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IMPLEMENTING MATHEMATICAL OBJECTS IN SET THEORY

THOMAS FORSTER

In general little thought is given to the general question of how to imple-
ment mathematical objects in set theory. It is clear that — at various times
in the past — people have gone to considerable lengths to devise implemen-
tations with nice properties. There is a literature on the evolution of the
Wiener-Kuratowski ordered pair, and a discussion by Quine of the merits
of an ordered-pair implementation that makes every set an ordered pair. The
implementation of ordinals as Von Neumann ordinals is so attractive that it is
universally used in all set theories which have enough replacement to prove
Mostowski’s collapse lemma. I have frequently complained in the past about
the widespread habit of referring to implementations of pairs (ordinals etc)
as definitions of pairs (etc). My point here is a different one: generally little
attention has been paid to the question of what makes an implementation a
good implementation. In most cases of interest the merits of the candidates
are uncontroversial. What I want to examine here is an example where there
are competing implementations for ordered pairs, and — although it is clear
to the cognoscenti and also (with a bit of arm-waving) plausible to the lo-
gician in the street that some of the impossible candidates are impossible,
nobody has ever given a satisfactory explanation of why this is so.

The example I have in mind is the implementation of ordered pairs in
Quine’s NF.1 The complications attending implementations of mathematical
entities in NF all arise from the failure in NF of unstratified replacement.
This is highly significant, and for quite general reasons. In general, the suc-
cessful implementation of a mathematical gadget into set theory will gen-
erate a typing discipline. For example, when one is implementing pairing
into set theory, one does not generally care whether or not x should ever be
equal to 〈x, y〉. There are exceptions to this (for example the Hailperin [1]
axiomatisation of NF and Gödel’s F -functions for generating L) trade on the
fact that ordered pairs are Wiener-Kuratowski ordered pairs and have partic-
ular set-theoretic structure) but generally such expressions are regarded as
syntactically aberrant, and — at that — aberrant in a fairly straightforward

1 This topic has never been given a thorough treatment in the literature, though it was
discussed briefly in the closing pages of Lake’s Ph.D. Thesis [3].
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80 THOMAS FORSTER

way. It is an important fact (one perhaps not sufficiently widely appreciated)
that expressions which respect the obvious syntactic constraints turn out to
be invariant under choice of implementation, and conversely. Indeed, the
syntactic discipline wouldn’t be much use if this were not so! Equally im-
portant is that for the proof of this equivalence implies the axiom scheme
of replacement! For example, Mathias [unpublished] has shown that if we
assume that x × y exists for all x and y irrespective of our choice of im-
plementation of ordered pair then the axiom scheme of replacement holds.
However in NF we know that unstratified replacement fails. This warns us
that in NF it might really matter how we implement ordered pairs, in the
sense that the truth-value of certain assertions about relations or functions or
cartesian products (the feature common to these topics being the need for an
implementation of ordered pair) will vary with our choice of implementation
of ordered pair.

What is an implementation of ordered pair anyway? At the very least it
must be a three-place relation P (x, y, z) satisfying

(1) (∀xy)(∃!z)(P (z, y, z))

and
(2) (∀z)(∀x)(∀x′)(∀y)(∀y′)(P (x, y, z) ∧ P (x′, y′z) → x = x′ ∧ y = y′)

Any P satisfying this will be said to be a pairing relation. What else
can we insist that a pairing function should do? There are some things that it
clearly cannot be asked to do. Pairs cannot be required to have any particular
set-theoretic structure. There is a natural type-theoretic discipline proper
to any use of ordered pairs (and this type discipline has nothing whatever
to do with stratification à la NF(!)) and according to it expressions like
‘x ∈ 〈y, z〉’ are ill-typed. It doesn’t mean that they are illformed or will lack
truth-values once pairing has been implemented: clearly they will have truth-
values. The point is merely that it is no part of the job of the implementation
to give them one truth-value rather than another.

