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POSITIVE ABSTRACTION AND EXTENSIONALITY REVISITED

THIERRY LIBERT

Abstract
We here exhibit Scott-style models for positive abstraction with ex-
tensionality, which have recently revealed connections between that
positive set theory and an illative system of lambda calculus. These
Scott-style models also bring out a very characteristic feature of that
theory, some consequences of which, such as a quantifier elimina-
tion result, are presented here.

1. Introduction

This paper is the continuation of [4] & [6] which treat of Positive Set Theory.
It is to be seen as a complementary paper of both [6] and [8], which latter is
concerned with an extensional system of illative lambda calculus. We shall
recall some results of those papers to motivate our investigations.

Let us consider the following rules of formation of terms and formulas in
first-order predicate calculus with equality:

(1) Any variable x is a term;

(2) ⊥ and > are atomic formulas;

(3) If τ and σ are terms, then τ ∈ σ is an atomic formula;

(4) If τ and σ are terms, then τ = σ is an atomic formula;

(5) If ϕ and ψ are formulas, so are ϕ ∧ ψ and ϕ ∨ ψ;

(6) If ϕ is a formula and x is a variable, then ∀xϕ and ∃xϕ are formulas;

(7) If ϕ is a formula, so is ¬ϕ;

(8) If ϕ is a formula and x is a variable, then {x | ϕ} is a term.
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150 THIERRY LIBERT

We denote by
�

the language obtained from (1)–(7), and for any fragment
Σ of

�
, we let Comp[Σ] stand for the scheme of formulas

∀z̄∃y∀x(x ∈ y ↔ ϕ(x, z̄))

where ϕ(x, z̄) is in Σ. The language extended by rule (8) is designated by�
τ , and then, given a fragment Σ of

�
τ , we let Abst[Σ] stand for the scheme

of formulas
∀z̄∀x(x ∈ {x | ϕ} ↔ ϕ(x, z̄))

with ϕ(x, z̄) in Σ. The positive fragments of
�

and
�

τ are defined by
proscribing the use of (7), which we indicate by adding the superscript ‘+’.
Adding ‘∗’ as subscript means that we do not consider the use of (4) either.
At last, given a set-theoretic structure U ≡ 〈U ;∈U 〉, any of these languages
may conveniently be extended by constants naming the elements of U , and
we shall indicate this by juxtaposing ‘(U)’ to the right, e.g.

�
τ
+
∗ (U).

Positive Set Theory originated in Skolem’s papers [10, 11] where he
showed that Comp[

� +
∗ ] is consistent with Ext, the axiom of extensionality,

i.e.
∀x∀y(∀z(z ∈ x↔ z ∈ y) → x = y).

The consistency of Comp[
� +] + Ext came out much later of [4] in which

was proved the existence of κ-topological models for any weakly compact
cardinal κ. By a κ-topological model is meant here an extensional model
U ≡ 〈U ;∈U 〉 in which the coded subsets of U — i.e. those of the form
{u ∈ U | u∈U v} for some (unique) v ∈ U — are exactly the closed sets of
some κ-topology on U ; and by a κ-topology is meant a topology in which
any union of strictly less than κ closed sets is still closed.

On the other hand, Abst[
�

τ
+] is easily proved to be consistent by a term

model construction, but it is known to be inconsistent together with Ext.
Nevertheless, it was shown in [6] that there exist extensional term models
of Abst[

�
τ
+
∗ ], and the proof of this is quite subtle. The consistency of

Abst[
�

τ
+
∗ ] + Ext will fall out more easily of this paper as we are going to

show the existence of κ-topological models for any regular cardinal κ.
As shown in [9], the interest of topological models for set theory can be

related to the consistency of the following principle:

(†) ∀x∀y(x 0̇ y → x 6. y)

where x6. y stands for ∀z(z ∈ x→ z ∈ y) and x 0̇ y for ∀z(x ∈ z→ y ∈ z).
It is easy to see that (†) holds in any set theory in which ‘{x | y ∈ x}’ ex-
ists for all y, or more obviously in any one in which ‘{x | y = x}’ exists
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for all y. Thus, in particular, (†) follows from Comp[
� +] as well as from

Abst[
�

τ
+
∗ ]. Now it is proved in [9] that if (†) holds then

⋂

‘{x | ψ(x, z̄)}’
and

⋃

‘{x | ψ(x, z̄)}’ cannot both exist for all ψ(x, z̄). At least, in a κ-
topological model U of (†),

⋂

‘{x | ψ(x, z̄)}’ exists for all ψ(x, z̄) while at
the same time

⋃

‘{x | ψ(x, z̄)}’ can exist for each ψ(x, z̄) such that
| {u ∈ U | U |= ψ(u, w̄)} | < κ for all w̄ in U . Thus, it is the existence
of κ-topological models of Comp[

� +] + Ext for some κ > ℵ0 that led
to showing in [4] that a natural extension of that theory is compatible with
a relevant axiom of infinity, so the resulting system is strong enough to in-
terpret ZF and much more (see [3]). In another context, the existence of
κ-topological models for Abst[

�
τ
+
∗ ] + Ext will here reveal that this theory

satisfies the converse of (†), and this will result in rather unexpected features
such as quantifiers elimination.

