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WHAT IS WRONG WITH CANTOR’S DIAGONAL ARGUMENT?

ROSS BRADY AND PENELOPE RUSH∗

1. Introduction

As a long-time university teacher of formal logic and philosophy of mathe-
matics, the first author has come across a number of students over the years
who have cast some doubt on the validity of Cantor’s Diagonal Argument.1

They usually express some amazement about the conclusion of Cantor’s Ar-
gument, viz, Cantor’s Theorem, that there are non-denumerable sets, that is,
infinite sets that are of a higher cardinality than the set of natural numbers.
Whilst the idea of an infinite set sounds quite plausible to them, they can-
not readily countenance the idea that there is more than one level or type of
infinity. Unwittingly, I have always given the standard response that the con-
clusion is inescapable, given that, firstly, the cardinality of a set is determined
by one-one correspondence between it and a standard set of given cardinality
and, by Cantor’s Diagonal Argument, the power set of the natural numbers
cannot be put in one-one correspondence with the set of natural numbers.
The power set of the natural numbers is thereby such a non-denumerable
set. A similar argument works for the set of real numbers, expressed as
decimal expansions.

However, students often have pre-theoretical intuitions about a discipline
they are studying and can sometimes come up with an idea which may not be
in the theoretical ambit of a staff member. A perfect example of this is that,
over the years, many a student has been critical of classical logic, usually

∗We wish to acknowledge support from the Australian Research Council Discovery
Grant DP0556114, which has allowed both of us to work on an overall project, which in-
cludes the topic of this paper. We wish to thank the participants at the Melbourne-Adelaide
Logic Axis Meeting, held at the University of Adelaide in June, 2006, for their comments
and also for their papers, many of which related to the issues discussed in this paper. We also
wish to thank Lloyd Humberstone, Ed Mares and Bob Meyer for their comments and help
with points of detail.

1 I wish to thank Zach Weber, a post-graduate student at the University of Melbourne,
supervised by Graham Priest, for raising this issue with me as recently as November, 2005.
It was the ensuing discussion that triggered the writing of this paper.
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186 ROSS BRADY AND PENELOPE RUSH

criticizing the truth-table of the material ‘⊃’ or the lack of relevance of con-
clusions to premises. One only has to see the motivation and development
of relevant logics, which pursue these concerns, to realize that there is an
important point to the student’s persistence in this case. (We will come back
to this in section 2 below.) What we aim to show in this paper is that there
is also an important point to the student’s concerns about Cantor’s Diagonal
Argument, thus making amends to these students.

But, what could be wrong with Cantor’s Argument? It must be some-
thing to do with the treatment of infinity. Initially, one would treat infinity
as something that can be approached through ever larger finite numbers, as
would happen in the process of establishing a limit of a sequence of num-
bers. In this context, recursive processes, functions and sets would have
initial appeal. We will see later how this fits in.

Focussing back on the above two concerns, we can see that they are not
unrelated. The concern about material implication and its lack of relevance
leads us naturally to consider mathematical structures in the light of recent
work on relevant logic, and especially weak relevant logics without the Law
of Excluded Middle (see [RLR1 & 2]). As we shall see, such relevant log-
ics provide a weaker base than classical logic and so are more capable of
showing up the shortcomings of Cantor’s Argument.

To do all this, we first consider the entailment logic MC, based on mean-
ing containment, which contains neither the Law of Excluded Middle (LEM)
nor the Disjunctive Syllogism (DS) (see Brady [1996] and [UL]). We then
argue that the DS may be assumed at least on the same basis as the assump-
tion of the LEM, which is, we argue, justified over a finite domain or for a
recursive property over an infinite domain, or however the LEM might be
subsequently proved. In the recursive case, use is made of Mathematical
Induction. We then show that an instance of the LEM is instrumental in
the proof of Cantor’s Theorem, and we then argue that this is based on a
more general form than one can reasonably justify, i.e. it is not one of the
above justified assumptions. Finally, we briefly consider the impact of our
approach on arithmetic and naive set theory, and compare it with intuitionist
mathematics and very briefly with recursive mathematics.

Our ‘Four Basic Logical Issues’ paper [200x], would provide useful back-
ground, the current paper being an application of the some of the ideas in it,
though readable independently of it. Further background can be provided by
the first author’s earlier conference paper ‘Entailment Logic – A Blueprint’
[2007].
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2. The Entailment Logic MC

Deductive logic is about the deduction of conclusions from premises, where
the conclusions follow as a matter of certainty. As in Brady [2007], this
certainty is due to the meaning relationships between a conclusion and its
premises, i.e. the premises embody some concepts, from which the con-
clusion follows as a further property of these concepts and only these. In
this light, it is reasonable to introduce the inference connective ‘→’, to be
understood as meaning containment, as detailed in Brady [1996] and [UL].
Also, the inference ‘⇒’, used to relate the conclusion to the premises of an
argument, is not only truth-preserving, but is also driven by meaning con-
tainment. This can indeed be seen by examining the rules of the logic QMC,
given below.2

So, we introduce below such an entailment logic MC, the entailment being
represented by the above ‘→’. A particular feature of MC is that each of
the other connectives is dependent for its properties on this entailment ‘→’,
in that theorems involving them can be built up from entailment theorems,
making entailment theorems the focus of the logic. This follows from the
metacompleteness property for MC, as can be seen from Slaney [1984] and
[1987]. The metavaluations, for which metacompleteness with respect to
the logic holds, are determined inductively for all formulae constructed from
entailment theorems. What also follows from the metacompleteness of MC
is the important Priming Property: if ` A ∨ B then ` A or ` B, an intuitive
property that depends in this case on the A or the B being built up from
entailment theorems.

MC (previously called DJd) is also a depth relevant logic (as can be seen
in Brady [1984]), and can be used to solve the set-theoretic and semantic
paradoxes (as can be seen in Brady [2000] and, in detail, in [UL]).

We now present the axiomatization of MC and its quantificational exten-
sion QMC. We use the system QMC, which is MCQ without the quantifi-
cational distribution principles, ∀x(A ∨ B) → A ∨ ∀xB and A&∃xB →
∃x(A&B). The term ‘QMC’ is derived from Mares and Goldblatt’s QR in
their [2006], which is the relevant logic RQ, also without these distribution
principles. We will explain why these principles are dropped in section 9.

MC.
Primitives.
∼, &, ∨, → (connectives).

2 Briefly, Rules 1 and 3 exhibit applied meaning containment, whilst the comma of Rule 2
is conjunctively interpreted. For Quantified Rule 1, the premise A must have an unconstrained
free variable, upon which the generalisation takes place. So, the universal quantifier exhibits
what is already there in the free variable.
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188 ROSS BRADY AND PENELOPE RUSH

p, q, r, . . . (sentential variables).
Axioms.
1. A → A.
2. A&B → A.
3. A&B → B.
4. (A → B)&(A → C) → .A → B&C.
5. A → A ∨ B.
6. B → A ∨ B.
7. (A → C)&(B → C) → .A ∨ B → C.
8. A&(B ∨ C) → (A&B) ∨ (A&C).
9. ∼∼A → A.
10. A → ∼B → .B → ∼A.
11. (A → B)&(B → C) → .A → C.
Rules.
1. A, A → B ⇒ B.
2. A, B ⇒ A&B.
3. A → B, C → D ⇒ B → C → .A → D.
Meta-Rule.
1. If A ⇒ B then C ∨ A ⇒ C ∨ B.

QMC.
Additional Primitives.
∀ , ∃ (quantifiers).
a, b, c, . . . (free individual variables).
x, y, z, . . . (bound individual variables).
f, g, h, . . . (predicate variables).
Quantificational Axioms.
1. ∀xA → Aa/x.
2. ∀x(A → B) → .A → ∀xB.
3. Aa/x → ∃xA.
4. ∀x(A → B) → .∃xA → B.
[Note that, in distinguishing free and bound variables, x can only occur
bound in the ‘A’ of Ax2 and in the ‘B’ of Ax4.]
Quantificational Rule.
1. Aa/x → ∀xA, where a does not occur in A.
[This rule generalises on the free variable a in Aa/x, with occurrences in ex-
actly the same places as those of the bound variable x in A.]
Quantificational Meta-Rule.
1. If Aa/x ⇒ Ba/x then ∃xA ⇒ ∃xB, where a does not occur in A and B.
The meta-rules MR1 and QMR1 carry the proviso that, in the derivations
A ⇒ B and Aa/x ⇒ Ba/x, the rule QR1 does not generalise on any free
variable in A and Aa/x, respectively.
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3. The Lack of the DS and the LEM

As noted in [UL], pp. 39–41, the logic MC, there called DJd, contains neither
the Disjunctive Syllogism (DS) nor the Law of Excluded Middle (LEM). The
DS (∼A, A ∨ B ⇒ B), from which Ex Falso Quodlibet (A, ∼A ⇒ B) easily
follows, cannot be a rule of MC because, as in Ch. 6 of [UL], the model
MD of the dialectical (inconsistent) set theory DST, based on an extension
of the logic DJd, is non-trivial, as shown on p. 245 of [UL]. Also, the LEM
(A ∨ ∼A) cannot be a theorem as the Priming Property (see 2) would then
fail. Further, the LEM can be used to prove paradoxes such as the Liar, in
the form of inconsistencies, but the overarching predicate theory PT, based
on the higher-order predicate logic DJdHQ is simply consistent, as shown in
Ch. 8 of [UL].

Further, as stated on p. 39 of [UL], ‘the LEM and the DS . . . only involve
negation and disjunction, and do not involve the entailment connective’,
making them ‘independent of any considerations to do with meaning con-
tainment’. They would have to be justified through the meanings of negation
and disjunction. Disjunction is much better understood than negation, and
classical negation as a universally applicable negation is hard to justify in a
non-circular fashion, as argued in Ch. 1.7 of [UL]. Indeed, it is very doubtful
whether there are general logical principles to support either the LEM or the
DS and, as also argued in [UL], there are likely examples of each of these
principles failing, as well as the many obvious examples of each holding.
(We pick this up later in this section.)

