Introduction Rules for Pseudo-Formulas.

proof theory can also be characterized without introducing pseudo–formulas,
in which case the inference rules in section 3.1 refer directly to subproofs in-
stead of to pseudo–formulas. However, introducing pseudo–formulas not
only makes the actual construction of proofs less cumbersome — it is not
necessary to construct subproofs multiple times —, it also simplifies the
metatheory to a large extent.

In General. The introduction of modal subproofs and pseudo–formulas effi-
ciently overcomes the following difficulty related to natural deduction proof
theories for modal (para)logics (Bull & Segerberg [6, p. 28]):

The crux of the matter seems to be that any classically valid argu-
ment should remain valid in any modal context; the difficulty is to
explicate the italicised phrase.

In the proof theory proposed in section 3.1, modal subproofs provide the
environment to check whether classically valid arguments remain valid in
any modal context (or equivalently, in all worlds), and pseudo–formulas are
used to represent the arguments of which this is the case.

3.1. Proof Theoretic Characterization

First, consider the structural rules of the KōN–proof theory.
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PREM Premises may be written down at any place in the main proof.
HYP At any place in the proof, one may start a new classical subproof.
HYP� At any place in the proof, one may start a new modal subproof.
REP In the main proof and in both classical and modal subproofs, formu-

las (and pseudo–formulas) may be repeated.
REIT Reiteration is restricted to classical subproofs. Hence, formulas

(and pseudo–formulas) may be reiterated in unclosed classical sub-
proofs, but not in modal subproofs.

Secondly, consider the KōN–inference rules. Those presented by means
of a double vertical line (||) allow for derivation in both directions, while the
others only allow for left–right derivation.

CSP If the formula B is the formula on the last line of a classical subproof
that started with the hypothesis A, one may conclude to the pseudo–
formula S(A, B).

CSP� If the formula B is the formula on the last line of a modal subproof
that started with the hypothesis A, one may conclude to the pseudo–
formula S�(A, B).

CON A, B | A ∧ B CON♦ �A, ♦B | ♦(A ∧ B)
SIM A ∧ B | A; A ∧ B | B CON� �A, �B | �(A ∧ B)
ADD A | A ∨ B; B | A ∨ B DIS� �(A ∨ B) | �A ∨ ♦B
DIL A ∨ B, S(A, C), S(B, C) | C DIS♦ ♦(A ∨ B) | ♦A ∨ ♦B
IMP A = B || ∼A ∨ B MP� �A, S�(A, B) | �B

MP♦ ♦A, S�(A, B) | ♦B

Thirdly, a KōN–proof is defined as a finite sequence of wffs (and pseudo–
wffs), each of which is either a premise or follows from wffs (and pseudo–
wffs) earlier in the list by means of a rule of inference. Moreover, in order
for such a sequence to be a proof, all its subproofs have to be closed.

Finally, KōN–derivability is defined as follows:

Definition 4 : Γ `KōN A (A is KōN–derivable from Γ) iff there is a proof of
the formula A from B1, ..., Bn ∈ Γ so that A has been derived on a line i of
the main proof.

Derived Rules. Besides the basic (or fundamental) inference rules presented
above, there are a lot of derived rules as well. Although these are strictly re-
dundant, they considerably speed up the actual proof construction. Below, I
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200 HANS LYCKE

will present the most important ones. Because of the straightforward charac-
ter of the derived rules, no proofs will be provided (in most cases, the proofs
are as straightforward as the inference rules).

In fact, there are two kinds of derived rules. The first kind concerns only
real formulas. Hence, pseudo–formulas do not occur in them. For example,
consider the rules below.

PERM∨ ... ∨ (A ∨ B) ∨ ... || ... ∨ (B ∨ A) ∨ ...
ASS∨ ... ∨ ((A ∨ B) ∨ C) ∨ ... || ... ∨ (A ∨ (B ∨ C)) ∨ ...
CONT∨ ... ∨ (A ∨ A) ∨ ... || ... ∨ A ∨ ...
PERM∧ ... ∨ (A ∧ B) ∨ ... || ... ∨ (B ∧ A) ∨ ...
ASS∧ ... ∨ ((A ∧ B) ∧ C) ∨ ... || ... ∨ (A ∧ (B ∧ C)) ∨ ...
CONT∧ ... ∨ (A ∧ A) ∨ ... || ... ∨ A ∨ ...
DIST∧ A ∧ (B ∨ C) || (A ∧ B) ∨ (A ∧ C);

(A ∨ B) ∧ C || (A ∧ C) ∨ (B ∧ C)
DIST∨ A ∨ (B ∧ C) || A ∨ B, A ∨ C; (A ∧ B) ∨ C || A ∨ C, B ∨ C
SIM� �(A ∧ B) | �A; �(A ∧ B) | �B
SIM♦ ♦(A ∧ B) | ♦A; ♦(A ∧ B) | ♦B
DIS�’ �(A ∨ B) | ♦A ∨ �B

The second kind of derived rules does concern pseudo–formulas. Ba-
sically, they illustrate the claim I made earlier on, namely that pseudo–
formulas may be considered as metatheoretic statements about derivability
put at the object–level. First, consider some derived rules concerning non–
modal pseudo–formulas.

MPSP A, S(A, B) | B
DILSP A ∨ B, S(A, C) | C ∨ B; A ∨ B, S(B, C) | A ∨ C
TRASP S(A, B), S(B, C) | S(A, C)
ICISP S(A, B), S(A, C) | S(A, B ∧ C)
ICESP S(A, B ∧ C) | S(A, B); S(A, B ∧ C) | S(A, C)
DIISP S(A, C), S(B, C) | S(A ∨ B, C)
DIESP S(A ∨ B, C) | S(A, C); S(A ∨ B, C) | S(B, C)

Next, also consider some derived rules that explicate the relation between
modal and non–modal pseudo–formulas.