At last, the discovery of topological models for Abst[
�

τ
+
∗ ] + Ext — and

particularly their resemblance with topological models of lambda calculus
— inspired the author to inquire into possible connections between that pos-
itive set theory and some extensional systems of illative lambda calculus.
This has proved successful and such a system is presented in [8].

2. Duality

We begin by a simple observation that will clarify later considerations.
Define the (·)∗-operator on formulas and terms of

�
τ ∗ as follows:

(τ ∈ σ)∗ is τ∗ ∈ σ∗,

⊥∗ is >, >∗ is ⊥,

(ϕ ∧ ψ)∗ is ϕ∗ ∨ ψ∗, (ϕ ∨ ψ)∗ is ϕ∗ ∧ ψ∗,

(∀xϕ)∗ is ∃xϕ∗, (∃xϕ)∗ is ∀xϕ∗,

(¬ϕ)∗ is ¬ϕ∗,

{x | ϕ}∗ is {x | ϕ∗},

and x∗ is x for any variable x.

Clearly ϕ∗∗ is ϕ for any ϕ in
�

τ ∗, and we notice that if ϕ is in
�

τ
+
∗ , so is

ϕ∗.
Now, given a set-theoretic structure U ≡ 〈U ;∈U 〉, let U∗ stand for

〈U ; /∈U 〉, in which the interpretation of the abstractor for
�

τ
+
∗ -formulas —

provided such an interpretation is given in U — is defined by {x | ϕ}U
∗

(v̄) :=



“03libert”
2008/5/28
page 152

i

i

i

i

i

i

i

i

152 THIERRY LIBERT

{x | ϕ∗}U (v̄) for every ϕ(x, ȳ) in
�

τ
+
∗ and ȳ := v̄ in U . Clearly U ∗∗ = U ,

and one can show by induction on the complexity of a formula that

Fact 2.1 : U∗ |= ϕ(v̄) iff U |= ¬ϕ∗(v̄), for any
�

τ ∗-formula ϕ(ȳ) whose
atomic formulas are in

�
τ
+
∗ , and for any ȳ := v̄ in U .

It is therefrom easy to see that

Fact 2.2 : U∗ fulfils Abst[
�

τ
+
∗ ] if and only if U does.

We have not yet specified the interpretation of = in U ∗. Recall that x = y
is definable by Ψ(x, y) :≡ ∀z(z ∈ x ↔ z ∈ y) under Ext. Now we notice
that ¬Ψ∗(x, y) is just equivalent to Ψ(x, y). Therefore, any interpretation of
= making U∗ extensional whenever U is must coincide with the one in U —
and in all the structures we consider this is understood to be the identity, i.e.
U |= u = v iff u and v are the same element in U .

Accordingly, if we define (τ = σ)∗ and (τ 6= σ)∗ to be respectively
τ∗ 6= σ∗ and τ∗ = σ∗, then one can extend Fact 2.1 to the case where ϕ
contains atomic formulas τ = σ and τ 6= σ with τ, σ in

�
τ
+
∗ . This, together

with Fact 2.2, yields the following duality principle:

Fact 2.3 : Let Σ stand for Abst[
�

τ
+
∗ ] or for Abst[

�
τ
+
∗ ] + Ext, and let ϕ

be an
�

τ -formula whose atomic formulas are in
�

τ
+
∗ , or of the form τ = σ

and τ 6= σ with τ, σ in
�

τ
+
∗ . Then Σ ` ϕ if and only if Σ ` ¬ϕ∗.

A simple consequence we mention here is the following. Let us say that
an

�
τ
+
∗ -term τ is autodual if τ ∗ is τ . Then, for all pairs of autodual closed

terms τ, σ, we have Σ ` τ ∈ σ iff Σ ` ¬(τ ∈ σ)∗ iff Σ ` τ /∈ σ, and
it follows that τ ∈ σ is not decidable from Σ — for we recall that Σ is
consistent. The simplest example of an autodual term is {x | x ∈ x}, which
we denote by W. Note that this also shows that U and U ∗ can never be iso-
morphic as set-theoretic structures, otherwise we would have U |= W /∈ W
iff U |= W ∈ W.

Remark 2.1 : Such a duality principle as Fact 2.3 is not provable for Comp
[

�
+]+Ext. Indeed, if it was to hold, any model of that theory should satisfy

∀z∃y∀x(x ∈ y ↔ x 6= z), but this is false in a topological model. We do
not know however if this can be true in some model of Comp[

� +] + Ext.
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3. Topological models

On the one hand, the topological models used in [4] to prove the consis-
tency of Comp[

�
+] + Ext are T2 spaces. These appear as κ-compact 0-

dimensional κ-uniform spaces that are uniformly isomorphic to their space
of closed subsets with the induced κ-uniformity (see e.g. [5]). Note that any
topological model of Comp[

� +] should at least be T1 because of the exis-
tence of ‘{x | y = x}’ for all y, but we do not know however whether there
can be non-T2 ones.

On the other hand, the topological models of Abst[
�

τ
+
∗ ] we present in

this paper are T0 spaces; anyhow, there cannot be T1 ones here because
Abst[

�
τ
+
∗ ] + Ext proves the non-existence of ‘{x | y = x}’ for some y —

this is related to the inconsistency of Abst[
�

τ
+] + Ext, of course. What

we are going to show is that any κ-dcpo which is Scott isomorphic to its set
of closed subsets ordered by reverse inclusion, or dually to its set of open
ones ordered by inclusion, gives rise to a model of Abst[

�
τ
+
∗ ] + Ext. So

we shall next introduce what is strictly needed to understand and prove that
statement.