In [UL], it is assumed as a result of this, that both of these principles hold
for so-called classical sentences3 and 2-sorted systems are set up, one sort
for classical sentences, and one sort for sentences in general where neither
principle is assumed. The book goes on to argue that the major mathematical
theories, including set theory and arithmetic involve only classical sentences,
thus allowing whole classical mathematical theories to be transcribed within
the classical sort.

However, as explained in Brady and Rush [200x], there is a general prob-
lem justifying the classical sort in that the domain of classicality is hard to
define in precise terms, and a single sort is neater and philosophically easier
to justify. This paper, together with Brady [2007], suggests metacomplete-
ness and rejection as techniques to prove the DS and the LEM within a single
sort. However, as will be explained below, we will derive them where we can
and we may assume them outright in other appropriate circumstances. With

3 The reason we can talk of classicality here is that all the tautologies of classical logic,
expressed in the connectives ∼, & and ∨, can be proved in the logic MC from the LEM, using
normal-forming operations, and the detachment rule of classical logic is easily obtained from
the DS.
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190 ROSS BRADY AND PENELOPE RUSH

its lower focus on classicality, the single sort will also deal with Richard Syl-
van’s voiced concern to the first author that I have compromised too much
with the classicists.

As we mentioned at the beginning of 2, logic is based on deduction, and
should focus on proof theory, and so any semantics ought to be able to char-
acterize proof-theoretic features. A suitable concept of truth for this would
be establishable truth, as suggested in Brady [2007]. Being a relatively weak
relevant logic without the LEM, the logic MC is likely to turn out to be
constructive in some sense, having the lack of the LEM in common with
intuitionist logic, but there are differences here in the inferences and in the
negation. The important thing in common with intuitionism is the need to
derive the unnegated and negated forms of a proposition, which then enables
truth and falsity to properly overlap and not be exhaustive. We will briefly
compare these logics in section 10 at the end of the paper.

Deductive systems prove results about concepts captured by the axioms or
assumptions associated with these concepts. It is quite conceivable that such
a system may be simply inconsistent or that it may be ∼-incomplete. The
best known example of simple inconsistency is the classically based naive
set theory, initially introduced by Cantor. There are many examples of con-
cepts that seem to be consistent with each other to start with, but turn out,
upon some development of the combined theory of such concepts, to be in-
consistent. Examples of such inconsistency are to be found in Priest [2001],
pp. 67–8 and pp. 125–6. The best known example of ∼-incompleteness, in-
deed incompletability, is classically based Peano Arithmetic, due to Gödel’s
Incompleteness Theorem. Also, it would not be hard to find concepts about
which a question could be asked without a yes-or-no answer, due to incom-
plete specification of the concept or concepts. Thus, a 4-valued logic, em-
bracing independent truth and falsity, should form the basis of a natural se-
mantics for deductive systems.

So, the failure of both the DS and the LEM is quite appropriate, certainly
for logics such as MC. Indeed, it seems very odd, as pointed out in Brady
[2007], for classical logic to include the DS and the LEM, only to find that
classical theories can be simply inconsistent or ∼-incomplete, respectively.
Classical proof theory cannot even ensure the Boolean negation upon which
the logic is based. Recall, though, that MC is metacomplete and so has
the Priming Property, which in turn ensures that there is a closer connec-
tion between the DS and simple consistency and between the LEM and ∼-
completeness.4

4 The relationships are as follows, for metacomplete systems based on MC:
If the DS holds (as an admissible rule) then the system is simply consistent, provided the
system is non-trivial.
If the system is simply consistent then the DS holds, again as an admissible rule.
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WHAT IS WRONG WITH CANTOR’S DIAGONAL ARGUMENT? 191

We further these ideas in the next section, gaining some support from a
specific naturalistic perspective for our claim that the LEM is contingent.

4. The Contingency of the LEM

It is important to note that one does not have to be a constructivist or have
an intuitionist’s bent in order to doubt that the LEM is universally applica-
ble. Indeed, quite beside the main conceptually motivated argument pre-
sented here (which itself emanates from a basic focus on the derivation of
conclusions from premises and has no particular constructivist or intuition-
ist context for that focus), there are a number of independently motivated
arguments supporting the notion that the LEM is, in fact, contingent.

One of the most compelling philosophical arguments begins simply by
noting the ubiquity of examples wherein the LEM can be seen to fail: of
particular interest to the universal approach taken here are those at the limits
of human possibility.5 An especially compelling argument utilizing such
examples is that given within the context of a naturalistic philosophy, of the
sort sketched in Maddy’s [2002]. Since such a context may also serve to
explain something of the general role and nature of MC itself, it is worth
briefly exploring Maddy’s position further.

The (radically strengthened) ideal6 behind the naturalistic philosophy of
logic Maddy puts forward is that of logic as a neat intersection between the
internal and the external, wherein logical laws are as much a feature of an
external/objective reality as they are an inherent feature of our own make
up. Thus, the apriority or certainty of the logical laws comes from both their
conceptual necessity and from the general structure of reality itself. This is
the ideal. The method (roughly) is transcendental insofar as the notion of
conceptual necessity corresponds to the notion of the general pre-conditions
of conceptual thought itself, and empirical insofar as the logical laws are
(very generally) empirically veridical.

Thus a naturalistic ideal can be viewed as just one small section of a uni-
versal ideal. As we have already indicated, a universal approach focuses
on human possibility — on deduction per se, and as such is concerned less
with the general structure of reality than with the conceptual structure of de-
duction itself. External, empirically veridical reality is one of the areas to

If the LEM is a theorem then the system is ∼-complete.
If the system is ∼-complete then the LEM is derivable through either of its disjuncts.

5 These are spelled out in Brady and Rush [200x].

6 This is one of the ideals it can serve, at any rate.
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192 ROSS BRADY AND PENELOPE RUSH

which deduction can be applied, but it applies equally to fiction and to in-
consistent scenarios. Thus it is the nature of the concepts themselves that
forms the main focus of a universal logic. A further reason such a logic is
removed from empirical concerns is its claim to an a priori status, situating
it outside any ‘web of belief’ (Shapiro [2000]). Nonetheless, there is within
the universal framework an intersection of our deductive structure with the
structure of the way we do in fact reason, and this in turn intersects with the
general structure of reality. From the many perspectives we may take of this
intersection, naturalism gives one that highlights some features we ought to
expect of the deductive structure, or of the nature of deduction itself.

If we adopt such a perspective, then, and so accept for a minute the initial
ideal with which the naturalist begins, we note that Maddy’s logical natural-
ism falls some way short of the attainment of this ideal, and indeed of the
attainment of any of its humbler versions. This, though, is just in case we
take such a picture as applying to classical logic. When we take the same
general philosophy and apply it to the logic of Meaning Containment, we
move to within grasping reach of the strongest version and to (at least an
arguable) attainment of the humbler versions canvassed.

Working with a modernised set of Kantian categories and forms of judge-
ment, Maddy examines how these might ‘underlie the laws of logic’ on p. 70
of her [2002]. The first such category is that of an object as a member of a
class: ‘objects grouped together by their relational similarities’, also on p. 70
of [2002]. From this, Maddy builds ‘minimal’ or pre-formal versions of con-
junction and disjunction, as ‘counterparts of . . . intersections and unions’.
We pause here to note that the semantics picking out the logic MC, called
‘content semantics’ in Brady [1996], follows the same conceptual route. The
idealisation required to get from these notions to the connectives of classical
logic is, as Maddy goes on to show, quite substantial. Meaning Containment,
on the other hand, is the natural crystalisation of just such set-theoretic con-
cepts. For example, in Brady [1996], conjunction corresponds to a closed
union and disjunction to an intersection of contents.

But as Maddy notes, the problems for classical logic begin with:

‘extend[ing] the minimal versions [of the fundamental categorical
forms] to full [classical] connectives capable of applying to any de-
scriptions’ ([2002], p. 71).

The first aspect of this problem that Maddy considers is the contingency of
the LEM:

‘does thinking in terms of [the categories] . . . also commit us to
granting, for example, that any given object must either have a given
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property or fail to have it? It seems to me [Maddy] that the answer
must be no’ ([2002], p. 71).

Classical logic’s universal LEM is, then, a significant idealization,

‘required to cover the distance between the rudimentary logic of our
fundamental conceptual machinery and the laws of modern logic’
([2002], p. 73).

In fact, Maddy’s general naturalistic picture of the growth of logical con-
cepts from pre-formal categories highlights the appropriateness of MC over
classical logic in a number of places. The universal LEM is just one of these:

‘This is the first major idealization . . . Removing all truth-value gaps
and restoring the standard truth-functional negation produces the
full store of propositional tautologies involving conjunction disjunc-
tion and negation . . . a second sort of idealization [is required] . . . in
the definition of the conditional . . . there need be no ‘causal connec-
tion’ (Frege [1879], p. 14) between the two components: ‘if the sun
is shining, then 3 x 7 = 21’ is true, though the sun’s shining has
nothing to do with the arithmetical fact. Here we make a clear and
deliberate departure from the content of the underlying category’
(Maddy [2002], p. 73).

Put this way, the notion that this is a positive trade off seems, at least,
debatable. That is, if we begin with pre-formal notions and look, from a rel-
atively unbiased (non-classical) perspective, at the sort of naturalistic story
Maddy presents, then the case for MC seems clear. A logic that preserves
our pre-formal conceptualizations without the idealizations outlined above,
is surely preferable to one necessitating the same. This is particularly true
given that none of the essential strengths of classical logic are lost (see foot-
note 3), nor is the general logical goal — the formalization of deduction —
compromised in MC. So, we do in fact have the means of maintaining all
of the former, without the substantial idealisation (perhaps properly called
a distortion) of a universal LEM and without an unnatural truth-functional
negation.

