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AXIOMS FOR ACTION

THIERRY LUCAS†

In a preceding paper [LT], starting from von Wright’s ideas, we have pro-
posed to investigate the idea that action depends in a fundamental way on a
set of conditions. This has led us to define action as a mapping from a set
of conditions, essentially described as a set of incompatible formulas, to re-
sults, described as formulas. The aim of the present paper is to explore some
axiomatizations inspired by that approach. The systems will be presented in
the algebraic style, because we think that it is well adapted to our setting,
but the interested reader will have no difficulty in translating it into a more
traditional propositional language style. In any case, that algebraic style will
not prevent us from giving intuitive support to our axioms, when we deem it
necessary or simply useful.

In the first section, we slightly generalize the second part of [LT], by giv-
ing an algebraic definition of “explicit algebras of actions”. No proofs will
be given there, because they are rather standard and are already hinted at in
our preceding paper. The definitions however are important, because they
support the intuition of action conceived as a mapping from a set of con-
ditions to results and they give an accurate account of their rich structure ;
that very intuition remains our “concrete” guide for the rest of the paper and
hopefully for future work.

The second section defines the notion of “support algebra”, which repro-
duces in a unique more familiar structure the behavior of our explicit al-
gebras of action, which need three different structures for their description.
Support algebras are not yet the structures which we think best suited to the
study of action, but they are presupposed in more adequate richer structures
presented in sections 3, 4 and 5. We show that in simple cases, support
algebras correspond exactly to explicit algebras of actions.

The third section defines “support algebras with truth-value supports”, tak-
ing S=0

0 as a primitive symbol ; S=0
0 represents the set of conditions on which

an action would lead to a contradiction, i.e. it represents the set of conditions
on which an action is impossible. A notable feature of S=0

0 is that it is axiom-
atized by a very simple adjointness property and that allows one to define all
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368 THIERRY LUCAS

sorts of supports and all operations of [LT], in particular a typical negation
∼ of action and an implication → between actions.

Truth-value supports however represent a rather extrinsic point of view on
action and they are still too close mimics of explicit algebras of actions. A
more intrinsic point of view would be welcomed. That is why we propose in
the fourth section a definition of “support algebras with complex negation”,
which takes the typical negation ∼ of action as a primitive. Here again, it is
to be noted that complex negation is axiomatized by a familiar adjointness
property and that support algebras with complex negation are equivalent to
support algebras with truth-value supports.

We propose in the fifth section yet another axiomatization based on im-
plication and its familiar characterization in terms of adjointness. Support
algebras with implication are equivalent to support algebras with complex
negation, hence also equivalent to support algebras with truth-value supports.

Apart from the elementary theory of Boolean algebras, the present paper
is largely self-contained. That does not mean however that it has no relation
with other works. We mention some of them in our conclusion, together
with some indications on the similarities and the differences and we briefly
mention some potential extensions of our approach.

1. Explicit algebras of actions

We think that an action α should be considered as a mapping defined on a set
Σ of conditions and as associating to each condition σ ∈ Σ a certain result
α(σ). In a first approach, conditions and results are states of the world which
may be described by formulas in usual classical propositional logic, or by
elements of a Boolean algebra in the algebraic approach which we propose
here. We translate the idea that the action should be coherent by asking that,
should conditions σ and σ′ be compatible, the results α(σ) and α(σ′) should
then be the same. And we define an ordering between actions which is well-
adapted to further discussions of obligation : α ≤ β, “doing the action α
logically implies doing the action β”, or “α entails β”, if, roughly speaking,
the conditions for β entail conditions for α, and for compatible conditions σ
and π for α and β respectively, α(σ) entails β(π). With that ordering, the set
of actions inherits a very rich structure which we described in some detail in
the second part of [LT] to which we refer the reader. We will however repeat
here a bunch of precise definitions, dropping parts of the structure, slightly
abstracting and putting things in an algebraic setting.

The definitions are relative to two Boolean algebras : B, the Boolean
algebra of conditions, representing the structure of conditions, and C, the
Boolean algebra of results, representing the structure of results. Distin-
guished elements, operations and relations of B and C are denoted by 0,
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1, ¬, ∧, ∨, ≤, occasionally with indices B or C when clarity makes it desir-
able.

Definition 1.1 : (1) An action from B to C is a mapping α : domα −→ C,
where domα ⊆ B, domα is finite and α satisfies a coherence condition :
for all σ, σ′ ∈ domα, if σ ∧ σ′ 6= 0, then α(σ) = α(σ′).
(2) Actions are pre-ordered by the relation ≤ defined by : α ≤ β iff

∨
domβ

≤
∨

domα and for all σ ∈ domα, π ∈ domβ, if σ ∧ π 6= 0, then α(σ) ≤
β(π).
(3) The pre-ordering ≤ induces an equivalence ≈ of actions characterized
by : α ≈ β iff

∨
domα =

∨
domβ and for all σ ∈ domα, π ∈ domβ, if

σ ∧ π 6= 0, then α(σ) = β(π).
(4) The empty action 1 is defined by : dom(1) = ∅ and 1 is the empty
mapping from dom(1) to C.
(5) The everywhere nul or zero action 0 is defined by : dom(0) = {1B} (1B

representing the greatest element of B) and 0(1B) = 0C (0C representing
the smallest element of C).
(6) Operations ·, − and + on finite subsets Σ and Π of B are defined by :
Σ · Π = {σ ∧ π | σ ∈ Σ, π ∈ Π, σ ∧ π 6= 0}
−Σ = {¬

∨
Σ}

Σ + Π = (Σ · Π) ∪ (−Σ · Π) ∪ (Σ · −Π).
(7) The conjunction α ∧ β of actions α and β is defined by : dom(α ∧ β) =
domα+domβ and for all ω ∈ dom(α∧β), (α∧β)(ω) is defined according
to the form of the domain by three cases :
(a) if ω ∈ domα·domβ, then ω = σ∧π for some σ ∈ domα and π ∈ domβ
and one lets (α ∧ β)(ω) = α(σ) ∧ β(π) ;
(b) if ω ∈ −domα · domβ, then ω = ¬

∨
domα ∧ π for some π ∈ domβ

and one lets (α ∧ β)(ω) = β(π) ;
(c) if ω ∈ domα · −domβ, then ω = σ ∧ ¬

∨
domβ for some σ ∈ domα

and one lets (α ∧ β)(ω) = α(σ).
(8) The disjunction α ∨ β of actions α and β is defined by : dom(α ∨ β) =
domα · domβ and for all ω ∈ dom(α ∨ β), ω = σ ∧ π for some σ ∈ domα
and π ∈ domβ and one lets (α ∨ β)(ω) = α(σ) ∨ β(π).
(9) The 0-cosupport C0α of action α is defined by : dom(C0α) = −domα =
{¬

∨
domα} and (C0α)(¬

∨
domα) = 0C .

(10) The negation ¬α of action α is defined by : dom(¬α) = domα and for
all σ ∈ domα, (¬α)(σ) = ¬(α(σ)), the latter negation being taken in C.