Let κ be an infinite regular cardinal. Given a partially ordered set 〈U ;6〉,
we say that a subset D of U is κ-directed if every subset of D of cardinality
strictly less than κ has an upper bound in D (so D 6= ∅). Then U is said to
be a κ-dcpo if each κ-directed subset D of U has a least upper bound

∨

D.
Any κ-dcpo U inherits of a κ-topology, called the Scott κ-topology, whose

closed subsets are the lower sets S of U satisfying the following closure
property: if D is a κ-directed subset of S, then

∨

D ∈ S. It is easy
to see that a map f : U −→ V between κ-dcpo’s is continuous w.r.t.
the Scott κ-topologies if and only if f preserves κ-directed suprema, i.e.
f(

∨

D) =
∨

{f(d) | d ∈ D} for each κ-directed subset D of U . We denote
the set of all Scott continuous functions from U to V , ordered pointwise, by
[U → V ]. This is a κ-dcpo as well, and even a complete lattice provided V
is. Examples of interest to us are [U → 2] and [U → 2′], where 2 is {0, 1}
with 0 < 1 and 2′ is the opposite ordered set. These are respectively isomor-
phic to Pop(U), the complete lattice of Scott open sets ordered by inclusion,
and to Pcl(U), the one of Scott closed sets ordered by reverse inclusion —
which are obviously isomorphic to each other, for any given U , as 2 ∼= 2′.

We designate the category of κ-dcpo’s with Scott continuous maps as mor-
phisms by DCPOκ. It can be seen that this is a cartesian closed category, the
exponential of which being given by [· → ·] — the proof of this is just a rou-
tine generalization of the original case κ = ℵ0, as treated in [1] for instance.
This observation is mainly all we need in order to show that any solution to
U ∼= [U → 2] in DCPOκ yields a model for positive abstraction, in a similar
way that it was originally proved by Scott that any solution to U ∼= [U → U ]
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154 THIERRY LIBERT

in DCPOℵ0
gives a model for the untyped λ-calculus. Note that by a solution

to a reflexive equation U ∼= F(U) in DCPOκ we always mean a κ-dcpo U
together with a Scott homeomorphism f : U −→ F(U).

Theorem 3.1 : Suppose 〈U ;f〉 is a solution to U ∼= [U → 2] in DCPOκ. Then
the set-theoretic structure U ≡ 〈U ;∈U 〉 defined by u∈U v iff f(v)(u) = 1 is
an extensional model of Abst[

�
τ
+
∗ ].

Proof. For any closed formula ϕ of
�

τ (U), let |ϕ|
U

stand for the truth value
of ϕ interpreted in U . In particular, for all u, v ∈ U , we have |u ∈ v|

U
=

εU(u, v), where εU : U × U −→ 2 : (u, v) 7−→ f(v)(u), which is Scott
continuous in both of its arguments. We are going to show by induction on
the complexity that each term τ(ȳ) of

�
τ
+
∗ (U), given with a list of variables

ȳ = y1, . . . , yn to which its free variables belong, has a ‘suitable’ Scott
continuous interpretation τU : Un −→ U : (v̄) 7−→ τU (v̄).

First, if τ(ȳ) is just a variable, say yk in ȳ, then we take τU : (v̄) 7−→ vk,
which is clearly Scott continuous; and if τ(ȳ) is any fixed u ∈ U , then we
take τU : (v̄) 7−→ u, which is also Scott continuous.

Now we turn to the case where τ(ȳ) is a set abstract {x | ϕ} for a
�

τ
+
∗ (U)-

formula ϕ(x, ȳ). Here, that the interpretation is ‘suitable’ means, of course,
that |u ∈ τU (v̄)|

U
= |ϕ(u, v̄)|

U
for any u, v̄ in U , from which incidentally

results the uniqueness of such a suitable interpretation. The proof goes by
induction on the complexity of ϕ(x, ȳ) :

• ϕ is ⊥ />. Let f /g stand for f−1(u 7→ 0) / f−1(u 7→ 1).
Then τU : (v̄) 7−→ f /g is the suitable interpretation of {x | ϕ}.

• ϕ is σ(x, ȳ) ∈ ρ(x, ȳ), where σ, ρ are
�

τ (U)-terms.
Then τU : (v̄) 7−→ f−1(u 7→ εU(σU (u, v̄), ρU (u, v̄))) is Scott con-
tinuous, and this is the suitable interpretation of {x | ϕ}.

• ϕ is ψ(x, ȳ) ∨ χ(x, ȳ). Let σ(ȳ) stand for {x | ψ} and ρ(ȳ) for
{x | χ}.
Then τU : (v̄) 7−→ f−1(u 7→ ∨(εU(u, σU (v̄)) , εU(u, ρU (v̄))) is
the suitable interpretation of {x | ϕ}; it is Scott continuous for so is
∨ : 2 × 2 → 2 : (a, b) 7→ max{a, b}.

• ϕ is ψ(x, ȳ) ∧ χ(x, ȳ).
As above, but with ∧ : 2× 2 → 2 : (a, b) 7→ min{a, b} instead of ∨.
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• ϕ is ∃zψ(x, ȳ, z). Let σ(ȳ, z) stand for {x | ψ}.
Then, for all u, v̄ in U , we have

|∃zψ(u, v̄, z)|
U

= max
w∈U

|ψ(u, v̄, w)|
U

= max
w∈U

|u ∈ σU (v̄, w)|
U

= |u ∈ σU (v̄,g)|
U
.

