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STRUCTURALISM AND CATEGORY THEORY IN THE
CONTEMPORARY PHILOSOPHY OF MATHEMATICS∗

IZABELA BONDECKA-KRZYKOWSKA AND ROMAN MURAWSKI

Abstract
The set-theoretical (Bourbaki-style) and category-theoretical
approach to structuralism in the philosophy of mathematics are com-
pared. Advantages and disadvantages of those approaches are indi-
cated. We come to the conclusion that category theory can be the
language of mathematical structuralism but one should be careful to
claim that it can serve as a foundation for the whole of mathematics.

1. One of the most popular trends of the contemporary philosophy of math-
ematics is structuralism usually connected with the slogan: mathematics is
the science of structures. Mathematical structuralism can be characterized as
a view that the subject of any branch of mathematics is a structure or struc-
tures. For example, we can define a natural number system to be a count-
ably infinite collection of objects with one distinguished initial object and
the successor relation that satisfy the principle of mathematical induction.
Therefore the natural number is nothing more then a place in the structure
of natural numbers. According to the structuralism, arithmetic is a science
about the form or structure common to natural number systems.

Structuralism is consonant with current mathematical practice at least in
two points: 1) objects considered by mathematicians are determined up to
isomorphism, 2) at least some features of mathematical objects, some math-
ematical facts about them, depend solely on their structure. But what is a
mathematical structure? What do we mean by “having the same structure”?

In the contemporary philosophy of mathematics various structuralistic con-
ceptions have been formulated. They differ with respect to the way of defin-
ing structures and their existence. One can divide them into two groups cor-
responding to two main perspectives for the structural mathematics: founda-
tional (set-theoretical) and categorical one.

∗The financial support of the Foundation for Polish Science is acknowledged.
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Let us begin with the foundational (set-theoretical) perspective in defining
structures due to Bourbaki. Bourbaki structure is a domain of objects with
some relations and functions defined on it. In this case we use such terms as
set, function or relation, which are terms of set theory. Thus we can apply
methods of model theory to investigate it.1 Such description of mathematical
objects leads us to a useful structural perspective but in many cases methods
of model theory itself do not suffice to describe mathematical structures well
enough.

Generally among set-theoretic structuralistic conceptions one can distin-
guish two main attitudes towards ontological problems:

(a) in re structuralism (called also eliminative structuralism) which states
in particular that all statements about numbers are only generaliza-
tions. The in re structuralism claims that the natural number structure
is nothing more than systems which are its instantiations. If such par-
ticular systems were destroyed then there would be also no structure
of natural numbers.

(b) ante rem structuralism which claims that structures do exist apart
from the existence of their particular examples. It is often said that
ante rem structures have ontological priority with respect to their in-
stantiations.

The main thesis of the eliminative structuralism is: statements about some
kind of objects should be treated as universal statements about specific kind
of structures. Thus number theory examines properties of all structures of
order type. In case of arithmetic every sentence A expresses a property of
all natural number systems, and can be understood as an implication:

For every system S, if S is an instance of natural number system,
then A(S).

This treatment of the natural numbers rests on two claims: the claim that
simply infinite systems do exist and on the categoricity theorem. It is neces-
sary to prove the existence of a natural number system, otherwise the above
implication is always true, because every implication with a false predeces-
sor is always true. So eliminative structuralism needs a basic ontology, a
domain of considerations whose objects could take up places in structures in
re. Such an ontology should be rich enough and we are not interested in the
very nature of objects but rather in their quantity. The ontology of the in re

1 By such an approach we change a statement that mathematics is a science about struc-
tures into a statement that mathematics is a science about sets, so we reduce mathematics not
to the theory of structures but to set theory.
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structuralism requires an infinite base. One of the methods proposed to elim-
inate this problem is to apply modalities. Hellman introduced, using second
order modal logic, a theory containing the axiom stating the possibility of
the existence of an infinite system.

In any case, in taking structures to be objects, we either run into the prob-
lem of having to assume a foundational background (eliminative structural-
ism) or of ‘reification of structures’ (ante rem structuralism) or we make
mathematics dependent of the logic of possibility (modal structuralism).

