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DEONTIC ALGEBRAS OF ACTIONS

THIERRY LUCAS†

In the present paper, we continue to explore the structure of actions in the
line of our papers [VWA] and [AA]. In the first of those papers, we started
from some of von Wright’s ideas to isolate a concept which we present again
here under the name of ‘explicit algebra of actions’ : one of the fundamental
intuitions is to consider an action as a coherent mapping from a set of con-
ditions to results ; conditions and results are members of boolean algebras
B and C (representing states of the world) respectively and one looks at the
very rich structure of coherent mappings from finite parts of B to C. In the
second paper, we took a more abstract stance and presented an axiomatic
version of actions under the name of ‘support algebras with truth-value sup-
ports’ or variants of it ; the idea was there to have a unisort version of explicit
algebras of actions, embedding, so to speak, the algebraB of conditions into
the algebra of actions.

The aim of the present paper is to go a few steps further into the study of
actions. In the study of explicit algebras of actions, we add now the consid-
eration of two embeddings and of their adjoints : one embedding represents
a condition as the support of a 0-valued action ; its adjoint is the functor
which associates to an action the union of the domain of that action ; the
other embedding represents a result as the everywhere defined action having
that result ; for complex actions in general, associating various results to var-
ious conditions, there are two natural adjoints to that functor : the first one
forms the conjunction of the results; the second one forms the disjunction of
the results.

In addition to those two embeddings and their adjoints, we add the study of
the description of an action, something easily accounted for when the algebra
of conditionsB and the algebra of resultsC coincide. The idea is to describe
the action α by associating with it an element Φα of the common algebra of
conditions and results saying that ‘such and such a condition gives such and
such a result’, Φα =

∧
σ∈Σ

(σ → α(σ)), where Σ is the set of conditions of
α. Actions and their descriptions should not be confused ; roughly speaking,
the difference is that α is a mapping, while Φα is a formula.

†Emeritus Professor at Université catholique de Louvain.
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104 THIERRY LUCAS

The last step in our study consists in admitting that the common algebra of
conditions and results is endowed with a necessity operator � obeying stan-
dard conditions ; we then define the obligation Oα to do α as the necessity
of Φα, Oα = �Φα, formalizing the idea that the obligation to do an action
α is the necessity that such and such a condition gives such and such a result
associated to it by α.

The above presentation is given in some details in the first part of the
present paper, avoiding however most proofs, which in general consist of
easy computations. In the second part of the paper, we move towards an
abstract version of explicit algebras of actions : in the line of [AA], they are
support algebras with internal mappings derived from the three adjunctions
given above ; truth-value supports may be considered and descriptions may
be added ; if a reasonable necessity operator is present, there is also a quite
acceptable concept of obligation internalizing the Oα described above.

We have already sketched in [VWA] and in [AA] what we think are the
benefits of our approach. The present paper is best considered as a deepen-
ing of the question, but it seems to us that it confirms some of the interesting
features of the approach, revealing the ambiguity of some concepts and giv-
ing the instruments to make the necessary distinctions, for example : the
conjunction of actions has at least two different senses ; the description of an
action has to be distinguished from the action ; necessity applies to descrip-
tions of actions, while obligation applies to actions ; obligation distributes
over the conjunction of actions in one sense of the conjunction, but not in
another sense ; etc.

A final word to apologize for repeating the main definitions of [VWA]
and [AA] : we thought that the reader would appreciate a relatively self-
contained paper, avoiding him constant reference to our preceding papers.

Part 1. Explicit algebras of actions with additional structure

Section 1.1. Explicit algebras of actions

Our starting point is that an action α should be considered as a mapping
defined on a set Σ of conditions and associating to each condition σ ∈ Σ
a certain result α(σ). Conditions and results are states of the world and in
the algebraic approach adopted in [AA] and pursued here, conditions live
in a boolean algebra B, the boolean algebra of conditions, and results live
in a boolean algebra C, the boolean algebra of results ; B and C need not
be identical at this moment of our study and it may be conceptually useful
to distinguish them. We repeat now the basic definitions of fundamental
operations on actions and of explicit algebras. We remind the reader that we
distinguish a ‘long’ and a ‘short’ conjunction ; roughly speaking, the long
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DEONTIC ALGEBRAS OF ACTIONS 105

conjunction is defined on the union of the domains of the component actions,
while the short conjunction is defined on the intersection of those domains.
We make a similar distinction for disjunction. Let us also insist on the fact
that negation has many different meanings, the most important ones being
expressed here below by ¬ and ∼. For more comments, we refer the reader
to our paper [AA].

Definition 1.1.1 :
(1) An action from B to C is a mapping α : domα −→ C, where domα ⊆
B, domα is finite and α satisfies a coherence condition : for all σ, σ ′ ∈
domα, if σ ∧ σ′ 6= 0, then α(σ) = α(σ′).
(2) Actions are pre-ordered by the relation≤ defined by : α ≤ β iff

∨
domβ

≤
∨
domα and for all σ ∈ domα, π ∈ domβ, if σ ∧ π 6= 0, then α(σ) ≤

β(π).
(3) The pre-ordering ≤ induces an equivalence ≈ of actions characterized
by : α ≈ β iff

∨
domα =

∨
domβ and for all σ ∈ domα, π ∈ domβ, if

σ ∧ π 6= 0, then α(σ) = β(π).
(4) The empty action 1 is defined by : dom(1) = ∅ and 1 is the empty
mapping from dom(1) to C.
(5) The everywhere nul or zero action 0 is defined by : dom(0) = {1B} (1B

representing the greatest element of B) and 0(1B) = 0C (0C representing
the smallest element of C).
(6) Operations ·, − and + on finite subsets Σ and Π of B are defined by :
Σ ·Π = {σ ∧ π | σ ∈ Σ, π ∈ Π, σ ∧ π 6= 0}
−Σ = {¬

∨
Σ}

Σ + Π = (Σ ·Π) ∪ (−Σ ·Π) ∪ (Σ · −Π).
(7) The conjunction α ∧ β of actions α and β is defined by : dom(α ∧ β) =
domα+domβ and for all ω ∈ dom(α∧β), (α∧β)(ω) is defined according
to the form of the domain by three cases :
(a) if ω ∈ domα·domβ, then ω = σ∧π for some σ ∈ domα and π ∈ domβ
and one lets (α ∧ β)(ω) = α(σ) ∧ β(π) ;
(b) if ω ∈ −domα · domβ, then ω = ¬

∨
domα ∧ π for some π ∈ domβ

and one lets (α ∧ β)(ω) = β(π) ;
(c) if ω ∈ domα · −domβ, then ω = σ ∧ ¬

∨
domβ for some σ ∈ domα

and one lets (α ∧ β)(ω) = α(σ).
(8) The disjunction α ∨ β of actions α and β is defined by : dom(α ∨ β) =
domα · domβ and for all ω ∈ dom(α ∨ β), ω = σ ∧ π for some σ ∈ domα
and π ∈ domβ and one lets (α ∨ β)(ω) = α(σ) ∨ β(π).
(9) The 0-cosupportC0α of action α is defined by : dom(C0α) = −domα =
{¬

∨
domα} and (C0α)(¬

∨
domα) = 0C .