It follows therefrom that τU : (ū) 7−→ f−1(v 7→ εU(u, σU (v̄,g))) is
the suitable Scott continuous interpretation of {x | ϕ}.

• ϕ is ∀zψ(x, ȳ, z).
As above, but with ‘min’ instead of ‘max’ and then f instead of g.

To have a clear conscience, one would make sure that the interpretation of
{· | −} so defined satisfies the following natural substitutivity property: for
any

�
τ
+
∗ -formula ϕ(x, ȳ) and list of

�
τ
+
∗ -terms τ̄(z̄) of the same length as

ȳ, we have {x | ϕ}U (τ̄U (ū)) = {x | ψ}U (ū) for all ū in U , where ψ is the
formula ϕ(x, τ̄ (z̄)). This actually follows from the fact that

U |= Abst[
�

τ
+
∗ ] + Ext.

a

As 2 ∼= 2′, any solution to U ∼= [U → 2′] will likewise give rise to a
model of Abst[

�
τ
+
∗ ]. In fact, every solution 〈U ; f〉 to U ∼= [U → 2] can

be turned into a solution 〈U ; g〉 to U ∼= [U → 2′], and vice versa, by setting
g(v)(u) = ¬(f(v)(u)) for all u, v ∈ U , where ¬ : 2 −→ 2′ : 0/1 7→ 1/0.
Clearly, if U is the model of Abst[

�
τ
+
∗ ] associated with 〈U ; f〉, then the one

corresponding to 〈U ; g〉 is just U ∗, the dual of U , as defined in Section 2.
Although they are based upon the same underlying complete lattice U , it is
worth recalling that U and U ∗ are not isomorphic as set-theoretic structures.
On the contrary, U and the opposite ordered set U ′ must be isomorphic as
κ-dcpo’s, for we have U ′ ∼= [U → 2]′ = [U → 2′] ∼= U .

Remark 3.1 : We mention that natural Scott-style models of the system of
illative λ-calculus considered in [8] can be obtained as solutions to a reflex-
ive equation of the form U ∼= [U → U ] + 2 in DCPOℵ0

. Such solutions
naturally contains [U → 2], which models the pure set-theoretic part of that
system. This would show how Abst[

�
τ
+
∗ ]+Ext is related — on the seman-

tic side at least — to the system called ‘Positive Frege’ in [8].
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156 THIERRY LIBERT

We shall now exhibit one particular solution to U ∼= [U → 2] [resp. U ∼=
[U → 2′]] in DCPOκ for each regular cardinal κ.

4. Canonical solutions

Roughly, following [1], the canonical solution to U ∼= [U → 2] [resp. U ∼=
[U → 2′]] in DCPOκ can be obtained as inverse limit by iterating the functor
[· → 2] [resp. [· → 2′]] from the initial object {f}, where f is a bottom
element. Note that ω iterations will not suffice when κ > ℵ0, and then
limit steps in the iteration process will introduce some complications that
fortunately we need not discuss here. The simplicity of the solution we are
about to describe will convince ourselves that this must be the canonical one.

For any regular cardinal κ, let Sκ be a linearly ordered set of type κ+1+κ′,
where κ′ is the reverse of κ, say Sκ := {aα | α ∈ κ}∪{c}∪{bα | α ∈ κ} with
aα < c < bβ for all α, β ∈ κ, and aα < aβ iff bβ < bα iff α ∈ β. Clearly
Sκ is a complete linear order, and it may then be looked at as a κ-dcpo. Its
lower sets are Aβ := {aα | α ∈ β} and Bβ := Sκ\{bα | α ∈ β}, for all
β ∈ κ+1. Notice that each Bβ has a maximum, so it is Scott closed. Also is
Aβ for all β ∈ κ, because then |Aβ| < κ. But Aκ is not Scott closed. Indeed,
Aκ is a κ-directed subset of itself (because κ is regular) but

∨

Aκ = c /∈ Aκ.
It follows that Pcl(Sκ), ordered by reverse inclusion ⊇, is also of order type
κ + 1 + κ′, the order isomorphism g : Sκ −→ Pcl(Sκ) being defined by
g(aβ) := Bβ , g(bβ) := Aβ , for all β ∈ κ, and g(c) := Bκ. Moreover, it is
easy to see that g preserves all suprema, i.e. g(

∨

D) =
⋂

{g(d) | d ∈ D} for
all D ⊆ Sκ — the key observation here is that

⋂

{Bβ | β ∈ κ} = Bκ — so
that g is in particular a Scott homeomorphism. Dually, one defines a Scott
homeomorphism f : Sκ −→ Pop(Sκ) by f(aβ) := Sκ\Bβ , f(bβ) := Sκ\Aβ ,
for all β ∈ κ, and f(c) := Sκ \ Bκ. The pairs 〈Sκ; f〉 and 〈Sκ; g〉 give
respectively the canonical solutions to U ∼= [U → 2] and to U ∼= [U → 2′] in
DCPOκ. According to Theorem 3.1, we now have, for each regular cardinal
κ, two canonical (and non-isomorphic) models of Abst[

�
τ
+
∗ ] denoted by Sκ

and S∗
κ.