WI S�(A, B) | S(A, B)
NEC� From ` S(A, B) derive ` S�(A, B)
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The first of the above rules is easily comprehended, for in case an argument
is valid in any world, it is obviously also valid in this world. The second
of the above rules is only slightly more demanding, for it is easily verified
that in case an argument is valid in this world without relying on any of the
formulas that are true in this world, then the argument will be valid in any
other world as well.

Example. To illustrate the above proof theory, the KōN–proof of the formula
�♦(∼(∼s∧q) = r) from the premise set Γ = {�♦((p∧q)∨r), ��(s = r)}
is presented below. It makes use of both basic and derived rules of inference.

1 �♦((p ∧ q) ∨ r) –;PREM
2 ��(s = r) –;PREM
3 �♦((p ∧ q) ∨ r) ∧ ��(s = r) 1,2;CON
4 �(♦((p ∧ q) ∨ r) ∧ �(s = r)) 3;CON�

5 �♦(((p ∧ q) ∨ r) ∧ (s = r)) 4;CON♦

6 � ♦(((p ∧ q) ∨ r) ∧ (s = r)) HYP�

7 � ((p ∧ q) ∨ r) ∧ (s = r) HYP�

8 (p ∧ q) ∨ r 7;SIM
9 q ∨ r 8;DIST∨

10 s = r 7;SIM
11 ∼s ∨ r 10;IMP
12 (∼s ∧ q) ∨ r 9,11;DIST∨

13 ∼(∼s ∧ q) = r 12;IMP
14 S�(((p ∧ q) ∨ r) ∧ (q = r),∼(∼s ∧ q) = r) 7,13;CSP�

15 ♦(∼(∼s ∧ q) = r) 6,14;MP♦

16 S�(♦(((p ∧ q) ∨ r) ∧ (q = r)), ♦(∼(∼s ∧ q) = r)) 6,15;CSP�

17 �♦(∼(∼s ∧ q) = r) 5,16;MP�

Related Approaches. The Fitch–style proof theory proposed in this paper, is
quite similar to the proof theories proposed by Fitting in [8, 9] (more specif-
ically, his A–style proof theory) and by Hawthorne in [11], despite the fact
that the latter characterize explosive modal logics and not modal paralogics
(MPL). In particular, the modal subproofs introduced in this paper resemble
the strict subproofs introduced by both Fitting and Hawthorne. Nonetheless,
there are some striking differences between the approaches as well.

First of all, while I do not allow any reiteration of formulas in modal sub-
proofs, both Fitting and Hawthorne allow some kind of reiteration of formu-
las in strict subproofs. Let’s call the latter strict reiteration. More specifi-
cally, strict reiteration allows to reiterate a formula A into a strict subproof in
case the formula �A lies immediately outside that subproof. Actually, this
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202 HANS LYCKE

means that strict subproofs do not refer to an arbitrary world (as both authors
claim it), but to an arbitrary accessible world. For, a truly arbitrary world wa

may not be accessible from a world w at all. In this case, the formula A
may be false in the world wa, even though �A is true in the world w. This
is particularly harmful to Hawthorne’s approach, for he explicitly aimed at
explicating the validity of a classically valid argument in any modal context
(the difficulty posed by Bull & Segerberg in [6], see above).1

Next, consider the strict subproofs of Fitting’s approach specifically. They
differ from modal subproofs in yet another way. For, they do not start by
introducing a hypothesis. At any place in a proof, a strict subproof can be
started from scratch. As a consequence, formulas can only be introduced into
a subproof by means of the strict reiteration rule. Actually, this means that
strict reiteration is taken to mimic accessibility (i.e. all and only formulas
that would be true in an arbitrary accessible world, can be reiterated). This
implies that the strict reiteration rule will be different for modal logics that
have distinct accessibility relations. Hence, very soon, reiteration becomes
quite complex, making proof construction a hard nut to crack.

In Hawthorne’s approach, strict subproofs are started by the introduction
of a hypothesis. Hence, the conclusion that can be drawn from a strict sub-
proof is a conditional statement (more specifically, a formula of the form
�(A ⊃ B)). Moreover, strict reiteration is restricted to the basic case expli-
cated above, which means that it doesn’t differ according to the accessibility
relation. Hence, at first sight, Hawthorne’s approach seems a lot simpler
than Fitting’s. However, this is only the case as long as only the necessity
operator is considered. If also the possibility operator is taken into account,
the inference rules again become extremely complex.2 For example, in or-
der to decide whether a particular formula can be derived from a strict sub-
proof, one has to keep track of the structure of all modal formulas on which
the strict reiteration rule was applied. Of course, this kind of complexity is
avoided in case the possibility operator is defined in terms of the necessity
operator and the negation. However, in that case, the proof theory cannot
be generalized to include MPL as well, because, for the latter, it is not al-
ways possible to define possibility in that way (a consequence of the fact
that MPL–negation is weaker than classical negation, see section 2). So,
if Hawthorne’s approach would be generalized to include MPL as well, an
increase in complexity would be unavoidable.

1 Obviously, this doesn’t imply that the technical results obtained in [11] are flawed (they
are not).

2 Remark that Hawthorne’s inference rules were intended to be as general as possible. As
a consequence, it seems quite unavoidable that they are rather complex.
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Also in my approach, a modal subproof is started by introducing a hypoth-
esis. Moreover, the conclusion that can be drawn from a modal subproof is
also a conditional statement, albeit a pseudo–formula of the form S�(A, B).
Furthermore, strict reiteration is dropped altogether. At the same time, the
inference rules are kept simple by focussing on the classical connectives and
not on the modal operators (consider e.g. the inference rules CON�, CON♦,
DIS�, and DIS♦, which are all absent from both Fitting’s and Hawthorne’s
approach). As a consequence, I consider it safe to state that the proof theory
provided in this paper is less complex than the ones proposed by Fitting and
Hawthorne. Moreover, because it cannot only be used to characterize explo-
sive modal logics, but also to characterize MPL, it is more general in nature
as well.3

3.2. Soundness and Completeness

The soundness and completeness proofs below are inspired by the soundness
and completeness proofs presented in Roy [20] and Priest [16] respectively.

