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THE AXIOMATIC METHOD IN THEORY AND IN PRACTICE

YEHUDA RAV

Abstract
In this contribution, views are confronted and critically evaluated
concerning the place and cogency of an axiomatic method, seen
as a framework for mathematical theories, versus its actual use in
mathematicians’ ordinary proof-practices.

It is a fairly common view that mathematicians derive theorems from axioms
by using valid rules of logic1 , thus conferring validity upon the propositions
embodied in theorems. On the surface of it, this view might seem rather
reasonable, judging from the customary style of mathematical texts in the
‘theorem/proof’ format. And what could be counted as validly proving, by
the very meaning of the word ‘proof’, unless it consists of following step-
by-step rules or axioms of logic?

The trouble with this view is that lacks in textual evidence from the day-
to-day proof practice of mathematicians, for nor rules or axioms of logic are
customarily cited in the course of a proof2 , and most mathematicians who are
not logicians could hardly name any rule or axiom of logic and relate them
to their actual proof practices. Wouldn’t it be more reasonable (and histori-
cally correct) to hold that the rules formulated by logicians only encode what
mathematicians have always been doing in validly proving theorems, and not
the other way around that mathematicians proceed by following step by step
the rules and axioms of logic?3

1 Thus, the mathematical physicist David Ruelle (2007, p. 3) writes: “If you define
precisely a set of axioms and rules of logical deduction, you have all you need to do
mathematics.”

2 The only exception being perhaps an occasional reference to the axiom of choice (AC),
but I do not consider AC as an axiom of logic.

3 Here is (hopefully) an amusing analogy: Physicists and astronomers have set up differ-
ential equations to describe the motions of planets. But planets do not, so to speak, consult
these equations in order to know where to go!
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126 YEHUDA RAV

Granted, however, that deduction plays a key role in mathematical prac-
tice — though it does not describe it exclusively, we are led to the following
considerations. In the systematization of knowledge by a network of propo-
sitions, in which a given proposition is proven on the strength of previously
proven propositions and /or accepted definitions, to avoid infinite regress,
there ought to be undemonstrated propositions and undefined terms upon
which the network is seated. Aristotle’s Posterior Analytics can be consid-
ered as the first manual of epistemology with a detailed elaboration of the
structure of deductive reasoning, with examples drawn from mathematics.
And yet, as (Hintikka 1980) writes:

. . . there is a very real sense in which Aristotle’s conception of an
axiomatically built science is foreign to real mathematical meth-
ods of argumentation. Aristotle believed that the tools by means of
which all deductions needed in an axiomatic science are effected
is his. . . syllogistic logic. This assumption colors Aristotle’s whole
philosophical theory of the structure of an axiomatically constructed
theory (as a science) as it is presented in his Posterior Analytics.
It alienated him from mathematical practice, and led him to ideas
quite foreign to what we are likely to find in mathematical axiomat-
ics. (p. 137)

A mathematician who looks nowadays at Aristotle’s syllogistics is particu-
larly struck by the absence in it of a treatment of conditionals, i.e., reasonings
of the form ‘if. . . then. . . ’, the typical mode of mathematical arguments. On
this score, (Kneale and Kneale 1971) write:

If, as we have suggested, Aristotle was interested primarily in rea-
soning such as we find in geometry, it would be natural for him
to concentrate his attention on general propositions and definitions.
Nothing in his favorite examples of demonstration would force him
to consider the meaning of ‘if. . . then’. (p. 128)

Turning to modern considerations of the axiomatic method, Robert Blanché
in his little booklet entitled ‘Axiomatics’ (Blanché 1962) writes:

It is now common practice for a deductive theory to be presented
in the form of an axiomatized system (sometimes know as an ax-
iomatized theory). . . It is a system in which the undefined terms and
the undemonstrated propositions are made completely explicit, the
latter being put forward simply as hypotheses on the basis of which
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THE AXIOMATIC METHOD IN THEORY AND IN PRACTICE 127

all propositions of the system can be constructed according to fixed
and completely explicit rules of logic. (pp. 2–3)

But what — perhaps — can be done in theory does not imply that it is ac-
tually done in mathematicians’ proof practice by explicitly referring to rules
of logic to substantiate their arguments.

In an article published in the proceedings of the 2004 Rome conference
entitled ‘Mathematical Reasoning and Heuristics’, Cellucci (2005) nailed
down the issue in the following trenchant words:

One of the most uninformative statements one can could possibly
make about mathematics is that the axiomatic method expresses the
real nature of mathematics, i.e., that mathematics consists in the de-
duction of conclusions from given axioms. (p. 137)

And a few pages later, Cellucci cites Hintikka’s statement that “contrary to
the oversimplified picture that most philosophers have of mathematical prac-
tice, much of what a mathematician actually does is not to derive theorems
from axioms”4 . In a similar vein, the eminent logician Solomon Feferman
writes: “. . . mathematicians hardly mention axioms at all in their proofs in
their daily practice, and some go through their entire career without appeal-
ing once to an axiom of any kind”. (Feferman 2006, p. 143).

