Logique & Analyse 197 (2007), 63-78

FIXPOINTS OF MODELS CONSTRUCTIONS

SERGEI TUPAILO

Abstract

We start with Specker's result that NF is equiconsistent with SCA + Ext + Amb (SCA is the Simple (intensional) Type Theory). First, there is a model \mathcal{M}_0 of SCA (simple). We define 2 operations \mathcal{A}_1 and \mathcal{A}_2 acting on models of SCA (\mathcal{A}_2 will be parametrized by a finite list ψ_1, \ldots, ψ_n of $\mathcal{L}_{\mathsf{TT}}$ -statements, but this is enough by compactness):

(1) $\mathcal{M} \models \mathsf{SCA} \Longrightarrow \mathcal{A}_1(\mathcal{M}) \models \mathsf{SCA} + \mathsf{Ext};$

(2) $\mathcal{M} \models \mathsf{SCA} \Longrightarrow \mathcal{A}_2^{\psi_1, \dots, \psi_n}(\mathcal{M}) \models \mathsf{SCA} + \mathsf{Amb}(\psi_1, \dots, \psi_n)$ (Jensen-Boffa's Consis(NFU) proof).

Denote $\mathcal{A}(\mathcal{M}) := \mathcal{A}_2^{\psi_1, \dots, \psi_n}(\mathcal{A}_1(\mathcal{M}))$. If the operation \mathcal{A} has a fixpoint (i.e. $\mathcal{M} \models SCA$ s.t. $\mathcal{A}(\mathcal{M}) = \mathcal{M}$), then this \mathcal{M} is a model of SCA + Ext + Amb (ψ_1, \dots, ψ_n) .

For every $\mathcal{M} \models SCA$ we define a "complexity measure" $J(\mathcal{M})$ (which is a set) and show that (a) $J(\mathcal{M}_0)$ is countable; (b) $J(\mathcal{A}(\mathcal{M}))$ $\subseteq J(\mathcal{M})$. We also have $J(\mathcal{A}(\mathcal{M})) = J(\mathcal{M}) => \mathcal{A}(\mathcal{M}) = \mathcal{M}$. It could be tempting to think that \mathcal{A} must have a fixpoint by cardinality argument (using existence of an uncountable ordinal), but in reality this is not clear.

The Axiom of Choice of ZFC is used for defining the operations A_1 and A_2 .

To conclude, NF is consistent assuming that such a fixpoint always (i.e. for every finite list ψ_1, \ldots, ψ_n) exists.

1. Background

Our metatheory is ZFC. \mathcal{L}_{TT} is the language of Simple Type Theory. *Comprehension* SCA is an axiom scheme

$$\mathsf{SCA}^n$$
: $\exists y^{n+1} \forall x^n (x \in y \leftrightarrow \varphi[x]),$

SERGEI TUPAILO

with y^{n+1} not free in φ , for every n and for every formula $\varphi \in \mathcal{L}_{\mathsf{TT}}$. *Extensionality* Ext is an axiom scheme

$$\mathsf{Ext}^n: \qquad \forall x^{n+1} \forall y^{n+1} \left(\forall z^n (z \in x \leftrightarrow z \in y) \to x = y \right),$$

for every n.

Given an \mathcal{L}_{TT} -formula φ , by φ^+ we denote the result of raising all type indices in φ by 1. The *Ambiguity* scheme is

$$\mathsf{Amb}: \qquad \varphi \leftrightarrow \varphi^+,$$

for all statements $\varphi \in \mathcal{L}_{\mathsf{TT}}$.

Theorem 1.1: (Specker) NF is equiconsistent with SCA + Ext + Amb.

Proof. This follows from Specker's result [6]. A different, proof-theoretic, proof of this fact can be found in [2]. \Box

Definition 1.2: A typed structure is a set $\mathcal{M} = \{ \langle M^{j_i}, \in^{j_i} \rangle \mid i \in \mathbb{N} \}$ s.t. $j_0 < \ldots < j_n < \ldots$ is an increasing sequence of natural numbers, $M^{j_0} \neq \emptyset$, and $\forall i \in \mathbb{N} \in^{j_i} \subseteq M^{j_i} \times M^{j_{i+1}}$.