3.2.1. Soundness

Let M0 be the set of all KōN–models.

Lemma 1 : Suppose Γ ⊆ Γ′, and ∀M ∈ M0 and ∀w ∈ W : if vM (Γ, w) = 1
then vM (A, w) = 1. It follows that ∀M ∈ M0 and ∀w ∈ W : if vM (Γ′, w)
= 1 then vM (A, w) = 1.

Proof. Straightforward, and left to the reader. �

Theorem 1 : (Soundness) If Γ `KōN A then Γ �KōN A.

Before proving soundness, first consider some terminological remarks. First
of all, I will say that a formula A on line i of a proof is in the scope of a
formula B on line j of that proof, whenever j 6 i and the formula B may be
reiterated into the subproof where the formula A is in. Next, let Ai express
that the formula A is derived in a proof on line i. Finally, let Γi be the set of
all premises and all hypotheses that have the formula on line i in their scope.

3 The presented proof theory would be even more general if it could be used to character-
ize non–normal MPL as well. However, the extension to non–normal MPL is left as further
research.
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Proof. Suppose Γ `KōN A. Hence, there is a proof of A from Γ, which
means that A is derived on a line k of the main proof (∗) (by definition 4).
By induction, it is now possible to prove that for all lines i of the proof,
∀M ∈ M0 and ∀w ∈ W : if vM (Γi, w) = 1 then vM (Ai, w) = 1. First,
consider the base case: A1 is necessarily a premise or a hypothesis, so that
A1 ∈ Γ1. Hence, ∀M ∈ M0, it is impossible that ∃w ∈ W such that
vM (Γ1, w) = 1 and vM (A1, w) = 0. Next, consider the induction hypothesis:

Induction Hypothesis 1 : ∀i (1 6 i < k), ∀M ∈ M0 and ∀w ∈ W : if
vM (Γi, w) = 1 then vM (Ai, w) = 1.

It remains to be proven that ∀M ∈ M0 and ∀w ∈ W : if vM (Γk, w) = 1 then
vM (Ak, w) = 1. Well now, Ak is either a premise, a hypothesis or is derived
from formulas on previous lines by application of a rule of inference. In case
Ak is a premise or a hypothesis, the proof is analogous to the base case (left
to the reader). This leaves us with the case where Ak is the result of applying
some rule of inference. Hence, an induction proof has to be provided for all
inference rules. As most of these are fairly easy, I will only prove the case
for the inference rule IMP�. The remaining ones are left to the reader.

IMP� Suppose that �B (on line k) has been derived from �A (on line
i) and S�(A, B) (with B on line j) by means of the inference rule
IMP�.

C1 From the supposition, it follows that ∀M ∈ M0 and ∀w ∈
W : if vM (Γi, w) = 1 then vM (�A, w) = 1 (by the induction
hypothesis). Moreover, because i < k and because both i and
k belong to the same subproof, Γi ⊆ Γk. Hence, ∀M ∈ M0

and ∀w ∈ W : if vM (Γk, w) = 1 then vM (�A, w) = 1 (by
lemma 1).

C2 From the supposition, it follows that ∀M ∈ M0 and ∀w ∈
W : if vM (Γj , w) = 1 then vM (B, w) = 1 (by the induction
hypothesis). Moreover, because reiteration is not permitted in
modal subproofs, it follows that Γj = {A}. Hence, ∀M ∈ M0

and ∀w ∈ W : if vM (A, w) = 1 then vM (B, w) = 1.

Hypothesis. Suppose that ∃M ∈ M0, ∃w ∈ W , vM (Γk, w) = 1 and
vM (�B, w) = 0. Hence, by the supposition above and SP6, there is
some w′ ∈ W such that Rww′ and vM (B, w′) = 0. However, by C1,
it also follows that vM (�A, w) = 1. Hence, by SP6, it follows that
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vM (A, w′) = 1. By C2, this gives us that vM (B, w′) = 1. Contradic-
tion.

From the induction proof, together with (∗), it follows that for all M ∈ M0,
if vM (Γk, w0) = 1 then vM (A, w0) = 1. Moreover, Γk ⊆ Γ (because A is
derived on a line in the main proof). Hence, Γ �KōN A (by lemma 1 and
definition 2). �

3.2.2. Completeness

First, consider the following theorem. As it resembles the standard deduction
theorem, it is called the pseudo–deduction theorem.

Theorem 2 : (Pseudo–Deduction Theorem) If B1, ..., Bn `KōN A, then B1,
..., Bn−1 `KōN S(Bn, A).

Proof. Straightforward and left to the reader. �

Next, consider the following definition.

Definition 5 : If X is any set of sets of formulas (elements of WM), the
binary relation R on X is defined thus:

RΓ∆ iff if �A ∈ Γ then A ∈ ∆, and
if A ∈ ∆ then ♦A ∈ Γ

Now, consider the following preliminary lemmas.

Lemma 2 : If Γ 0KōN A, there is a deductively closed, non–trivial, prime
theory ∆ ⊇ Γ such that A /∈ ∆.

Proof. Suppose Γ 0KōN A. Consider a sequence B1,B2,... that contains all
wffs of the language LM. We then define:

∆0 = CnKōN(Γ) (= the KōN–consequence set of Γ)
∆i+1 = CnKōN(∆i ∪ {Bi+1}) if A /∈ CnKōN(∆i ∪ {Bi+1}), and
∆i+1 = ∆i otherwise.