In a dissenting voice to that which was affirmed by Cellucci, Gianluigi
Oliveri read a paper entitled ‘Do we really need axioms in mathematics?’ at
the very same 2004 Rome conference and concluded his lecture emphatically
with the statement “Yes, indeed, we do need axioms in mathematics”.5

Now what are we to make of these various affirmations? As a matter of
fact, I happen to agree — in spite of the apparent incompatibility — with
what each of the just cited authors has maintained. Specifically, there is no
contradiction in what Cellucci and Oliveri have argued for. It just happened
that there is none, nor has there ever been a unique conception what axioms
are; or stated more precisely, what class of principles counts as axioms and
what is taken to be their specific epistemic function in mathematics. Thus,
for instance, the term ‘axiom[a]’ does not occur in Euclid; however, Proclus
refers to Euclid’s ‘common notions’ — the koinai ennoiai — by the name
of axiomata6 . Reciprocally, what Archimedes calls ‘axiomata’ in Book I of

4 cf. Hintikka (1996, p.95).

5 Vide Oliveri (2005).

6 See the discussion by the philologist and historian of mathematics Szabó (1969,
pp. 378–389; 412–416).
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128 YEHUDA RAV

‘On the sphere and cylinder’ was translated into Latin by Heiberg as def-
initiones. In short, the dividing line between axioms and definitions has
never been sharply maintained, and Poincaré, in discussing non-Euclidean
geometries, considers axioms to be just disguised definitions7 . There are,
moreover, types of axioms that are not even ‘disguised’ definitions, they are
definitions tout court: namely, those that define various algebraic structures,
such as groups, rings, vector spaces, Boolean algebras, and the like. This
is characteristic of a process starting from the middle of the 19th, known as
the axiomatization of abstract structures. Feferman refers to these axioms
as structural axioms (to be distinguished from foundational axioms). In his
words:

When the working mathematician speaks of axioms, he or she usu-
ally means those of some particular part of mathematics such as
groups, rings, vector space, topological spaces, Hilbert spaces, and
so on. These kinds of axioms have nothing to do with self-evident
propositions, nor are they arbitrary starting points. They are sim-
ply definitions of kinds of structures which have been recognized to
occur in various mathematical situations. I take it that the value of
these kinds of structural axioms for the organization of mathemati-
cal work is now indisputable.

In contrast to the working mathematician’s structural axioms,
when the logician speaks of axioms, he or she means, first of all,
laws of valid reasoning that are supposed to apply to all parts of
mathematics, and, secondly, axioms for such fundamental concepts
as number, set and function that underlie all mathematical concepts;
these are called foundational axioms.

The foundational axioms correspond to such basic parts of our
subject that they hardly need any mention at all in daily practice,
and many mathematicians can carry on without calling on them even
once. Some mathematicians even question whether mathematics
needs any axioms at all of this type; for them, so to speak, mathe-
matics is as mathematics does. According to this view, mathematics
is self-justifying, and any foundational issues are local and resolved
according to mathematical need, rather than global and resolved ac-
cording to possibly dubious logical or philosophical doctrines.
(Feferman et al. (2000), p. 403; italics in original).

7 In his words: “. . . les axioms de la géometrie . . . ne sont que des définitions déguisées”,
cf. Poincaré (1891). Reprinted in Poincaré (1902, pp. 63–76).
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THE AXIOMATIC METHOD IN THEORY AND IN PRACTICE 129

Essentially, the structural axioms are definitional axioms, or that might equal-
ly called frame axioms, for they fix the frame of what is ‘inside’, but they do
not serve as a basis for the purely logical machinery in establishing the theo-
rems of the theory that they enclose. For instance, group theory started with
the study of permutations and led to the concept of permutation groups un-
der the operation of ‘multiplying’ permutations. When the general abstract
concept of group was formulated toward the end of the 19th century in terms
of the 3 or 4 axioms what we find now in textbooks on group theory, these
axioms just define what is meant by a group8 . One of the first theorems
in this process stated that every finite group — as abstractly defined by the
group axioms — is isomorphic to a group of permutations. This justified
the ‘axiomatization’ as being correct in the sense of capturing abstractly the
familiar structure of a permutation group. The ensuing abstract concept of
a group, extended now to include infinite groups, enabled mathematicians
to study group structures in a wide variety of contexts. The large number
of significant theorems mathematicians have proved and continue to prove
in group theory are not deduced from the definitional axioms that only fix
the concept of a group, and as such, are only stated in the first few pages of
elementary textbooks. To take one of numerous examples, in the ordinary
proofs of the well-known Sylow theorems9 , no mention is ever made of the
group axioms; the proofs proceed through astute algebraic constructions and
arguments to justify that the steps accomplish what is claimed for them10 .
It certainly took more than just some astute algebraic constructions, as in
the proof of the Sylow theorems, when it came to the monumental work of
scores of group theorists in the classification of all finite groups. In the classi-
fication project, extensive novel conceptual machinery had to be developed;
concepts and techniques from other branches of mathematics had to be used
or transformed — as it was the case with the proof of the Fermat conjecture
by Andrew Wiles and his collaborators. But in neither case had any axioms
to be introduced, nor did the proofs proceed textually by deduction from the
axioms of, say, ZFC set theory. Surely, in many branches of mathematics