(10) The negation ¬α of action α is defined by : dom(¬α) = domα and for
all σ ∈ domα, (¬α)(σ) = ¬(α(σ)), the latter negation being taken in C.
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106 THIERRY LUCAS

We recall that the equivalence relation≈ is compatible with the operations
¬, ∧, ∨ and C0, a fact which allows us to work with the quotient structure,
or less formally to identify equivalent actions, writing α = β instead of the
more formal α ≈ β and speak accordingly of the ordering ≤.

The set of all actions from B to C equipped with the distinguished ele-
ments 0, 1, with the operations ¬, ∧, ∨, C0 and with the relation ≤ will be
referred to as the explicit algebra of all actions from B to C. For further
reference and comparison, we give a formal definition of the more general
notion of ‘explicit algebra of actions’ :

Definition 1.1.2 :
An explicit algebra of actions A is a triple < B,A,C > where B and C are
Boolean algebras andA is a< 0, 1,¬,∧,∨, C0 >-subalgebra of the explicit
algebra of all actions from B to C.

Note that in explicit algebras of actions, interesting derived operations may
be obtained by duality, via ¬ : α ≤∗ β iff ¬β ≤ ¬α, α ∧∗ β = ¬(¬α ∨ ¬β)
(the short conjunction, defined on domα · domβ), α ∨∗ β = ¬(¬α ∧ ¬β)
(the long disjunction, defined on domα+ domβ), 1∗ = ¬0 (the everywhere
unit action), C1α = ¬C0¬α = ¬C0α (the 1-cosupport of α). Note in
particular that ¬1 = 1, so that the empty action is auto-dual. Other derived
notions are given by : S0α = C0C0α (the 0-support of α) and its dual
S1α = ¬S0¬α = ¬S0α (the 1-support of α), γ \ β = C0β ∧ (γ ∧∗ ¬β)
(the difference of γ and β) and its dual β →∗ γ = C1β ∨

∗ (¬β ∨ γ) (the co-
implication from β to γ). An action α is total when S0α = 0 or equivalently
C0α = 1.

On the other hand, there are very fundamental operations on actions which
make sense in explicit algebras of actions, but do not seem to be derivable
from the preceding operations. They will not play an important role in this
paper, except when we deal with descriptions of actions where they find a
nice a posteriori justification.

Definition 1.1.3 :
(1) The 0-value 0-support of α, S=0

0
α, is defined by dom(S=0

0
α) = {σ | σ ∈

domα, α(σ) = 0} and for σ in that domain, (S=0
0
α)(σ) = 0.

(2) The complex negation of α, ∼α, is defined by dom(∼α) = −Σ ∪ Σ 6=0,
where Σ = dom(α) and Σ 6=0 = {σ | σ ∈ domα, α(σ) 6= 0} ; for σ ∈ −Σ,
i.e. σ = ¬

∨
Σ, one lets (∼α)(σ) = 0 ; for σ ∈ Σ 6=0, one lets (∼α)(σ) =

¬(α(σ)).
(3) The implication from β to γ, β → γ, is defined by dom(β → γ) =
(−Π · Ξ) ∪ (Π/Ξ), where Π = domβ, Ξ = domγ and Π/Ξ = {π ∧ ξ |
π ∈ Π, ξ ∈ Ξ, π ∧ ξ 6= 0 and β(π) 6≤ γ(ξ)} ; for ω ∈ −Π · Ξ, one
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DEONTIC ALGEBRAS OF ACTIONS 107

has ω = ¬
∨

Π ∧ ξ for some ξ ∈ Ξ and one lets (β → γ)(ω) = γ(ξ) ;
for ω ∈ Π/Ξ, one has ω = π ∧ ξ for some π ∈ Π, ξ ∈ Ξ and one lets
(β → γ)(ω) = β(π)→ γ(ξ).

Section 1.2. Embedding conditions as actions

Explicit algebras of actions are described in detail in [AA] but their study, be
it explicit or axiomatic under the name of “support algebras”, is essentially
limited to the< 0, 1,¬,∧,∨, C0 >-structure and to its enrichment by opera-
tions such as S=0

0
, ∼, or→. We want to consider here a yet richer structure,

induced by natural embeddings from B to A and from C to A and we make
here the general proviso that our explicit algebras of actions are stable under
the new operations.

Since an action α is a mapping from domα ⊆ B into C, there is a natural
way of representing elements φ of B as mappings

←−
φ in A : take φ as the

unique element of dom(
←−
φ ) and associate 0C with φ. Conversely, given an

action α, there is a natural way of associating an elementCond(α) ofB with
it by taking the disjunction of the finite domain of α. Although a bit formal,
those representations find some intuitive content in expressions like ‘avoid
situation φ’ (for

←−
φ ) and ‘here are the conditions of action α’ (for Condα).

Definition 1.2.1 :
(1) For φ in B,

←−
φ is the action defined by dom

←−
φ = {φ} and

←−
φ (φ) = 0C .

(2) For α ∈ A, Condα =
∨
domα.

Here are the basic properties of
←−
( ) and Cond expressed with (a moderate

use of) the terminology of functors :

Proposition 1.2.2 :
(1)
←−
( ) is contravariant : if φ ≤ ψ, then

←−
ψ ≤

←−
φ .