∆ = ∆0 ∪ ∆1 ∪ ...
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Each of the following is provable:

(i) Γ ⊆ ∆ (by the construction).
(ii) A /∈ ∆ (by the construction).
(iii) ∆ is deductively closed (by the definition of ∆).
(iv) ∆ is non–trivial (as A /∈ ∆).
(v) ∆ is prime, i.e. if C ∨ D ∈ ∆, then C ∈ ∆ or D ∈ ∆.

Suppose that (1) C ∨ D ∈ ∆, but that (2) C /∈ ∆ and D /∈ ∆. From
(2) follows that there must be an m and n such that ∆m∪{C} `KōN A
and ∆n ∪ {D} `KōN A (by the construction of ∆). From these follow
that ∆m `KōN S(C, A) and ∆n `KōN S(D, A) (by theorem 2). But,
this also means that ∆ `KōN S(C, A) and ∆ `KōN S(D, A) (by the
construction of ∆, and the syntactic version of lemma 1 which is left
to the reader). From this, together with (1), follows that A ∈ ∆ (by the
deductive closure of ∆). Contradiction. �

Lemma 3 : For Σ a deductively closed, non–trivial, prime theory: �B ∈ Σ
iff for all deductively closed, non–trivial, prime theories Θ, if RΣΘ then B ∈
Θ.

Proof. Left–Right. Suppose �B ∈ Σ and RΣΘ. Hence, B ∈ Θ (by definition
5).

Right–Left. Suppose �B /∈ Σ. Construct Σ� = {C | �C ∈ Σ} and Σ♦ =
{D | ♦D /∈ Σ}. Hence, for all C1, ..., Cn ∈ Σ� and D1, ..., Dm ∈ Σ♦, C1∧
...∧Cn 0KōN B∨D1∨ ...∨Dm (otherwise, because of the deductive closure
of Σ, �B ∨ ♦D1 ∨ ... ∨ ♦Dm ∈ Σ, with D1, ..., Dm ∈ Σ♦. As Σ is prime,
this would mean that �B ∈ Σ or ♦D1 ∈ Σ or ... or ♦Dm ∈ Σ. However,
this would contradict with our supposition and with the construction of Σ♦).
Σ� can be extended to a deductively closed, non–trivial, prime theory Θ
such that RΣΘ and B /∈ Θ (by lemma 2). �

Lemma 4 : For Σ a deductively closed, non–trivial, prime theory: ♦B ∈ Σ iff
there is a deductively closed, non–trivial, prime theory Θ, RΣΘ and B ∈ Θ.

Proof. Left–Right. Suppose ♦B ∈ Σ. Construct Σ� = {C | �C ∈ Σ} and
Σ♦ = {D | ♦D /∈ Σ}. Hence, for all C1, ..., Cn ∈ Σ� and D1, ..., Dm ∈ Σ♦,
C1 ∧ ...∧Cn ∧B 0KōN D1 ∨ ...∨Dm (otherwise, because of the deductive
closure of Σ, ♦D1 ∨ ...∨♦Dm ∈ Σ, with D1, ..., Dm ∈ Σ♦. As Σ is prime,
this would mean that ♦D1 ∈ Σ or ... or ♦Dm ∈ Σ. However, this would
contradict with the construction of Σ♦). Σ� can be extended to a deductively
closed, non–trivial, prime theory Θ such that RΣΘ and B ∈ Θ (by lemma 2).
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Right–Left. Suppose RΣΘ and B ∈ Θ. Hence, ♦B ∈ Σ (by definition
5). �

Theorem 3 : (Completeness) If Γ �KōN A then Γ `KōN A.

Proof. Suppose Γ 0KōN A. Hence, there is a deductively closed, non–trivial,
prime theory Π ⊇ Γ such that A /∈ Π (∗) (by lemma 2).

A KōN–model is now defined as the 4–tuple < W, Π, R, v >, with W the
set of all deductively closed, non–trivial, prime theories, Π ∈ W , R a binary
relation on W such that RΓ∆ iff for all B ∈ WM:

RP1 if �B ∈ Γ then B ∈ ∆, and
RP2 if B ∈ ∆ then ♦B ∈ Γ.

and v an assignment function, so that

AP1 For A ∈ S ∪ N and for all Σ ∈ W , v(A, Σ) = 1 iff A ∈ Σ.

By induction on the complexity of wffs, it can now be shown for all wffs
C ∈ WM that vM (C, Σ) = 1 iff C ∈ Σ. As the base case and most induc-
tion cases are quite straightforward, I will only prove the induction cases for
formulas of the form �A and ♦A.

�A ∈ Σ iff ∀Θ ∈ W , if RΣΘ then A ∈ Θ (by lemma 3).
iff ∀Θ ∈ W , if RΣΘ then vM (A, Θ) = 1 (by the induction hy-

pothesis).
iff vM (�A, Σ) = 1 (by SP6).

♦A ∈ Σ iff ∃Θ ∈ W , RΣΘ and A ∈ Θ (by lemma 4).
iff ∃Θ ∈ W , RΣΘ and vM (A, Θ) (by the induction hypothesis).
iff vM (♦A, Σ) = 1 (by SP7).

From the induction proof, together with (∗), it follows that vM (Γ, Π) = 1 and
vM (A, Π) = 0. Hence, Γ 2KōN A (by definition 2). �

4. More Modal Paralogics

As mentioned before (in section 2), the modal paralogic KōN is a particularly
weak modal logic, which means that a lot of inferences are invalid in KōN.
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However, the logic KōN can be strengthened in numerous ways, of which
some will be considered in this section.