We repeat here the main properties of that structure. The equivalence rela-
tion is compatible with the operations ¬, ∧, ∨ and C0, a fact which allows us
to consider the quotient structure ; in practice, we identify equivalent actions,
writing α = β instead of the more formal α ≈ β and speak accordingly of
the ordering ≤.
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370 THIERRY LUCAS

The everywhere nul action 0 is the smallest action and the empty action 1
is the greatest action for the ordering ≤, two facts which justify our notation
for them. The conjunction α ∧ β is the infimum of α and β ; we emphasize
here that it is so to speak a “long conjunction” ; it is defined not only on the
common set of circumstances domα ·domβ where it prescribes to do both α
and β, but when α is defined and β is not, it prescribes to do α and similarly
when β is defined and α is not, α ∧ β prescribes to do β. By contrast,
the disjunction α ∨ β is defined only on the common set of circumstances
domα · domβ and there, it prescribes to do at least one of the actions α
and β. The negation ¬α is essentially “the opposite action of α in the same
circumstances”. The 0-cosupport C0α of α is in general best considered as
a sort of canonical representation of the complement of the (union of the)
domain of α as an action.

The set of all actions from B to C equipped with the distinguished ele-
ments 0, 1, with the operations ¬, ∧, ∨, C0 and with the relation ≤ will be
referred to as the explicit algebra of all actions from B to C. For further
reference and comparison, we give a formal definition of the more general
notion of “explicit algebra of actions” :

Definition 1.2 : An explicit algebra of actions B is a triple < B, E, C >
where B and C are Boolean algebras and E is a < 0, 1,¬,∧,∨, C0 >-
subalgebra of the explicit algebra of all actions from B to C.

Note that in explicit algebras of actions, interesting derived operations may
be obtained by duality, via ¬ : α ≤∗ β iff ¬β ≤ ¬α, α ∧∗ β = ¬(¬α ∨ ¬β)
(the short conjunction, defined on domα · domβ), α ∨∗ β = ¬(¬α ∧ ¬β)
(the long disjunction, defined on domα + domβ), 1∗ = ¬0 (the everywhere
unit action), C1α = ¬C0¬α = ¬C0α (the 1-cosupport of α). Note in
particular that ¬1 = 1, so that the empty action is auto-dual. Other derived
notions are given by : S0α = C0C0α (the 0-support of α) and its dual
S1α = ¬S0¬α = ¬S0α (the 1-support of α), γ \ β = C0β ∧ (γ ∧∗ ¬β)
(the difference of γ and β) and its dual β →∗ γ = C1β ∨∗ (¬β ∨ γ) (the
co-implication from β to γ). For an explicit description of these notions, we
refer the reader to [LT].

On the other hand, there are very fundamental operations on actions which
make sense in explicit algebras of actions, but do not seem to be derivable
from the preceding operations. We will study them in sections 3, 4 and 5,
but mention their explicit definition here :

Definition 1.3 : (1) The 0-value 0-support of α, S=0
0 α, is defined by dom(S=0

0

α) = {σ | σ ∈ domα, α(σ) = 0} and for σ in that domain, (S=0
0 α)(σ) = 0.

(2) The complex negation of α, ∼α, is defined by dom(∼α) = −Σ ∪ Σ 6=0,
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where Σ = dom(α) and Σ 6=0 = {σ | σ ∈ domα, α(σ) 6= 0} ; for σ ∈ −Σ,
i.e. σ = ¬

∨
Σ, one lets (∼α)(σ) = 0 ; for σ ∈ Σ 6=0, one lets (∼α)(σ) =

¬(α(σ)).
(3) The implication from β to γ, β → γ, is defined by dom(β → γ) =
(−Π · Ξ) ∪ (Π/Ξ), where Π = domβ, Ξ = domγ and Π/Ξ = {π ∧ ξ |
π ∈ Π, ξ ∈ Ξ, π ∧ ξ 6= 0 and β(π) 6≤ γ(ξ)} ; for ω ∈ −Π · Ξ, one
has ω = ¬

∨
Π ∧ ξ for some ξ ∈ Ξ and one lets (β → γ)(ω) = γ(ξ) ;

for ω ∈ Π/Ξ, one has ω = π ∧ ξ for some π ∈ Π, ξ ∈ Ξ and one lets
(β → γ)(ω) = β(π) → γ(ξ).

Here is why those operations are basic. The operation S=0
0 picks in the

domain of an action α those conditions σ for which α(σ) = 0, i.e. for which
α(σ) is contradictory ; in other words, it codifies our capacity to recognize
conditions under which an action is impossible to execute ; it seems fair to
admit that that operation is a fundamental ingredient of a theory of action.
The complex negation ∼ is indeed a combined negation : when applied to
α, it exhibits the codomain of α, it drops the part where α is impossible to
execute and gives the “usual” negation of α where α is defined and possible
to execute. We will see later that S=0

0 and ∼ are interdefinable on the basis
of the preceding operations, but we want to have a close look at ∼α for at
least two reasons. The first one is that we think that “the negation” of an
action is an ambiguous concept which is in bad need of a clarification : ∼α
is a possible explanans, ¬α is another one, C0α is a third more crude one
and we could also consider the duals ∼∗α = ¬∼¬α and C1α = ¬C0¬α =
¬C0α. The second reason is that ∼α is a genuine intuitionistic negation ;
it indeed satisfies the powerful adjointness property familiar to all students
of intuitionism : β ≤ ∼α iff α ∧ β ≤ 0. The third operation, implication,
is a generalization of ∼ and it satisfies also a familiar adjointness property :
α ≤ β → γ iff α ∧ β ≤ γ. Implication is interdefinable with ∼, hence also
with S=0

0 , but we like to mention it, because we do not exclude that it be
more adequate to start with when attempting to generalize the present theory
to less classical contexts. Note finally that those three operations give many
interesting derived operations when combined with ¬.

2. Support algebras

Support algebras are obtained as a unisorted version of explicit algebras of
actions. Here is the definition.

Definition 2.1 : A support algebra A is an octuple < A, 0, 1,¬,∧,∨, C0,≤>
where A is a set, 0 and 1 are elements of A, ¬ and C0 are unary operations
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372 THIERRY LUCAS

on A, ∧ and ∨ are binary operations on A and ≤ is a binary relation on A
satisfying the following properties :
(Dlatt) the structure < A, 0, 1,∧,∨,≤> is a distributive lattice with small-
est element 0 and greatest element 1
(AdjC0) C0α ≤ β iff 1 ≤ α ∨ β
(AxC0∨) C0α ∧ C0β ≤ C0(α ∨ β)
(AxC0¬) α ∧ ¬α = C0C0α
(Ax¬¬) ¬¬α = α
(Ax¬1) ¬1 = 1
(Ax¬∧) ¬(¬α ∧ ¬β) = (α ∨ β) ∧ (α ∨ C0β) ∧ (C0α ∨ β)
(Ax¬Rest) ¬(α ∨ C0β) ≤ ¬α ∨ C0β.

Derived relations and operations may be introduced by the same defini-
tions as before :

Definition 2.2 : α ≤∗ β iff ¬β ≤ ¬α
α ∧∗ β = ¬(¬α ∨ ¬β)
α ∨∗ β = ¬(¬α ∧ ¬β)
1∗ = ¬0
C1α = ¬C0α
S0 = C0C0

S1 = ¬S0

γ \ β = C0β ∧ (γ ∧∗ ¬β)
β →∗ γ = C1β ∨∗ (¬β ∨ γ).