(2) Cond is contravariant : if α ≤ β, then Condβ ≤ Condα.
(3)
←−
( ) and Cond are adjoint for the relevant orderings :

←−
φ ≤ α iff φ ≥

Condα.
(4)
←−
( ) is faithful : if

←−
φ =

←−
ψ , then φ = ψ.

(5) Cond is faithful on S0-supports : if Cond(S0α) = Cond(S0β), then
S0α = S0β.
(6) Cond is determined by S0-supports : Cond(α) = Cond(S0α).
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108 THIERRY LUCAS

It is routine work to deduce from those properties all the expected prop-
erties of

←−
( ) and Cond. We give them here in the natural way of proving

things :

Proposition 1.2.3 :
(1) φ ≥ Cond

←−
φ ;
←−−−
φ ∧ ψ =

←−
φ ∨
←−
ψ ;
←−
1B = 0.

(2)
←−−−−
Condα ≤ α ; Cond(α ∧ β) = Condα ∨ Condβ ; Cond1 = 0B .

(3) If
←−
φ ≤

←−
ψ , then ψ ≤ φ ; φ ≤ Cond

←−
φ .

(4) If CondS0α ≤ CondS0β, then S0α ≥ S0β.
(5) Cond

←−
φ = φ ; S0

←−
φ =

←−
φ ;
←−
0B = 1 ;

←−−−
φ ∨ ψ =

←−
φ ∧
←−
ψ ;
←−
¬φ = C0

←−
φ .

(6)
←−−−−−−
CondS0α = S0α ; CondS0α = Condα ; Cond0 = 1B ; Cond(α ∨

β) = Condα ∧ Condβ ; CondC0α = ¬Condα.
(7)
←−−−−
Condα = S0α.

To summarize many of those properties, we can state that
←−
( ) andCond es-

tablish a pair of isomorphisms between the structure< B, 0B, 1B,∧,∨,¬ >
and the structure < S0A, 1, 0,∨,∧, C0 >, where S0A = {α | S0α = α}.
We can also interpret property (7) as saying that the triple induced by the
adjunction reduces to S0.

Section 1.3. Embedding results as actions

We now turn to the natural way of embedding C into A : associate with
φ ∈ C the action

−→
φ which is everywhere defined and gives the result

φ, an action which finds its intuitive content in an expression like ‘in any
case, obtain φ’. In the other direction, given an action α, which in gen-
eral assigns different results to different conditions, there are two natural
ways of associating one result ; the first one, to be denoted by Res∧α,
is the conjunction of the different results of α ; the other one, to be de-
noted by Res∨α, is the disjunction of the different results of α. Res∧α
represents so to speak the strongest result, the result one has to obtain to
be sure to perform the action in every circumstance ; of course, this could
easily lead to impossible actions, should for example α be described by
domα = {σ1, σ2}, σ1∧σ2 = 0, σ1 6= 0, σ2 6= 0, α(σ1) = ¬α(σ2), in which
case Res∧α = α(σ1) ∧ α(σ2) = 0. Dually, Res∨α represents the weakest
result ; obtaining the disjunction of all transformations recommended in all
circumstances by α is certainly implied by performing α and represent the
‘laziest’ way of approximating α ; it could also amount in many circum-
stances to obtaining nothing new ; take for example the same α as before, in
which case Res∨α = α(σ1) ∨ α(σ2) = 1. A more significant case is when
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DEONTIC ALGEBRAS OF ACTIONS 109

α is constant (same result, whatever the condition) ; disregarding the case of
the empty action, Res∧α and Res∨α then coincide with the unique result of
α (see section 1.4 for a more thorough discussion).

Here are the precise definitions :

Definition 1.3.1 :
(1) For φ ∈ C,

−→
φ is the action defined by dom

−→
φ = {1B} and

−→
φ (1B) = φ.

(2) For α ∈ A, Res∧α =
∧

σ∈domα
α(σ).

(3) For α ∈ A, Res∨α =
∨

σ∈domα
α(σ).

The basic properties of
−→
( ), Res∧ and Res∨ are given in the following

proposition.

Proposition 1.3.2 :
(1)
−→
( ) is covariant : if φ ≤ ψ, then

−→
φ ≤

−→
ψ .

(2) Res∧ is covariant : if α ≤ β, then Res∧α ≤ Res∧β.
(3)
−→
( ) and Res∧ are left and right adjoints for the relevant orderings :

−→
φ ≤

α iff φ ≤ Res∧α.
(4)
−→
( ) is faithful : if

−→
φ =

−→
ψ , then φ = ψ.

(5) ¬
−→
φ =

−→
¬φ.

(6) If α 6= 1, then Res∧(
−→
φ ∨ S0α) ≤ φ.

(7) Res∨α = ¬Res∧¬α.

To interpret property (6), remember that β ∨ S0α works as a restriction of
β to the domain of α and observe that for α 6= 1, the equality Res∧(

−→
φ ∨

S0α) = φ easily follows ; property (6) then means not only that Res∧ ap-
plied to

−→
φ gives back φ, but also that the same is true of every non-empty

restriction of
−→
φ . Property (7) expresses that Res∨ is the dual (Res∧)∗

of Res∧, in a sense given by ¬ and recalled in section 1.1 : α ≤∗ β iff
¬β ≤ ¬α, α∧∗ β = ¬(¬α∨¬β), etc. It follows that all properties of Res∧

may be dualized to give properties of Res∨. For example, Res∨ and
−→
φ are

left and right adjoints for the relevant orderings : Res∨α ≤ φ iff α ≤∗ −→φ .
Here are properties routinely deduced from the basic ones :

Proposition 1.3.3 :
(1) φ ≤ Res∧

−→
φ ;
−−−→
φ ∨ ψ =

−→
φ ∨
−→
ψ ;
−→
0B = 0.

(2)
−−−−→
Res∧α ≤ α ; Res∧(α ∧ β) = Res∧α ∧Res∧β ; Res∧1 = 1C .

(3) If
−→
φ ≤

−→
ψ , then φ ≤ ψ ; Res∧

−→
φ ≤ φ ; Res∧0 = 0C .
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110 THIERRY LUCAS

(4)
−−−→
φ ∧ ψ =

−→
φ ∧
−→
ψ ;
−→
1C = 1∗ ; S0

−→
φ = 0 ; C0

−→
φ = 1 ; Res∧1∗ = 1C ;

Res∧S1α = 1C .
(5) If

−→
φ ≤ S0α 6= 1, then

−→
φ = 0 or, equivalently, φ = 0C ; if α 6= 1, then

Res∧α ≤ Res∨α ; if α 6= 1, then Res∧S0α = 0C .