4.1. A Detachable Implication

The standard KōN–implication = can be defined in terms of the negation
and the disjunction (A = B =df ∼A ∨ B). As a consequence, the KōN–
implication is non–detachable, which means that neither the inference rule
modus ponens (A = B, A ` B), nor the inference rule modus tollens (A =

B, ∼B ` ∼A) is valid for it. Nonetheless, it is possible to add a detachable
implication to the logic KōN. The resulting logic is called KoN.4

Language Schema. The language LM
⊃ of the logic KoN is obtained by adding

the detachable implication ⊃ to the language LM of the logic KōN (see table
4). The set of well–formed formulas WM

⊃ is defined as usual.

language letters connectives set of formulas
LM

⊃ S ∼,∧,∨, =,⊃, �, ♦ WM
⊃

Table 4. The Language LM
⊃.

Semantics and Proof Theory. The semantic characterization of the logic KoN
is obtained by adding the semantic postulate SP8 below to the semantic char-
acterization of the logic KōN.5 Remark that the semantic postulate SP8 is
standardly used in classical logic to characterize implication. Hence, the
added implication is the material implication!

Name Semantic Postulate
SP8 vM (A ⊃ B, w) = 1 iff vM (A, w) = 0 or vM (B, w) = 1.

Proof theoretically, the logic KoN is characterized by adding the inference
rules below to the proof theory of the logic KōN. As a consequence, remark
that in KoN, the material implication is only detachable in one direction, for
the inference rule modus ponens is valid, but modus tollens is not. This is not
the result of material implication being too weak in any sense (it expresses

4 For people acquainted with paralogics, the logic KoN is a modal extension of the par-
alogic CLoN, see Batens [4].

5 It is important to notice that the negation set of the logic KoN is defined in the same
way as for the logic KōN, as the set of all negation formulas.
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exactly what it should express), but of the KoN–negation being too weak to
render modus tollens into a valid rule of inference.

Name Inference Rule
CP S(A, B) | A ⊃ B
MP A ⊃ B, A | B
PC (A ⊃ B) ⊃ A | A

Soundness and Completeness. In order to prove soundness and complete-
ness for the logic KoN (and any other modal paralogic containing material
implication), it is necessary to add the induction cases below to the sound-
ness and completeness proofs of the logic KōN. First, consider the induction
cases necessary to obtain soundness.

CP Suppose that A ⊃ B (on line k) has been derived from S(A, B) (with
B on line i) by means of the inference rule CP. Hence, ∀M ∈ M0

and ∀w ∈ W : if vM (Γi, w) = 1 then vM (B, w) = 1 (by the induction
hypothesis). Moreover, because A ⊃ B and S(A, B) both belong to the
same subproof, (Γi − {A}) ⊆ Γk. As a consequence, ∀M ∈ M0 and
∀w ∈ W : if vM (Γk ∪ {A}, w) = 1 then vM (B, w) = 1 (∗) (by lemma
1).
Hypothesis. Suppose that ∃M ∈ M0 and ∃w ∈ W : vM (Γk, w) = 1
and vM (A ⊃ B, w) = 0. Hence, vM (Γk ∪ {A}, w) = 1 and vM (B, w)
= 0 (by SP8). However, from this, together with (∗), also follows that
vM (B, w) = 1. Contradiction!

MP Suppose that B (on line k) has been derived from A ⊃ B (on line i)
and A (on line j, with i < j) by means of the inference rule MP. Hence,
∀M ∈ M0 and ∀w ∈ W : if vM (Γi, w) = 1 then vM (A ⊃ B, w) = 1,
and if vM (Γj , w) = 1 then vM (A, w) = 1 (by the induction hypothesis).
Moreover, because A ⊃ B, A and B all belong to the same subproof,
Γi ⊆ Γj ⊆ Γk. As a consequence, ∀M ∈ M0 and ∀w ∈ W : if
vM (Γk, w) = 1 then vM (A ⊃ B, w) = 1 and vM (A, w) = 1 (by lemma
1). From this now follows that if vM (Γk, w) = 1 then vM (B, w) = 1 (by
SP8).

PC Suppose that A (on line k) has been derived from (A ⊃ B) ⊃ A (on
line i) by means of the inference rule PC. Hence, ∀M ∈ M0 and
∀w ∈ W : if vM (Γi, w) = 1 then vM ((A ⊃ B) ⊃ A, w) = 1 (by the
induction hypothesis). Moreover, because (A ⊃ B) ⊃ A and A both
belong to the same subproof, Γi ⊆ Γk. As a consequence, ∀M ∈ M0

and ∀w ∈ W : if vM (Γk, w) = 1 then vM ((A ⊃ B) ⊃ A, w) = 1 (by
lemma 1). From this now follows that if vM (Γk, w) = 1 then vM (A, w)
= 1 (by SP8).
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Before providing the induction case necessary to obtain completeness, some
preliminary remarks have to be made. Most importantly, the theories used in
the completeness proof of the logic KoN are not deductively–closed, non–
trivial, and prime (as for the logic KōN), but they are deductively closed,
maximally non–trivial, and prime. This means that adding one extra formula
would make them trivial. However, this only effects the proof of lemma 2,
so that it has to be replaced by lemma 5 below. All other proofs remain as
before.

Lemma 5 : If Γ 0KoN A, there is a deductively closed, max. non–trivial,
prime theory ∆ ⊇ Γ such that A /∈ ∆.

Proof. The proof proceeds almost exactly as the proof of lemma 2. As only
(iv) is different, only (iv) is given below.

(iv) ∆ is max. non–trivial.

First, notice that for all B ∈ WM
⊃, A ⊃ B ∈ ∆. Otherwise, ∆ ∪

{A ⊃ B} `KoN A (by the construction of ∆), which implies that
∆ `KoN (A ⊃ B) ⊃ A (because of theorem 2 and the inference rule
CP). However, this would mean that ∆ `KoN A (because of the infer-
ence rule PC), which is impossible.
Next, suppose that C /∈ ∆. Hence, ∆∪ {C} `KoN A (by the construc-
tion of ∆). However, as for all B ∈ WM

⊃, A ⊃ B ∈ ∆ (because of
the foregoing), adding C to ∆ would result in the trivial set (because
of the deductive closure of ∆). Hence, ∆ is max. non–trivial. �

In order to prove completeness for the logic KoN, an extra preliminary
lemma is needed as well. Consider it below.