8 See (Wussing 1984, Part III).

9 Vide, for example, (Lederman 1957, pp. 126–134).

10 By the way, this is the typical mathematical method we find ordinarily in proofs, a
far cry from the popular view in some philosophical circles that proofs consist of deriving
theorems from axioms according to well-defined rules of formal logic. Here comes in the
distinction between ordinary, oft called ‘informal proofs’ in the day-to-day proof practice
of mathematicians, and formal derivations in the specified symbolism of a formal logical
calculus that resemble a computer program. Such formal derivations are never published in
research journals, but can serve didactic purposes. See Rav (2007) for a detailed discussion
with examples.
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(though not in all) mathematicians nowadays use the language of set theory
or that of category theory or in combined way (and managed quite well be-
fore either one was invented). But other than in formalized derivations or in
foundational work, the axioms of a set theory codify for actual practice the
‘grammar’ of that set-theoretical language, in particular, the constructions it
allows for when studying abstract structures. To continue with the analogy,
just as grammarians and linguists study and compare grammars, set-theorists
prove theorems about axiomatized set theories, study the relative strength of
various axiom systems and the like; here, in this technical work, axioms
are indispensable as (Oliveri 2005) has stressed. But, in the course of their
proofs, set-theorists proceed just as mathematicians do in other specialties;
they do not derive explicitly their proofs from the axioms of ZFC.

Unlike the indispensable place of axioms in foundational studies and math-
ematical logic in general, when one looks at other branches of mathematics,
oft referred to as mainstream mathematics, it is striking what subsidiary role,
if any, is played by axioms other than in geometry (to be discussed later) or
in the introduction of structural axioms that define the subject matter of a the-
ory. Indeed, few mathematical theories have ever been axiomatized. Think
about the remarkable growth of mathematical knowledge from the Renais-
sance on, such as the invention of coordinate geometry in the 17th century,
to be followed by the creation of the infinitesimal calculus, its numerous
subsequent offshoots like the study of ordinary and partial differential equa-
tions, and up to all that goes now under the heading of real and complex
analysis. Typically, from its start, analysis stands out as an example of a
non-axiomatized edifice, whether seen as a unity or as a conglomeration
of its unaxiomatized subtheories. In objecting to my claim that analysis has
never been axiomatized as a deductive theory, the referee has maintained that
“Dedekind’s essay on continuity and irrational numbers (Dedekind 1872)
was intended as an axiomatization of analysis”. The issue deserves closer
scrutiny, for it is instructive to distinguish between founding the infinitesimal
calculus (as it was called) on a rigorous basis, as it took place progressively
throughout the 19th century, and, on the other hand, what would be devel-
oping real and complex analysis on an axiomatic basis. The rigorization of
the calculus just required giving precise definitions of its key concepts, such
as function, limit, continuity, derivative, integral, and the like; and then us-
ing these definitions in an actual analytic proof rather than basing proofs on
geometric evidence and intuition. An axiomatization of analysis, however,
would consists of giving analysis a closed form by fixing an explicit set of
axioms from which the theorems of analysis could be logically derived. My
position is that this has never been done; moreover, I’ll give further below
an argument why an axiomatization of analysis or any other major branch of
mainstream mathematics, for that matter, would practically not be feasible.
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The term ‘analytic proof’ that I have used above was borrowed from the ti-
tle of Bolzano’s (1817) pamphlet Rein analytischer Beweis. . . , in translation
by (Russ 1980), “Purely analytic proof of the theorem, that between each of
two roots which guarantee an opposite result [in sign], at least one real root
of the equation lies”. This states what is now called the Intermediate Value
Theorem for continuous functions.

Bolzano argued — writes Edwards (1979, p. 308), that the intuitive
geometric proof — a continuous curve must somewhere cross any
straight line that separates its endpoints — is based on an inade-
quate conception of continuity. [Here Bolzano gives what is now
the standard definition of a function being continuous at a point].

As a crucial lemma, Bolzano asserted that, if M is a property of
real numbers that does not hold for all x, and there is a number
u such that all numbers x<u have property M, then there exists a
largest U such that all numbers x<U have property M. In his at-
tempted proof by the now-familiar bisection method, he produced
a “Cauchy sequence” {un} intended to converge to the desired U.
Although he (and later Cauchy) stated correctly what is now called
the “Cauchy convergence criterion” [{un} converges if and only if,
given ε > 0, | um − un |< ε for m and n sufficiently large], he could
not (nor could Cauchy) supply a complete proof for lack of a com-
pleteness property of the real number system.

Indeed, what was lacking both in Bolzano and in Cauchy’s work was an
appropriate definition or construction of the real number system, and, on the
basis of such a definition, prove the completeness property of the real num-
bers, i.e., that every Cauchy sequence of real numbers has a real number as
its limit. The first rigorous construction of the system of real numbers was
given by (Dedekind 1872) in his essay “Continuity and Irrational Numbers”.
There, he presented his theory of irrational numbers as defined by cuts —
now referred to as Dedekind cuts — that enabled him to prove the complete-
ness property of the real numbers (called by him the principle of continuity).
Dedekind than shows in closing that this principle is equivalent to “one of
most important theorems” of infinitesimal analysis, stating that “if a magni-
tude x grows continually but not beyond all limits, it approaches a limiting
value”, and further proves it to be equivalent to Cauchy’s convergence crite-
rion, thus completing the gap left out in the work of Bolzano11 and Cauchy.
The last sentence of Dedekind’s 1872 reads as follows: “These examples

11 Dedekind later stated that he did not know at that time of the work of Bolzano.
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132 YEHUDA RAV

may suffice to bring out the connection between the principle of continuity
and infinitesimal analysis.” An axiomatic foundation of analysis? Hardly!
The term axiom appears only once in Dedekind’s 1872 essay12 , and that in
reference to the continuity of the geometric straight line that served as the
intuitive background for his theory of cuts. Nothing more to be said on that
score.