Section 1.4. Approximations of actions

The structure of triple induced by the embedding
−→
( ) and its two adjoints is

now less trivial than in the case of the embedding
←−
( ) and it does not reduce

to already known operations. Here are the definitions.

Definition 1.4.1 :
(1) α∧ =

−−−−→
Res∧α.

(2) α∨ = ¬(¬α)∧.

Definition (2) gives α∨ as the dual of α∧, and it is clear that α∨ =
−−−−→
Res∨α.

Actions α∧ and α∨ are easily described : dom(α∧) = dom(α∨) = {1B},
α∧(1B) =

∧
σ∈domα

α(σ) and α∨(1B) =
∨

σ∈domα
α(σ). Their interpreta-

tion is clear : α∧ is the best approximation of α by total actions from below
for the ordering ≤ and dually, α∨ is the best approximation of α from above
for the ordering ≤∗. Intuitively speaking, α∧ and α∨ underly such recom-
mendations as ‘in any case, do everything recommended by α’ and ‘in any
case, do at least something recommended by α’.

Basic properties are given in the following proposition :

Proposition 1.4.2 :
(1) α∧ ≤ α ; if α ≤ β, then α∧ ≤ β∧ ; α∧ ∧ β∧ ≤ (α ∧ β)∧ ; α∧ ≤ α∧∧.
(2) S0α

∧ = 0 ; if α 6= 1, then (S0α)∧ = 0 ; for α = 1, (S0α)∧ = 1∧ = 1∗.

The following properties are routinely derived :

Proposition 1.4.3 :
(1) (α ∧ β)∧ = α∧ ∧ β∧ ; α∧∧ = α∧.
(2) 0∧ = 0 ; 1∧ = 1∗ ; (1∗)∧ = 1∗.
(3) (C1α)∧ = 1∗ ; (S1α)∧ = 1∗.
(4) If C0α 6= 1 (i.e. S0α 6= 0), then (C0α)∧ = 0 ; if C0α = 1 (i.e.
S0α = 0), then (C1α)∧ = 1∗ ; if α 6= 1, then (S0α)∧ = 0 ; if α = 1, then
(S0α)∧ = (S01)

∧ = 1∗.
(5) C0α

∧ = 1 ; C1α
∧ = 1 ; S1α

∧ = 1∗.
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DEONTIC ALGEBRAS OF ACTIONS 111

As already hinted at in section 1.3, an interesting point in considering the
functors Res∧, Res∨, ( )∧ and ( )∨ is that they allow us to recover constant
actions and to characterize them in different ways. Looking back at the basic
situation with actions as functions, constant actions may be defined as those
which give the same result whatever the condition :

Definition 1.4.4 :
The action α is constant iff for all σ, σ′ ∈ domα, α(σ) = α(σ′).

The empty action 1 is constant and the other constant actions may be de-
scribed as defined on a unique condition and associating with it a unique
result ; remember indeed that our actions are defined up to the equivalence
≈ : α ≈ α, where α is in this case defined on

∨
domα and α(

∨
domα) is the

common α(σ). Using Res∧ and Res∨, we have thus another more abstract
way of characterizing constant actions : α is constant iff α = 1 or Res∧α =
Res∨α. Indeed, if α associates the result α(σ) to the unique condition σ,
then clearly Res∧α = Res∨α = α(σ) ; conversely, if Res∧α = Res∨α,
then for all conditions σ, σ′ ∈ domα, α(σ) = α(σ′). This discussion proves
the first of the following properties :

Proposition 1.4.5 :
(1) The action α is constant iff α = 1 or Res∧α = Res∨α.
(2) The action α is constant iff α = 1 or α∧ = α∨.
(3) If α is constant, then ¬α is constant, Res∧(¬α)
= ¬Res∨α, Res∨(¬α) = ¬Res∧α, (¬α)∧ = ¬α∨ and (¬α)∨ = ¬α∧.
(4) The action 0 is constant, Res∧0 = Res∨0 = 0C and 0∧ = 0∨ = 0.
(5) For all α, S0α is constant ; for α 6= 1, Res∧(S0α) = Res∨(S0α) = 0C

and (S0α)∧ = (S0α)∨ = 0 ; for α = 1, S0α is the constant 1.
(6) If α is constant, then α = α∧ ∨ S0α.
(7) If α is constant, then so is α ∨ S0β for every β.
(8) If α is constant, then α∧ is total and constant.
(9) The action α is constant iff α = α∧ ∨ S0β for some β.
(10) If α and β are constant, then so is α ∨ β.
(11) If α and β are constant and α ∨ β 6= 1, then (α ∨ β)∧ = α∧ ∨ β∧.

We omit the proofs, since the less trivial of them will be given later in an
axiomatic context. A nice way of expressing a good deal of those properties
is to state that α∧ is the best total constant approximation of α from below :
for all total constant β, β ≤ α iff β ≤ α∧. For the proof of that fact, use
(6). Dually, α∨ is the best total constant approximation of α from above
in a sense given by the dual ordering : for all total constant β, α ≤∗ β iff
α∨ ≤∗ β.
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112 THIERRY LUCAS

Section 1.5. Representing conditions as results and results as conditions

When we deal with a pair of adjoint functors, the induced “triple” structure
carries fundamental information with it. In section 1.2, we saw that the triple
induced by

←−
( ) and Cond coincides with S0 :

←−−−−
Condα = S0α. In sections 1.3

and 1.4, we saw that the triple induced by
−→
( ) andRes∧ gives something new,

denoted by α∧ : α∧ =
−−−−→
Res∧α ; dually, α∨ =

−−−−→
Res∨α. If we now consider

the quite natural case where the algebra of conditions coincides with the
algebra of results, it makes sense to consider “mixed” compositions :

Definition 1.5.1 :
For any action α, αc =

−−−−→
Condα, αr =

←−−−−
Res∧α and αr∗ =

←−−−−
Res∨α.