The kind of thing we could reasonably insist that an implementation of
pairing should reproduce would be uncontroversial banalities of utterly el-
ementary theories of things that require ordered pairs. One such theory is
elementary (binary) relational algebra. This theory has operations like com-
position (R◦G), inverse (R−1) and boolean operations on relations (thought
of as their graphs) over any fixed domain. This theory contains assertions
like

R ⊆ S → R−1 ⊆ S−1

R ⊆ S → R ◦ T ⊆ S ◦ T .
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Agreeing to reproduce truths like these commits us to having a notion of
ordered pair that means that the composition of two (graphs of) relations is
the (graph of) a relation, and so on.

Let us make at this stage the observation that if the composition of two
relations R and S is to be a relation then R ◦ S which is of course

{z : (∃x ∈ R)(∃y ∈ S)(∃abc)(P (a, b, x)∧P (b, c, y)∧P (a, c, z))} (1)

had better be a stratified set abstract. That is to say, ‘(∃x ∈ R)(∃y ∈
S)(∃abc)(P (a, b, x) ∧ P (b, c, y) ∧ P (a, c, z))’ must be stratified. This re-
quires that ‘P (−,−,−)’ be stratified and that ‘a’, ‘b’ and ‘c’ all receive the
same type.

That is to say that in ‘P (−,−,−)’ the first two variables must re-
ceive the same type. (2)

It doesn’t tell us anything about the type of the third variable. Similarly
uncontroversial will be the expectation that every relation should have an
inverse. However this won’t tell us anything new. Consideration of the ex-
pression

R−1 = {z : (∃z′ ∈ R)(∃ab)(P (a, b, z′) ∧ P (b, a, z))}

will tell us that the first two arguments to ‘P (−,−,−)’ must receive the
same type in any stratification. Again, it tells us nothing about the type of
the third argument.

This insight enables us to answer the point often made by people encoun-
tering Cantor’s theorem in NF for the first time. If we try to prove that a map
f : X → P(X) is not onto we find ourselves considering the diagonal set

{x ∈ X : (∀w ∈ f)(∀X ′ ⊆ X)(P (x, X ′, w) → x 6∈ X ′)} (3)

For us to be confident that the diagonal set is genuinely a set we would
need ‘P (x, X ′, w)’ to be stratified with ‘x’ one type lower than‘X ′’ and this
of course we do not have.

However we can prove an analogue, which for many purposes is just as
good: in some sense it will enable us to recover the same mathematics. Re-
call that ι is the singleton function, so that ι“x is {{y} : y ∈ x}. (This nota-
tion does not presuppose that the graph of ι is a set!). Clearly {{y} : y ∈ x}
is a set, being the denotation of a stratified set abstraction. Next we attempt
to prove that no function f : ι“X → P(X) can be surjective. This time the
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82 THOMAS FORSTER

diagonal set is

{x ∈ X : (∀w ∈ f)(∀X ′ ⊆ X)(P ({x}, X ′, w) → x 6∈ X ′)}

which can be seen (even before we eliminate the curly brackets in ‘{x}’!)
to be stratified. So we seem to have proved that there are fewer singletons
than sets. But what about the singleton function — surely it is a bijection
between ι“V and V ? Yes, but its graph isn’t a set. And this is because, as
we saw earlier, the two components of the ordered pair must be given the
same type.

It may be worth thinking a little bit about what would happen were we
prepared to change our definition of ordered pair so that ‘P (x, y, z)’ were
stratified with ‘x’ one type higher than ‘y’. Then the set abstract in (3)
would be a set and the proof would succeed. We would have shown that X
is indeed smaller than P(X). But what does “smaller than” mean with this
definition of ordered pair? Since our definition no longer ensures that the
composition of (the graphs of) two relations is a (graph of a) relation we find
that equinumerosity no longer appears to be transitive.

This is the explanation that NF-istes offer to non NF-istes for the decision
to opt for ordered pair functions that give their two inputs the same type. The
explanation convinces most uses. Or perhaps one should say that it silences
them. People who come to introductory talks on NF generally want to know
about how mathematics is done in NF and are correspondingly willing to
refrain from picking fights over definitions of ordered pairs if such restraint
on their part enables them to get on with what they came for.