For all those operations, primitive or derived, we adopt the same termi-
nology as in explicit algebras of actions and we present in the sequel some
comments on the axioms and their consequences. Most results will be stated
without proofs, because they may be routinely deduced from the axioms.
Note also that in our comments, we often speak of domα as if it were∨

domα, speak of domα · domβ as being the intersection of domα and
domβ, etc. In general, that should not lead to confusion.

The axiom (AdjC0) is a very powerful adjointness property ; it embodies
a fundamental property of supports : the support of β is contained in the
cosupport of α if and only if α and β have disjoint supports. To see that,
recall that in the explicit case, α ≤ β entails that the domain of β is contained
in the domain of α, 1 is the empty action, α ∨ β is defined on the common
domain of α and β, so that 1 ≤ α ∨ β means that the support of α ∨ β
is empty. Together with the axioms of distributive lattice (Dlatt) and the
definition S0 = C0C0, it has the following consequences, which are all
obvious when interpreted in terms of supports.
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Theorem 2.3 : α ∨ C0α = 1
C0α ∨ S0α = 1
S0α ≤ α
α ≤ β entails C0β ≤ C0α
C0S0α = S0C0α = C0α
α ≤ β entails S0α ≤ S0β
C0(α ∧ β) = C0α ∨ C0β
S0(α ∨ β) = S0α ∨ S0β
C01 = 0
C00 = 1
S01 = 1
S00 = 0
S0(α ∧ β) ≤ S0α ∧ S0β.

If we want to obtain stronger properties, we have to rely on (AxC0∨)
which essentially means that the cosupport of the short disjunction α ∨ β is
contained in the union of the cosupports of α and β ; recall indeed that in the
explicit case, the long conjunction is defined on the “union” of the domains.
This gives us other fundamental properties of supports :

Theorem 2.4 : C0(α ∨ β) = C0α ∧ C0β
S0(α ∧ β) = S0α ∧ S0β
C0α ∧ β ≤ γ iff β ≤ γ ∨ S0α (adjointness property (AdjC0S0))
C0α ∧ S0α = 0.

The meaning of (AxC0¬) is obvious : the support S0α(= C0C0α) of α is
equal to the conjunction α ∧ ¬α. To see that, recall that in the explicit case,
α and ¬α have exactly the same domain, so that the conjunction α ∧ ¬α
is defined on that domain and has 0 as a result. The axiom has indeed the
highly desirable consequences that the cosupport of an action coincides with
the cosupport of its negation, and similarly for supports :

Theorem 2.5 : C0¬α = C0α
S0¬α = S0α.

The set of 0-supports of elements of a support algebra is stable for the op-
erations C0, ∧, ∨ and contains the elements 1 and 0. It is quite clear that
the properties which have been stated so far show that these operations and
elements, together with the reverse ordering of ≤, endow it with a structure
of Boolean algebra ; C0 plays the role of the complement ; the short dis-
junction, corresponding to the “intersection” of the domains, plays the role
of the infimum ; the long conjunction, corresponding to the “union” of the
domains, plays the role of the supremum ; the element 1, the empty action, is
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374 THIERRY LUCAS

the minimum ; the element 0, the everywhere nul action, precisely because it
is everywhere defined, is the maximum. Let us state that in a definition and
a theorem.

Definition 2.6 : Given a support algebra A =< A, 0, 1,¬,∧,∨, C0,≤>, the
structure S0A =< S0A, 0′, 1′,¬′,∧′,∨′,≤′> of 0-supports of A is given
by S0A = {S0α | α ∈ A} ; 0′ = 1 ; 1′ = 0 ; ¬′,∧′,∨′ are the restrictions
to S0A of C0,∨,∧ respectively ; ≤′ is the restriction to S0A of the inverse
ordering of ≤ (i.e. α ≤′ β iff β ≤ α).

Theorem 2.7 : The structure S0A of 0-supports of A is a Boolean algebra.

The interest of that property is that it shows that a support algebra contains
“internally” the structure of supports of its elements, a structure which, in
the case of explicit algebras, is given “outside” by the Boolean algebra of
conditions B.

If we want to avoid the reversal of ordering, we may use our definitions
of derived notions ≤∗, ∧∗, ∨∗, 1∗, C1, S1 together with axioms (Ax¬¬)
and (Ax¬1). The main interest of those notions and axioms is to show that
support algebras have a built-in duality given by ¬. As usual, we have a
duality principle :

Duality principle 2.8 : The dual T ∗ of a term T constructed on 1, 0,¬,∧,∨,
C0, S0, 1

∗,∨∗,∧∗, C1, S1 is obtained by exchanging in it dual notions (0 and
1∗, ∧ and ∨∗, ∨ and ∧∗, C0 and C1, S0 and S1 ; 1 and ¬ are auto-dual and
remain unchanged). Every provable inequation T ≤ U gives by duality the
provable U∗ ≤∗ T ∗. Every provable equation T = U gives by duality the
provable T ∗ = U∗.

As an application of that principle, we may dualize algebras of 0-supports
S0A into algebras of 1-supports S1A. We will prefer these algebras because
they avoid the use of inverse notions :

Definition 2.9 : Given a support algebra A =< A, 0, 1,¬,∧,∨, C0,≤>, the
structure S1A =< S1A, 0′, 1′,¬′,∧′,∨′,≤′> of 1-supports of A is given by
S1A = {S1α | α ∈ A} ; 0′ = 1 ; 1′ = 1∗ ; ¬′,∧′,∨′, ≤′ are the restrictions
to S1A of C1,∧

∗,∨∗ and ≤∗ respectively.

Theorem 2.10 : The structure S1A of 1-supports of A is a Boolean algebra.

We now turn to axiom (Ax¬∧) which gives a fundamental connection
between negation, long conjunction and short disjunction ; or using dual
notions, it may be written as a connection between long disjunction and short
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disjunction : α ∨∗ β = (α ∨ β) ∧ (α ∨ C0β) ∧ (C0α ∨ β). This means that
long disjunction is obtained by piecing together the short disjunction α ∨ β
on the common support S0α∨S0β, the action α when β is undefined and the
action β when α is undefined. As a first consequence, note that for actions
having the same support, duality trivializes :

Theorem 2.11 : If α and β have the same support (S0α = S0β or equiva-
lently S1α = S1β), then α ∨∗ β = α ∨ β, α ∧∗ β = α ∧ β and α ≤∗ β iff
α ≤ β.

Proof. One has :
1 = S0β ∨ C0β by Theorem 2.3

= S0α ∨ C0β because S0α = S0β
≤ α ∨ C0β because S0α ≤ α.