It seems, in short, that Maddy has presented a good argument for the con-
tingency of the LEM, but she goes on to argue that its axiomatic status in
classical logic is a necessity. This does not make sense once we know we’ve
an alternative: upon consideration of this alternative, it becomes apparent
that the universal LEM is unnatural, both pre-formally and, it turns out, in
application. Building a logic by beginning with an unbiased analysis of the
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pure concepts involved results in a logic closer to the concepts, i.e. one less
idealized; one with no obvious ‘departure from the content of the underlying
category [/concept], motivated by the [perceived, classically biased] needs of
logical theorizing’ ([2002], p. 73), and one with a more coherent application.

Meaning Containment, with its restricted LEM, embodies none of the rad-
ical idealizations required to reach classical logic. The move from the sort
of pre-formal categories Maddy proposes to the logic itself is, in the case of
MC, an entirely natural one. In fact, Maddy concludes from her analysis that
not just the LEM, but the whole of (classical) logic itself is contingent. We
reject this conclusion (for the logic MC), but embrace the premises. That is,
her naturalistic analysis can justify not only the contingency of some princi-
ples, but also the apriority of others.

We predict that the natural fit of the logic MC with the general structure of
conceptual thought will be shown by any analysis of pre-formal cognition.
Rather than outline possible examples here, we simply note that a naturalistic
or Kantian analysis immediately suggests a more inclusive, less idealised
logic than classical logic, and this points not only to a restricted LEM, but to
Meaning Containment (MC) itself; i.e. to a revised conditional, to content
semantics and to a non-classical negation, among other things. One way of
characterizing the situation is to note that by such analysis we are led to a
clearer picture of just which logical systems deserve the title ‘deviant’ and
which the title ‘natural’. Thus, MC is the natural logic, and classical logic
shows up as deviant, turning Quine on his head.

Rather, then, than revise the original naturalistic ideal downward to meet
the limitations of the proposed (classical) logic, we suggest that the existence
of a logic that ‘fits’ the general naturalistic story both redeems this ideal and
lends support to the particular logic (MC) thereby exemplified. Specifically,
we note that such a universal logic has a strong claim to Kantian apriority (if
indeed anything has): in that it is ‘epistemologically independent of sensory
empirical experience, and . . . a necessary underpinning of empirical science’
(Posy [2005], p. 333). The transcendental argument gives the independence
of the resultant logic, while its general empirical verifiability, in accordance
with an overarching naturalistic philosophy, gives the required agreement
with empirical science. There will be further discussion on this in later work.

In the next two sections, we examine the DS and the LEM with a view to
working out when we should assume them. Despite not being logical laws,
they are both used extensively in everyday and technical reasoning. We need
justification for them, over and above the meaning considerations used to
justify logical laws.
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5. The Assumption of the DS

We start by considering the DS in the context of classicality, i.e. in conjunc-
tion with the LEM. (See footnote 3.) In [UL], classicality was taken to apply
over the physical world and to all abstractions and idealisations thereof. It
turns out, though, that this criterion is too broad. Specifically, it applies the
notion of classicality where it clearly ought not apply. For example, both
Heisenberg’s uncertainty regarding the position and momentum of an elec-
tron, and the Gödel sentence G of Peano arithmetic fall within its scope.
Given that classicality itself is an abstracted notion, effectively limiting the
range of ‘real’ world situations to an idealized subset, the consequent en-
largement of this subset to again cover what it was abstracted from in the
first place, seems misguided. That is, taking classicality to apply to our
broadest concept of ‘the physical world’ is at best an otherwise unjustified
technical convenience, at worst a severe misrepresentation of our knowledge
of physical reality.

These are not the only examples of non-classical physical reality. Another
could be the status of current information about far-distant space. Attaching
a definite truth value to such information seems contrived, as there is no way
such information can be checked due to the time taken for light to reach us.
By comparison, the admission of such (real) truth value gaps into our for-
mal logic seems natural and more faithful to our knowledge of the concepts
concerned. This echoes a similar argument made in Brady and Rush [200x]
in which we conclude that classicality can reasonably be taken to apply over
(whatever turns out to be) the large part of the physical world, and what can
be mapped into this. And the derivation of the LEM and the DS is one of the
means by which we can expand and refine the concepts concerned: both that
of classicality, and that (part) of the physical world.

We now consider the DS by itself. The DS (∼A, A ∨ B ⇒ B) might
be provable using metacompleteness through the Priming Property, together
with the simple consistency of A. However, in this case, the DS is not needed
as B is independently provable. The DS might also be provable using rejec-
tion and the Real DS (a A, A∨B ⇒ B), together with the consistency of A in
the form ` ∼A ⇒a A, as set out in Brady [2007]. To make this consistency
work, we need rejection-soundness, i.e. for all formulae A, it is not the case
that both ` A and a A, which is usually easy to show in a rejection system.
There is a problem with the broader use of rejection in that no rejection-
complete axiomatization for MC (i.e. where, for all formulae A, either ` A
or a A) has been established. However, rejection-completeness does hold
for FDF, the first-degree formula fragment of MC (see Brady [2008]), which
is what one is most likely to use in practice, as second degree is rarely used.
The proof here relies on normal-forming operations, which are not adequate
for the full MC.
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When used, the disjunction in the DS must come from somewhere. If
proved outright, i.e. without assumption, in a metacomplete system then the
DS is not needed under simple consistency, as described above. If the dis-
junction is derived through the LEM, which is proved without assumption,
then each disjunct may well be derivable and the DS not needed, as above.
If the disjunction is derived through assumptions, including the LEM, one
would have to similarly assume the DS to use it.

Indeed, many uses of the DS are based on a prior use of the LEM or sim-
ilar disjunctive assumptions. Take, for example, the 9x9 number puzzle,
Sudoku, currently occurring in Australian newspapers. It consists of a 9x9
array of squares, broken down into 9 3x3 arrays. In each square is to be put
a single number, 1,. . . ,9, such that each 3x3 array has exactly the numbers
1,. . . ,9, and also each row and each column of the 9x9 array has exactly the
numbers 1,. . . ,9. All these rules are disjunctive. The fact that, in a particular
square (i,j), at least one of 1,. . . ,9 occurs is an extended LEM to nine propo-
sitions, which can be expressed thus: 1i,j ∨ 2i,j ∨ . . .∨ 9i,j. The fact that no
two distinct numbers can occur, say 1 and 2, can be expressed: ∼(1i,j&2i,j),
which is equivalent to the disjunctive ∼1i,j ∨ ∼2i,j, by De Morgan’s Law.
For each of the three above kinds of subsets in the 9x9 array, each number
occurs at least once. The number 1, say, occurs in either of the squares:
(1,1), (1,2), . . . , (1,9), in the first row. This can be expressed disjunctively:
11,1 ∨11,2 ∨ . . .∨11,9, using the terminology above. Each number cannot oc-
cur in two of the squares in these kinds of subsets. E.g., the number 1 cannot
occur in both of the first two of the above squares, expressed: ∼(11,1&11,2),
which is equivalent to ∼11,1 ∨ ∼11,2.

In the Sudoku puzzle, certain squares are already filled in with specific
numbers. The object is then to fill in the remaining squares, using the above
rules. The puzzle is composed so that there is only one solution. If a number
1, say, is given as being in square (1,2), i.e. 11,2, then, by application of the
DS to the above disjunction ∼11,1 ∨ 11,2, ∼11,1 follows and the number 1
cannot be in (1,1). This negative statement can then be used to whittle down
what started as a nine-fold disjunction, by further application(s) of the DS.
All the other cases follow the same logical pattern. As we can see, in making
deductions from the given information of the puzzle, the DS is successively
applied to these disjunctions until a single number is found for each square,
yielding the unique solution, consisting of one 9x9 array of these digits,
subject to the rules.

Given the above, there seems to be point in assuming the DS whenever
there is an assumption of the LEM. Further, most logicians would assume
the DS outright and change their system if a contradiction is found. Though
this tactic is usually adopted by classical logicians, it does seem like a rea-
sonable general strategy, even for paraconsistent logicians who may reach
an unacceptable conclusion. Take as an example the statement of Gödel’s
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Theorem: if Peano Arithmetic is simply consistent then it is ∼-incomplete.
It is taken to be an incompleteness theorem. It is almost never stated in the
contrapositive: if Peano Arithmetic is ∼-complete then it is simply incon-
sistent, as an inconsistency theorem.7 The exception to this general strategy
are those paraconsistent logicians who expose inconsistencies, often whilst
including the LEM as part of their logic.8 This would also apply to those
relevant logicians who use a strong relevant logic such as R, which contains
the LEM, but does not have the DS as a derived rule. However, these log-
ics are at variance with the logic MC, motivated here and elsewhere. What
follows is guided by this logic, and its application.

The DS is more readily assumed than the LEM, in that the LEM is more
likely to be dubious than the DS. ∼-incompleteness can very easily occur,
as in the case of future contingent events, for example. Simple consistency
is readily assumed for any serious study, and, as above, if a simple incon-
sistency were to occur one would tend to revise one’s assumptions in such
a way as to avoid its re-occurrence. Also, as exemplified by the Sudoku
puzzle, it seems quite reasonable to apply the DS to disjunctions established
through the use of the LEM. So, it seems safe to allow the DS at the very
least to follow the assumption of the LEM, giving primary importance to the
LEM.

6. The Reasonable Assumption of the LEM

So, we proceed to determine when we can reasonably assume the LEM. As
in 5 above, it seems reasonable to assume classicality for the large part of the
physical world and for whatever can be mapped into it, and this, of course,
applies to the LEM too. The finite natural numbers extend what is mappable
into the physical world by using the successor operation, primarily because it
is unreasonable to stop applying the LEM at any particular finite number. So,
we apply it all the way up the infinity of natural numbers. Other examples
of inductively specified entities would be treated similarly. So much for the
assumption of the LEM; its proof, however, raises a different set of issues.