The choice of pairing functions that tradition has made for NF has re-
sulted in our perforce making certain choices about which assertions about
relations and functions we wish to come out true. Faced with a choice be-
tween making every set the same size as its set of singletons and ensuring
that equinumerosity was an equivalence relation we decided to go for the
pairing that makes equinumerosity an equivalence relation. Can we give an
explanation of why this is the correct thing to do?

I believe we can, and that it is as follows. There are various banali-
ties about pairing, relational algebra and functions that we can express in
a strongly typed system that regards the components of the ordered pairs
as having no internal structure. Nothing must be allowed to override the
requirement on an implementation that it respect those banalities about pair-
ing, relational algebra and functions that can be captured in this way. For
example, the assertions that the composition of two relations always exists
does not require us to look inside the components of the ordered pairs, as
contemplation of formula (1) above will confirm. Similarly equinumerosity.
The assertion that
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If x and y are equinumerous and y and z are equinumerous, then x
and y are equinumerous

— although it requires us to look inside x, y and z — does not require us
to look inside any of the components of the ordered pairs that we mention.

Contrast this with the desideratum for an ordered pair function of making
x and ι“x turn out to be the same size. We will find that if we state this
properly we will be looking inside one of the components of an ordered pair
— specifically to state that it is a singleton. It is worth making the point here
that the expectation that x and ι“x are the same size relies on an appeal to an
instance of the axiom of replacement. The failure of the singleton function
to be a set according to all implementations of ordered pair satisfying (2)
is in fact exactly what we want. We do not want to include in our spec for
the implementation of the pairing function that it should make x and ι“x
appear to be the same size. That is not the business of the implementation of
pairing: that is the business of the set existence axioms.

The point is not that all well-typed banalities should be accommodated. It
should be conceded that the existence of compositions and converses of re-
lations does depend on set existence axioms — albeit fairly trivial ones. The
formula asserting existence of transitive closures of relations is also well-
typed, in that it does not require us to look inside the components of the
ordered pairs it discusses. However, it does require a bit more set theory
— enough to perform inductive definitions — and so one should not expect
an implementation of ordered pair to automatically deliver the existence of
transitive closures. The point is rather that no well-typed banality should
be sacrificed as part of an attempt to accommodate a less-strictly-typed as-
sertion (such as the existence of the graph of the singleton function) which
might be thought desirable.

I think the consideration I invoked a few paragraphs ago — that we cannot
require of our pairing function that it deliver the truth (or falsehood) of any
general assertion about sets, functions and relations that involves looking
into the internal structure of components of ordered pairs — is completely
general in the sense that analogous considerations apply to implementations
of other mathematical entities.

However, these general considerations have left some points open. We
have decided that the formula P (x, y, z) (whichever formula it should turn
out to be) that says that z is the ordered pair of x and y must be stratified
with ‘x’ and ‘y’ receiving the same type. It doesn’t tell us what type ‘z’
should be given relative to ‘x’ and ‘y’. For example, the Wiener-Kuratowski
ordered pair is perfectly acceptable in NF. We have to be more careful with
Wiener-Kuratowski triples and n-tuples for higher n. The usual definition of
ordered triples in the Wiener-Kuratowski style makes 〈w, x, y〉 the Wiener-
Kuratowski pair 〈w, 〈x, y〉〉 where the embedded pair is Wiener-Kuratowski.
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84 THOMAS FORSTER

This triple is unsatisfactory, since it makes ‘x’ and ‘y’ two types higher than
‘w’. A much better solution is to take 〈w, x, y〉 to be 〈{{w}}, 〈x, y〉〉. where
once again the two pairs are Wiener-Kuratowski: this makes ‘x’, ‘y’ and
‘w’ all the same type. A similar manœuvre can be used for quadruples and
higher types. This is the implementation used by Hailperin [1].

We should note that in NF we can actually prove that there is no pairing
relation P (x, y, z) where ‘z’ is one type lower than ‘x’ and ‘y’. Suppose
there were; then the map x 7→ {〈x, x〉} is an injection from V into ι“V
contradicting the fact that there are more sets that singletons.2

However, the pair that is always used in NF is the Quine pair. I shall not
explain it here, since there are already adequate discussions of it in the liter-
ature. It has two quite desirable features. The first is that it makes everything
into a pair. The second is that the formula P (x, y, z) (that says that z is the
Quine pair of x and y) makes ‘x’, ‘y’ and ‘z’ all the same type. We noticed
that the considerations earlier did not constrain the type of ‘z’, but there is
no doubt that having ‘x’, ‘y’ and ‘z’ all the same type makes life easier. It
means that when we proceed to triples and quadruples etc as in the previous
paragraph we do not have to wrap curly brackets around variables to ensure
that all components of tuples are the same type.