The year 1872 also saw the appearance of other publications dealing with
constructions of the real number system, notably (Kossack 1872), (Heine
1872), (Méray 1872), and the now better known theory of (Cantor 1872)
with a definition of the real numbers in terms of Cauchy sequences of ra-
tional numbers, called “fundamental sequences” by Cantor. The details are
well known and need not detain us here13 . Just one comment. Cantor, in
the manner of Dedekind, speaks here only once about an axiom, namely,
that to every ‘Zahlengröße’ i.e., real number, in his terminology, there cor-
responds a unique point on the geometric straight line. (The converse holds
only for the equivalence classes of fundamental sequences (modulo null se-
quences), a concept Cantor did not have). Thus, one speaks nowadays of the
Dedekind-Cantor Axiom, stating that there is a bi-unique correspondence be-
tween the points of a straight line and the totality of all real numbers. The
Dedekind-Cantor axiom has obviously no bearing on actual proof practices
in real analysis but serves as an intuitive guide of considerable pedagogical
value. Technically, the crux of the constructions by Dedekind and Cantor
resides in their respective proofs that the real number system R is complete,
a characteristic shown by Dedekind to be equivalent to the least upper bound
property of R. From there on numerous important theorems of real analysis
can be deduced.

In the spirit of the now prevailing abstract structuralist approach, the re-
spective constructions of the real number system, starting with the rational
numbers as building blocks, can be streamlined as follows. Starting with
the definition of an ordered field and proving that every such field contains
a subfield isomorphic to the field of rational numbers, an ordered field F is
then said to be complete if and only if every non-empty subset S of F that
contains an upper bound has a least upper bound. Does one now have to as-
sume as a postulate or axiom that there exists a complete ordered field? No,
for Dedekind’s theory of cuts, for instance, can then be used to prove that

12 On p. 12 in the 1963 Dover reprint.

13 But it is worth mentioning, nonetheless, that a particularly simple modern descendant
of Cantor’s theory of the real numbers is given in the constructive analysis of (Bishop 1967,
p. 15). In Bishop’s theory, a real number is just a regular sequence of rational numbers,
where such a sequence {xn} is said to be regular if | xm − xn |≤ m−1

+ n−1 (m, n natural
numbers).



“02rav”
2008/5/28
page 133

i

i

i

i

i

i

i

i

THE AXIOMATIC METHOD IN THEORY AND IN PRACTICE 133

there exists a complete ordered field; one then proves that any two complete
ordered fields are isomorphic. The unique (up to isomorphism) ordered field
thus obtained is then ‘baptized’ as the field of real numbers R14 . Notice the
logical order in this procedure.

A different approach to defining the real numbers system was undertaken
by Hilbert, the champion of axiomatization. A preliminary set of axioms
for the arithmetic of the reals, running in parallel, in a sense, to the axioms
of geometry, was first given by Hilbert in the Foundations of Geometry of
1899 (§13), and further elaborated in (Hilbert 1900). I follow here freely
the translation of the latter as given in (Kline 1972, pp. 990–992). Hilbert
starts with the undefined term ‘number’, denoted by a, b, c, . . . , and states
four groups of axioms: I. Axioms of connection. II. Axioms of calculation.
III. Axioms of order. IV. Axioms of continuity, with subparts IV1 the Axiom
of Archimedes, and IV2 the Axiom of completeness, that states the follow-
ing: “It is not possible to adjoin to the system of numbers any collection of
things so that in the combined collection the preceding axioms are satisfied;
that is, briefly put, the numbers form a system of objects which cannot be
enlarged with the preceding axioms continuing to hold”.

Hilbert points out — writes Kline (op. cit., 991–992) — that these
axioms are not independent; some can be deduced from the others.
He then affirms that the objections against the existence of infinite
sets are not valid for the above conception of real numbers. For,
he says, we do not have to think about the collection of all possi-
ble laws in accordance with which the elements of a fundamental
sequence (Cantor’s sequences of rational numbers) are formed. We
have but to consider a closed system of axioms and conclusions that
can be drawn from them by a finite number of logical steps. He
does point out that it is necessary to prove the consistency of his set
of axioms, but when this is done, the objects defined by it, the real
numbers, exist in the mathematical sense. Hilbert was not aware at
this time of the difficulty in proving the consistency of axioms for
real numbers.

To Hilbert’s claim that his axiomatic method is superior to the genetic meth-
od15 , Bertrand Russell replied that the former has the advantage of theft over

14 See (Birkhoff and MacLane 1941), chapters II and III for details, or any standard text-
book on modern algebra.

15 i.e., constructing the various number systems from the bottom up, starting with the
natural numbers.
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honest toil. Methodologically speaking, indeed, constructivists of all shades
and logicists of old (and perhaps even of new) have a definite preference for
the genetic method, for more information is yielded by constructive methods,
though at the price of more toil; in other words, more is put into proofs and
less into (oft unprovable) postulates. Thus, Dedekind’s theory of cuts — a
construction — enabled him to prove the continuity principle and the latter in
turn, proven equivalent to the completeness property of the real numbers and
the least upper bound principle. In Hilbert’s axiomatic approach, however,
the latter property of R would have to be proven in a different set-up by other
methods and perhaps by appealing to some further axioms.