5. Monotonicity

In any model U associated with a solution 〈U ; f〉 to U ∼= [U → 2], it is easy
to see that the underlying order 6 of U coincides with 6. U .1 In fact, it does

1 We recall that [U → 2] is naturally isomorphic to Pop(U) ordered by inclusion, whereas
[U → 2′] is isomorphic to Pcl(U) ordered by reverse inclusion.
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coincide with 0̇U too. We already know that

U |= ∀x∀y(x 0̇ y→ x6. y).

And on the other hand, we have u 0̇U v iff f(w)(u) 6 f(w)(v) for all
w ∈ U , which will then be true if we assume u 6 v, because each f(w)
is monotone. Therefore U |= ∀x∀y(x 6. y → x 0̇ y) as well, and thus 6.
and 0̇ coincide in a Scott-style model. This actually holds in any model of
Abst[

�
τ
+
∗ ] + Ext:

Theorem 5.1 : Abst[
�

τ
+
∗ ] + Ext ` ∀x∀y(x 6. y → x 0̇ y).

Proof. Assume Abst[
�

τ
+
∗ ] and let a, b be such that a 6. b but a 60̇ b. Then

define σ(x) = {z | z ∈ a ∨ (x ∈ x ∧ z ∈ b)}. It easily follows from a 6. b
that ∀x((x ∈ x → σ(x) = b) ∧ (x /∈ x → σ(x) = a)) (note that Ext
is needed here). Now, as a 60̇ b, take c such that a ∈ c, b /∈ c, and define
ρ = {x | σ(x) ∈ c}. Thus we have ∀x(x ∈ ρ ↔ x /∈ x), and therefore
ρ ∈ ρ↔ ρ /∈ ρ. a

Remark 5.1 : We stress that the use of Ext is essential, e.g. it is shown in [7]
that there are term models of Abst[

�
τ
+
∗ ] not fulfilling

∀x∀y(x 6. y → x 0̇ y).

A more explicit formulation of Theorem 5.1 is as follows:

Abst[
�

τ
+
∗ ] + Ext ` ∀x∀y∀z(x 6. y ∧ x ∈ z → y ∈ z) ,

which clearly says that in any model U of Abst[
�

τ
+
∗ ] + Ext whatsoever,

{u ∈ U | u∈U v} is an upper set of 〈U ;6. U 〉 for each v ∈ U ; in other words,
its characteristic function f(v), defined by f(v)(u) := 1 if u∈U v and := 0
otherwise, is monotone from 〈U ;6. U 〉 to 〈2;6〉.

Now, another equivalent formulation and an important consequence of
Theorem 5.1 are the following.

Corollary 5.2 : For any formula ϕ(x, s̄) of
�

τ
+
∗ ,

Abst[
�

τ
+
∗ ] + Ext ` ∀x∀y∀s̄(x 6. y ∧ ϕ(x, s̄) → ϕ(y, s̄)).

Proof. Take z := {x | ϕ} in the previous formulation. a
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Corollary 5.3 : For every formula ϕ of
�

τ
+
∗ , there exists a quantifier-free

formula ϕ0 of
�

τ
+
∗ such that Abst[

�
τ
+
∗ ] + Ext ` ϕ↔ ϕ0.

Proof. Let Λ and V respectively denote {x | ⊥} and {x | >}. Using Corol-
lary 5.2, we have ∃xϕ(x, s̄) ↔ ϕ(V, s̄) and ∀xϕ(x, s̄) ↔ ϕ(Λ, s̄) for every
formula ϕ(x, s̄) of

�
τ
+
∗ . We can accordingly eliminate the quantifiers of

each
�

τ
+
∗ -formula written in prenex form. Note that by saying that ϕ0 is

quantifier-free it is meant here that there are no quantifiers at all, even in the
formulas defining the set abstracts occurring in ϕ0, and so forth. a

By duality, a version of Corollary 5.3 holds as well for negations of
�

τ
+
∗ -

formulas. But monotonicity is no longer a property of
�

τ
+-formulas, seeing

for instance that ∃y(y = {x | y ∈ x}) is not equivalent to Λ = {x | Λ ∈ x},
as this latter is false whereas the former can be true as we shall see in Sec-
tion 7.

6. Numerals

Let � (y) := {x | y ∈ x}, Λ := {x | ⊥} and V := {x | >}. Then define
inductively Λn and Vn for each natural number n as follows:

{

Λ0 := Λ V0 := V
Λn+1 := � (Λn) Vn+1 := � (Vn).

Notice that Λ∗
n is Vn for all n ∈ � . We are going to show, as a consequence

of Theorem 5.1, that Λn = ‘{Vk | k < n}’ and so, by duality, that Vn =
V\‘{Λk | k < n}’. More precisely, for each naturel number n, we define the
following pair of dual sentences:

{

Ψn :≡ ∀x(x ∈ Λn ↔
∨

k<n x = Vk)

Ψ′
n :≡ ∀x(x ∈ Vn ↔

∧

k<n x 6= Λk)

and we show that

Proposition 6.1 : Abst[
�

τ
+
∗ ] + Ext ` Ψn ∧ Ψ′

n, for all n ∈ � .