Lemma 6 : For Σ a deductively closed, max. non–trivial, prime theory, A ⊃
B ∈ Σ iff A /∈ Σ or B ∈ Σ.

Proof. Left–Right. Suppose A ⊃ B ∈ Σ. Hence, A /∈ Σ or B ∈ Σ.
Otherwise, a contradiction is derivable by means of the inference rule MP.

Right–Left. Suppose A /∈ Σ or B ∈ Σ. Firstly, from B ∈ Σ follows that
A ⊃ B ∈ Σ (by means of the inference rules HYP, CSP, and CP). Secondly,
from A /∈ Σ also follows that A ⊃ B ∈ Σ. For, suppose A ⊃ B /∈ Σ. The
latter would imply that Σ ∪ {A ⊃ B} is trivial (as Σ is max. non–trivial).
However, Σ ∪ {A ⊃ B} being trivial would mean that Σ ∪ {A ⊃ B} ` A,
which implies that Σ ` (A ⊃ B) ⊃ A (because of theorem 2 and the
inference rule CP). Hence, this would mean that A ∈ Σ (because of the
inference rule PC, and the deductive closure of Σ). However, this contradicts
the supposition. �



“01lycke”
2009/10/2
page 211

i

i

i

i

i

i

i

i

FITCH–STYLE NATURAL DEDUCTION FOR MODAL PARALOGICS 211

Finally, consider the induction case necessary to obtain completeness.

A ⊃ B ∈ Σ iff A /∈ Σ or B ∈ Σ (by lemma 6).
iff vM (A, Σ) = 0 or vM (B, Σ) = 1 (by the induction hypoth-

esis).
iff vM (A ⊃ B, Σ) = 1 (by SP8).

4.2. Double Negation and the De Morgan Laws

As mentioned in section 2, the KōN–negation is extremely weak. For ex-
ample, it does not validate double negation, nor any of the De Morgan laws
(including their modal analogues). Nonetheless, it is possible to add double
negation to the logic KōN, as well as all of the De Morgan laws.6 The result-
ing logic is the logic called KōNs.7 Moreover, the detachable implication of
the previous section can be added as well, which results in the logic called
KoNs. Obviously, there are also a lot of intermediate logics, validating only
some of the inference rules under investigation. However, to keep things as
simple as possible, I will here focus on the logic KoNs.

Semantics and Proof Theory. Semantically, the logic KoNs is obtained by
restricting the negation set N to the set {∼A | A ∈ S},8 and by adding the
following semantic postulates to the KoN–semantics:

Name Semantic Postulate
SP9 vM (∼∼A, w) = 1 iff vM (A, w) = 1.
SP10 vM (∼(A ∧ B), w) = 1 iff vM (∼A, w) = 1 or vM (∼B, w) = 1.
SP11 vM (∼(A ∨ B), w) = 1 iff vM (∼A, w) = 1 and vM (∼B, w) = 1.
SP12 vM (∼(A = B), w) = 1 iff vM (A, w) = 1 and vM (∼B, w) = 1.
SP13 vM (∼(A ⊃ B), w) = 1 iff vM (A, w) = 1 and vM (∼B, w) = 1.
SP14 vM (∼�A, w) = 1 iff vM (♦∼A, w) = 1.
SP15 vM (∼♦A, w) = 1 iff vM (�∼A, w) = 1.

6 Remark that this also results in � and ♦ being interdefinable again.

7 The logic KōNs is the modal extension of the paralogic CLōNs (see Lycke [12, ch. 4])
that is equivalent to the logic FDE expressing tautological entailment (see Priest [17, ch. 8]).

8 For all logics that are situated in between KōN and KoNs, the negation set N has to
be adapted accordingly. In general, N should only contain those negation formulas that are
characterized semantically by means of the semantic postulate SP2, and shouldn’t contain
the negation formulas that are characterized separately by means of one of the postulates
SP9–SP15.
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The inference rules corresponding to the semantic postulates above, are
the ones below. In order to obtain the proof theory of the logic KoNs, they
have to be added to the proof theory of the logic KoN.

Name Inference Rule
DN ∼∼A || A
NC ∼(A ∧ B) || ∼A ∨ ∼B
ND ∼(A ∨ B) || ∼A ∧ ∼B
NIMP ∼(A = B) || A ∧ ∼B
NI ∼(A ⊃ B) || A ∧ ∼B
N� ∼�A || ♦∼A
N♦ ∼♦A || �∼A

Soundness and Completeness. In order to obtain soundness and complete-
ness for the logic KoNs (and all MPL that validate double negation and/or
some of the De Morgan laws), it is necessary to add the following induction
cases to the soundness and completeness proofs of the logic KoN. However,
as most of the induction cases are quite straightforward, I will only give
those for the modal analogues of the De Morgan laws. First, consider the
induction cases necessary to obtain soundness.

N� Left–Right. Suppose that ♦∼A (on line k) has been derived from ∼�A
(on line i) by means of the inference rule N�. Hence, ∀M ∈ M0 and
∀w ∈ W : if vM (Γi, w) = 1 then vM (∼�A, w) = 1 (by the induction
hypothesis). Moreover, because ∼�A and ♦∼A both belong to the
same subproof, Γi ⊆ Γk. As a consequence, ∀M ∈ M0 and ∀w ∈ W :
if vM (Γk, w) = 1 then vM (∼�A, w) = 1 (by lemma 1). From this now
follows that if vM (Γk, w) = 1 then vM (♦∼A, w) = 1 (by SP14).
Right–Left. Completely analogous to the left–right direction.