In a masterful account, (Landau 1930) has developed by the genetic method
the hierarchy of number systems, starting with the Peano axioms for the
natural numbers and leading all the way up to the complex numbers. No
further axioms than those of Peano are used in this work, the arithmetic and
order properties of each system are then developed by strict definitions and
rigorous proofs, with a minimum of verbal explanations, a style for which
Landau is well known. Landau treats the real numbers following the method
of Dedekind cuts, culminating in a proof of the completeness property of the
real number system in Theorem 205 (p. 113) that Landau justifiably calls
Dedekind’s Main Theorem.

Let us take stock. Whatsoever road one takes for laying the foundations
solely for the real and complex number systems, be it even through an ax-
iomatization of R in the manner of Hilbert, this can not be counted as an
axiomatization of real (and complex) analysis; the latter would require a
systematic development of analysis as a closed system based on an explicit
statement of a set of axioms from which its theorems can be derived by
purely logical deductions. And as I maintained at the outset of this section,
mathematicians have never done this16 . Indeed, a strict axiomatization of
analysis, or any field of mainstream mathematics, for that matter — cer-
tain geometries excepted — would be counter-productive, and essentially
not feasible. The reason is simple, stemming from what can be called the
transfer of technologies. The issue is this. Ideas and concepts that were
developed independently in a particular area of mathematics are frequently
used and applied in a different context, much to the enrichment of the latter.
Encapsulating a major branch of mathematics, such as analysis, for example,

16 And may I just add, though my main argument does not depend on this, that deriving
theorems from axioms would conflict with the basic conception of constructive analysis in
the spirit of (Bishop 1967) and his followers. As Bishop puts it: “Our program is simple:
to give numerical meaning to as much as possible of classical abstract analysis” (From the
preface; emphasis added)
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within a rigid axiomatic framework, would bloc beforehand such unforesee-
able developments, including re-proving theorems by different methods, as
mathematicians often do17 .

Let me illustrate the interplay of ideas and methods from diverse branches
of mathematics in the development of real and complex analysis as exempli-
fied in the textbook of (Rudin 1974)18 . Thus, throughout the book one finds
significant employment of concepts and methods coming from such diverse
fields of mathematics as general topology, linear algebra, homotopy theory,
group theory (in order to define modular functions), and of course, standard
set-theoretical constructions, including an appeal to Hausdorff’s Maximality
Principle in two proofs19 . In an appendix, Rudin cites the Axiom of Choice
(AC) and proves that it implies the Hausdorff Maximality Principle (and
mentions that it is equivalent to it). This is the only place where an axiom is
cited in Rudin’s book. But, here is the crux: AC is not an axiom of real and
complex analysis! Such a use of set-theoretical tools is a royal example of a
“transfer of technologies”, typical of mathematicians’ proof techniques.

Number theory, as a major branch of mainstream mathematics, is another
example of a non-axiomatized theory worth mentioning20 . Here, as in the
previous example of real and complex analysis, the use in proofs of a multi-
tude of concepts and methods that were developed in other areas of mathe-
matics block beforehand any attempt of axiomatization. (And what purpose
could that even serve even if it were feasible?) Elsewhere, with a tinge of hu-
mor, the following makes the point: “As a matter of fact, the Queen of math-
ematics — as Gauss called number theory — is rather promiscuous, opening
her arms to algebraic, analytic, topological, geometrical, proof-theoretical,
numerical, model-theoretic, combinatorial, and come as they may types of

17 See the general discussion in (Dawson 2006).

18 The book covers the material aiming at a one-year course on an advanced senor or
first-year graduate level.

19 The Hausdorff Maximality Principle asserts that every nonempty partially ordered set
P contains a maximal totally ordered subset. Rudin uses it to prove that every orthonormal
set B in a Hilbert space H is contained in a maximal orthonormal set in H (Theorem 4.22,
p. 92). Also, the Principle is used to prove the Hahn-Banach Theorem (p. 111) that says
the following: If M is a subspace of a normed linear space X and if f is a bounded lin-
ear functional on M, then f can be extended to a bounded linear functional F on M so that
|| F ||=|| f ||.

20 It is important to distinguish number theory, as the term is understood by the general
mathematical community, from Peano Arithmetic (PA) that is a topic of study in mathemati-
cal logic and is discussed, for example, in the chapter on undecidability by (Enderton 2001)
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proofs and methodologies. Categorically, the Queen disdains being degraded
to the rank of a recursively axiomatisable theory. Noblesse oblige! ”21 .