As with the DS, we can sometimes prove the LEM outright. If the applied
system is metacomplete, any proof of the LEM (A∨∼A) would pass through
one of the two disjuncts, A or ∼A. This is, of course, fine. Also, within a
system with rejection, which is rejection-complete, the rejection form of the
LEM, viz. if a A then ` ∼A, yields the LEM, since if ` A then ` A ∨ ∼A

7 See pp. 46–47 of Priest [2006] for a discussion of this point.

8 See p. 11 of Priest [2006], in the case of the Heterological Paradox, where the weaker
rule, A ↔ ∼A ⇒ A&∼A, is used instead of the LEM.
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and if a A then ` A ∨ ∼A. This too is fine, but the problem of showing
rejection-completeness (either ` A or a A, for all A) remains.

We could also prove the LEM by Mathematical Induction over the natural
numbers. We put Mathematical Induction (MI) in the form of a meta-rule:
(A(m) ⇒ A(m′)) ⇒ (A(0) ⇒ A(n)), as the entailment → is too strong a
relationship between properties applying to different numbers.9 The applica-
tion of MI in proving the LEM works because it establishes A(n) or ∼A(n),
and so we move easily to A(n) ∨∼A(n), but it is quite another matter in the
more general form:

(A(m) ∨ ∼A(m) ⇒ A(m′) ∨ ∼A(m′))
⇒ (A(0) ∨ ∼A(0) ⇒ A(n) ∨ ∼A(n)). (∗)

This form is problematic in that there could be switching from A(m) holding
to ∼A(m′) holding, or from ∼A(m) holding to A(m′) holding. This would
prevent a nice induction from flowing through, like one from A(m) to A(m′),
for all m, or from ∼A(m) to ∼A(m′), for all m. However, a course-of-values
induction may still work in lieu of (∗) in that it allows a proof of A(m) or of
∼A(m) from steps earlier than the immediately preceding one, thus allowing
A(k) to be used in the proof of A(m), where k ≤ m−2. But, there is a more
fundamental problem with (∗) in that the Priming Property might not hold,
in which case the disjunction A(m) ∨ ∼A(m) might hold independently of
either of its disjuncts, thus not allowing us to revert to A(m) or to ∼A(m)
for rule-based deduction.

So, the general assumption of the LEM in the form A(n) ∨ ∼A(n) with
the variable n ranging over the domain of natural numbers ought not al-
ways be made, as a proof might not be possible. Take the case where A(0),
A(1),. . . ,A(n),. . . all hold but (∀n)A(n) is not provable, due to the lack of a
recursive procedure for A(n). Then, A(n) ∨ ∼A(n) would not be provable.
So, arithmetic is ∼-incomplete, and indeed incompletable due to Gödel’s
Theorem. The fact that Gödel’s Theorem is a classically based theorem does
not matter here, as the unprovability of the Gödel sentence G and its nega-
tion ∼G will still apply, whether the LEM and the DS are assumed in the

9 Distinct numbers are not relevant to each other. This can be seen from the fact that the
number n, say, is abstracted from sets of n numbered items. A distinct number m will be
abstracted from sets of m numbered items, which will be disjoint from any set of n items.
So, the numbers are abstracted in a quite separate manner. Hence, entailments such as m =

n → m′
= n′ are not justified, and we instead use m = n ⇒ m′

= n′, which is an
instance of Substitution of Identity, a rule which fails to hold as an entailment when extended
to logical connectives. The use of the successor operation serves to inductively generate the
natural numbers, rather than to establish an entailment relation between them. This is clearly
at variance with Meyer’s relevant arithmetic (see Meyer [1975]) using the much stronger
relevant logic R.
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process of proving it or not. Further, axiomatic set theory is extensively
∼-incomplete, in that the standard axiomatisation of Zermelo-Fraenkel set
theory leaves open many questions such as Cantor’s Continuum Hypothe-
sis. Again, this incompleteness would still apply when the classical logic is
recast as the weaker MC. So, we believe the general use of the LEM is a
lost cause when based on MC, which in turn seems to indicate that its ubiq-
uitous use elsewhere amounts to an attempt to achieve the unobtainable by
plumping up systems to achieve results beyond straight-forward derivabil-
ity. However, as illustrated above, there is still technical value in assuming
the LEM to derive negative results such as the unprovability of G and ∼G,
which still apply without it.

Indeed, we can set up three levels of LEM involvement. The first level of
involvement is where the LEM is proved within a system without assuming
it, typically from either of its two disjuncts, as happens for metacomplete
systems. The second level of involvement is the reasonable or rational as-
sumption of the LEM, as we have been arguing for in this section. This
would often involve a combination of the first two levels, when proof is
combined with rational assumption. The third level of involvement is the
assumption of the LEM for technical purposes, over and above the second
level, as illustrated by the Gödel sentence G above. We call the assump-
tion of the LEM at this level ‘syntactic modelling’ as it shares with semantic
modelling the inclusion of a theory in its model and both sorts are developed
for technical reasons. It may turn out that assumptions at the third level can
be used to prove results that are more appropriate for the second level, e.g.
the use of infinite mathematics may impact on finite mathematics. However,
in this event we would hope that the second level assumptions can also be
used to prove such results, but this is something for future work.

7. The Use of the LEM in the Proof of Cantor’s Diagonal Argument

We are now ready to consider Cantor’s Diagonal Argument. It is a reductio
argument, set in axiomatic set theory with use of the set of natural numbers.
We re-construct it in our logic MC, making use of restricted quantification, as
set up in Ch. 13 of [RLR2]. We start by assuming a one-one correspondence
between the set of natural numbers N and its power set P(N). Let f : N →
P(N) be such a one-one function. Formally:

(∃f)[(∀n ∈ N)f(n) ∈ P(N)&(∀S ∈ P(N))(∃k ∈ N)f(k) = S](∗∗)

Since, for the particular f, f(m) ∈ P(N), then f(m) ⊆ N, which in this
general context is defined as (∀x)(x ∈ f(m) → x ∈ N). If the LEM holds
for x ∈ f(m) then, by the derived MC rule: A → B, ∼A ∨ A ⇒ ∼A ∨ B,
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(∀x)(∼x ∈ f(m) ∨ x ∈ N), which is an extensional version of the subset
relation. In a context where the LEM fails to hold, we would have to rely
on meanings and so the use of ‘→’ is appropriate. Anyway, by using ‘→’
in the definition of ‘⊆’, we can leave it open as to whether an intensional or
extension version is appropriate, in accordance with the presence or absence
of the LEM.

To represent this function f, we set up the following sample infinite array
of 0’s and 1’s:

0 1 2 3 4 . . . n . .
0 0 1 1 0 0 . . . 1 . .
1 1 0 1 0 1 . . . 0 . .
2 0 1 0 1 1 . . . 1 . .
3 0 0 1 1 0 . . . 0 . .
4 1 0 0 1 1 . . . 0 . .
. . . . . . . . . . . .
. . . . . . . . . . . .

m . . . . . . . . 1 . .
. . . . . . . . . . . .
. . . . . . . . . . . .

Each row in the above array represents f(m), by putting ‘0’ when n /∈ f(m)
and ‘1’ when n ∈ f(m), into the respective column for n. A subset of N
can also be obtained by looking down the diagonal, with ‘0’ representing
n /∈ f(n) and ‘1’ representing n ∈ f(n), for each n. We then change each ‘0’
to a ‘1’ and each ‘1’ to a ‘0’ down the diagonal, introducing what we will
now call the diagonal set D, where ‘1’ represents n /∈ f(n) and ‘0’ represents
n ∈ f(n), for each n.
We represent this set by the following two statements:

(1) ∀n(n ∈ D → n ∈ N), indicating that D ⊆ N.
(2) (∀n ∈ N)(n ∈ D ↔ n /∈ f(n)), by the above definition of D.

Thus, by (1), D ∈ P(N), and hence (∃k ∈ N)f(k) = D, from (∗∗), by an
obvious property of restricted quantification.
For this k in N, by (2), k ∈ D ↔ k /∈ f(k), and hence k ∈ f(k) ↔ k /∈ f(k).
We cannot go further than this. To achieve the required contradiction for
the purposes of the reductio argument, one needs the LEM in the form, k ∈
f(k) ∨ k /∈ f(k). For then, since k ∈ f(k) → k /∈ f(k) and k /∈ f(k) →
k /∈ f(k), k /∈ f(k). Then, since k /∈ f(k) → k ∈ f(k), k ∈ f(k) and hence
k ∈ f(k)&∼k ∈ f(k).

This is along similar lines to the classical argument for Cantor’s Theorem,
which introduces the above set D, which cannot correspond to any number n
because f(n) differs from D, with respect to the number n, i.e. n ∈ D ≡ n /∈
f(n) and hence D 6= f(n). But D ⊆ N, D ∈ P(N) and there should be some
k ∈ N such that f(k) = D, contradicting D 6= f(n). So, for this argument, we
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not only need the LEM to prove the classical n ∈ D ≡ n /∈ f(n) from (2),
but also A&∼B ⇒ ∼(A → B) to prove (n ∈ D&n /∈ f(n)) ⇒ D 6= f(n)
and (n /∈ D&n ∈ f(n)) ⇒ D 6= f(n), and hence D 6= f(n), where D = f(n)
is defined intensionally, as for subsets above.10 The extra rule A&∼B ⇒
∼(A → B) is not available in MC, nor should it be. Comparing it with the
rejection version of Modus Ponens, ` A, a B ⇒a A → B, the above rule
can be seen to depend on the consistency of B, i.e. ` ∼B ⇒a B, and the
completeness of A → B, i.e. a A → B ⇒` ∼(A → B).

Now, getting back to our proof, the crucial question is: does the LEM
hold for k ∈ f(k)? Looking at the construction of D, we have not shown
that D is recursively generated. Indeed, the function f is an arbitrary one-
one correspondence, and this needs to be so because f must be as general as
possible to work the reductio argument. That is, if this reductio argument
were to work, all possible one-one functions must be included so as to prove
that there is no such function, which would then establish that N and P(N)
have distinct cardinalities. And, even if we assume that the function f is
recursively generated, it is not at all clear that the LEM can be shown to
hold for k ∈ f(k) by Mathematical Induction, for reasons given in 6. So,
this blocks the proof of Cantor’s Theorem and leaves open the question of
whether there is a one-one function between N and P(N) or not.