N♦ Left–Right. Suppose that �∼A (on line k) has been derived from ∼♦A
(on line i) by means of the inference rule N♦. Hence, ∀M ∈ M0 and
∀w ∈ W : if vM (Γi, w) = 1 then vM (∼♦A, w) = 1 (by the induction
hypothesis). Moreover, because ∼♦A and �∼A both belong to the
same subproof, Γi ⊆ Γk. As a consequence, ∀M ∈ M0 and ∀w ∈ W :
if vM (Γk, w) = 1 then vM (∼♦A, w) = 1 (by lemma 1). From this now
follows that if vM (Γk, w) = 1 then vM (�∼A, w) = 1 (by SP15).
Right–Left. Completely analogous to the left–right direction.

Next, consider the induction cases necessary to obtain completeness.
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∼�A ∈ Σ iff ♦∼A ∈ Σ (by means of the inference rule N�).
iff ∃Θ ∈ W , RΣΘ and ∼A ∈ Θ (by lemma 4).
iff ∃Θ ∈ W , RΣΘ and vM (∼A, Θ) = 1 (by the induction hy-

pothesis).
iff vM (∼�A, Σ) = 1 (by SP7 and SP14).

∼♦A ∈ Σ iff �∼A ∈ Σ (by means of the inference rule N♦).
iff ∀Θ ∈ W , if RΣΘ then ∼A ∈ Θ (by lemma 3).
iff ∀Θ ∈ W , if RΣΘ then vM (∼A, Θ) = 1 (by the induction

hypothesis).
iff vM (∼♦A, Σ) = 1 (by SP6 and SP15).

4.3. Requiring Consistency and/or Completeness

The logic KōN is both paraconsistent and paracomplete, because KōN allows
for both gaps and gluts with respect to the negation. However, not all MPL
allow for both gaps and gluts with respect to the negation, some only allow
for gaps, others only for gluts. Hence, the negation of these logics behaves
either consistently (in case only gaps are allowed), or completely (in case
only gluts are allowed). Consider both options below.

Only Gaps. In case a modal paralogic only allows for gaps with respect to the
negation, the semantic postulate SP2 is replaced by the postulate Con below.
The latter is called the consistency requirement, because it forces the nega-
tion to behave consistently. This means that a formula and its negation can
not both be true. As a consequence, MPL that embrace the consistency re-
quirement again validate inferences based on the ex falso quodlibet–schema.

Name Semantic Postulate
Con For ∼A ∈ N , vM (∼A, w) = 1 iff vM (A, w) = 0 and v(∼A, w) = 1.

Proof theoretically, the consistency requirement is captured by means of
the following rules of inference.

Name Inference Rule
DS For ∼A ∈ N : B ∨ (A ∧ ∼A) | B
INC For ∼A ∈ N : ♦(A ∧ ∼A) | A ∧ ∼A

Example. If the consistency requirement is added to the logic KōNs (see
section 4.2), the resulting logic is the logic KāNs, the modal extension of
Kleene’s well–known logic K3 (see e.g. Priest [17, ch. 7]).
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Soundness and Completeness. To prove soundness and completeness for
MPL with a negation that behaves consistently, the induction cases below
have to be added to the soundness and completeness proofs from section
3.2. First, consider the induction cases necessary to obtain soundness.

DS Suppose that B (on line k) has been derived from B ∨ (A ∧ ∼A) (on
line i) by means of the inference rule DS. Hence, ∀M ∈ M0 and
∀w ∈ W : if vM (Γi, w) = 1 then vM (B ∨ (A ∧ ∼A), w) = 1 (by the
induction hypothesis). Moreover, because B ∨ (A ∧ ∼A) and B both
belong to the same subproof, Γi ⊆ Γk. As a consequence, ∀M ∈ M0

and ∀w ∈ W : if vM (Γk, w) = 1 then vM (B ∨ (A ∧ ∼A), w) = 1 (by
lemma 1). From this now follows that if vM (Γk, w) = 1 then vM (B, w)
= 1 (by SP4 and Con).

INC Suppose that A ∧ ∼A (on line k) has been derived from ♦(A ∧ ∼A)
(on line i) by means of the inference rule INC. Hence, ∀M ∈ M0 and
∀w ∈ W : if vM (Γi, w) = 1 then vM (♦(A ∧ ∼A), w) = 1 (by the in-
duction hypothesis). Moreover, because ♦(A ∧ ∼A) and A ∧ ∼A
both belong to the same subproof, Γi ⊆ Γk. As a consequence,
∀M ∈ M0 and ∀w ∈ W : if vM (Γk, w) = 1 then vM (♦(A ∧ ∼A), w)
= 1 (by lemma 1). From this now follows that if vM (Γk, w) = 1 then
vM (A ∧ ∼A, w) = 1 (by SP7 and Con).

Next, consider lemma 7 below. It is important, because the induction case
necessary to obtain completeness heavily relies on it.

Lemma 7 : For Σ a deductively closed, non-trivial, prime theory: ∼A ∈ Σ
iff A /∈ Σ and v(∼A, Σ) = 1.

Proof. Left–Right. Suppose ∼A ∈ Σ. Hence, A /∈ Σ. Otherwise, Σ would
be the trivial set (because of the inference rules ADD and DS). This would
mean that Σ is not an element of W (for these are non–trivial), which con-
tradicts the supposition. Moreover, from the supposition, it also follows that
v(∼A, Σ) = 1 (by AP1).

Right–Left. Suppose A /∈ Σ and v(∼A, Σ) = 1. Hence, ∼A ∈ Σ (by
AP1). �

Finally, consider the induction case necessary to obtain completeness for the
consistency requirement.
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∼A ∈ Σ iff A /∈ Σ and v(∼A, Σ) = 1 (by lemma 7).
iff vM (A, Σ) = 0 and v(∼A, Σ) = 1 (by the induction hypothe-

sis).
iff vM (∼A, Σ) = 1 (by Con).