Proof. Of course, by Fact 2.3, we may concentrate on inferring Ψn for all
n. We proceed by induction. For n = 0 this is immediate. Suppose that
Ψk, and so Ψ′

k, holds for all k 6 n, and let x ∈ Λn+1. Then Λn ∈ x and it
follows from Theorem 5.1 that if Λn 6. y then y ∈ x. Now, by Ψn, we have
Λn 6. y iff Vk ∈ y for all k 6 n− 1, which is equivalent to y ∈ Vk+1 for all
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k 6 n− 1, and this reduces to y ∈ Vn because Vn 6. Vn−1 6. · · · 6. V0 by
Ψ′

k for k 6 n. Hence Vn 6. x. If Vn 6= x, then, by Ψ′
n, there exists l < n

such that Λl ∈ x, that is x ∈ Λl+1, and then, by Ψl+1, we have x = Vk for
some k < l + 1 6 n. Thus Ψn+1 is true. a

One can even say more about the structure of the Λn’s and the Vn’s from
Proposition 6.1. Let us define the following pair of dual sentences:

{

Υn :≡ ∀x(Λn 6. x ∧ Λn 6= x→ Λn+1 6. x)
Υ′

n :≡ ∀x(x 6. Vn ∧ x 6= Vn → x 6. Vn+1).

Proposition 6.2 : Abst[
�

τ
+
∗ ] + Ext ` Υn ∧ Υ′

n, for all n ∈ � .

Proof. Again, by Fact 2.3, we may concentrate on inferring Υn for each n.
Assume Λn 6. x and Λn 6= x. To prove that Λn+1 6. x, it suffices to show
that Vn ∈ x, that is, x ∈ Vn+1. But this is true since x 6= Λk for all
k 6 n. a

Accordingly, the universe U of any model U of Abst[
�

τ
+
∗ ]+Ext, ordered

by 6. U , has the following form:

•
Λ

0

•
Λ

1

•
Λ

2

· · · 〈KerU 〉 · · · •
V

2

•
V

1

•
V

0

where KerU , the kernel of U , is

{u ∈ U | u 6= ΛU
n and u 6= VU

n for all n ∈ � }.

Notice that neither ‘{Λn | n ∈ � }’ nor ‘{Vn | n ∈ � }’ can be proved to
exist as a set from Abst[

�
τ
+
∗ ]+Ext, since the former is not even a 6. -upper

set and the latter is not a set in S∗
κ (but it is in Sκ). In spite of this, and

in view of the characterization above, any of these two classes might legiti-
mately be taken as system of numerals. Then, to know to which degree this
representation is faithful, one could for instance have a look at those func-
tions f : � k −→ � that are representable, that is, for which there exists a
term τ(y1, . . . , yk) of

�
τ
+
∗ such that

Abst[
�

τ
+
∗ ] + Ext ` τ(Λn1

, . . . ,Λnk
) = Λf(n1,...,nk)

— or equally

Abst[
�

τ
+
∗ ] + Ext ` τ ∗(Vn1

, . . . ,Vnk
) = Vf(n1 ,...,nk)
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by duality — for all n1, . . . , nk ∈ � . We shall only content ourselves here
with pointing out a couple of examples.

Obviously, the successor function is represented by � (y). The prede-
cessor function is also representable by taking � ′(y) := {x | � (x) ∈ y}.
Indeed, we have � ′( � (y)) = {x | � (x) ∈ � (y)} = {x | x ∈ y} = y, so

� ′(Λn+1) = Λn for all n ∈ � , and clearly � ′(Λ0) = Λ0.
Other functions that are representable are ‘max’ and ‘min’, seeing that

Λn1
∪ Λn2

= Λmax(n1,n2) and Λn1
∩ Λn2

= Λmin(n1,n2), where the terms
y1 ∪ y2 and y1 ∩ y2 are defined as usual by {x | x ∈ y1 ∨ x ∈ y2} and
{x | x ∈ y1 ∧ x ∈ y2}. More generally, the existence of these terms shows
that in any model U of Abst[

�
τ
+
∗ ] + Ext, 〈U ;6. U 〉 is a lattice, as we have

∨

{a, b} = (a ∪ b)U and
∧

{a, b} = (a ∩ b)U for all a, b ∈ U . It is
very unlikely that more can be said about the ordered set 〈KerU ;6. U〉 from
Abst[

�
τ
+
∗ ] + Ext only, though the question we examine in the next section

is somewhat related to this.

7. Wanted: the fixed-point property

Given a model U of Abst[
�

τ
+
∗ ] + Ext, the interpretation of each term σ(y)

of
�

τ
+
∗ (U) is a monotone function on 〈U ;6. U 〉. Now this latter is a complete

lattice when U is a Scott-style model, so we do have U |= ∃y(y = σ(y)) in
that case, for any monotone function on a complete lattice has a fixed point.
The question as to know whether that fixed-point property is derivable from
Abst[

�
τ
+
∗ ] + Ext is tackled here.

At least, we can give a positive answer in a very particular case, which
may be viewed as a sort of set-theoretic remains of the fixed-point theorem
of the lambda calculus:2

Theorem 7.1 : Abst[
�

τ
+
∗ ] + Ext ` ∀z̄∃y(y = σ(y, z̄)), for any

�
τ
+
∗ -term

σ(y, z̄) of the form {x | ϕ(x;ψ(y, z̄); z̄)}, where this notation means that we
can distinguish a subformula ψ of ϕ having y and possibly z̄, but not x, as
free variables.