Thus we are replacing a (classically) established result with an open ques-
tion. This outcome can be understood either positively or negatively. Nega-
tively, it appears to have lessened the overall body of mathematical knowl-
edge. Of course, what we are arguing here is that Cantor’s Theorem never ac-
tually constituted mathematical knowledge in the first place, so realising this
can hardly be a bad thing. Positively, opening a previously ‘decided’ ques-
tion creates room for more, perhaps better mathematical knowledge. One
such expansion of our knowledge comes via the reiteration of the relative
unimportance of completeness. Although this has been noted before, here
its relative unimportance is shown up in a specific context: that of stronger
guiding principles to ‘good’ mathematics, namely relevance, entailment and
justified use of the LEM and the DS.

So, the incompleteness here is simply one ‘side effect’ of the central con-
ceptualisation of the logic MC which, we have argued elsewhere, is a faithful
formalisation of the crucial elements of deduction and good argumentation.
Realising this ought to shift the emphasis in our derivation of mathemat-
ical results from completeness (and, in other applications, similarly from
consistency) to something more like ‘coherence’. The importance of a cen-
tral, faithful conceptualisation is what has been underscored here: a coherent

10 Note that if A ⇒ C and B ⇒ C then A ∨ B ⇒ C follows in MC, by use of MR1.
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theory (in the overarching sense of being held together by a core conceptu-
alisation) is a more accurate guide for knowledge acquisition than a merely
complete theory could ever be. Such a realisation itself may be considered a
far greater expansion of our mathematical knowledge than Cantor’s Theorem
appeared to be.

8. Examination of some Paradoxes

There is a marked similarity in logical structure between Cantor’s Diagonal
Argument and some of the familiar paradoxes. We first look at the Paradox
of the Barber. As on p. 297 of [UL], we consider a village, in which there
is a barber who shaves all and only those who do not shave themselves. In
answer to the question ‘Who shaves the barber?’, we realize that he shaves
himself iff he doesn’t. Classically, a contradiction can then be derived. As
claimed in [UL], the Barber Paradox is a pseudo-paradox because it is just
a reductio argument which rejects the existence of such a barber or such a
village. This is similar in structure to Cantor’s Diagonal Argument in that it
is also a reductio argument, in this case assuming the existence of a one-one
function and concluding with k being a member of the diagonal set D iff it
isn’t. So, there is a logical parity between Cantor’s Argument and the Barber
Paradox.

Richard’s Paradox is similar but more subtle. We set this out as on p. 296
of [UL]. There are only denumerably many finite definitions of real numbers,
which are then enumerated in some standard manner with the nth one rn
being called the nth Richard number. These are given decimal expansions
with dm,n being the mth decimal place of rn. We are then given a finite
definition of a real number r by the expression: ‘the real number whose nth
decimal place is 1 if the nth decimal place of the nth Richard number is
not 1, and whose nth decimal place is 2 if the nth decimal place of the nth
Richard number is 1’. Since all the finitely definable real numbers are in the
above enumeration, r is indeed rk, for some k. Then, dk,n = 1 iff dn,n 6= 1,
and dk,n = 2 iff dn,n = 1, for all n. For the natural number k, dk,k = 1
iff dk,k 6= 1, and dk,k = 2 iff dk,k = 1. Given that 1 and 2 are the only
numbers involved, we can put this in the form: dk,k = 1 iff dk,k 6= 1. This
then takes the same logical shape, i.e. A ↔ ∼A, that occurs at the end of
Cantor’s Argument. As pointed out in [UL], this paradox assumes that every
finite expression that purports to define a real number does in fact define
one. Indeed, the quoted expression, although finite in length, does involve
the (infinite) set of all Richard numbers in its definition, and may well not
define a real number.

We next turn to Cantor’s Paradox, i.e. the set V of all sets has a cardinality
strictly less than that of its power set P(V), and P(V) has a cardinality less
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than or equal to that of V. Without Cantor’s Theorem applied to V, this proof
does not go through. The cardinality of the set V would be less than or equal
to that of P(V), due to a mapping of V into P(V), leaving the possibility
that V and P(V) have the same cardinality. The proof of this would use the
Schröder-Bernstein Theorem, which would need checking to see if it applies,
especially at V.

Given that Cantor’s Theorem is left as an open question, Skolem’s Paradox
is also worth examining. The Skolem-Lowenheim Theorem states that every
first-order theory has a denumerable model. But, by Cantor’s Theorem, set
theory has non-denumerable sets, which thus have only denumerably many
elements in a denumerable model. This seeming contradiction is Skolem’s
Paradox, which is resolved by distinguishing object-language-provable non-
denumerability of a set from meta-theoretically determined denumerability
of the number of elements in the domain of a model. Nevertheless, the Para-
dox could be reconciled by a set theory with at most denumerably infinite
sets, obtained by adding the negation of Cantor’s Theorem, i.e. that all
sets can be put in a one-one correspondence with a subset of the natural
numbers. Indeed, it would be interesting if a denumerable model could be
found for such a set theory with its internal cardinalities matching up with
its meta-theoretically determined cardinalities, thus ensuring the consistency
of the addition of the negation of Cantor’s Theorem and the independence of
Cantor’s Theorem. The size of these corresponding meta-theoretically de-
termined sets would be found by counting the members of the domain that
correspond to members of the object-language set. We need to do further
work here, and this will likely be undertaken in a subsequent paper.

9. Examination of a ‘Negation-free’ Proof of Cantor’s Theorem

Although the proof of Cantor’s Theorem, given in 7, is the standard one,
there are sometimes claims of a positive proof or at least one that does not
use the LEM. One such proof of Cantor’s Theorem — a very clever one
based on Yablo’s Paradox — is due to Raja in [2005], which claims to be
negation-free.

Raja assumes the one-one function M: X → P(X), where X is an arbitrary
set and P(X) is the power set of X. He defines a trace {s0, s1, s2, . . .} such
that s0 ∈ X and, for j > 0, sj ∈ M(sj-1). He defines t ∈ X to be a simple
element, if all possible traces beginning with t terminate, and termination
occurs at sj iff M(sj) is empty, for j finite. He then defines N = {t ∈ X : t is
a simple element}.

Raja then claims that N, a subset of X, cannot lie in the range of M. For,
if there is an n ∈ X such that M(n) = N, then n is simple as all its traces
terminate. Thus, n ∈ N and n is no longer a simple element as the trace {n,
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n, n, . . . } does not terminate, contradicting n being a simple element. Hence,
the set is outside the range of N, as claimed.

The issue here is whether N is empty or not, that is, whether there are
any simple elements or not. This is an instance of the LEM and, as above,
since M is an arbitrary one-one function, M need not be recursive and this
issue need not be recursively determined. So, the LEM need not hold. Now,
if N has an element then put M(n) = N, for some n ∈ X, and, by Raja’s
argument, n is simple. As argued further, n ∈ N and n is not simple, a
contradiction. Alternatively, if N is empty then putting M(n) = N, for some
n ∈ X, n is simple with a one-element terminating trace {n}, which is again a
contradiction, but a different one. So, in deriving both these contradictions,
we are using the above LEM. Raja does not consider the null case since,
in the conduct of his argument, he assumes there are simple elements to
construct his trace. Thus, his proof is not really negation-free and he needs
to assume the LEM in the process.

10. Mathematical Development With a Restricted Assumption of the LEM

Recall, as stated in 7, that it is not clear that the LEM can be shown to hold
for k ∈ f(k), even if f is recursive. We are faced, then, with a new question:
specifically, the question as to where we can draw a suitable line in the key
mathematical theories of arithmetic and naive set theory, where the LEM
ought to hold on one side and may well fail on the other. Along with our
intuitions, we have the following three theorems, which will greatly help in
the process of finding this question an answer.

Theorem 1.
If the LEM holds for all the atomic expressions of a theory based on MC
then the LEM holds for all compound formulae of the theory, built up from
the atoms by using only ∼, & and ∨.
Proof. We inductively consider each connective in turn.
∼. If A ∨ ∼A holds then so does ∼A ∨ ∼∼A, by A → ∼∼A (derivable in
MC) and A1,5–7.
&. If A ∨ ∼A and B ∨ ∼B hold then so do (A ∨ ∼A ∨ ∼B)&(B ∨ ∼A ∨
∼B), (A&B) ∨ ∼A ∨ ∼B and (A&B) ∨ ∼(A&B). Use is made of A5,
commutativity and associativity of ‘∨’, R2, distribution of ‘∨’ over ‘&’ and
De Morgan’s Law, all of which are available in MC.
∨. If A ∨ ∼A and B ∨ ∼B hold then so do (A ∨ B ∨ ∼A)&(A ∨ B ∨ ∼B),
A ∨ B ∨ (∼A&∼B) and (A ∨ B) ∨ ∼(A ∨ B). This follows similarly to the
&-case. 2
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Theorem 2.
If the disjunctive form of the DS (C ∨ ∼A, C ∨ A ∨ B ⇒ C ∨ B) holds for
all the atomic expressions of a theory based on MC then this form of the DS
holds for all compound formulae of the theory, built up from the atoms by
using only ∼, & and ∨.
[Note that the disjunctive form of the DS is interderivable with the ordinary
DS. For one way we use MR1, and for the other we substitute B for C.]
Proof. As for Theorem 1, proof is by induction on formulae.
∼. Let D ∨ ∼A, D ∨ A ∨ B ⇒ D ∨ B hold, for any D. Assume C ∨ ∼∼A
and C ∨ ∼A ∨ B. By A9, A5 and commutativity and associativity of ‘∨’,
(C ∨ B) ∨ ∼A and (C ∨ B) ∨ A ∨ B. By putting C ∨ B for D, (C ∨ B) ∨ B
and hence C ∨ B.
&. Let G ∨ ∼A, G ∨ A ∨ C ⇒ G ∨ C hold, for any G, and H ∨ ∼B,
H∨B∨C ⇒ H∨C hold, for any H. Assume E∨∼(A&B) and E∨(A&B)∨C.
Then, by a De Morgan’s Law and distribution, E∨∼A∨∼B, E∨A∨C and
E ∨ B ∨ C. Hence, (E ∨ ∼B) ∨ ∼A and (E ∨ ∼B) ∨ A ∨ C, and, putting
E∨∼B for G, E∨∼B ∨C follows. So, (E∨ C)∨∼B and (E∨C)∨B ∨C,
and, putting E ∨ C for H, (E ∨ C) ∨ C and hence E ∨ C.
∨. Again, let G ∨ ∼A, G ∨ A ∨ C ⇒ G ∨ C hold, for any G, and H ∨ ∼B,
H ∨ B ∨ C ⇒ H ∨ C hold, for any H. We assume E ∨ ∼(A ∨ B) and
E ∨ (A ∨ B) ∨ C. Then, as above, E ∨ (∼A&∼B), and hence E ∨ ∼A and
E ∨ ∼B. So, (E ∨ B) ∨ ∼A and (E ∨ B) ∨ A ∨ C, and, putting E ∨ B for G,
(E∨B)∨C follows. So, E∨∼B and E∨B∨C, and, putting E for H, E∨C
follows. 2