2. The object of modern mathematical studies is rarely a specific set with
relations or functions defined on it. As said above mathematicians investi-
gate mostly objects determined up to isomorphism, relations between such
objects bearing the same structure, relations between different kinds of struc-
tures on such objects and so on. So there is a need for a language and meth-
ods well suited to problems involving different kinds of structures. In re-
sponse to this need category theory arose.

Category theory is an algebraic theory, which is a general mathematical
theory of structures and of systems of structures. It is still evolving. At
minimum, it is a powerful language, or conceptual framework, allowing us
to see the common parts of a family of structures of a given kind as well as
how structures of different kinds are interrelated.

The central role in this theory is played by the notion of category, which
consists of objects A, B, C,. . . and morphism f , g, h,. . . such that: i) every
f has a unique domain A and a unique codomain B, written f : A → B;
ii) given any g: B → C there is a unique composite g ◦ f : A → C, with
composition being associative; iii) each B has an identity 1B: B → B, which
is a unit for composition, i.e., 1B ◦ f = f and g ◦ 1B = g for any f and g as
stated. A category is anything satisfying these axioms.

The objects need not to have elements; nor need the morphism be func-
tions (for example category associated with any formal system of logic is
a category, the objects of which are formulas and morphisms of which are
deductions from premises).

Consider now whether a categorical perspective in structuralism is better,
at least in some points, than the foundational (set-theoretical) one.

First of all the categorical notion of a structure is “syntax invariant”, it does
not depend on particular choice among the different possible set theoretic
descriptions of a given kind of mathematical structures. For example spaces
may be defined in several ways, the objects of the category Top (i.e., the cat-
egory of all topological spaces) are described by various different Bourbaki
structures.

The categorical notion of an isomorphism may serve as a definition of
“having the same structure of a given type”. Category theory provides a
uniform notion of a structure: given any category, one automatically knows
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the right notion of having the same structure. Two objects may be said to
bear the same structure if they are structurally indistinguishable, i.e., if any
structural property enjoyed by one is also enjoyed by the other.

According to structuralism objects of mathematics (such as numbers, func-
tions or points) are only places in structures, they do not have any properties
which are not structural. Structuralists claim that mathematical objects have
no important features outside the structure and all of their features have to
and can be explained in terms of structural relations. For example the num-
ber 2 is nothing more then the successor of 1 and the predecessor of 3, so
the essence of a natural number (for example 2) is determined by relations
to other natural numbers (1 and 3). (Thus arithmetic is the science about
relations between places of any system similar to the structure of natural
numbers.) Category theory allows us to express structural properties of ob-
jects in a convenient way. Any mathematical property or construction given
in terms of structure preserving mappings (in a given category) will neces-
sarily respect isomorphism in that category and thus will be structural. Since
all categorical properties are structural, the only properties which a given ob-
ject in a given category may have, qua object in that category, are structural
ones. As Awodey states in (Awodey, 1996):

“Thus doing mathematics ‘arrow-theoretically’ automatically pro-
vides a structural approach, and this has proven quite effective in
attacking certain kinds of mathematical problems having to do with
mathematical structure” (pp. 214–215)

Furthermore many useful categories describe some structures which are
not structures in the sense of Bourbaki. For example category whose objects
are the open sets of a particular space and whose morphisms are inclusion
maps between them is a kind of a mathematical structure on objects which
is not a model of a Bourbaki structure in any conventional sense.

A further and very important advantage of the categorical approach to
mathematical structure is that representing different kinds of structures as
different categories provides a uniform notion of a structure. For example
from a categorical point of view, a Cartesian product in set theory, a direct
product of groups (Abelian or otherwise), a product of topological spaces,
and a conjunction of propositions in a deductive system are all instances of
a categorical product characterized by a universal property.

Formally, a product of two objects X and Y in a category C is an object Z
of C together with two morphisms, called the projections, p: Z → X and q:
Z → Y such that — and this is the universal property — for all objects W
with morphisms f : W → X and g: W → Y , there is a unique morphism h:
W → Z such that p ◦ h = f and q ◦ h = g.
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It is totally consonant with mathematical structuralism. Note that we have
defined a product for X and Y and not the product for X and Y. Indeed,
products and other objects with a universal property are defined only up to a
(unique) isomorphism.