Definition 1.3: Assume that $\mathcal{M} = \{ \langle M^{j_i}, \in^{j_i} \rangle \mid i \in \mathbb{N} \}$ is a typed structure and $i \in \mathbb{N}$.

(1) For $x \in M^{j_i}$, $y \in M^{j_i}$, $\mathcal{M} \models x = y$ means x = y.

(2) For $x \in M^{j_i}$, $y \in M^{j_{i+1}}$, $\mathcal{M} \models x \in y$ means $\langle x, y \rangle \in \in^{j_i}$.

For any $\varphi \in \mathcal{L}_{\mathsf{TT}}$, $\mathcal{M} \models \varphi$ is now defined in the standard way.

Lemma 1.4: If $\mathcal{M} \models \mathsf{SCA}$ *then* $\forall i \in \mathbb{N} M^{j_i} \neq \emptyset$.

Proof. For i = 0 the condition is given by Definition 1.2. For i + 1 we use the fact

$$\mathcal{M} \models \exists y^{i+1} \forall x^i \left(x \in y \leftrightarrow x = x \right).$$

Definition 1.5: Let $\mathcal{M} = \{ \langle M^{j_i}, \in^{j_i} \rangle | i \in \mathbb{N} \}$ be a typed stucture. The join $J(\mathcal{M})$ of \mathcal{M} is defined by

$$\mathsf{J}(\mathcal{M}) := \{ \langle j_i, x \rangle \mid i \in \mathbb{N} \land x \in M^{j_i} \}.$$

65

FIXPOINTS OF MODELS CONSTRUCTIONS

Theorem 1.6: There exists a model \mathcal{M}_0 of SCA with countable join.

Proof. Take
$$\mathcal{M}_0 := \{ \langle \mathcal{P}^{i+1}(\emptyset), \in \rangle \mid i \in \mathbb{N} \}.$$

2. Operations A_1 and A_2

2.1. Operation A_1 : securing Extensionality

In this subsection we are assuming that $\mathcal{M} = \{ \langle M^{j_i}, \in^{j_i} \rangle \mid i \in \mathbb{N} \}$ is a model of SCA.

Definition 2.1: Set

$$\sim^{j_0} := \{ \langle x, y \rangle \mid x \in M^{j_0} \land y \in M^{j_0} \};$$

$$\sim^{j_{i+1}} := \{ \langle x, y \rangle \in M^{j_{i+1}} \times M^{j_{i+1}} \mid$$

$$(1)$$

$$\forall x' \in^{\mathcal{I}_i} x \exists y' \in^{\mathcal{I}_i} y x' \sim^{\mathcal{I}_i} y' \bigwedge \forall y' \in^{\mathcal{I}_i} y \exists x' \in^{\mathcal{I}_i} x x' \sim^{\mathcal{I}_i} y' \}; (2)$$

$$\tilde{\epsilon}^{j_i} := \{ \langle x, y \rangle \in M^{j_i} \times M^{j_{i+1}} \mid \exists z \in^{j_i} y \, x \sim^{j_i} z \}.$$
(3)

Definition 2.2: A weak typed structure (wts) is a set

$$\mathcal{N} = \{ \langle N^{j_k}, \langle =^{j_k}, \varepsilon^{j_k} \rangle \rangle \mid k \in \mathbb{N} \}$$

s.t. $j_0 < \ldots < j_n < \ldots$ is an increasing sequence of natural numbers, $M^{j_0} \neq \emptyset, \forall k \in \mathbb{N} (=^{j_k} \subseteq N^{j_k} \times N^{j_k} \wedge \varepsilon^{j_k} \subseteq N^{j_k} \times N^{j_{k+1}})$, and all equality axioms are satisfied, i.e. for all $k \in \mathbb{N}$ and all $x, y, z \in N^{j_k}$, $u, v \in N^{j_{k+1}}$, the following hold:

$$x = \mathcal{I}_k x; \tag{4}$$

$$x = {}^{j_k} y \to y = {}^{j_k} x; \tag{5}$$

$$x = {}^{j_k} u \wedge u = {}^{j_k} z \to x = {}^{j_k} z: \tag{6}$$

$$x = {}^{j_k} y \wedge y = {}^{j_k} z \to x = {}^{j_k} z;$$

$$x = {}^{j_k} y \wedge x \varepsilon^{j_k} u \to y \varepsilon^{j_k} u;$$

$$(6)$$

$$(7)$$

$$x \varepsilon^{j_k} u \wedge u =^{j_{k+1}} v \to x \varepsilon^{j_k} v.$$
(8)

Definition 2.3: Assume that $\mathcal{N} = \{ \langle N^{j_k}, \langle =^{j_k}, \varepsilon^{j_k} \rangle \} \mid k \in \mathbb{N} \}$ is a wts and $k \in \mathbb{N}$.

(1) For
$$x \in N^{j_k}$$
, $y \in N^{j_k}$, $\mathcal{N} \models_w x = y$ means $\langle x, y \rangle \in =^{j_k}$.

"03tupailo" → 2007/2/11 page 66 ——⊕

0

SERGEI TUPAILO

(2) For $x \in N^{j_k}$, $y \in N^{j_{k+1}}$, $\mathcal{N} \models_w x \in y$ means $\langle x, y \rangle \in \varepsilon^{j_k}$. For any $\varphi \in \mathcal{L}_{\mathsf{TT}}$, $\mathcal{M} \models_w \varphi$ is now defined in the standard way.

Lemma 2.4: $\mathcal{M}_w := \{ \langle M^{j_i}, \langle \sim^{j_i}, \tilde{\in}^{j_i} \rangle \} \mid i \in \mathbb{N} \}$ is a weak typed structure.

Proof. The requirement $\forall i \in \mathbb{N} (\sim^{j_i} \subseteq M^{j_i} \times M^{j_i} \land \tilde{\in}^{j_i} \subseteq M^{j_i} \times M^{j_{i+1}})$ is immediate from (1)–(3).

Equality axioms (4)–(6) are proved by induction on i, using defining clauses (1)–(2):

(4): The Claim is obvious for i = 0. Then,

$$x \sim^{j_{i+1}} x \stackrel{(2)}{\Longleftrightarrow} \forall x' \in^{j_i} x \exists y' \in^{j_i} x x' \sim^{j_i} y' \bigwedge \forall y' \in^{j_i} x \exists x' \in^{j_i} x x' \sim^{j_i} y',$$

and the RHS is true by IH.

(5): The Claim is obvious for i = 0. Assume $x \sim^{j_{i+1}} y$, i.e.

$$\forall x' \in^{j_i} x \, \exists y' \in^{j_i} y \, x' \sim^{j_i} y' \, \bigwedge \, \forall y' \in^{j_i} y \, \exists x' \in^{j_i} x \, x' \sim^{j_i} y'.$$

Using IH, this implies

$$\forall y' \in^{j_i} y \, \exists x' \in^{j_i} x \, y' \sim^{j_i} x' \, \bigwedge \, \forall x' \in^{j_i} x \, \exists y' \in^{j_i} y \, y' \sim^{j_i} x' \, dy' \in^{j_i} y \, y' = 0$$

i.e. $y \sim^{j_{i+1}} x$.

(6): The Claim is obvious for i = 0. Assume $x \sim^{j_{i+1}} y$ and $y \sim^{j_{i+1}} z$, i.e.

$$\forall x' \in^{j_i} x \exists y' \in^{j_i} y x' \sim^{j_i} y' \bigwedge \forall y' \in^{j_i} y \exists x' \in^{j_i} x x' \sim^{j_i} y'$$

and

$$\forall y' \in j_i y \exists z' \in j_i z y' \sim j_i z' \bigwedge \forall z' \in j_i z \exists y' \in j_i y y' \sim j_i z'.$$

Using IH, this implies

$$\forall x' \in^{j_i} x \,\exists z' \in^{j_i} z \, x' \,\sim^{j_i} z' \, \bigwedge \, \forall z' \in^{j_i} z \,\exists x' \in^{j_i} x \, x' \,\sim^{j_i} z',$$

i.e. $x \sim^{j_{i+1}} z$.