We also prove the following important result which shows that Gödel’s
Theorem cannot be proved for formulae without quantifiers. We will need
the following Peano Axioms, expressed in a suitable form for our logic:
1. m = n ⇒ m′ = n′.
2. ∼0 = n′.
3. m′ = n′ ⇒ m = n.
4. ∼m = n ⇒ ∼m′ = n′.

We assume the basic properties of ‘=’, such as reflexivity, symmetry and
transitivity, prior to setting up these axioms.

As explained in footnote 9, we put Axioms 1 and 3 in rule form because
there is no common content between a number and its successor to establish
the entailment between them. Also, we need to add Axiom 4, as the converse
rule-form of Axiom 3, which, though derivable classically and in Meyer’s
relevant arithmetic, is not likely to be derivable here. In a logic such as MC,
which is based on the 4-valued logic Efde of ENT1, and without the LEM and
DS, we need to specifically add negative as well as positive properties to fill
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out our axiomatized concepts to maintain the balance between the positive
and the negative.

Theorem 3.
For all formulae A, with no quantifiers and no occurrences of ‘→’, if A∨∼A
is provable in Peano Arithmetic, based on the logic MC and on the Axioms
1–4 above, then, for every constant instance A′ of A, either A′ or ∼A′ is also
provable.
Proof. If A∨∼A is a theorem, so is A∨∼A∨B, for any B. We use this prop-
erty to set up the following formula induction on such formulae A that are
built up from atoms by using ∼, & and ∨ only. For any B, for these formulae
A, we prove that if A ∨ ∼A ∨ B is a theorem in Peano Arithmetic using the
above Axioms 1–4, based on the logic MC, then, for every constant instance
A′ of A, either A′ or ∼A′ is also provable. By a constant instance, we mean
a formula obtained by replacing all free variables over natural numbers by
specific natural numbers, i.e. by 0 or by a particular successor of 0.
(i) For the base case, we can show that a=a, for any specific natural number
a, by reflexivity of ‘=’. If the specific natural numbers a and b are distinct
with a non-zero difference of c, we obtain ∼0 = c by Axiom 2, ∼c = 0
by symmetry of ‘=’ if needed, and, by applying Axiom 4 successively, we
derive ∼a = b.
(ii) We assume the property for A and prove it for ∼A. So, for any B, if
A ∨ ∼A ∨ B is a theorem, then, for every constant instance A′ of A, either
A′ or ∼A′ is also a theorem. Let ∼A ∨ ∼∼A ∨ C be a theorem and let ∼A′

be a constant instance of ∼A. Then, A ∨ ∼A ∨ C is a theorem and A′ is a
constant instance of A. By the induction hypothesis, either A′ or ∼A′ is a
theorem. So, either ∼A′ or ∼∼A′ is also a theorem.
(iii) We assume the property for both A and B, and prove it for A&B. So,
if A ∨ ∼A ∨ C is a theorem, then, for every constant instance A′ of A,
either A′ or ∼A′ is a theorem. Also, if B ∨ ∼B ∨ D is a theorem, then,
for every constant instance B′ of B, either B′ or ∼B′ is a theorem. Let
(A&B) ∨ ∼(A&B) ∨ E be a theorem and let (A&B)′ be a constant instance
of A&B. Then (A&B)′ can be put as A′&B′, where A′ is a constant instance
of A and B′ is a constant instance of B. By De Morgan and distribution prop-
erties of MC, A∨∼A∨ (∼B∨E) and B∨∼B∨ (∼A∨E) are also theorems.
By the induction hypothesis, either A′ or ∼A′ is a theorem and either B′ or
∼B′ is a theorem. Hence, either A′&B′ or ∼A′ or ∼B′ is a theorem, in which
case either A′&B′ or ∼(A′&B′) is a theorem, through use of disjunction in-
troduction and De Morgan’s Law.
(iv) We similarly assume the property for both A and B, and prove it for
A ∨ B. We let (A ∨ B) ∨ ∼(A ∨ B) ∨ E be a theorem and let (A ∨ B)′ be a
constant instance of A∨B. By MC, A∨∼A∨ (B∨E) and B∨∼B∨ (A∨E)
are theorems. By induction similar to that in (iii), A′ or B′ or ∼A′&∼B′ is a
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theorem, whereupon either A′ ∨ B′ or ∼(A′ ∨ B′) is a theorem.
As at the beginning, if A ∨ ∼A is a theorem, so is A ∨ ∼A ∨ B, for any B.
Then, by the property just proved, for every constant instance A′ of A, either
A′ or ∼A′ is also a theorem. 2

Getting back to determining the scope of application of the LEM, we
briefly examine Peano arithmetic and naive set theory, as both have some
imput into Cantor’s Argument. We first consider Peano arithmetic. As we
have argued for in 6, the LEM can reasonably apply to constant arithmetic
statements and to those involving variables, which have been recursively es-
tablished. However, we can gain some further insight from Theorems 1, 2
and 3. From Theorem 1, we can see that if the LEM is assumed for atomic
formulae of the form m = n ∨ ∼m = n, then the LEM can be proved for all
arithmetic statements built up from these atoms by using ∼, &, and ∨. Theo-
rem 2 shows a similar result for the DS, so the two can work in tandem. So, if
classicality is assumed for the atomic expressions, classicality can be proved
for all formulae built using only ‘∼’, ‘&’ and ‘∨’. However, it can be shown
that, if the logic MC was extended to MCQ, which is QMC plus the two
distribution properties, ∀x(A ∨ B) → A ∨ ∀xB and A&∃xB → ∃x(A&B),
this result will extend to all quantificational formulae without ‘→’. Such for-
mulae would then include the Gödel sentence G and its negation, neither of
which are provable, whether the logic is based on MC or is classical. Never-
theless, there is a good reason to reject these two distribution properties and
this undesirable consequence, which we pursue below.

Theorem 3 shows that if the LEM, A ∨ ∼A, is provable in Peano arith-
metic for these formulae, without quantifiers or ‘→’, then, for every con-
stant instance A′ of A, either A′ or ∼A′ is also provable. This enables us
to assume the LEM for the atomic sentences m=n with impunity, knowing
that the problem faced by Gödel’s Theorem cannot occur for these formu-
lae. Indeed, Theorem 3 proves a very desirable property for us, ensuring that
whenever the LEM holds for these formulae, it is based on instantiations of
either disjunct. Further, if A is a constant formula (i.e. a sentence), either A
or ∼A will be provable. So, we assume henceforth that the LEM applies to
formulae, without quantifiers or ‘→’. We also assume the DS for these for-
mulae, as argued for in 5 and through the application of Theorem 2. Beyond
this, the use of the LEM will be proved through one of its disjuncts or by
induction. The DS can be further assumed as required, as argued in 5.

We could ensure extensionality by using restricted quantification, restrict-
ing it to a finite set of natural numbers. However, we would need to introduce
some set theory in order to do this, and then there is the problem, mentioned
previously, about deciding which number is the maximum for such a pur-
pose. We could also stick with predicates that hold for only finitely many
numbers, but this is too restrictive as most that one would want to deal with
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would hold for infinitely many numbers. So, it is better to proceed with
infinite quantification over all natural numbers.

Moreover, quantification over an infinite set can harbour non-recursive
properties which, by their nature, are not provable. This situation creates
a ∼-incompleteness, as obviously the negation of a non-recursive property
is not going to be provable either. Further, this puts a limit on the desirable
use of the LEM and hence of extensionality. So, such quantifiers should
be supported by the intensional meaning containment, rather than through
extensional means, involving conjunction, disjunction, the LEM and the DS.

This brings us to the distribution properties, ∀x(A ∨ B) → .A ∨ ∀xB
and A&∃xB → ∃x(A&B). In all the first author’s earlier work, both of
these properties were included as axioms in the quantificational extensions
LQ of all of my sentential relevant logics L (see Brady [1984a], in par-
ticular). However, they were initially introduced by Anderson in [1960],
for his quantified entailment logic EQ, where the second property followed
from the first using the definition: ∃xA =df ∼∀x∼A. However, since the
sentential distribution properties, (A ∨ B)&(A ∨ C) → A ∨ (B&C) and
A&(B ∨ C) → (A&B) ∨ (A&C), both hold, the above distribution proper-
ties hold when the quantification is over a finite domain.