We use the letter ‘c’ to remind conditions, the letter ‘r’ to remind results
and the asterisk to remind duality. The mappings ( )c, ( )r and ( )r∗ are
endo-maps of the algebra of actions and they play an important role in struc-
turing it. The first one associates with an action α the total action αc whose
result is Condα ; besides

←−−−−
Condα, which coincides with S0α, it is thus an-

other way of representing the conditions of an action, this time as a total
constant action, expressed by something like ‘in any case put yourself in the
conditions of α’. The second map associates with an action α the action αr

whose domain is {Res∧α} and value is 0C ; besides
−−−−→
Res∧α, which coin-

cides with α∧, it is also another way of representing the (conjunction of the)
results of the action, this time as an element of S0A, expressed by some-
thing like ‘avoid the conjunction of results of α’. Similar considerations
apply with the third mixed composition αr∗ .

The basic properties of ( )c, ( )r and ( )r∗ are given in the following propo-
sition.

Proposition 1.5.2 :
(1) The mapping ( )c is contravariant: if α ≤ β, then βc ≤ αc.
(2) The mapping ( )r is contravariant: if α ≤ β, then βr ≤ αr.
(3) The mappings ( )c and ( )r are adjoint for the relevant orderings : αc ≤
β iff α ≥ βr.
(4) (C0α)c = ¬αc ; (α ∨ β)c = αc ∧ βc ; (¬α)c = αc ; S0α

c = 0.
(5) If S0α = 0, then (C0α)r = 1 and if S0α 6= 0, then (C0α)r = 0 ;
S0α

r = αr.
(6) If α 6= 1, then (γc ∨ S0α)r = γcr.
(7) αcr = S0α ; αrc = α∧ ; αr∗c = α∨ ; αr∗ = C0(¬α)r.
(8) The operation α is constant iff α = 1 or αr = αr∗ .
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Starting from those basic properties, we may apply routine computations
to derive all kinds of relations between ( )c, ( )r and ( )r∗ . We refer the
reader to the second part of this paper, where those properties will be stated
and some of them explicitly proved in an axiomatic context.

We anticipate also the second part of this paper to mention that many of
the properties of ( )c and ( )r are embodied in the fact that those functors
induce a pair of inverse homomorphisms between the structure S0A =<
S0A,≤,∧, 1, 0, C0 > of S0-supports of the algebra A of actions and the
structure TcA =< TcA,≥,∨, 0, 1∗,¬ > of total constant elements of A,
TcA denoting the set of total constant elements of A.

Section 1.6. Description of actions

We go on assuming that B = C and introduce the description of an action.
As already explained in the introduction, the idea is to introduce a functor
Φ associating with each action α an element Φ(α) of the common algebra
B(= C) expressing that such and such a condition implies such and such a
result :

Definition 1.6.1 :
For any action α, the description of α is defined by Φ(α) =

∧
σ∈domα

(σ →
α(σ)).

Here are the basic properties of Φ.

Proposition 1.6.2 :
(1) Φ(α ∧ β) = Φα ∧ Φβ ; Φ(α ∨ β) = Φα ∨ Φβ.
(2) Φ(0) = 0B = 0C ; Φ(1) = 1B = 1C .
(3) Φ(¬α) = ¬Φ(α) ∨ ¬Φ(C0α).
(4) Φ(

←−
φ ) = ¬φ ; Φ(

−→
φ ) = φ.

(5) Φ(C0α) = Condα.

Note that putting together (3) and (5) gives Φ(¬α) = ¬Condα∨¬Φ(α) =
(Condα → ¬Φ(α)), the rightarrow designating here the implication of the
common algebra of conditions and results ; the description of ¬α appears
thus quite naturally as the negation of the description of α restricted to the
conditions of α.

It may be of interest to introduce the dual Φ∗ of Φ :

Definition 1.6.3 :
For any action α, the dual description of α is defined by Φ∗(α) = ¬Φ¬α.
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Here are derived properties of descriptions of actions.

Proposition 1.6.4 :
(1) If α ≤ β, then Φα ≤ Φβ.
(2) ¬Φα = Φ(¬α ∧ C0α).
(3) Φ(C0C0α) = ¬Φ(C0α).
(4) If Φ(S0α) = Φ(S0β), then S0α = S0β.
(5) (Condα→ Res∧α) ≤ Φα ≤ (Condα→ Res∨α).
(6) If α is constant, then Φα = (Condα → Res∧α) = (Condα →
Res∨α).
(7) Φ(1∗) = 1B = 1C ; Φ(S1α) = 1B = 1C .
(8) Φ(β → γ) = (Φβ → Φγ).
(9) Φ(∼α) = ¬Φα.
(10) Φ(∼∼α) = Φα ; Φ(∼¬α) = Φ∗α.

Most of those properties are easily derived, except perhaps property (8),
which will be proved later in a slightly transposed axiomatized context. We
draw the readers’s attention to the descriptions Φ(∼α) and Φ(β → γ),
which are equal to ¬Φα and (Φβ → Φγ) respectively : they are a partic-
ularly striking a posteriori justification of the fundamental character of the
complex negation ∼ and of the implication→ between actions. Property (6)
should also be noted, because it expresses in a particularly compact way the
idea that the description of an action is the assertion that “condition implies
result”.

Looking forward to the axiomatization of the structure of actions without
algebra of conditionsB nor algebra of resultsC, it seems natural to “embed”
Φ in the structure A via the functor

←−
( ) so as to mimick the effect of Φ.

Another possibility would be to use the functor
−→
( ), but that would not bring

different informations and we prefer to think of the image of
←−
( ), which is

S0A, as a kind of substitute of B(= C). Taking contravariance into account,
the natural definition will be :

Definition 1.6.5 :
The internalized description of α is defined by Φ′(α) =

←−−
¬Φα.

Using properties of
←−
( ) and of Φ, we prove :

Proposition 1.6.6 :
(1) Φ′(C0α) = C0α ; Φ′(S0α) = S0α.
(2) Φ′(α ∧ β) = α ∧ β ; Φ′(α ∨ β) = α ∨ β.
(3) Φ′0 = 0 ; Φ′1 = 1.
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(4) Φ′(¬α) = C0Φ
′α ∨ S0α ; Φ′1∗ = 1.

(5) Φ′←−φ =
←−
φ ; Φ′−→φ = C0

←−
φ .

(6) Φ′αc = C0α ; Φ′α∧ = C0α
r ; Φ′αr = αr.