Proof. Let
Ω := {t | ψ({x | ϕ(x; t ∈ t; z̄)}, z̄)}

and
τ := {x | ϕ(x; Ω ∈ Ω; z̄)} .

2 I am grateful to Marcel Crabbé for this observation.
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Thus we have Ω ∈ Ω iff ψ(τ, z̄), and then

τ = {x | ϕ(x;ψ(τ, z̄); z̄)} = σ(τ, z̄).

a

The condition here on the variable y to appear within a subformula is very
restrictive as it excludes such simple terms as � (y) and � ′(y) of Section 6.

For the latter a fixed point is easily found, namely W = {x | x ∈ x}, as
we have

� ′(W) = {x | � (x) ∈ W}

= {x | � (x) ∈ � (x)}

= {x | x ∈ x}

= W.

But for the former the situation is not as simple. In the canonical models
of Section 4 it is always the case that W — which is interpreted by c in
those models — is a fixed point of � (y) too. This, however, does not follow
from Abst[

�
τ
+
∗ ]+Ext as we shall now see by exhibiting another Scott-style

model.
Let U be the complete lattice depicted as follows, with the ordering 6

from left to right:

•
a
0

•
a
1

•
a
2

· · · •
a
· · · •

c
−2

•
c
−1

•
c
0

•
c
•
c′

•
c
1

•
c
2

•
c
3

· · · •
b
· · · •

b
2

•
b
1

•
b
0

Given y ∈ U , we let )y] stand for {x ∈ U | x6 y} and )y[ for {x ∈ U | x < y}.
The lower sets of U , ordered by reverse inclusion, are )bn], n ∈ ω, )b], )b[,
)cn], n ∈ ω\{0}, )c1[, )c], )c′], )c−n], n ∈ ω, )a], )a[, )an[, n ∈ ω. Among
these, only )a[ and )b[ are not Scott closed, so we have an order isomorphism
g from 〈U,6〉 onto 〈Pcl(U),⊇〉 defined as follows:

g(an) :=)bn], for all n ; g(a) :=)b] ;

g(c−n) :=)cn], for all n > 1, and g(c0) :=)c1[ ;

g(c) :=)c] ; g(c′) :=)c′] ;

g(cn) :=)c−n+1], for all n > 1 ;

g(b) :=)a] ; g(bn) :=)an[, for all n.

Clearly g preserves all suprema, so 〈U ; g〉 yields another example of a
solution to U ∼= [U → 2′] in DCPOℵ0

. Incidentally, it can be seen that this
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corresponds to the one obtained as inverse limit by iterating [· → 2′] from
the following ordered set:

f• <
• c
• c′

(where f is a bottom element).

We thus have another model U of Abst[
�

τ
+
∗ ] + Ext with u∈U v iff

u ∈ g(v). Now we notice that u∈U u iff u < c1; hence WU = c0. Then
we observe that c0 ∈U u iff u 6 c1; so � (W)U = c−1, and it follows that
U 6|= W = � (W). We also mention that the only fixed points of � (y) on
U are a, b, c, c′, and that each of these does not seem to be definable in U by
a closed

�
τ
+
∗ -term.

That said, we still don’t know whether Abst[
�

τ
+
∗ ]+Ext ` ∃y(y = � (y)).

We shall only notice that finding a fixed point of � (y) within a term model
M — as the one given in [6] — amounts to finding a quantifier-free formula
ϕ(x) of

�
τ
+
∗ such that M |= ϕ({x | ψ}) ↔ ψ({x | ϕ}) for all quantifier-

free formula ψ(x) of
�

τ
+
∗ , which is rather puzzling at first sight.

8. Reflexive abstraction

Whether or not the fixed-point property holds, one may consider the use of
a syntactical device to name in a uniform way one potential solution to any
reflexive equation y = σ(y, z̄).

This can be done by replacing the formation rule (8) of Section 1 by the
following:

(8)′ If ϕ is a formula and x, y are distinct variables, then {x |yϕ} is a
term.

It is understood here that both x and y are bound in {x |yϕ}; we will then
let {x | ϕ} stand for {x |yϕ} whenever y does not occur free in ϕ.

We use the same notation
�

τ for the language obtained from (1)–(8)′ and
now, given a fragment Σ of

�
τ , we let Abst

	
[Σ] stand for the scheme of for-

mulas ‘∀x(x ∈ {x |yϕ} ↔ ϕ(x, {x |yϕ}, z̄))’ with ϕ(x, y, z̄) in Σ. Thus,
given a formula ϕ(x, y, z̄), {x |yϕ}(z̄) is meant to represent one particular
solution to y = {x | ϕ}(y, z̄).

As expected, provided ϕ is in
�

τ
+
∗ , this is consistent:

Proposition 8.1 : Any Scott-style model U of Abst[
�

τ
+
∗ ]+Ext can be turned

into a model of Abst
	
[

�
τ
+
∗ ] + Ext.
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The key to the proof of Proposition 8.1 is that fixed points can be chosen
in a continuous way on a Scott-style model. This is well known for fixed
points of Scott continuous maps on a pointed ℵ0-dcpo (see [1] for instance).
But caveat: a Scott continuous function on a pointed κ-dcpo need not even
have a fixed point if κ > ℵ0 (take for instance U = ω, seen as a ℵ1-dcpo,
with f : ω → ω : n 7→ n + 1). This will hold, however, as far as we are
concerned with complete lattices, which is the case here.3

Fact 8.1 : Let U be a complete lattice seen as a κ-dcpo and let f ∈ [U → U ].
Then f has a least fixed point µ(f); moreover, the application f 7−→ µ(f)
is Scott continuous from [U → U ] to U .