Hence α ∨ C0β = 1. Symmetrically, β ∨ C0α = 1. We now apply axiom
(Ax¬∧) to obtain : α ∨∗ β = (α ∨ β) ∧ 1 ∧ 1 = α ∨ β. By duality, this last
result gives also α ∧∗ β = α ∧ β. Finally,

α ≤∗ β iff α ∧∗ β = α
iff α ∧ β = α because α ∧∗ β = α ∧ β
iff α ≤ β. �

An important consequence of that property is that we can show that the set
of elements having the same given 0-support a = S0a is naturally endowed
with a structure of Boolean algebra, this time with ¬ as negation, ∧ (or ∧∗) as
infimum and ∨ (or ∨∗) as supremum ; the smallest element of that Boolean
algebra is given by a and the greatest element is given by ¬a. Note that we
slightly change the notation here, using Latin letters instead of Greek letters
for actions which we like to think of as supports, i.e. actions a such that
a = S0a. Sometimes it is also convenient to speak in terms of 1-supports ;
we give the corresponding adaptation between parentheses.

Definition 2.12 : Given a support algebra A =< A, 0, 1,¬,∧,∨, C0,≤>
and an element a of S0A , the structure Aa =< Aa, 0a, 1a,¬a,∧a,∨a,≤a>
of elements of 0-support a is given by Aa = {α ∈ A | S0α = a}, 0a =
a, 1a = ¬a, and ¬a,∧a,∨a,≤a are the restrictions to Aa of ¬,∧,∨,≤
respectively. (Given an element a of S1A, the structure A′

aof elements of
1-support a is the structure of elements of 0-support ¬a).

Theorem 2.13 : For any 0-support a ∈ S0A, the structure Aa of elements of
0-support a is a Boolean algebra. (For any 1-support a ∈ S1A, the structure
A′

a of elements of 1-support a is a Boolean algebra.)
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Proof. Let us check some of the critical properties in the case of 0-supports.
The element a is indeed the smallest, because for any α ∈ Aa, a = S0α ≤ α,
hence a ≤ α, i.e. a ≤a α. The element ¬a is the greatest, because for any
α ∈ Aa, we have ¬α ∈ Aa and a ≤ ¬α ; hence α ≤∗ ¬a by the definition of
≤∗ and (Ax¬¬), α ≤ ¬a by theorem 2.11, i.e. α ≤a ¬a. For any α ∈ Aa,
α ∧ ¬α = 0a, because α ∧ ¬α = S0α = a = 0a. For any α ∈ Aa,
α ∨ ¬α = 1a, because

α ∨ ¬α = α ∨∗ ¬α by theorem 2.11
= ¬(¬α ∧ α) by the definition of ∨∗

= ¬0a by what precedes
= ¬a
= 1a.

De Morgan’s laws are similarly obtained by trivializing duality :
¬(α1 ∧ α2) = ¬α1 ∨

∗ ¬α2

= ¬α1 ∨ ¬α2 by theorem 2.11. �

The interest of theorem 2.13 is that it shows that for a given support a, the
set of actions with support a is fundamentally classical ; the support algebra
embeds thus a whole bunch of algebras Aa, one for each a. More comments
on this later.

Here are other consequences of (Ax¬∧) expressed in dual pairs, except
for (3), which is auto-dual.

Theorem 2.14 : (1) Distributivity properties :
(α ∨∗ β) ∨ γ = (α ∨ γ) ∨∗ (β ∨ γ)
(α ∧ β) ∧∗ γ = (α ∧∗ γ) ∧ (β ∧∗ γ)

(2) Monotony properties :
α ≤ β entails α ∧∗ γ ≤ β ∧∗ γ
α ≤∗ β entails α ∨ γ ≤∗ β ∨ γ
α ≤ β and α′ ≤ β′ together entail α ∧∗ α′ ≤ β ∧∗ β′

α ≤∗ β and α′ ≤∗ β′ together entail α ∨ α′ ≤∗ β ∨ β′

(3) Co-disjunction property :
if α and β are co-disjoint (i.e. α∨β = 1 or equivalently α∧∗ β =

1), then α ∨∗ β = α ∧ β
(4) Restriction properties :

α ∨ β = (α ∨∗ β) ∨ S0α ∨ S0β
α ∧∗ β = (α ∧ β) ∧∗ S1α ∧∗ S1β

(5) Comparison of ∧∗ and ∨ :
α ∧∗ β ≤ α ∨ β
α ∧∗ β ≤∗ α ∨ β

(6) Comparison of ≤ and ≤∗ :
α ≤∗ β iff S0β ≤ S0α and α ≤ β ∨ S0α
α ≤ β iff S1β ≤∗ S1α and α ∧∗ S1β ≤∗ β.
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Proof (sketch). For (1), use (Ax¬∧) and dualize. For (2), first part, re-
duce α ≤ β to α ∧ β = α, apply − ∧∗ γ to both sides and distribute
by (1). For (2), second part, dualize. For (2), third and fourth parts :
apply the first and second parts. For (3), prove that α ∨ β = 1 entails
α ∨ C0β = α and C0α ∨ β = β, so that (Ax¬∧) will give : α ∨∗ β =
(α ∨ β)∧ (α ∨C0β)∧ (C0α ∨ β) = (α ∨ β)∧ α ∧ β = α ∧ β. For(4), first
part, compute (α∨∗ β)∨S0α∨S0β by using (Ax¬∧). For (4), second part,
dualize. For (5), first part, start from α∧ β ≤ α∨ β ; then, by the monotony
already proven in (2), (α∧β)∧∗ S1α∧∗ S1β ≤ (α∨β)∧∗ S1α∧∗ S1β ; by
restriction properties proven in (4), the left side equals (α ∧∗ β) ; the right
side equals (α ∨ β) ∧∗ S1(α ∨ β), which is itself equal to (α ∨ β). For (5),
second part, dualize.
We prove (6), first part, with more details :
(a) α ≤∗ β entails successively ¬β ≤ ¬α, S0¬β ≤ S0¬α and S0β ≤ S0α ;
(b) α ≤∗ β entails α ≤ β∨S0α ; to prove that, assume α ≤∗ β and compute
α ∨ β :
α ∨ β = (α ∨∗ β) ∨ S0α ∨ S0β by (4)

= β ∨ S0α ∨ S0β because α ≤∗ β amounts to α ∨∗ β = β
= β ∨ S0α because β ∨ S0β = β ;

hence, α ≤ α ∨ β = β ∨ S0α and α ≤ β ∨ S0α ;
(c) S0β ≤ S0α and α ≤ β ∨ S0α together entail α ≤∗ β ; to prove that,
assume the hypotheses and use (Ax¬∧) to compute α ∨∗ β :

α ∨∗ β = ((α ∨ β) ∧ (α ∨ C0β) ∧ (C0α ∨ β)
but

α ∨ β = (α ∨ β) ∨ S0α because α = α ∨ S0α
= β ∨ S0α because α ≤ β ∨ S0α ;

on the other hand, S0β ≤ S0α entails α ∨ C0β = 1 ; hence,
α ∨∗ β = (β ∨ S0α) ∧ 1 ∧ (C0α ∨ β)

= (β ∨ S0α) ∧ (C0α ∨ β)
= β ∨ (S0α ∧ C0α)
= β ∨ 0
= β ;

it follows that α ≤∗ β.
For (6), second part, dualize. �

The relation between ≤ and ≤∗ given in point (6) of the preceding theorem
allows us to prove strong connections between dual notions :

Theorem 2.15 : (1) S0α ≤∗ 0 ; dually, 1∗ ≤ S1α
(2) S0α ≤∗ α ; dually, α ≤ S1α
(3) S0α ≤∗ α ∧∗ 0 ; dually, α ∨ 1∗ ≤ S1α
(4) C0α ≤∗ C1α and S0α ≤∗ S1α ; dually, C0α ≤ C1α and S0α ≤ S1α
(5) S1α ∧∗ 0 ≤∗ S0α ; dually, S1α ≤ S0α ∨ 1∗
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(6) S0α = S1α ∧∗ 0 ; dually, S1α = S0α ∨ 1∗

(7) S0α = α ∧∗ 0 ; dually, S1α = α ∨ 1∗

(8) S0α ∧∗ β = S0α ∧∗ S0β = S1α ∧∗ S1β ∧∗ 0 ; dually, S1α ∨ β =
S1α ∨ S1β = S0α ∨ S0β ∨ 1∗

(9) α ∨ S0β ≤ α ∧∗ S1β ; dually, α ∨ S0β ≤∗ α ∧∗ S1β.