Section 1.7. Deontic notions

In order to introduce deontic notions, it remains to assume that instead of
simply being a boolean algebra, the common algebra of conditions and re-
sults B(= C) is equipped with a necessity operator � obeying reason-
ably strong axioms, say K-axioms, with the possible addition of axiom
�0B = 0B , algebraic version of axiom P� (¬�⊥), equivalent of the more
familiar axiom D (�A → ♦A) in the system K (see Chellas [MLI] for ter-
minology and basic properties). As already explained at the beginning of
this paper, it suffices then to consider the obligation to do action α as the
assertion of the necessity of the description of α :

Definition 1.7.1 :
The obligation to do α is defined by Oα = �Φα.

The following typical properties have already been proven in a not very
different context (see [VWA]) :

Proposition 1.7.2 :
(1) If α ≤ β, then Oα ≤ Oβ.
(2) O1 = 1B .
(3) O(α ∧ β) = Oα ∧Oβ.
(4) Oα ≤ O(α ∨ β).
(5) O(α→ β) ≤ (Oα→ Oβ).
(6) O0 = 0B (assuming axiom �0B = 0B).
(7) O∼α ≤ ¬Oα (assuming axiom �0B = 0B).
(8) O(α ∧ β) ≤ O(α ∧∗ β).
(9) Oα ∧Oβ ≤ O(α ∧∗ β).

But O(α ∧∗ β) ≤ Oα is not valid. See [VWA] for other examples of non
valid formulas and further details.

Once again, we want to reproduce inside the structure of actions similar
phenomena. This will be done in part 2 where � will be essentially act-
ing on S0A and obligation will be defined using the internalized description
of action. Considering the question of iterated obligation, we observe that
�Φ(�Φα) does not make sense here because �Φα is an element of B and
Φ is defined only on actions. If we want to iterate obligation, it is essential
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in the present approach that �Φα which represents a proposition, be consid-
ered as an action on which Φ may again be applied ; that is the reason why
the internalized description Φ′ will be used instead of Φ ; Φ′ maps indeed
actions to ‘actions coding a proposition’.

Part 2. Deontic algebras of actions

We want to show here that a careful selection of the notions put forward in
Part 1 allows us to define in reasonably economical terms an extremely rich
structure of actions containing its own deontic notions. That structure of
actions will be dealt with here axiomatically. Since the motivation was given
in Part 1, we give here the axioms without many comments and concentrate
on a few less immediate proofs of derived properties. Looking backwards
to Part 1, those proofs may in turn be used to give synthetic proofs of steps
which were not explicitely supplied there.

Section 2.1. Definition of deontic algebras of actions

Here is the definition of the full structure. We will call it “deontic algebra
of actions” for short, but a detailed study could profitably distinguish some
reducts of the structure, which are of interest in themselves. For the sake
of reference, we repeat the definition of support algebra with truth-value
support given in [AA].

Definition 2.1.1 :
A deontic algebra of actions is determined by

(1) a support algebra A =< A, 0, 1,¬,∧,∨, C0,≤> with truth-value sup-
ports S=0

0
, i.e. a structure where A is a set, 0 and 1 are elements of A, ¬,

C0 and S=0
0

are unary operations on A, ∧ and ∨ are binary operations on
A and ≤ is a binary relation on A satisfying the following properties :
(Group 0) < A, 0, 1,∧,∨,≤> is a distributive lattice with smallest

element 0 and greatest element 1 ;
C0α ≤ β iff 1 ≤ α ∨ β ;
C0α ∧ C0β ≤ C0(α ∨ β) ;
α ∧ ¬α = C0C0α ;
¬¬α = α ;
¬1 = 1 ;
¬(¬α ∧ ¬β) = (α ∨ β) ∧ (α ∨ C0β) ∧ (C0α ∨ β) ;
¬(α ∨ C0β) ≤ ¬α ∨ C0β ;
S=0

0
α ≤ β iff α ≤ S0β ;
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(2) unary operations ( )c, ( )r, Φ′, � on A satisfying the following three
groups of axioms :
(Group 1) if α ≤ β, then βc ≤ αc ;

if α ≤ β, then βr ≤ αr ;
αc ≤ β iff βr ≤ α ;
(C0α)c = ¬αc ;
(α ∨ β)c = αc ∧ βc ;
(¬α)c = αc ;
if S0α = 0, then (C0α)r = 1 and if S0α 6= 0, then (C0α)r = 0 ;
S0α

r = αr ;
αcr = S0α ;
if α 6= 1, then (γc ∨ S0α)r = γcr ;

(Group 2) Φ′(α ∧ β) = Φ′α ∧ Φ′β ;
Φ′(α ∨ β) = Φ′α ∨ Φ′β ;
Φ′(¬α) = C0Φ

′(α ∧ C0α) ;
Φ′(C0α) = C0α ;
Φ′(αc) = C0α ;

(Group 3) �α = �S0α = S0�α ;
�(α ∧ β) = �α ∧�β ;
�1 = 1.

Axioms of Group 0 are taken from [AA]. We give comments and conse-
quences of the axioms of the other groups in the following sections.

Section 2.2. About axioms of Group 1

Group 1 concerns the representation of conditions and results and may be
supplemented with the following definitions of duals and derived notions :

Definition 2.2.1 :
(1) αr∗ = C0(¬α)r.
(2) α∧ = αrc.
(3) α∨ = αr∗c.
(4) α is constant iff α = 1 or αr = αr∗ .

Here are the main properties derived from Group 1 and given in a natural
order of derivation. We give the proofs of (10), (12) and (15), which are less
immediate than the other properties.

Proposition 2.2.2 :
(1) αcr ≤ α ; αrc ≤ α ; αcrc = αc = (S0α)c ; αrcr = αr = α∧r.
(2) S0α

r∗ = αr∗ .
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(3) (¬α)r = C0α
r∗ ; (α ∧ β)c = αc ∨ βc ; (α ∧ β)r = αr ∨ βr.