In category theory, the nature of elements constituting a certain construc-
tion is irrelevant. What matters is the way in which an object is related to
other objects of the category, that is, the morphisms going in and the mor-
phisms going out, or, in other words, how certain structures can be mapped
into a given object and how a given object can map its structure into other
structures of the same kind.

Category theory reveals how different kinds of structures are related to
one another (it is not so easy in the case of set-theoretic approach to struc-
turalism). For instance, in algebraic topology, topological spaces are related
to groups (and modules, rings, etc.) in various ways (such as homology,
cohomology, homotopy, K-theory). Groups with group homomorphisms
constitute a category. Eilenberg and Mac Lane invented category theory pre-
cisely in order to clarify and compare these connections. What matters are
the morphisms between categories, given by functors. Homology, cohomol-
ogy, homotopy, K-theory are all examples of functors. Informally, functors
are structure-preserving maps between categories. Given two categories C
and D, a functor F from C to D sends objects of C to objects of D, and
morphisms of C to morphisms of D, in such a way that the composition of
morphisms in C is preserved, i.e., F (g ◦ f) = F (g) ◦ F (f), and identity
morphisms are preserved, i.e., F (idX) = idFX . It immediately follows that
a functor preserves commutativity of diagrams between categories.

Following Awodey (1996) we can characterize categorical structuralism in
the following way:

“The structural perspective on mathematics codified by categorical
methods might be summarized in the slogan: The subject matter of
pure mathematics is invariant form, not a universe of mathematical
objects consisting of logical atoms.” (p. 235)

3. Some philosophers claim that category theory is an alternative to set
theory as a foundation for mathematics and that methods of category theory
will suffice for many present-day mathematical purposes. But there are some
problems and objections connected with this claim.

The first one is a problem of the autonomy of category theory from set
theory. Is category theory really independent from set theory? If we agree
that category theory uses set-theoretic notions such as domain, codomain
and function, then structuralism framed by category theory falls under set-
theoretic variety of structuralism. Moreover category theory cannot be
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treated as an alternative for set theory in any reasonable sense of ‘alterna-
tive’.

Another important problem announced by Hellman (in Hellman 2003) is
a problem of mathematical existence. “This problem as it confronts cate-
gory theory can be put very simply: the question just does not seem to be
addressed! (We might dub this the problem of the ‘home address’ : where do
categories come from and where do they live? )” (p. 136)

Axioms defining categories include existence claims, but if we want to
read this axioms ‘structurally’ (à la algebra), they are only defining con-
ditions, not absolute assertions of truths based on established meanings of
primitive terms (the axioms of set theory, as usually read, are not ‘structural’
in this sense).

To sum up, Hellman (2003) claims that category theory is defective as a
framework for structuralism in at least two major interrelated ways: 1) it is
not independent from set theory and 2) it lacks substantive axioms of math-
ematical existence.

As Awodey noticed in (2004) the questions asked about mathematical ex-
istence such as: “Where do categories come from and where do they exist”
are reasonable only from the foundational perspective. He proposed to use
category theory to avoid the whole business of ‘foundations’. The idea of
‘doing mathematics categorically’ involves a point of view different from
the foundational one, which is based on the idea of specifying for a given
theorem or theory only the required or relevant degree of information or
structure, the important features of a given situation, without assuming some
knowledge or specification of the ‘objects’ involved. He writes in (2004):
“The laws, rules and axioms involved in a particular piece of reasoning, or
a field of mathematics, may vary from one to the next, or even from one
mathematician or epoch to another.” (p. 56)

Mathematical theorems are schematic, they do not involve the specific na-
ture of structures or their components in an absolute sense. It does not matter
what structures are supposed to be or to ‘consists of’. In mathematical state-
ments particular nature of the entities involved plays no role. Rather their
relations, operations, etc. are important and crucial. In this sense mathemat-
ical statements (theorems, proofs, even definitions) are about connections,
operations, relations, properties of connections, operations on relations, con-
nections between those operations and so on.