Finally, some quite subtle considerations. We have resigned ourselves to
the graph of the singleton function not being a set. Let us now consider the
natural numbers: by defining IN to be the intersection of all sets containing
the singleton of the empty set and closed under succ where succ(x) =:
{w : ∃y ∈ w)(w \ {y} ∈ x)} we make no use of pairing functions.

Cogitations on stratifications like those in the previous paragraph will con-
vince us that for a natural number n there is in general no reason to suppose
that there will be a bijection between an arbitrary set of size n and the set
[0, n] of natural numbers less than n. This set, [0, n], is finite and its cardinal
is a natural number, and we notate this cardinal ‘T 2n’. Why ‘T 2’? Why
don’t we define this T function so that Tn = |[0, n]|? The point is that
(check it!) |[0, n]| is two types higher than n not one. For a variety of tech-
nical reasons it is more sensible to have as our defined term something that
raises by one type than something that raises by two. Note that, although the
assertion that each natural number counts the set of its predecessors is not
stratified, there is no good reason to suppose it is refutable.

Something similar happens with ordinals. If α is an ordinal, the set of
ordinals strictly less than α is naturally wellordered, and therefore has a
length which is an ordinal. What is this ordinal? For stratification reasons
this ordinal will not be α but will turn out to be the result of applying a T -
like function to α. Ward Henson, who was the first person to consider this

2 And there is no difficulty proving Schröder-Bernstein!
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function applied to ordinals rather than cardinals (see [2]), was sensitive to
the difference between ordinals and cardinals in this respect, and he wrote
the operation on ordinals with a ‘U ’ not a ‘T ’.3 |[0, n]| is two types higher
than n. How many types higher than ‘α’ is the ordinal of the set of ordinals
below α ordered by magnitude? Let’s calculate it. Ordinals are implemented
as isomorphism classes (which turn out to be sets) of wellorderings. So we
consider the set of ordinals below α, and we wellorder it by magnitude. This
gives us a set (‘A’ for the moment) of ordered pairs of ordinals, and we take
its equivalence class under isomorphism, and this is the ordinal we want. It
will of course be one type higher than A. But what is the type of A relative
to the type of α? The answer to this will depend on our choice of ordered
pair! If we are using Quine pairs it will be one type higher than α, but if we
are using Wiener-Kuratowski pairs the difference with be three!

We can of course also implement wellorderings not by means of ordered
pairs, but as the set of their initial (or for that matter, their terminal) segments.
One then implements ordinals as isomorphism classes of wellorderings as
before. The fact that under any sensible implementation of ordered pair (or
even without it, by using the initial segment coding) the collection of all
ordinals is a set has the consequence that there must always be a nontrivial
appearance of the T (or, if you are Ward Henson, the U ) function to enable
us to say that

T kα is the length of the ordinals below α: (4)
If α counted the length of the ordinals below α we would be able to prove
the Burali-Forti paradox. Therefore any true (4)-like assertion about the
length of an initial segment of ordinals must involve a T -function. (This is
sharp contrast to the case with natural numbers where the assertion that each
natural number counts the set of its predecessors appears to be consistent
— albeit strong.) The appearance of the T function here is therefore not an
artefact of our choice of implementation for ordered pairs or wellorderings:
it is a genuine manifestation of the underlying mathematics associated with
having a set of all ordinals.

Despite the inevitability of the appearance here of a T -function, there is
nothing in the underlying mathematics to tell us what the exponent on it must
be in formula (4)! This fact is generally known to nfistes but its significance
seems not be understood even by them. The most helpful remark in this
connection is probably the observation of Dana Scott’s (personal communi-
cation) that NF is really a type theory not a set theory. It bears thinking about.

3 Nowadays it usually written with a ‘T ’.
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