Proof. Proof of (1), first part : use the connection between ≤ and ≤∗ ; second
part by duality. Proof of (2), first part : use the connection between ≤ and
≤∗ ; second part by duality. Proof of (3) : by (1) and (2). Proof of S0α ≤
S1α, using (3) : S0α ≤ α ≤ α ∨ 1∗ ≤ S1α. The rest of (4) is easy. Proof
of S1α ≤ S0α ∨ 1∗ : S1α ∧ C0α ≤ S1α ∧ C1α by (4), S1α ∧ C1α = 1∗

by properties already proved ; hence, S1α∧C0α ≤ 1∗ and S1α ≤ S0α∨ 1∗

by the adjointness property (AdjC0S0) of theorem 2.4. Proof of (5), first
part : by duality. Proof of (6) : by (1), (4) and (5). Proof of (7), first
part : S0α ≤∗ α ∧∗ 0 ≤∗ S1α ∧∗ 0 = S0α, by properties already proven ;
hence, S0α = α ∧∗ 0. Proof of (7), second part : by duality. Proof of
(8) : easy consequences of (6) and (7). To prove (9), first part, it suffices to
prove α ≤ α ∧∗ S1β (a) and S0β ≤ α ∧∗ S1β (b). Proof of (a) : use the
connection between ≤ and ≤∗. Proof of (b) : 0 ≤ α and S0β ≤ S1β ; hence
0 ∧∗ S0β ≤ α ∧∗ S1β by an already proven monotony ; on the other hand,
S0β ≤∗ 0 by (1), hence 0 ∧∗ S0β = S0β ; it follows that S0β ≤ α ∧∗ S1β.
Proof of (9), second part : by duality. �

It seems desirable to have the reverse inequalities of (9), so that we can
establish α ∨ S0β = α ∧∗ S1β, a trivial but important fact in explicit alge-
bras of actions ; it expresses that restricting an action α to a set of conditions
may be done in two equivalent ways : either by “adding” with the short dis-
junction the 0-characteristic function of that set, or by “intersecting” with
the short conjunction the 1-characteristic function of that set. Our last axiom
(Ax¬Rest) is precisely designed to do the job ; it is indeed readily seen to be
equivalent to α∧∗ S1β ≤ α∨S0β. That axiom has also a very nice interpre-
tation if we go back to theorem 2.13 on structures Ba, the Boolean algebras
of elements of 0-support a ; the bunch of algebras Ba is in fact organized as
a presheaf of Boolean algebras : if two 0-supports a(= S0a) and b(= S0b)
are such that a ≤ b, then there is a restriction mapping ia,b going from Ba to
Bb, defined by ia,b(α) = α ∨ b = α ∨ S0b. An essential step in exhibiting
the presheaf structure consists in proving that ia,b respects the structure, in
particular negation ¬ : ia,b(¬α) = ¬ia,b(α) ; but that amounts precisely to
¬α ∨ S0b = ¬(α ∨ S0b), which is ensured by our axiom (Ax¬Rest). (To
recover more usual notations, observe that a ≤ b is equivalent to ¬b ≤∗ ¬a
and that ia,b(α) = α ∨ b = α ∨ S0b = α ∧∗ S1b = α ∧∗ S1(¬b), a formula
which looks more familiar to indicate restriction.) The interested reader will
also note that there is a natural notion of finite covering given by : (ai)1≤i≤n
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covers a iff
∧

1≤i≤n ai ≤ a (or dually, in more familiar notation using 1-
supports, (¬ai)1≤i≤n covers ¬a iff ¬a ≤∗

∨∗
1≤i≤n ¬ai). Here we touch

the sheaf aspects of support algebras ; they are obvious to all readers ac-
quainted with the notion and they constitute a representation which we have
constantly in mind, but we do not insist on them here and remain at an ele-
mentary axiomatic level.

We repeat and slightly enlarge the consequences of (Ax¬Rest) here :

Theorem 2.16 : (1) α ∧∗ S1β = α ∨ S0β (auto-dual)
(2) Distributivity properties :

(α ∧∗ β) ∨ γ = (α ∨ γ) ∧∗ (β ∨ γ)
(α ∨ β) ∧∗ γ = (α ∧∗ γ) ∨ (β ∧∗ γ)

(3) Adjointness properties of γ \ β and of β →∗ γ :
γ \ β ≤ α iff γ ≤ β ∨ α
α ≤∗ β →∗ γ iff α ∧∗ β ≤∗ γ

(4) Relations between ∧ and ∧∗ :
α ∧ β = (α ∧∗ β) ∧ (α ∨ C0β) ∧ (C0α ∨ β)
α ∧ β ≤ γ iff α ∧∗ β ≤ γ ∨ S0α ∨ S0β and α ≤ γ ∨ C0β and

β ≤ γ ∨ C0α.

Proof. Proof of (1) : we have already commented upon that property. Proof
of (2), first part : compute the short conjunctions ∧∗ by using the formulas :
δ ∧∗ ε = (δ ∧ ε) ∧∗ S1δ ∧

∗ S1ε by restriction properties of theorem 2.14
= (δ ∧ ε) ∨ S0δ ∨ S0ε by (1)

and use the distributivity of the short disjunction ∨ over the long conjunction
∧. Proof of (2), second part : by duality. For the proof of (3), first part, first
recall the definition of γ \ β :

γ \ β = C0β ∧ (γ ∧∗ ¬β).
Proof of (3), first part, from left to right : show γ ≤ β ∨ (γ \ β) ; this can be
done as follows :
β ∨ (γ \ β) = β ∨ (C0β ∧ (γ ∧∗ ¬β))

= (β ∨ C0β) ∧ (β ∨ (γ ∧∗ ¬β))
= β ∨ (γ ∧∗ ¬β) because β ∨ C0β = 1
= (β ∨ γ) ∧∗ (β ∨ ¬β) by distributivity proven in (2)
= (β ∨ γ) ∧∗ S1β
= β ∨ γ

this last equality because β ∨ γ ≤∗ S1(β ∨ γ) = S1β ∧∗ S1γ ≤∗ S1β ; the
desired result follows easily.
Proof of (3), first part, from right to left ; assume γ ≤ β ∨ α ; then
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γ ∧∗ ¬β ≤ (β ∨ α) ∧∗ ¬β by monotony
= (β ∧∗ ¬β) ∨ (α ∧∗ ¬β) by distributivity
= S0β ∨ (α ∧∗ ¬β) because β ∧∗ ¬β = β ∧ ¬β = S0β
= α ∧∗ ¬β because S0β ≤ S0α ∨ S0β =