In the first property, ∀x(A ∨ B) → .A ∨ ∀xB, there is a use of disjunc-
tion in supporting the second universally quantified statement ∀xB, and so
it is a case of extensional support for a universal statement which needed
intensional support, as we argued above. This extensional support can be
seen more clearly from its deductive equivalent, ∀x(A ∨ B) → .∃xA ∨ ∀xB,
where x can be free in A. This can in turn be transformed into ∀x(A ⊃ B) →
.∀xA ⊃ ∀xB, where A ⊃ B =df ∼A∨B. Not only is it odd to have an entail-
ment between two ‘⊃’ statements, but we can also see the ‘⊃’ support for the
∀xB. Indeed, Mares and Goldblatt in [2006] appropriately refer to the first
property as ‘extensional confinement’, the second universal quantifier being
confined by the disjunction. The second property, A&∃xB → ∃x(A&B),
can be established from the first by contraposition and ∃xA ↔ ∼∀x∼A.
And, there is also a usage of extensional conjunction in relating the existen-
tially quantified B to that of A&B. Note that all the other quantificational
distribution properties are establishable primarily using the intensional ‘→’,
together with sentential properties.

Further support for dropping ∀x(A∨B) → .A∨∀xB can be obtained from
Dummett in [1977], p. 31, and Beall and Restall in [2006], p. 64–65, both of
whom argue from an intuitionist standpoint. Quoting Dummett:

‘Then to have a proof of ∀x(Fx ∨ A) is to have an effective oper-
ation which can recognize as associating to each number n a proof
either of Fn or of A. However, since there are infinitely many cases
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to consider, we cannot in general tell whether the operation will ever
actually provide a proof of A, or will provide a proof of Fn for every
n; we are therefore not, in general, in a position to assert either A or
∀xFx, and have no guarantee that we shall be in such a position after
any finite number of applications of the operation which constituted
the proof of ∀x(Fx∨A).’11 [We have not employed Dummett’s dis-
tinction between numerals and numbers here.]

This argument would apply for us as well.
Using the form ∀x(A ∨ B) → .∃xA ∨ ∀xB, Beall and Restall on p. 65 use

the example where all students attending a logic subject have either done
the prerequisite or have got special permission to attend. They argue that
∃xA∨∀xB is not generally justified at any stage of asking the students one by
one. We can extend this type of example to an infinite set for our purposes,
where a universal disjunctive property holds by assumption or deduction.
However, there may be no rhyme or reason for the first or second disjunct of
the property to hold in individual cases.

So, we use the logic QMC, without the two distribution properties, rather
than MCQ, following the terminology in Mares and Goldblatt [2006] for
QR. Indeed, their semantics for the logic QR, given in their [2006], is not
only more straightforward than that for RQ but also has semantic features
that make due sense from our perspective. Their semantics for QR builds on
the Routley-Meyer semantics for R, with its extensional truth-functional fea-
tures, but adds propositions to the semantics so that the truth of a universally
quantified statement at a world is obtained by entailment from a proposition
which is true at the same world. So, a universal statement is intensionally
supported through an entailment, rather than being obtained through an ex-
tensional truth-functional extension of the sentential logic using domains,
as happens in Fine’s complex semantics for quantified relevant logics in his
[1988].

We next move on to examine naive set theory. Can we draw a similar
line for the LEM here? Again, as in 6, the LEM can reasonably apply
to constant finite set-theoretic statements, and this is the second level of
LEM involvement. It can be extended to those statements involving vari-
ables, which have been recursively established over the infinite set of nat-
ural numbers. Here, we would need the addition of the Axiom of Infinity,
∃x(∅ ∈ x & (∀y ∈ x)y ∪ {y} ∈ x), introducing the set ω of canonical natu-
ral numbers. This may well extend to those statements, involving variables,
which have been established by transfinite induction, with the addition of the

11 I owe this reference to Lloyd Humberstone.
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cumulative hierarchy of canonical ordinals. This is likely to include state-
ments of the form x ∈ a, where a is a specific member of the cumulative
hierarchy.12

This is probably about as far as one would go with the LEM, without en-
croaching on the general atom m ∈ n. Note here that the general assumption
of m ∈ n ∨ ∼m ∈ n will lead to the LEM holding for the Russell set R, by
simple substitution, and a contradiction, R ∈ R &∼R ∈ R, in the form of
Russell’s Paradox will then be derivable from R ∈ R ↔ ∼R ∈ R through
(R ∈ R∨∼R ∈ R) → (R ∈ R &∼R ∈ R). As discussed in 5, such a simple
inconsistency should not occur, at least in areas covered by the LEM, and
nevertheless should not occur in serious study.

Also, for any instances of m ∈ n for which the LEM holds, Theorem 1 en-
sures that the LEM holds for all formulae compounded from them using ‘∼’,
‘&’ and ‘∨’. Theorem 2 does the same thing for the DS. Theorem 3 would
be a good meta-theorem to have for applied systems in general, including
set theory, but we would have to restrict it here to apply to those atomic in-
stances, m ∈ n ∨ ∼m ∈ n, of the LEM which hold and, of course, such that,
for each of their constant instances, one of the disjuncts is provable.

This is an on-going project and these ideas for the above two theories
will be pushed further and into other areas of mathematics, as the project
proceeds.

11. Comparison with Intuitionist Mathematics

We finish by briefly comparing our treatment using MCQ with intuitionist
and recursive mathematics. Though intuitionist logic and MC are both con-
structive logics, their philosophical backgrounds and thus their logics are
very different. For intuitionists, mathematical truths are intuited and syn-
thetic a priori, as well as mentally constructed. This in turn induces a con-
structive logic. Indeed, intuitionists permit only potential infinities. They
construct their mathematics first and then apply the principles therein to
logic. This process is all set out in Heyting’s book [1966], which finishes
with an axiomatization of intuitionist logic. It is not a relevant logic in that
A → .B → A and ∼A → .A → B are axioms and negation can be asserted
just when a derivation of a contradiction from the unnegated statement is
made. It follows that only about half of the double negation, contraposition
and De Morgan principles hold, and that the LEM is not a logical truth. On

12 In [UL], using classical meta-logic, I have used transfinite induction to show that naive
set theory is simply consistent. Such usage is appropriate as it is an unprovability result that
would still hold, with or without the assumption of the LEM and the DS in the meta-theory.
As it is an addition for technical purposes, this would be at level three of LEM involvement.
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the other hand, its positive sentential fragment is the same as that of classical
logic.

In comparison, QMC is a weak relevant logic with a De Morgan nega-
tion, meaning that all of the double negation, contraposition and De Morgan
principles hold. The LEM is also not a logical law. Its positive sentential
fragment is properly contained in that of classical and intuitionist logic. One
sense in which it is constructive is that it recognizes logic as being about
inferences from premises to conclusion, with its inferences being driven by
meaning containment rather than by truth. The infinite can be introduced,
but its properties are generally determined by meaning rather than by exten-
sionality. However, some inferences do remain which would normally be
judged as being non-constructive. For example, the De Morgan analogue,
∼∀x∼A → ∃xA, holds in QMC but fails in intuitionist logic.

According to Posy, Brouwer’s analysis of the problems with classical logic
and classical mathematics involved the proposal that the LEM originated
with an early mathematics dealing only with finite domains. For these early
reckonings, Brouwer said, the LEM was in fact valid: ‘mathematical ob-
jects were effectively complete’ (Posy [2005], p. 334). But with infinite
domains came incompleteness and the invalidity of the LEM. Mathemati-
cians, though, ‘continued to apply the old logic as if nothing had changed’
(Posy [2005], p. 334), which is why, at least according to Brouwer, clas-
sical logicians and mathematicians still persist in their error of ‘assert[ing]
the existence of things that don’t in fact exist’ (also in Posy [2005], p. 334).
We reason similarly; except that in our case, infinite domains may rightly be
asserted to exist, but these domains may not be extensional, and so such an
assertion may need an intensional justification.

Interestingly, as Posy points out, the ontological emphasis here can also
inform a more general rejection of the LEM, even across ordinary empirical
domains. This is due to the entirely reasonable notion (already noted above)
that, even in ordinary empirical situations, there is much we can not know,
and may conceivably never, decide. Of course, given our concern stated ear-
lier with what is humanly possible, we focus on the latter situations, taking
these to be clear cases of LEM failure, given that, in these cases, decidability
is ruled out altogether — falling literally beyond our conceptual scope.

Under an intuitionistic interpretation, there is a (both actual and potential)
‘backward’ spread of the LEM prohibition from such cases to less obvious
cases or cases in which it seems the LEM should hold, and this is one of
the problems we hope to have avoided here. We take the LEM to be a rea-
sonable assumption over certain domains, and to hold wherever it can be
proved. That is, there seems quite clearly to be a domain in which the LEM
may reasonably be taken to hold. This, loosely put, is the large part of the
physical world of middle sized objects, to which, indeed, most ‘classical’
principles still apply in an everyday/common sense fashion — i.e mostly
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without obvious problems. It is as we examine the far edges of this domain:
the very small or the very large or even the very vague, that we have cause
to examine and restrict our usage of otherwise workable principles. Indeed,
the three levels of LEM involvement, given in section 6, offer an (at least
relatively) non-ad-hoc rationale for the application or otherwise of the LEM,
guided both by considerations internal to the logic MC, and by the broader
concepts MC itself fleshes out and exemplifies.

There is, in comparison, some internal dissonance in the intuitionist stance.
There, the LEM can be shown to hold for a property or relation relative to
a certain set or domain. This property or relation is then decidable. Some
‘backward’ justification is required here, some rationale for drawing a line
between where the LEM prohibition holds and where it may be lifted. But
there is, it seems, no obvious or natural means to provide this within the in-
tuitionist framework. There is a comparison to be made with classical logic
here: classical logic’s universal use of the LEM can be compared with the
intuitionist’s universal rejection of the same — both are radical idealizations
which run into problems at their ‘edges’, in that they both have difficulty
accounting for the exceptions to these idealizations in a non-ad hoc way.
Of course, intuitionism is guided by mathematics, and this does provide a
framework in which the limits of the application of the LEM can be estab-
lished. By contrast, from the outset, MC allows for scenarios both wherein
the LEM holds, and wherein it does not. The boundaries between these cases
may shift upon consideration of individual cases (this is another feature MC
shares with intuitionism, namely the ability to assess individual cases as they
arise according to an overarching framework), but the three levels of LEM
involvement associated with MC ensure that its applicability or otherwise is
a neither ad hoc nor over-idealised phenomenon.