Thus according to this view there is no absolute universe of all mathe-
matical objects, there is no unique context that provides us with conditions
for the actual or possible existence of structure or structured systems. In a
categorical framework the context, systematized by the category-theoretic
axioms, varies, so mathematical concepts has to be thought of in a context
that can be varied in a systematic fashion. Categorical framework provides
us with the conditions a context has to satisfy in order to talk about or to do
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mathematics. So we cannot say what the natural numbers are, but in which
contexts we can talk about them.

Category theory describes conditions under which we can talk about the
same type of systems. Category should be treated not as a system of state-
ments about objects (i.e., neither about “structures” nor about possible types
of systems possessing a structure), but rather as a context describing con-
ditions, which have to be fulfilled to talk about particular type of objects.
Axioms of a given category provide context in which one can talk about the
common structure of systems in terms of morphism between them, without
necessity of appealing to the theory of sets, theory of structures or modal
logic.

Supporter of such structuralism does not have to determine what is a struc-
ture or what is a category, in ontological or modal sense of the word “is”.
Everything what has to be done is to provide a proper context, in which one
can talk about a common structure of systems.

An advantage of such an approach to structuralism is that it does not pro-
vide “constructive basis” for mathematics, but rather provides “descriptive
basis” for the structuralistic claim that mathematics is a science of structures
(it is interpreted as a claim that mathematics is a science of systems possess-
ing structures).

So what is the difference between set-theoretical structuralism and the cat-
egorical one? Hale named categorical structuralism the pure structuralism
and described it as algebraic structuralism in re from the top-down perspec-
tive.

Now the natural question appears: what is the difference between top-
down structuralism and the bottom-up (set-theoretical) one? Structuralism
from the bottom-up perspective should have, as said above, a basic ontology.
The notion of structure is built from the objects of this ontology in the pro-
cess of abstraction. “The direction” of this abstraction is clear: from details
to the whole, so bottom-up. For all versions of set-theoretical structuralism
the same conditions, actual or modal, for the existence or possible existence
of systems possessing structure, have to be assumed.

In the case of top-down structuralism this demand can be omitted by in-
troducing a basic theory in Hilbert’s sense. Instead of asking what structures
are, there appears the question: what does it mean that two systems have the
same structure. Top-down structuralism is called pure because axioms of a
category provide a framework for talking about particular structural systems
without considering what those systems are built from.

In the top-down perspective one starts from the concept of an abstract sys-
tem, in the algebraic sense, understood as a language for description of the
common structure of systems: it allows to talk about systems possessing the
same structure as examples of the same type of structure without the neces-
sity of considering from what those systems are built. So in this perspective
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instead of asking what the structure is one asks what does it mean “to have
the same structure”.

Therefore category theory provides a framework for top-down, in-re inter-
pretations of mathematical structuralism, because category provides context,
in which one can talk about “common structure” of systems, regardless of
what this systems are built from. Such top-down algebraic structuralism,
expressed in the language of the category theory, does not require neither
treating structures as “objects” (actual or possible) nor understanding ax-
ioms as truths or assertions. In contrast to Shapiro, categorical structuralist
does not have to claim that categories exist as objects independently of ab-
stract systems, which are examples of them: he/she does not even claim that
categories exist in the sense of “objects” in some system. Categorical struc-
turalism can be summarized by words of Awodey (1996):

“The subject matter of pure mathematics is an invariant form and
not a universe of mathematical objects consisting of logical atoms.”
(p. 235)

To sum up, we must distinguish the claim that category theory can be the
language of mathematical structuralism from the claim that it can be an al-
ternative for set theory as a basic theory for mathematics. Category theory
is a more convenient tool for exploring mathematical structuralism than set
theory but one should be careful to claim that category theory can serve as
a foundation for the whole of mathematics. Indeed, it is not clear if cate-
gory theory is really independent from set theory, moreover we do not know
enough about the ontological and epistemological status of categories. Cate-
gory theory is the useful language for talking about mathematical structural-
ism but it is not a tool for “doing” mathematics structurally.
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