S0(α ∧∗ ¬β) ≤ α ∧∗ ¬β
≤ α ∧∗ S1β using ¬β ≤ S1(¬β) = S1β and

monotony
= α ∨ S0β by (1) ;

hence, γ ∧∗ ¬β ≤ α ∨ S0β and C0β ∧ (γ ∧∗ ¬β) ≤ α by the adjoint-
ness property (AdjC0S0) of theorem 2.4. Proof of (3), second part ; re-
call the definition of β →∗ γ and observe that it is the dual of γ \ β :
β →∗ γ = ¬(¬γ \ ¬β).
Proof of (4), first part : dualize (Ax¬∧), apply (Ax¬Rest) and the co-
disjunction property of theorem 2.14. Proof of (4), second part : expand
α∧β using the formula which has just been obtained and look at the restric-
tions to S0α ∨ S0β, to C0α and to C0β. �

Before leaving this elementary study of support algebras, we would like to
compare explicit algebras of actions and support algebras ; as can already be
guessed from the preceding theorems, the connection is close for what con-
cerns actions and their supports or domains ; on the other hand, the notion of
support algebra leaves aside the comparison of results of actions when they
concern different circumstances : in support algebras, for disjoint elements
a and b of S1A , there is no built-in comparison between α ∧∗ a and β ∧∗ b,
while for concrete algebras of actions, for any (even disjoint) pair of con-
ditions σ and π, α(σ) and β(π) live inside the Boolean algebra of results
and may be compared there ; to say it briefly, there is a common algebra of
results in explicit algebras of actions, which is absent in support algebras.
The following definitions and theorems give a good feeling of that differ-
ence in a restricted but typical case. We have not tried to drop the finiteness
conditions, neither have we explored the possibility or the necessity of ex-
tending the notion of support algebras to capture more of explicit algebras
of actions, because we feel that extensions in other directions are more ur-
gent : see next sections. In the sequel, At(B) denotes the set of atoms of the
Boolean algebra B.

Definition 2.17 : (1) An explicit algebra of actions B =< B, E, C > is
conditions-finite if B is finite. The algebra B is conditions-full iff for all
σ ∈ At(B), there exists an α ∈ E such that

∨
dom(α) = σ. The algebra

B is results-full iff for all c ∈ C, there exists an α ∈ E and a σ ∈ dom(α),
σ 6= 0, such that α(σ) = c.
(2) A support algebra A =< A, 0, 1,¬,∧,∨, C0,≤> is support-finite if
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S1A is finite. A support-finite support algebra with common algebra of re-
sults is given by a support-finite support algebra A =< A, 0, 1,¬,∧,∨, C0,

≤> together with a family < A′
a

ia−→ D >a∈At(S1A), where A′
a is the al-

ready defined Boolean algebra of elements of 1-support a, D is a Boolean
algebra, each ia is an embedding of Boolean algebras and the family of ia’s
is jointly epimorphic (D =

⋃
a∈At(S1A) ia[Aa]).

Theorem 2.18 : There is a natural bijective correspondence between (a) and
(b) :
(a) explicit algebras of actions which are conditions-finite, conditions-full
and results-full
(b) support-finite support algebras with common algebra of results.

Sketch of proof. (1) Every explicit algebra of actions B =< B, E, C > de-
termines a support algebra A =< A, 0A, 1A,¬A,∧A,∨A, C0A,≤A> by
letting A = E and using the definitions of section 1, e.g. for α ∈ E, ¬Aα
is defined by dom(¬Aα) = domα and for all σ ∈ domα, (¬Aα)(σ) =
¬C(α(σ)). If moreover B is conditions-finite and conditions-full, then S1A
is isomorphic to B via the mappings ( )∧ from B to S1A and ( )∨ from
S1A to B defined as follows :

for σ ∈ B, dom(σ∧) = {σ} and σ∧(σ) = 1C ;
for a ∈ S1A, a∨ =

∨
doma.

Since S1A is isomorphic to B, atoms of S1A correspond to atoms of B and
elements of A′

a are mappings having a∨ as a domain, giving sense to the
definition of eva : A′

a −→ C : α 7−→ eva(α) = α(a∨). When B is results-
full, the family of eva’s (a ∈ At(S1A)) is jointly surjective, which shows
that it is the required common algebra of results.
(2) Every finite-support support algebra A =< A, 0, 1,¬,∧,∨, C0,≤> with
common algebra of results < A′

a
ia−→ D >a∈At(S1A) determines an explicit

algebra of actions B =< B, E, C > via the definitions :
B = S1A
C = D
E = {~α | α ∈ E},

where ~α : dom~α −→ C is itself defined by
dom~α = {a | a ∈ At(S1A), a ≤∗

A S1α}
~α(a) = ia(α ∧∗

A a).
(3) Long but not difficult computations will show that the constructions given
in (1) and (2) are inverses one of another up to isomorphism. �
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One last word of caution about that theorem. Restrictions to conditions-
finite and conditions-full as stated appear to be very natural, but appar-
ently slight changes have important consequences : if you replace “results-
full” by the stronger condition “for all c ∈ C, E contains the mapping
α : {1B} −→ C defined by α(1B) = c”, then each eva defined in part
(1) of the proof will be surjective ; in that way, conditions-finite conditions-
full algebras B satisfying that condition correspond bijectively to support-
finite support algebras where all A′

a (a ∈ At(S1A)) are isomorphic Boolean
algebras.

3. Support algebras with truth-value supports

In section 1 we mentioned the operation S=0
0 which codifies our capacity to

recognize conditions under which an action leads to contradictory results.
Since that operation does not seem to be definable on the basis of the oper-
ations and relations of support algebras, we add it to their structure with a
unique characterizing property, which is yet another adjointness condition.

Definition 3.1 : A support algebra with truth-value supports is given by a
support algebra A =< A, 0, 1,¬,∧,∨, C0,≤> together with a unary oper-
ation S=0

0 satisfying
(AdjS=0

0 S0) S=0
0 α ≤ β iff α ≤ S0β.

Note that the adjointness property (AdjS=0
0 S0) is indeed satisfied in the

case of explicit algebras of actions.
Here is a bunch of basic properties of S=0

0 exhibiting its effect on opera-
tions and relations of the underlying support algebra :

Theorem 3.2 : S=0
0 (α ∨ β) = S=0

0 α ∨ S=0
0 β

α ≤ β entails S=0
0 α ≤ S=0

0 β
S=0

0 0 = 0 and S=0
0 1 = 1

α ≤ S=0
0 α

S=0
0 S0α = S0α

S0S
=0
0 α = S=0

0 α
α ∨ β = 1 entails S=0

0 (α ∧ β) = S=0
0 α ∧ S=0

0 β
S=0

0 (α ∧ β) = S=0
0 (α ∧∗ β) ∧ S=0

0 α ∧ S=0
0 β.