Only Gluts. Instead of allowing for gaps, MPL may allow for gluts with
respect to the negation. In this case, negation is semantically characterized
by means of the postulate Com below. This postulate is called the com-
pleteness requirement, because it forces the negation to behave completely,
which means that a formula and its negation can not both be false. As a
consequence, MPL characterized by means of the completeness requirement
validate the law of excluded middle (as well as all inferences that are based
on it).

Name Semantic Postulate
Com For ∼A ∈ N , vM (∼A, w) = 1 iff vM (A, w) = 0 or v(∼A, w) = 1.

Proof theoretically, the completeness requirement is captured by means of
the following inference rules.

Name Inference Rule
TH ∼A ∈ N : ∅ | A ∨ ∼A
NEC ∼A ∈ N : ∅ | �(A ∨ ∼A)

Example. If the completeness requirement is added to the logic KōNs (see
section 4.2), the resulting logic is the logic KūNs, the modal extension of
Priest’s LP (see e.g. Priest [15] and Priest [17, ch. 7]).

Soundness and Completeness. To prove soundness and completeness for
MPL with gluts for negation, it is necessary to prove the induction cases be-
low. First, consider those necessary to prove soundness.

TH Suppose that A ∨ ∼A (on line k) has been derived by means of the
inference rule TH. Now, suppose that ∃M ∈ M0 and ∃w ∈ W :
vM (Γk, w) = 1 and vM (A ∨ ∼A, w) = 0. However, this leads to a
contradiction (by SP4 and Com).

NEC Suppose that �(A ∧ ∼A) (on line k) has been derived by means of
the inference rule NEC. Now, suppose that ∃M ∈ M0 and ∃w ∈ W :
vM (Γk, w) = 1 and vM (�(A ∨ ∼A)), w) = 0. However, this leads to
a contradiction (by SP6, SP4 and Com).
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Next, consider lemma 8 that will be used to prove the induction case below.

Lemma 8 : For Σ a deductively closed, non-trivial, prime theory: ∼A ∈ Σ
iff A /∈ Σ or v(∼A, Σ) = 1.

Proof. Left–Right. Suppose ∼A ∈ Σ. Hence, v(∼A, Σ) = 1 (by AP1). As a
consequence, A /∈ Σ or v(∼A, Σ) = 1.

Right–Left. Suppose A /∈ Σ or v(∼A, Σ) = 1. Firstly, from A /∈ Σ
follows that ∼A ∈ Σ. For, A∨∼A ∈ Σ (because of the inference rule TH),
and Σ is a prime theory. Hence, either A ∈ Σ or ∼A ∈ Σ. As A /∈ Σ,
∼A ∈ Σ. Secondly, from v(∼A, Σ) = 1 follows that ∼A ∈ Σ (by AP1).
Hence, ∼A ∈ Σ. �

Finally, consider the induction case necessary to obtain completeness for the
completeness requirement.

∼A ∈ Σ iff A /∈ Σ or v(∼A, Σ) = 1 (by lemma 8).
iff vM (A, Σ) = 0 or v(∼A, Σ) = 1 (by the induction hypothesis).
iff vM (∼A, Σ) = 1 (by Com).

Neither Gaps nor Gluts. Obviously, in case neither gaps nor gluts are al-
lowed for the negation, negation behaves classically (i.e. negation is both
consistent and complete). As a consequence, the resulting logics are not
modal paralogics anymore, but standard normal modal logics.

4.4. Constraints on Accessibility

Semantically, the modal paralogic KōN is characterized by means of an ar-
bitrary accessibility relation R. Obviously, as is the case for normal modal
logics, more MPL are obtained by imposing constraints on the accessibility
relation R. The best–known of these constraints, together with their corre-
sponding inference rules, are spelled out in the table below (see also Garson
[10]).9

9 Remark that the presented inference rules correspond to the constraints imposed on the
accessibility relation R of normal MPL, which means that R regulates accessibility between
normal worlds only. As a consequence, it cannot be assumed that these inference rules also
correspond to the constraints imposed on the accessibility relation R

′ of non–normal MPL,
for the latter regulates accessibility between both normal and non–normal worlds. Hence,
different inference rules might be necessary to explicate these constraints for non–normal
MPL. Which inference rules these might be, is left as further research.
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R is ... Condition on Models Inference Rule
Serial (∀w)(∃w′)Rww′ �A | ♦A
Reflexive (∀w)Rww �A | A; A | ♦A
Symmetric (∀w, w′)Rww′ ⇒ Rw′w A | �♦A; ♦�A | A
Transitive (∀w, w′, w′′)Rww′&Rw′w′′ ⇒ Rww′′ �A | ��A; ♦♦A | ♦A
Euclidean (∀w, w′, w′′)Rww′&Rww′′ ⇒ Rw′w′′ ♦A | �♦A

Soundness and completeness proofs for MPL obtained by imposing one or
more of these constraints on the accessibility relation R, are obtained by
standard means. Hence, they are left to the reader.

5. Conclusion

In this paper, I have presented a Fitch–style natural deduction proof theory
for modal paralogics. The latter are modal logics that allow for gaps and/or
gluts with respect to negation. More specifically, I have presented the proof
theory of the logic KōN, a particularly weak modal paralogic. Afterwards, I
have presented the proof theories of numerous extensions of the logic KōN,
thereby showing that the presented proof system is of a general kind.

Further research is necessary though, for the presented proof theory was
restricted in a twofold way. First of all, all modal paralogics discussed in this
paper are propositional modal logics. Hence, the proof theory has to be gen-
eralized in such a way that predicative modal paralogics are also included.
Secondly, only normal modal paralogics were discussed. At the moment, it
is still an open question whether the proof system can be extended to handle
non–normal modal paralogics as well.
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