(4) 1c = 0 ; 1r = 0 ; 1r∗ = 1 ; 1∧ = 1∗.
(5) (S0α)c = αc.
(6) 0c = 1∗ ; 0r = 1 ; 0r∗ = 0 ; 1∨ = 0.
(7) If α = 1, then (S0α)r = 0 and if α 6= 1, then (S0α)r = 1.
(8) α∨ = ¬(¬α)∧ ; αr∗cr = αr∗ = α∨r ; α∨∧ = α∨ ; α∧∧ = α∧ ;
αcr∗ = αcr = S0α ; αr∗cr∗ = αr∗ = α∨r∗ .
(9) α is constant iff α = 1 or α∧ = α∨.
(10) All elements of the form γc ∨ S0α are constant and if α 6= 1, then
(γc ∨ S0α)r = (γc ∨ S0α)r∗ = γcr = γcr∗ = S0γ.
(11) (γ∧∨S0α)∨ = γ∧ = γ∧∨ ; (γ∨∨S0α)∨ = γ∨ = γ∨∨ ; (γ∧∨S0α)∧ =
γ∧ = γ∧∧ ; (γ∨ ∨ S0α)∧ = γ∨ = γ∨∧.
(12) α is constant iff α = α∧ ∨ S0α.
(13) α is total constant iff α = α∧ ; α is total constant iff α = α∨.
(14) If α is constant, then ¬α is constant and (¬α)r = C0α

r.
(15) If α and β are constant, then α∨β is constant, (α∨β)r = (α∨β)r∗ =
αr ∧ βr = αr∗ ∧ βr∗ and (α ∨ β)∧ = (α ∨ β)∨ = α∧ ∨ β∧ = α∨ ∨ β∨.

Proof of (10). If α = 1, then γc ∨ S0α = γc ∨ 1 = 1 which is constant. If
α 6= 1, then (γc ∨ S0α)r = γcr by the last axiom of Group 1, and
(γc ∨ S0α)r∗= C0(¬(γ

c ∨ S0α))r by definition 2.2.1 (1)
= C0(¬γ

c ∧∗ S1α)r by properties of support algebras
= C0(¬γ

c ∨ S0α)r by theorem 2.16 (1) of [AA]
= C0((C0γ)

c ∨ S0α)r since (C0γ)
c = ¬γc

= C0(C0γ)
cr by the last axiom of Group 1

= C0S0(C0γ) by the last but one axiom of Group 1
= S0γ by properties of support algebras
= γcr by the last but one axiom of Group 1

�

Proof of (12). For α = 1, we have α∧ ∨ S0α = 1∧ ∨ S01 = 1∗ ∨ 1 = 1.
For α 6= 1, α∧ ∨ S0α ≤ α is easy ; to prove the other direction, observe
that α∧ ∨ S0α and α have the same support, so that it suffices to prove
α ≤∗ α∧∨S0α : α ≤∗ α∨, α ≤∗ α∧ (using the constancy of α and property
(9)), α∨S0α ≤

∗ α∧∨S0α (by monotony, see theorem 2.14 (2) of [AA]) and
α ≤∗ α∧ ∨ S0α (since α = α ∨ S0α). Conversely, α∧ ∨ S0α = αrc ∨ S0α,
which is constant by property (10). �

Proof of (15). The cases α = 1 or β = 1 are trivial. Assume then that α
and β are constant and both different from 1. By (12), α = α∧ ∨ S0α and
β = β∧ ∨ S0β, so that
α ∨ β = α∧ ∨ S0α ∨ β

∧ ∨ S0β
= α∧ ∨ β∧ ∨ S0(α ∨ β)
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= αrc ∨ βrc ∨ S0(α ∨ β)
= (αr ∧ βr)c ∨ S0(α ∨ β),

which shows that α∨β has the form γc ∨S0δ, a constant action by property
(10). Moreover, using the preceding equation,
(α ∨ β)r = ((αr ∧ βr)c ∨ S0(α ∨ β))r

= (αr ∧ βr)cr by property (10)
= S0(α

r ∧ βr)
= S0α

r ∧ S0β
r

= αr ∧ βr

and
(α ∨ β)r∗ = ((αr ∧ βr)c ∨ S0(α ∨ β))r∗

= (αr ∧ βr)cr by property (10)
= αr ∧ βr as above.

The remaining equalities are easy to prove. �

A substantial part of those properties is synthesized in the following theo-
rem :

Theorem 2.2.3 :
(1) The mapping ( )c is a homomorphism from the structure of actions <
A,≤,∧, 1,∨, 0, C0,¬ > onto the structure of total constant actions < TcA,
≥,∨, 0,∧, 1∗,¬, id > (TcA is the set of total constant actions of A and id
designates the identity).
(2) The mapping ( )r is a homomorphism from the structure of actions <
A,≤,∧, 1, 0 > onto the structure < S0A,≥,∨, 0, 1 > (S0A is the set of
0-supports of elements of A) and it satisfies (C0α)r = 1 if α is total and
(C0α)r = 0 if α is not total.
(3) The mapping ( )c induces by restriction an isomorphism from the struc-
ture < S0A,≤,∧, 1, 0, C0 > to the structure < TcA,≥,∨, 0, 1,¬ > and its
inverse is given by the adequate restriction of ( )r.

Section 2.3. About axioms of group 2

Group 2 concerns descriptions of actions and may be supplemented with the
definition of the dual Φ′∗ of Φ′ :

Definition 2.3.1 :
Φ′∗α = C0Φ

′(¬α).

Here are the main properties derived from Group 2 and given in a natural
order of derivation :
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Proposition 2.3.2 :
(1) Φ′(α∧) = C0α

r ; Φ′(α∨) = C0α
r∗ .

(2) Φ′1 = 1 ; Φ′0 = 0.
(3) S0(Φ

′α) = Φ′α ; Φ′(S0α) = S0α.
(4) Φ′(αr) = αr ; Φ′(αr∗) = αr∗ .
(5) If α ≤ β, then Φ′α ≤ Φ′β.
(6) C0(Φ

′α) = Φ′(¬α ∧ C0α) = Φ′(¬α) ∧ C0α.
(7) If Φ′(S0α) = Φ′(S0β), then S0α = S0β.
(8) Φ′(1∗) = 1.
(9) C0α

r ≤ Φ′α ; S0α ≤ Φ′α.
(10) S0α ∨ C0α

r = (C0α→ C0α
r) ≤ Φ′α ≤ (C0α→ C0α

r∗).
(11) If α is constant, then Φ′α = (C0α→ C0α

r) = (C0α→ C0α
r∗).