Proof. The first properties are mostly routine consequences of adjointness
and simple properties of S0. For example, prove α ≤ S=0

0 α by showing
that for all β, S=0

0 α ≤ β entails α ≤ β ; that is easy : S=0
0 α ≤ β, hence

α ≤ S0β by (AdjS=0
0 S0), hence α ≤ β since S0β ≤ β. The last but
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one property is a bit less immediate when, assuming α ∨ β = 1, we try to
prove S=0

0 α ∧ S=0
0 β ≤ S=0

0 (α ∧ β) ; to do that, we prove that for every γ,
S=0

0 (α ∧ β) ≤ γ (1) entails S=0
0 α ∧ S=0

0 β ≤ γ. Starting from (1), we get
α ∧ β ≤ S0γ by (AdjS=0

0 S0), hence α ≤ S0γ ∨ S0α and β ≤ S0γ ∨ S0β,
using α ∨ β = 1 and properties of S0 ; we then compute in succession :

α ≤ S0(γ ∨ α) and β ≤ S0(γ ∨ β)
S=0

0 α ≤ γ ∨ α and S=0
0 β ≤ γ ∨ β by (AdjS=0

0 S0)
S=0

0 α ∧ S=0
0 β ≤ (γ ∨ α) ∧ (γ ∨ β)

= γ ∨ (α ∧ β)
≤ γ ∨ S0γ since α ∧ β ≤ S0γ
= γ since S0γ ≤ γ

which gives the desired result. To prove the last property, apply the preceding
property to the expression relating ∧ and ∧∗ : α∧β = (α∧∗β)∧(α∨C0β)∧
(C0α ∨ β) (see Theorem 2.16 (4)). �

In support algebras with truth-value supports, we can reconstruct a truth-
value support S 6=0

0 α recognizing that part of the domain of α where α is
non-zero and from there, we can obtain an implication → and a complex
negation ∼, obeying characteristic adjointness properties already mentioned
at the end of section 1.

Definition 3.3 : (1) S 6=0
0 α = C0S

=0
0 α ∨ S0α

(2) β → γ = (C0β ∨ γ) ∧ (¬β ∨ γ ∨ S 6=0
0 (β ∧∗ ¬γ))

(3) ∼α = C0α ∧ (¬α ∨ S 6=0
0 α).

Theorem 3.4 : (1) S=0
0 δ ∨ S 6=0

0 δ = 1 ; S=0
0 δ ∧ S 6=0

0 δ = S0δ

(2) ε ≤ ¬δ ∨ S 6=0
0 δ iff ε ∧ δ ≤ S0δ

(3) α ≤ β → γ iff α ∧ β ≤ γ
(4) ∼α = α → 0
(5) β ≤ ∼α iff α ∧ β ≤ 0.

Proof. Proof of (1), first part : immediate. Proof of (1), second part : easy if
you apply the properties S0δ ≤ δ ≤ S=0

0 δ. Proof of (2), from left to right :
show that (¬δ ∨ S 6=0

0 δ) ∧ δ ≤ S0δ, by applying properties of S=0
0 . Proof of

(2), from right to left : express ¬δ ∨ S 6=0
0 δ as the long conjunction of two

terms τ1 = ¬δ ∨ S 6=0
0 δ ∨ S0ε and τ2 = ¬δ ∨ S 6=0

0 δ ∨ C0ε ; use ε ∧ δ ≤ S0δ
to show that ε ≤ ¬δ ∨ S0ε, hence that ε ≤ τ1 ; use again ε ∧ δ ≤ S0δ to
show that S=0

0 δ ≤ ¬δ ∨ C0ε, hence that τ2 = 1 and ε ≤ τ2 ; from ε ≤ τ1

and ε ≤ τ2, you get ε ≤ τ1 ∧ τ2 = ¬δ ∨ S 6=0
0 δ. Proof of (3) : a long but not

difficult computation using property (2), the relations between ∧ and ∧∗ and
the adjointness property (AdjC0S0). Proof of (4) and (5) : immediate. �
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The interest of properties (3), (4) and (5) of Theorem 3.4 is that they
show that the complex negation and the implication which have just been
defined have an intuitionistic behavior. We can therefore use for them all the
well-known properties of intuitionistic negation and implication with their
synthetic proofs, without having to return to the explicit definitions given
in Definition 3.3 (2) and (3). The reader who tries to prove ∼∼∼α = ∼α,
∼∼(α∧β) = ∼∼α∧∼∼β or ∼∼(α → β) = ∼∼α → ∼∼β = α → ∼∼β
will appreciate the remark!

It is also very natural to use the negation ¬ in order to reconstruct various
truth-value supports such as S=1

0 , S 6=0,1
0 , S 6=1

0 , with the obvious meanings
suggested by the notation :

Definition 3.5 : (1) S=1
0 α = S=0

0 ¬α

(2) S 6=0,1
0 α = S 6=0

0 α ∨ C0S
=1
0 α

(3) S 6=1
0 α = C0S

=1
0 α ∨ S0α.

A word of caution however if you want to express the expected connec-
tions between these different supports. E.g., it is tempting to prove that S=0

0 α
and S=1

0 α are codisjoint, i.e. that S=0
0 α ∨ S=1

0 α = 1. The proof could run
like this : S=0

0 α∨S=1
0 α = S=0

0 α∨S=0
0 ¬α = S=0

0 (α∨¬α) = S=0
0 (S1α) =

S=0
0 (S0α ∨ 1∗) = S=0

0 S0α ∨ S=0
0 1∗ = S0α ∨ S=0

0 1∗, but we cannot go on
because nothing guarantees that S=0

0 1∗ has the expected value 1! In fact, in
support algebras with truth-value supports, we have to take into account a
phenomenon of partial degeneracy : S=0

0 1∗ represents the set of conditions
on which the algebra of results is the degenerate Boolean algebra with one
element. In explicit algebras of actions, the existence of a common algebra
C of results ensures that, should S=0

0 1∗ be different from 1, the algebra of
elements of support S=0

0 1∗ would be degenerate and C itself would be de-
generate. In view of the case of explicit algebras of actions, one could be
tempted to adopt the axiom S=0

0 1∗ = 1 ; it seems however more advisable to
leave things as they are, because there seems to be no difficulty in factorizing
support algebras with truth-value supports into two components : the degen-
erate part, on which most operations trivialize, and a fully non-degenerate
part, on which S=0

0 1∗ = 1. We leave those considerations for further work.

4. Support algebras with complex negation

Instead of adding a truth-value support operation S=0
0 , we consider here sup-

port algebras supplemented with complex negation ∼ as a primitive.
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Definition 4.1 : A support algebra with complex negation is given by a sup-
port algebra A =< A, 0, 1,¬,∧,∨, C0,≤> together with a unary operation
∼ on A satisfying
(Adj∼) β ≤ ∼α iff α ∧ β ≤ 0.

We have already shown that support algebras with truth-value supports
have a complex negation satisfying (Adj∼), but the converse is also true :
given a complex negation satisfying (Adj∼), one can define an operation
S=0

0 satisfying the basic adjointness property (AdjS=0
0 S0) :

Definition 4.2 : (In support algebras with complex negation) (DefS=0
0 ) S=0

0
α = C0∼α.