Remaining axioms (7)–(8) are proved by using defining clauses (2)–(3) and already established facts (5)–(6):

(7): Assume $x \sim^{j_i} y$ and $x \in^{j_i} u$. By (3) the latter means $\exists z \in^{j_i} u x \sim^{j_i} z$. For this z, by (5) and (6) we obtain $y \sim^{j_i} z$, i.e. $y \in^{j_i} u$.

(8): Assume $x \in j_i u$ and $u \sim j_{i+1} v$. The former means

$$\exists z \in^{j_i} u \, x \sim^{j_i} z.$$

From $u \sim^{j_{i+1}} v, z \in^{j_i} u$ yields

$$\exists w \in^{j_i} v \ z \sim^{j_i} w.$$

Using transitivity (6), we obtain $x \sim^{j_i} w$, concluding $x \in^{j_i} v$.

Lemma 2.5: \mathcal{M}_w is a weak model of Extensionality, i.e.

$$\begin{array}{ccc} \forall i \in \mathbb{N} \forall x \in M^{j_{i+1}} \forall y \in M^{j_{i+1}} \\ \left(\forall z \in M^{j_i} (z \; \tilde{\in}^{j_i} \; x \leftrightarrow z \; \tilde{\in}^{j_i} \; y) \; \longrightarrow \; x \sim^{j_{i+1}} y \right). \end{array}$$

Proof. Assume

$$i \in \mathbb{N} \land x \in M^{j_{i+1}} \land y \in M^{j_{i+1}}$$

and

$$\forall z \in M^{j_i} (z \,\tilde{\in}^{j_i} \, x \leftrightarrow z \,\tilde{\in}^{j_i} \, y).$$

The latter is the same as

$$\forall z \, (z \,\tilde{\in}^{j_i} \, x \leftrightarrow z \,\tilde{\in}^{j_i} \, y),$$

which, using reflexivity (4), implies

$$\forall x' \in j_i x \exists y' \in j_i y x' \sim j_i y' \bigwedge \forall y' \in j_i y \exists x' \in j_i x x' \sim j_i y'.$$

By (2), this is the same as $x \sim^{j_{i+1}} y$.

_	 _	
•	п.	
_	 _	

 \oplus

SERGEI TUPAILO

Definition 2.6: In Simple Type Theory, set

$$\begin{array}{rcl} x^0 \sim^0 y^0 & :\Leftrightarrow & \top; \\ x^{i+1} \sim^{i+1} y^{i+1} & :\Leftrightarrow & \forall u^i \in^i x^{i+1} \exists v^i \in^i y^{i+1} u \sim^i v \\ & & \bigwedge \forall v^i \in^i y^{i+1} \exists u^i \in^i x^{i+1} u \sim^i v; \\ x^i \in^i y^{i+1} & :\Leftrightarrow & \exists z^i \in^i y^{i+1} x^i \sim^i z. \end{array}$$

Given an $\mathcal{L}_{\mathsf{TT}}$ -formula φ , the $\mathcal{L}_{\mathsf{TT}}$ -formula $\tilde{\varphi}$ is defined by replacing every $x^i = y^i$ by $x^i \sim^i y^i$, and every $x^i \in y^{i+1}$ by $x^i \tilde{\in}^i y^{i+1}$.

Lemma 2.7: For every $\mathcal{L}_{\mathsf{TT}}$ *-formula* φ *,*

$$\mathcal{M}_w \models_w \varphi \iff \mathcal{M} \models \tilde{\varphi}.$$

Proof. By induction on φ . The atomic case follows from Definitions 2.1 and 2.6.