So far my arguments for seeing where axioms do not come in. Now let’s
see where axioms do come in. First, there are types of axioms that have been
called ‘structural axioms’ or, by my preferred terms, ‘definitional axioms’, or
‘frame axioms’, for they define and fix the frame of a concept or of a theory.
Typical examples of such axioms are those that tell us what is meant by terms
like ‘vector space’, ‘metric space’, ‘topological space’, ‘group’, ‘partially
ordered set’, ‘Hilbert space’, ‘Banach space’, ‘functional’, ‘normed linear
space’, and so on. Thus, for example, in the book by Rudin cited above,
where these terms and similar ones are frequently used, they are introduced
and defined by sets of axioms. For the sake of a concrete illustration, the
axioms for a topological space are recalled in the following footnote22 ; they
tell us what a topological space is.

Let us turn now to the classical conception of axioms that has it origin
in the Hellenic culture. It is generally conceded by historians of mathemat-
ics that we owe to the Greeks the organization of mathematical knowledge
on a deductive basis, having its roots in the teachings of Plato (c. 428–347
B.C.E.). Thus, (Kline 1972) writes:

Plato did affirm the desirability of a deductive organization of knowl-
edge. The task of science was to discover the structure of (ideal)
knowledge and to give it an articulation in a deductive system. Plato
was the first to systematize the rules of rigorous demonstrations and
his followers are supposed to have arranged theorems in logical or-
der. . . Whether or not mathematics was already organized on the
basis of explicit axioms by the Platonists, there is no question that
deductive proof from some accepted principles was required from a
least Plato’s time onward. (p. 45, emphasis added).

The organization of essentially all mathematical knowledge accumulated by
the Greeks down to the third century B.C.E. received its classical organiza-
tion in the Elements of Euclid. “It is quite certain — writes Kline (op. cit.)
— that Euclid lived in Alexandria about 300 B.C. and trained students there,

21 Citation from (Rav 1999, pp. 16–17), where other examples of non-axiomatized theo-
ries are discussed.

22 A topological space is a set X and a family of subsets Ω called the open sets of the
space such that the following axioms are satisfied:
1. ∅ ∈ Ω and X ∈ Ω.
2. If O1 ∈ Ω and O2 ∈ Ω, then O1 ∩ O2 ∈ Ω.
3. If Oi ∈ Ω for every i ∈ I , then

⋃
{Oi : i ∈ I} ∈ Ω.
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though his education was probably acquired in Plato’s Academy. . . The par-
ticular choice of axioms, the arrangement of the theorems, and some proofs
are his as are the polish and the rigor of demonstrations. The form of pre-
sentation of proof has already been noted in Autolycus and was pretty surely
used by others who preceded Euclid. Despite all he may have taken from
earlier texts and other sources, Euclid was unquestionably a great mathe-
matician”. (pp. 56–57).

Be that as it may, what are we to make of the oft-repeated claim that Eu-
clid’s Elements have always served as the perfect paradigm of a mathemat-
ical theory based on explicitly stated axioms and definitions from which all
theorems are deductively established in accordance with accepted canons of
logic?

Some aspects of Euclid’s Elements were already criticized in antiquity.
But perhaps the most severe criticism in modern days comes from the pen of
the algebraic geometer and historian of mathematics Abraham Seidenberg,
who in his 1975 article with the challenging title ‘Did Euclid’s Elements,
Book I, develop geometry axiomatically?’ wrote:

Historians are fond of repeating that Euclid developed geometry on
an axiomatic basis, but the wonder is that any mathematician who
has looked at The Elements would agree with this. Anyone who
looks at The Elements with modern hindsight sees that something is
wrong; but we have all been told in our childhood that Euclid had
the axiomatic method, so the usual reaction is to speak of ‘gaps’.
This word is hardly right, though, if there is nothing there in the
first place.

Could it be that, by insisting on the axiomatic method, we are
viewing The Elements from a false perspective and seeing its ac-
complishments in a bad light? This is precisely what I intends to
prove.

The Greeks of Euclid’s time had the axiomatic method; Aristo-
tle’s description of it can be considered a close approximation to
our own. Or better yet, one may consider Eudoxus’ theory of mag-
nitude as presented in Book V of The Elements: the procedure there
disclosed is pretty much in accordance with our view of what an
axiomatic development should be. It is known, however, that The
Elements is a compilation of uneven quality, so that it is unwar-
ranted to assume that Book I is written from the same point of view
as Book V. (pp. 263–4)
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The key point of Seidenberg’s critique is that Book I is not an axiomatic
basis for the theorems in Euclid but for a theory of geometric constructions.

In the summary (p. 294), Seidenberg recapitulates this point: “The con-
struction postulates are bona fide and axioms in a sense: they serve to con-
trol the straightedge and compass constructions. But they are not axioms for
the development of geometry and indeed, tell us nothing about space, except
incidentally that there is a line on any two points”.

The question related to the conceivable independence of Euclid’s fifth pos-
tulate (now referred to as the parallel axiom) has lead to the invention of non-
Euclidean geometries, resulting in a renewed concern with the axiomatic
method in geometry and the emergence of a novel and far reaching view
in the work of Hilbert. But let us look first at one of Hilbert’s forerunners
conception of the axiomatic founding of geometry, namely that of Pasch.

Seidenberg, in the article cited above, writes:

The axiomatic method as understood today was initiated by Moritz
Pasch23 . This method consists of isolating from a given study cer-
tain notions that are left undefined and are expressly declared to be
such, (the so-called Kernbegriffe in Pasch’s terminology of 1926),
and certain theorems that are accepted without proof (the so-called
Kernsätze, i.e., axioms); from this initial fund of notions and theo-
rems, the other notions are to be defined and theorems proved using
only logical relations, without appeal to experience or intuitions.
The resulting theory takes the form of purely logical relations be-
tween undefined concepts24 . (p. 292)

However, Pasch says nothing further as to what ought to be understood by
‘logical relations’.