Theorem 4.3 : Every support algebra with complex negation is naturally
endowed with a structure of support algebra with truth-value supports via
(DefS=0

0 ), i.e. satisfies : S=0
0 α ≤ β iff α ≤ S0β.

Proof. The following sequence is made of equivalent assertions : S=0
0 α ≤

β, C0∼α ≤ β, 1 ≤ ∼α ∨ β, C0β ≤ ∼α, α ∧ C0β ≤ 0, α ≤ S0β. �

To make the concept of complex negation more palatable, it is worth look-
ing at its connections with the different supports and to keep things trans-
parent, we assume in the following theorem that our support algebra is fully
non-degenerate, a fact which is expressed here by ∼1∗ = 0. Here is a bunch
of interesting facts whose proof is left to the reader :

Theorem 4.4 : (In support algebras with complex negation satisfying ∼1∗=0)
(1) Truth-value supports in terms of ∼, ¬, C0, S0 :

S=0
0 α = C0∼α

S=1
0 α = C0∼¬α

S 6=0,1
0 α = S0∼α ∨ S0∼¬α ∨ S0α

S 6=0
0 α = S0∼α ∨ S0α

S 6=1
0 α = S0∼¬α ∨ S0α

(2) Supports of ¬α in terms of supports of α :
C0¬α = C0α
S=0

0 ¬α = S=1
0 α

S=1
0 ¬α = S=0

0 α

S 6=0,1
0 ¬α = S 6=0,1

0 α
S0¬α = S0α

(3) Supports of ∼α in terms of supports of α :
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C0∼α = S=0
0 α

S=0
0 ∼α = C0α ∧ S=1

0 α
S=1

0 ∼α = 1

S 6=0,1
0 ∼α = S 6=0,1

0 α

S0∼α = C0α ∧ S 6=0
0 α

(4) Supports of ∼∼α in terms of supports of α and expression of ∼∼α in
terms of α :

C0∼∼α = C0α ∧ S=1
0 α

S=0
0 ∼∼α = S=0

0 α
S=1

0 ∼∼α = 1

S 6=0,1
0 ∼∼α = S 6=0,1

0 α

S0∼∼α = S 6=1
0 α

∼∼α = α ∨ S 6=1
0 α

(5) Supports of ∼¬α in terms of supports of α and expression of ∼¬α in
terms of α and ∼∼α :

C0∼¬α = S=1
0 α

S=0
0 ∼¬α = C0α ∧ S=0

0 α
S=1

0 ∼¬α = 1

S 6=0,1
0 ∼¬α = S 6=0,1

0 α

S0∼¬α = C0α ∧ S 6=1
0 α

∼¬α = C0α ∧ (α ∨ S 6=1
0 α)

= C0α ∧ ∼∼α
(6) Connection between α, ∼¬α, ∼∼α :

∼∼α = α ∨ ∼¬α.

5. Support algebras with implication

Instead of adding S=0
0 or ∼ to support algebras, we can supplement them

with an implication →, again subject to a characteristic adjointness property :

Definition 5.1 : A support algebra with implication is given by a support
algebra A =< A, 0, 1,¬,∧,∨, C0,≤> together with a binary operation →
on A satisfying :
(Adj →) α ≤ β → γ iff α ∧ β ≤ γ.

The connection between → and ∼ is clearly the traditional one in intu-
itionistic contexts, so that we can recover ∼ from → by the usual equation
and show that support algebras with implication are also support algebras
with complex negation :
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Definition 5.2 : (In support algebras with implication) (Def∼) ∼α = α →
0.

Theorem 5.3 : Every support algebra with implication is naturally endowed
with a structure of support algebra with complex negation via (Def∼), i.e.
satisfies : β ≤ ∼α iff α ∧ β ≤ 0.

All connections of the preceding section may of course be reproduced
here. Further explorations and generalizations of support algebras should
eventually decide which type of axiomatization is better : with truth-value
supports, with complex negation or with implication. We leave it for later
work.

6. Conclusion

The present article originates in von Wright’s work where we can find the
idea of action as essentially dependent on conditions (see especially his pa-
pers [VW1], [VW2], [VW3], [VW4]) and it elaborates on our [LT]. We think
that a strong point of that approach is that one can make distinctions which
are blurred in ordinary usage : the conjunction of actions may be long or
short according to the set of circumstances one considers ; similarly for dis-
junction. Negation of action in particular covers many different usages :
those we denoted by ¬ and ∼ seem particularly important to us. To explore
those ideas we have presented “explicit” algebras of action and axiomati-
zations thereof, which we think are particularly simple : they are given in
a unisorted language and the specific postulates have the very nice feature
of being adjointness properties. With a bit more work and as already sug-
gested in [LT], the distinction between the different conjunctions, disjunc-
tions, negations of actions may be carried over to a modal superstructure
containing an obligation operator O and where one will be able to distin-
guish O(α ∧ β) and O(α ∧∗ β), O(α ∨ β) and O(α ∨∗ β), O¬α and O∼α,
etc.

The development we have presented owes much to category theoretic ideas
developed in other contexts : when dealing with actions, we have constantly
in mind the notion of sheaf of functions on a topological space and we have
insisted on the powerful adjointness properties which are so fundamental
in category-theoretic contexts ; for emblematic references, see [LW], [ML],
[MLM].

Actions as morphisms are not far from dynamic logic where they appear
as programs and are also considered as primitive notions. There are however
two important differences : on the one hand we have insisted on the partial
character of actions, while programs are everywhere defined ; on the other
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hand, our language is much less expressive because we have no composition,
no iteration and no predicate of programs. It would certainly be interesting
to pursue our analysis of action, using the analogy with programs. For a
basic reference, see [HKT].

Our conception of action is also clearly related to conditional logic. In its
simplest form, conditional logic contains a binary operator > acting on for-
mulas A and B to form A > B and meaning “B under condition A” ; this
clearly corresponds to our consideration of an action γ with domγ = {A}
and γ(A) = B. Some of the commonest axioms for conditional logic have a
nice interpretation in our context, where they correspond to built-in features
of action. Thus, the axiom ((A > B)∧ (A > C)) → (A > (B ∧C)) corre-
sponds to the formation of the short or long conjunction of actions having the
same domain. Similarly the axiom ((A > C)∧(B > C)) → ((A∨B) > C)
finds echoes in some of our considerations on complex actions, in this case
the equivalence γ ≈ δ where domγ = {A, B}, γ(A) = γ(B) = C,
domδ = {A ∨ B} and δ(A ∨ B) = C. The connection with conditional
logic is certainly worth more considerations than suggested here and it could
benefit both partners : a more synthetic point of view for conditional logic, a
more expressive language for the theory of action presented here. For a basic
reference, see [NC]. See also [CFH] for a set of basic references, especially
the papers [KS] and [SK].

A last problem we would like to mention is that of generalizing the present
theory of action to non-classical contexts. This is motivated by the fact that
in realistic contexts, conditions and results are not always clear-cut. Accord-
ingly, one should consider less bivalent notions of support than our S0 and
negations less classical than the negation ¬ which has been considered here.
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