Proof. Let f ∈ [U → U ] and define fα(f) ∈ U for each ordinal α induc-
tively as follows: fβ+1(f) := f(fβ(f)) and fλ(f) :=

∨

{fβ(f) | β < λ}
for λ limit (and so f0(f) = f). Because U is a complete lattice this is well
defined. Clearly α < β implies fα(f) 6 fβ(f), so that {fβ(f) | β < κ}
is κ-directed. It follows therefrom that f(fκ(f)) = fκ(f), and this is the
least fixed point of f for it is easily seen that fα(f) 6 w for all α and all w
such that f(w) = w. Now it is routine to show by induction that the appli-
cation f 7−→ fα(f) is Scott continuous for each α, and so in particular is
f 7−→ µ(f) := fκ(f). a

We are now ready to prove Proposition 8.1.

Proof of Proposition 8.1. Let U be the set-theoretic structure associated with
a given solution to U ∼= [U → 2] in DCPOκ.

As in the proof of Theorem 3.1, one can show by induction on the com-
plexity that each term {x | ϕ}(z̄), where ϕ is in

�
τ
+
∗ (U) and its free vari-

ables other than x are among z̄ = z1, . . . , zn, has a (unique) suitable Scott
continuous interpretation τU : Un −→ U : (w̄) 7−→ {x | ϕ}U (w̄). So
it remains to consider the case of a reflexive set abstract {x |yϕ}(z̄) with
ϕ(x, y, z̄) in

�
τ
+
∗ (U). Let τU be the suitable Scott continuous interpretation

of {x | ϕ}(y, z̄) and then, given w̄ in U , let fw̄ : U −→ U : v 7−→ τU (v, w̄).
Clearly fw̄ is Scott continuous on U , so let µ(fw̄) be its least fixed point. As
the application (w̄) 7−→ fw̄ is Scott continuous, so is (w̄) 7−→ µ(fw̄) accord-
ing to Fact 8.1. And as we have |u ∈ µ(fw̄)|

U
= |u ∈ τU (µ(fw̄), w̄)|

U
=

|ϕ(u, µ(fw̄), w̄)|
U

, it follows that σU : (w̄) 7−→ µ(fw̄) is a suitable Scott
continuous interpretation of {x |yϕ}(z̄). Note that such a suitable interpre-
tation is not necessarily unique here. a

3 The reader familiar with domain theory will have noticed that all the κ-dcpo’s we con-
sider are in fact κ-continuous lattices (again see [1] for the definition when κ = ℵ0).
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The consideration of the case κ > ℵ0 was of course dispensable to prove
the consistency of Abst

	
[

�
τ
+
∗ ]+Ext alone. Besides, it should be remarked

that this could also be established by a term model construction as in [6].

9. Topological extensions

Finally, we shall briefly indicate that topological extensions of Abst[
�

τ
+
∗ ]+

Ext or Abst
	
[

�
τ
+
∗ ] + Ext are conceivable too.

Let (2) and (3) be the topological axiom schemes defined as follows:

(2) :

∣

∣

∣

∣

For every formula ϕ,
∃y(∀x(x ∈ y → ϕ) ∧ ∀z(∀x(x ∈ z → ϕ) → z 6. y))

(3) :

∣

∣

∣

∣

For every formula ϕ,
∃y(∀x(ϕ→ x ∈ y) ∧ ∀z(∀x(ϕ→ x ∈ z) → y 6. z))

As shown in [9], (2) [resp. (3)] is equivalent to asserting the existence
of

⋃

‘{x | ψ(x, z̄)}’ [resp.
⋂

‘{x | ψ(x, z̄)}’] for any formula ψ(x, z̄); so
Abst[

�
τ
+
∗ ] + Ext + (2) + (3) is inconsistent (see the remark about (†)

in Section 1). Nevertheless, each of the axiom schemes (3) and (2) taken
individually can consistently be added here, by duality. For (2) [resp. (3)],
this naturally results from the existence of models associated with solutions
to U ∼= [U → 2] [resp. U ∼= [U → 2′]] in DCPOκ. Again, this contrasts
with the positive set theory Comp[

� +] + Ext, which admits κ-topological
models (κ weakly compact), but is easily proved to be incompatible with
(2) (see [9]).

10. Related works

Positive Set Theory has been studied by several authors from different per-
spectives. A retrospective view of related systems, such as positive abstrac-
tion, can be found in [7], where most results of this paper first appeared.
A proof theoretic analysis of positive abstraction can also be found in [2],
where it is shown that the sequent calculus corresponding to Abst[

�
τ
+
∗ ] has

cut-elimination, whereas the sequent calculus for Abst[
�

τ
+
∗ ] + Ext has not

— which is in fact another consequence of the monotonicity property of The-
orem 5.1. So the proof-theoretic strength of the system Abst[

�
τ
+
∗ ]+Ext, or

some of its extensions, might be worth investigating, especially in the light
of its connection with the system of illative lambda calculus presented in
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[8]. At least, further investigations on this latter, inspired by the results of
this paper, are now being considered.
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