The foundations of geometry occupied too the Italian school, with no-
table contributions by Peano (1888) and, more significantly by Peano (1889),

23 cf. Pasch (1882/1926).

24 In relation to the quoted passage, the referee has observed that “Pasch was very explicit
that his ‘points’ and ‘lines’ are not undefined terms, but terms that are grounded in experience
(1882, Introduction). While Pasch does talk about deductions being valid regardless of the
meanings of the terms, he clearly has an empiricist view of geometry”.
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where Peano has put systematically to use the symbolism of the logical lan-
guage that he had invented25 . Other notable contributions came from the pen
of Veronese (1891) and Peano’s pupil Mario Pieri (1894).

Let us turn now to Hilbert. Soon after Hilbert completed his famous sys-
tematization of algebraic number theory, published as ‘Die Theorie der al-
gebraischen Zahlkörper’ in 1897, known as the ‘Zahlbericht’, he gave at
Göttingen a series of lectures on projective geometry and the foundations
of Euclidean geometry. These lectures resulted in the publication of the lit-
tle booklet entitled ‘Die Grundlagen der Geometrie’ (Hilbert 1899) that was
translated into English by E.J. Townsend as ‘The Foundations of Geometry’
(Hilbert 1902).26

One can hardly sufficiently stress the novelty and impact of Hilbert’s me-
thodological conception as set forth in the ‘Grundlagen’ of 1899, a work that
went subsequently through numerous editions. Among the key innovations
in Hilbert’s axiomatization of geometry in the ‘Grundlagen’ are the follow-
ing:

• Points, straight lines, and planes are not defined materially, as in
Euclid and as Frege would have wanted it to be as claimed by him in
the exchange of letters with Hilbert27 .

• Nor is it quite correct, as some have asserted, that Hilbert’s axioms
are an implicit definition à la Gergonne28 of the relevant geometric
objects, since for Hilbert it’s their mutual relations that matter and
not the definition of individual geometric terms.

25 Kennedy (1972) has claimed, with considerable justification, that Peano’s 1889 axiom-
atization of geometry and his well-known axiomatization of arithmetic, published in the same
year, establishes Peano as the father of modern axiomatics. However, the novelty of his sym-
bolic notation was an obstacle at that time to a due recognition of Peano’s axiomatizations.
Thus, Poincaré referred mockingly to Peano’s symbolic notation as ‘peanese’. The important
place of Peano as one of the fathers of the logicist foundation of arithmetic is now recognized
in our speaking of Peano’s axioms of arithmetic as Peano arithmetic.

26 For the various stages and lectures given by Hilbert, leading to the ‘Grundlagen’ of
1899, see Toepell (1986). Hilbert’s lectures on projective and Euclidean geometry prior to
1899 were published by Hallett and Major (2004). For an overall historical and philosophical
perspective, cf. Cavaillès (1938; 1981)).

27 cf. Hilbert (1971; 1899).
For a defense of Frege’s views in the Frege-Hilbert controversy, see Blanchette (2007).

28 See Gergonne (1818/19).
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• Eudoxus’ theory of magnitudes is reformulated as an axiomatization
of the real numbers, including an explicit formulation of the axiom
of Archimedes, thus leading to a distinction between Archimedean
and non-Archimedean number systems.

• Metamathematical considerations are explicitly addressed, such as a
proof of the consistency of the various axioms relative to coordinate
geometry, and proof of their mutual independence.

There is an extensive discussion by Bernays in (Edwards 1967, vol. 3, pp. 497
–498) of Hilbert’s axiomatization of geometry, part of his general article
about Hilbert. I’ll just quote here a short extract from it:

A main feature of Hilbert’s axiomatization of geometry is that the
axiomatic method is presented and practiced in the spirit of the ab-
stract conception of mathematics that arose at the end of the nine-
teenth century and which has been generally adopted in modern
mathematics. It consists in abstracting from the intuitive meaning
of the terms for the kinds of primitive objects (individuals) and for
the fundamental relations, and in understanding the assertions (the-
orems) of the axiomatized theory in a hypothetical sense, that is,
as holding for any interpretation or determination of the kinds of
individuals and for the fundamental relations for which the axioms
are satisfied. Thus, an axiom system is not regarded as a system
of statements about a subject matter but as a system of conditions
for what might be called a relational structure. Such a relational
structure is taken as the immediate object of an axiomatic theory.
(Emphasis added)

Hilbert’s relational conception, or as we would say now, model-theoretic
view, as embodied in his axiomatization of geometry, was strikingly ex-
pressed in a discussion he had with Schoenflies and Kötter at a railroad
waiting room in Berlin, when Hilbert said, as related by Blumenthal (1935,
p. 403): “One should always be able to say, instead of ‘points, lines, and
planes’, ‘tables, chairs, and beer mugs”’29 . Lenhard and Otte (2002) have
discussed from a wide-ranging historical and philosophical perspective the
underpinning of Hilbert’s model-theoretic interpretation of geometric ax-
ioms, as compared to the logical-analytic interpretation by Pasch.