(12) Φ′(S=0
0
α) = S=0

0
α ; Φ′(S 6=0

0
α) = S 6=0

0
α ; Φ′(S 6=1

0
α) = S 6=1

0
α.

(13) Letting ¬′δ = ¬δ ∨ S 6=0

0
δ, one has : Φ′(¬′δ) = Φ′(¬δ).

(14) Φ′(∼α) = C0Φ
′α.

(15) Φ′(β → γ) = Φ′β → Φ′γ.
(16) Φ′(∼∼α) = Φ′α ; Φ′(∼¬α) = Φ′∗α = Φ′α ∧ C0α.
(17) Φ′∗α ≤ Φ′α.

Comment on properties (10) and (11). Allowing for contravariance, those
properties approximate the idea that Φα is a description of action α, saying
that ‘conditions imply results’.

Proof of (13). Here is the computation leading to the result :
Φ′(¬′δ) = Φ′(¬δ ∨ S 6=0

0
δ)

= Φ′(¬δ) ∨ Φ′(S 6=0

0
δ)

= C0Φ
′δ ∨ S0δ ∨ S

6=0

0
δ

= C0Φ
′δ ∨ S0δ ∨ C0S

=0
0
δ ∨ S0δ since S 6=0

0
δ = C0S

=0
0
δ ∨ S0δ

= C0(Φ
′δ ∧ S=0

0
δ) ∨ S0δ

= C0(Φ
′δ ∧ Φ′(S=0

0
δ)) ∨ S0δ

= C0Φ
′(δ ∧ S=0

0
δ) ∨ S0δ

= C0Φ
′δ ∨ S0δ since δ ∧ S=0

0
δ = δ

= C0Φ
′δ ∨ C0C0δ

= C0(Φ
′δ ∧ C0δ)

= C0(Φ
′δ ∧ Φ′(C0δ))

= C0Φ
′(δ ∧ C0δ)

= Φ′(¬δ).
�

Proof of (15). Using the notation of (13), recall that β → γ = (C0β ∨ γ) ∧
¬′(β ∧∗ ¬γ), so that
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Φ′(β → γ) = Φ′(C0β ∨ γ) ∧ Φ′(¬′(β ∧∗ ¬γ))
= Φ′(C0β ∨ γ) ∧ Φ′(¬(β ∧∗ ¬γ)) by property(13)
= Φ′(C0β ∨ γ) ∧ Φ′(¬β ∨ γ))
= Φ′((C0β ∨ γ)) ∧ (¬β ∨ γ))
= Φ′((¬β ∧ C0β) ∨ γ)
= Φ′(¬β ∧ C0β) ∨ Φ′γ
= C0Φ

′β ∨ Φ′γ
= Φ′β → Φ′γ.

The last equality follows from the observation that implication between el-
ements of S0A behaves classically, with C0 playing the role of negation :
(S0δ)→ (S0ε) = C0(S0δ) ∨ (S0ε). �

Many of those properties may be summarized by observing that

Theorem 2.3.3 :
Φ′ is a homomorphism mapping the structure < A,≤,∧, 1,∨, 0, 1∗,∼,→>
onto the structure < S0A,≤,∧, 1,∨, 0, 1, C0,→> and reducing to identity
on S0A.

Section 2.4. About axioms of group 3

Group 3 concerns modality and will be used to introduce the basic deontic
modality of obligation :

Definition 2.4.1 :
For any action α, the obligation to do α is defined by Oα = �Φ′α.

Note that the first axiom of Group 3 is but a technical device conveying
the idea that � is essentially defined on S0A. The following properties are
routine and the really interesting ones are those which cannot be proved!
Such is typically O(α ∧∗ β) ≤ Oα; we refer the reader to our [VWA] for
further details and analogous observations in a similar context.

Proposition 2.4.2 :
(1) S0(Oα) = (Oα).
(2) If α ≤ β, then Oα ≤ Oβ.
(3) O1 = 1.
(4) O(α ∧ β) = Oα ∧Oβ.
(5) O1∗ = 1.
(6) O(α ∧ β) ≤ O(α ∧∗ β).

In the presence of axiom �0 = 0, one proves O0 = 0 and O∼α ≤
∼Oα = C0Oα. Property (1) means that Oα is indeed a ‘proposition’, i.e.
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an element of S0A, and it is an immediate consequence of the first axiom
of Group 3. Another easy consequence of this and which we think of great
interest is that in the present approach, the quite natural modal axiom ‘4’,
��α = �α, automatically forces a reduction of the deontic modality O :
OOα = �Φ′(�Φ′α)

= �Φ′(S0�Φ′α) by property (1)
= �S0�Φ′α since Φ′S0δ = S0δ (proposition 2.3.2 (3))
= ��Φ′α by property (1)
= �Φ′α using axiom ‘4’
= Oα.

This does not yet give arguments for or against non trivial iterations of
modalities, but shows that the presuppositions underlying our approach lead
naturally to a reduction of OO to O. If one does not appreciate the reduc-
tion, one should then criticize the presuppositions, or abandon axiom ‘4’, or
complexify the approach to get a good explanation of non trivial iteration.

Conclusion

Looking back at what we have presented in this paper and in the preced-
ing ones, [VWA] and [AA], we think that we have reached an interesting
account of the structure of actions and deontic modalities. Our starting as-
sumption is very simple : action is considered as a coherent mapping from
finite sets of conditions to results. We look at the explicit structure deriving
from that assumption and obtain an extremely rich structure which carries
with it interesting distinctions between different kinds of conjunction, dis-
junction, negation, implication, etc.

To that structure, already studied in [VWA] and [AA], we add here the
consideration of embeddings of conditions and results in the structure of ac-
tions and implement two other basic intuitions : first, one should distinguish
action and description of action ; secondly, obligation applies to action and
is defined by applying a classical necessity operator to the description of the
action.

When we turn to the axiomatic part of our study and more specially to the
second part of this paper, we think that a notable feature is that we keep a
simple unisort structure of action, without however loosing the structure of
conditions and results : they appear internalized as a basic building block of
the structure, i.e. as S0A or TcA, which may be thought of as representing
propositions. In agreement with this, descriptions are internalized and de-
scription as well as obligation transform actions into propositions : Φ′ and
O map actions to S0A.
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Connections of our approach with other ones are given in the conclusion
of [AA] to which we refer the reader.
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