12. Other Problems with Cantor’s Argument

Intuitionism in fact gives us two problems with Cantor’s argument. The
first we’ve already touched on — i.e. it oversteps the reach of the LEM.
Not much more needs to be said about this, except that this has to do with
the relationship of the LEM to existence: the LEM does not apply where
there is no construction (see Posy [2005], p. 334), and with the notion that
we cannot propose the existence of a new cardinal number bigger than ℵ0,
rather ‘the species thus constructed are [according to Brouwer] denumerably
unfinished’ (Posy [2005], p. 323).

The second problem with Cantor’s argument, from the perspective pro-
vided by intuitionism, is that it compromises an important understanding
of the continuum, specifically, the notion of the continuum as viscous. It
is a straightforward consequence of Brouwer’s continuity theorem that the



“05brady_rush”
2008/5/29
page 213

i

i

i

i

i

i

i

i

WHAT IS WRONG WITH CANTOR’S DIAGONAL ARGUMENT? 213

continuum cannot be split (Posy [2005], pp. 345–6). Posy points out that
Cantor had to abandon any conception of the continuum as viscous in order
to compose it from a collection of points. Now, while acceptance of Can-
tor’s argument does not entail the rejection of a viscous continuum, it seems
that the acceptance of the continuum as viscous does encourage a re-think
of Cantor’s argument. This is not only because Brouwer already seems to
have thought along these lines, but also because the conclusion of Cantor’s
argument seems less compelling when set against a presumption of viscos-
ity. When we consider the set generated by the diagonalization against the
presumption of viscosity, we have an intuitive means of conceptualizing that
this new set does not enlarge the original, or take us somehow beyond what
we can count. This is because now we can imagine that the new set simply
shows that Cantor’s particular carving up has residual elements ‘clinging to
the knife’ (Posy ([2005], p. 347). Given this imagery, the proper conclusion
becomes that an artificial, imposed structure cannot give a full account of a
viscose domain.13

The notion of viscosity, then, is neatly formally expressible as follows:
Theorem: Every decidable subset of R either is empty or includes all of R.
(R is indecomposable.) (McCarty [2005], p. 368.)
This is proved in much the same way as is the invalidity of the universally
generalised LEM (a full discussion and formal treatment of the connection
between these two theorems and their proofs is given in McCarty [2005]).

Heyting (who gives the same results, found in his [1966], p. 40) con-
cluded from this that the continuum is not denumerably infinite. Indeed,
our own attempted argument towards Cantor’s Theorem does go through
intuitionistically. And, this argument can be taken further to conclude Can-
tor’s Theorem itself, due to the presence of both (A → ∼A) → ∼A and
(A → B&∼B) → ∼A in intuitionist logic.14

Brouwer’s conclusion, by comparison, focuses on existence. From his
continuity theorem, and from his acceptance of Cantor’s diagonal argument
(as a proof that the real interval is uncountable), he concludes that the ex-
istence of an uncountable cardinal number cannot be shown (Posy [2005],
p. 334). Brouwer’s perspective, as Posy points out, is highlighted by his
division between the study of ‘splittable’ or separable sets and the study of
the continuum. The former is even given a special name: ‘separable mathe-
matics’ (Posy [2005], p. 346). Thus, Brouwer’s interpretation, in particular,

13 Note that Brouwer showed how to construct the continuum from choice sequences as
autonomously existing entities, thus showing that ‘we can have a viscous continuum and
make it out of points as well’ (Posy [2005], p. 347).

14 I owe this point to Lloyd Humberstone and Bob Meyer.
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offers a perspective on the nature of the continuum, as it exists, or, to state
the same point without metaphysical bias, if it exists.

A further perspective on the problems with Cantor’s argument takes the
argument’s impredicativity as its starting point:

A complaint . . . is that the proof is problematic not for want of ex-
plicitness but because it is impredicative. This is because the diag-
onalizing function f maps down the hierarchy, so that f(s) is a set
of lower birthday than s. . . . This is the reason why the proof of
uncountability is unacceptable to the constructivist: the objection is
that although we have defined f(s) explicitly, we have only done so
in terms of s. In truth, the point might be better put by saying that
the definition of the real numbers is impredicative, since the proof
of uncountability does no more than exploit the definition. (Potter
[2004], pp. 137–8, our emphasis). [Here, s is the hierarchy of real
numbers, ordered by some 1–1 function and f picks out the altered
diagonal, creating a real number.]

This accords with our account, although we are not concerned with impred-
icativity itself, in that we accommodate circularity, provided it is kept inten-
sional.

Indeed, the observation that Cantor’s argument is impredicative, standing
alone, does not offer much insight, since impredicative definition is a largely
accepted mathematical practice. But the same observation bears fruit when
accompanied by an analysis of predication itself. Such an analysis is pro-
vided throughout Feferman [1998], which includes work on the reach of
predicative mathematics. But for our purposes it is enough to note some
of the core objections arising from predicativity as a general stance, to the
issues raised here.

These include Poincare’s ‘diagnoses’ (in Feferman [2005], p. 591) of typ-
ical paradoxes, including the Richard paradox involving Cantor’s diagonal-
ization:

According to Poincare, in this case [Richard Paradox] the vicious
circle lies in trying to produce the object r in D by reference to the
supposed totality of objects in D; indirectly, then, r is defined in
terms of itself, as one of the objects in D. Poincare’s second diag-
nosis is . . . that the source of each paradox lies in the assumption of
the ‘actual’ or ‘completed’ infinite (in Feferman [2005], p. 591).
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Again, though, note that we are not concerned by circularity or by vicious
circles since we use the logic to avoid problems with these, but we are con-
cerned by the reach of extensionality. Our own position on Richard’s para-
dox is in accordance with these concerns, as has been stated above (section
8).

Russell, though, took Poincare’s diagnosis seriously and as a result dis-
allowed the LEM under universal quantification, but allowed it in variable
form, taking the latter to (legitimately) make a claim about ‘any’ and the
former form as an illegitimate claim about ‘all’ (Feferman [2005], p. 593).
Feferman discusses Russell’s stance in some detail:

The importance of this distinction [between ‘all’ and ‘any’] for Rus-
sell has to do with the injunction against illegitimate totalities. In
particular, with p a variable for propositions, he would admit . . . p∨
∼p, but not the statement (∀p)(p ∨ ∼p) . . . similarly for properties
P(x); significantly, Russell pointed out that the proposed definition
of the natural numbers in the form “‘n is a finite integer” means
“whatever property ∅ may be, n has the property ∅ provided ∅ is
possessed by 0 and by the successors of possessors”’ . . . (van Hei-
jenoort [1967], p. 159). That is, in symbols,

F(n) =df (∀∅)[∅(0)&(∀x)(∅(x) ⊃ ∅(x′)) ⊃ ∅(n)](∗ ∗ ∗)

cannot be replaced by dropping the universal quantifier over prop-
erties ‘(∀∅)’.
. . . [Russell] faced the question of when it is legitimate to apply uni-
versal quantification over any kind of object, and here he veered
away from Poincare’s injunction against the ‘actual’ infinite:

[the reason we can] speak of ‘all men’ . . . is not finitude, but what
may be called logical homogeneity. This property is to belong to
any collection whose terms are all contained within the range of
significance of some one function. It would not always be obvious
at a glance whether a collection possessed this property or not (van
Heijenoort [1967], p. 163).

By comparison, recall that, in our case, for A without quantifiers, (1) (∀x)
(A ∨∼A) is acceptable, but (2) (∀x)A ∨∼(∀x)A is not. Similarly, as stated
earlier, the general assumption of the LEM in the form (3) A(n)∨∼A(n) with
the variable n ranging over the domain of natural numbers is not automati-
cally, or generally acceptable. This is comparable with Russell’s observation
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above that ‘it is not always obvious at a glance’ to determine whether an infi-
nite collection possesses a given property. In particular, we argue that infinite
and non-recursive properties over an infinite domain require an intenstional
justification. That is, only where one or the other conjuncts of the LEM can
be shown to hold universally for a particular property n, can the versions (2)
and (3) hold, and this is something that needs to be shown case by case (for
each n). But this process cannot generally be reversed. From a universal
LEM (1), we cannot always speak universally of one of its disjuncts.

Thus, for us, talk of ‘all men’ (and, more pertinently, of all natural num-
bers) is acceptable, as is the application of the LEM to such collections. It
is talk of the LEM holding for ‘all properties of all men/numbers’ that is
problematic. That is, it is when a generalised LEM is taken to give exten-
sional support to an otherwise (possibly) unprovable universal quantification
that problems arise. It seems likely that this is also the sort of reasoning that
led Russell to make the assumption ‘(∀∅)’ in (∗ ∗ ∗) above, and to make it
explicitly.

Our own version of Russell’s misgivings, then, might read thus: section 6
shows: that you can prove the LEM inductively (or otherwise) for a property
does not mean that you can prove the LEM by induction (or otherwise) for
all properties. Indeed, we agree with Russell that whether any given property
holds across an infinite domain is certainly not obvious at first glance.

13. Comparison with Recursive Mathematics

Recursive mathematics is limited by what sets and functions can be obtained
recursively using the natural numbers, and is generally developed using clas-
sical logic. Our recursion is specifically directed to the LEM, to try and
ensure that it holds. However, we have already pointed out the difficulty in
establishing the LEM as a disjunction by mathematical induction, but clearly
we can prove the LEM from one of its disjuncts, proved by induction or by
any method for that matter. For us, infinite functions and sets can still be
defined, whether recursive or not, and, as stated above, their properties are
generally determined by meaning rather than by extensionality.
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