29 Original formulation: “Man muß jederzeit an Stelle von ‘Punkte, Geraden, und Ebenen’
‘Tische, Stühle, Bierseidel’ sagen können”.
Further interesting points in the comparison of Pasch’s versus Hilbert’s axiomatization of
geometry are brought out by Contro (1975/76).
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It was quite a natural step for Hilbert, after his foundational work on ge-
ometry, to go one step further and formulate a foundational view on all of
mathematics based on the axiomatic method, with particular attention to the
compatibility — read: consistency — of the axioms. Thus, at his famous
lecture entitled ‘Mathematical Problems’ delivered before the International
Congress of Mathematicians at Paris in 1900, Hilbert said:

When we are engaged in investigating the foundations of a science,
we must set up a system of axioms which contains an exact and
complete description of the relations subsisting between the elemen-
tary ideas of that science. The axioms so set up are at the same time
the definitions of those elementary ideas ; and no statement within
the realm of the science whose foundations we are testing is held to
be correct unless it can be derived from those axioms by means of a
finite number of logical steps. (Italics added).

Hilbert then raises the question of the independence of the axioms and then
says further:

But above all I wish to designate the following as the must impor-
tant among the numerous questions which can be asked with respect
to the axioms: To prove that they are not contradictory, that is, that
a finite number of logical steps based upon them can never leas to
contradictory results (emphasis in original; citations from Hilbert
(1976).

Notice in the above passages the various ingredients in Hilbert’s view about
the function of axioms: Their primary function is foundational, that is, they
describe the relations that are the core of a given (mathematical) theory. And
then in a subsidiary way, axioms have a definitional role and equally, serve
a logical-deductive function. At this stage in 1900, Hilbert only speaks in
generality about the need of using “a finite number of logical steps” without
saying anything directly about the logical steps per se. But four years later,
in his Heidelberg lecture (see Hilbert 1904)), a key point is stressed in the
following statement:

Arithmetic is often considered to be part of logic, and the traditional
fundamental logical notions are usually presupposed when it is a
question of establishing a foundation of arithmetic. If we observe
attentively, however, we realize that in the traditional exposition of
the laws of logic certain fundamental arithmetic notions are already
used, for example, the notion of set, and to some extent, also that
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of number. Thus we find ourselves turning in a circle, and that is
why a partly simultaneous development of the laws of logic and of
arithmetic is required if paradoxes are to be avoided. (Cited from
the translation in (Hilbert 1967), p. 131; emphasis added)

When we come to Hilbert’s lecture at Zurich in 1917, later published as
‘Axiomatisches Denken’ (Hilbert 1918) (‘Axiomatic thinking’), the founda-
tional program — with its ultimate aim to prove the consistency of arith-
metic — is now spelled out with its core elements. Notably among them
is the demand to axiomatize, and, within the axiomatic framework, treating
mathematical proofs as objects for mathematical investigations. Here we
find the first sketch of the method of metamathematics, to be subsequently
fully elaborated. The article closes with what can be called a Gloria to the
axiomatic method:

All that can ever be an object of scientific thinking, as soon as it
is ripe for the formation of a theory, falls within the purview of
the axiomatic method, and thereby indirectly within the domain of
mathematics. In the symbols of the axiomatic method, mathematics
is called upon to a leading role in science. (p. 415; my translation).

Curiously, in view of the crucial role that Hilbert attributes here to the ax-
iomatic method, the gulf between Hilbert’s later meta-theoretical conception
and his own actual earlier proof practices is rather striking. For nowhere,
for instance, in his number-theoretical works that are reprinted in vol. I of
his collected works did Hilbert derive his theorems from any explicitly stated
axioms and with reference to rules of logical deduction. However, in view
of the so-called foundation crisis with the discovery of paradoxes in intu-
itive set theory, not to speak of the challenge by Brouwer of the validity of
classical analysis, Hilbert’s main occupation eventually turned completely to
foundational questions, with the ultimate aim to put the foundational crisis
to rest once and for all by his ensuing meta-mathematical method. Here, the
axiomatic method is indispensable. For once mathematical theories are the
very objects of metamathematical studies, one can only investigate axiom-
atized theories as to their consistency, relative strength, and the like. Nor
could model theory have indeed a subject matter unless one studies models
of axiomatized theories. But be it noticed that when logicians study axioma-
tized theories, the theorems they prove are not derived as such from axioms.
Logicians prove theorems in the same manner as, for example, analysts de-
velop methods in their study of differential equations. The emphasis here,
as elsewhere in mathematical research, is on solving problems, to develop
methods and concepts, and to argue ‘logically’ — informally, in the sense
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of Aberdein (2007) — in order to establish that the methods introduced do
indeed accomplish that which was required to obtain.30

To conclude, as Cellucci has maintained, the axiomatic method is not the
mathematical method, pace Hilbert. But, as Oliveri has argued, we do need
axioms; it only depends on what type of axioms and where and when do
they come in. Certainly, in the study of mathematical theories, when the
theories themselves are the object of an investigation, unless such theories
are axiomatized, these studies cannot even get off the ground. However, in
the day-to-day actual proof practices of mathematicians, axioms are hardly
ever evoked or even mentioned.
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