Lemma 2.8: For every $\mathcal{L}_{\mathsf{TT}}$ *-formula* $\varphi[x^n]$ *,*

$$\mathcal{M} \models \forall x_1^n \forall x_2^n \left(x_1 \sim^n x_2 \to (\tilde{\varphi}[x_1] \leftrightarrow \tilde{\varphi}[x_2]) \right).$$

Proof. Since \mathcal{M}_w is a wts (Lemma 2.4), we have

$$\mathcal{M}_w \models_w \forall x_1^n \forall x_2^n \left(x_1 = x_2 \to (\varphi[x_1] \leftrightarrow \varphi[x_2]) \right).$$

The Claim now follows from Lemma 2.7.

Lemma 2.9: \mathcal{M}_w is a weak model of Comprehension, i.e. for every $\mathcal{L}_{\mathsf{TT}}$ -formula $\varphi[x^n]$,

$$\mathcal{M}_w \models_w \exists y^{n+1} \forall x^n \left(x \in y \leftrightarrow \varphi[x] \right).$$

Proof. By Lemma 2.7 it's enough to prove

$$\mathcal{M} \models \exists y^{n+1} \forall x^n \left(x \,\tilde{\in}^n \, y \leftrightarrow \tilde{\varphi}[x] \right).$$

FIXPOINTS OF MODELS CONSTRUCTIONS

Since $\mathcal{M} \models \mathsf{SCA}$, take $y \in M^{j_{n+1}}$ so that

$$\mathcal{M} \models \forall x^n \left(x \in y \leftrightarrow \tilde{\varphi}[x] \right).$$

We have to show

$$\mathcal{M} \models \forall x^n \left(x \in y \leftrightarrow x \,\tilde{\in}^n \, y \right).$$

If $x \in j_n y$, then $x \in j_n y$ follows by reflexivity (4). Conversely, assuming $x \in j_n y$, we get $\exists z \in j_n y x \sim j_n z$, and then $\mathcal{M} \models \tilde{\varphi}[x]$ and $x \in j_n y$ by Lemma 2.8.

Definition 2.10: By Lemma 2.4, every M^{j_i} is divided by \sim^{j_i} into a set of non-empty equivalence classes. For every $x \in M^{j_i}$, we denote

$$[x] := \{ x' \mid x' \sim^{j_i} x \}.$$

Define

 $[M^{j_i}] := \{ [x] \mid x \in M^{j_i} \},$ and, for $[x] \in [M^{j_i}], [y] \in [M^{j_{i+1}}],$

$$[x] [\tilde{\in}^{j_i}] [y] iff \forall x' \in [x] \forall y' \in [y] x' \tilde{\in}^{j_i} y'.$$

The typed structure [M] *is now defined*

$$[\mathcal{M}] := \{ \langle [M^{j_i}], [\tilde{\in}^{j_i}] \rangle \mid i \in \mathbb{N} \}.$$

Lemma 2.11: Let $\varphi(x_1^{i_1}, \ldots, x_k^{i_k})$ be an $\mathcal{L}_{\mathsf{TT}}$ -formula with all free variables shown, and $x_1^{i_1} \in M^{j_{i_1}}, \ldots, x_k^{i_k} \in M^{j_{i_k}}$. Then:

$$\mathcal{M}_w \models_w \varphi(x_1^{i_1}, \dots, x_k^{i_k}) \iff [\mathcal{M}] \models \varphi([x_1^{i_1}], \dots, [x_k^{i_k}]).$$

Proof. By induction on φ , using non-emptiness of [x] (Lemma 2.4). The atomic case follows from the equivalences

$$x \sim^{j_i} y \Longleftrightarrow [x] = [y]$$

and

$$x \,\tilde{\in}^{j_i} y \iff [x] \,[\tilde{\in}^{j_i}] \,[y],$$

69

SERGEI TUPAILO

which also follow from Lemma 2.4.

Definition 2.12: Let C_1 be a choice function, picking one element from each equivalence class in $[M^{j_i}]$, for all $i \in \mathbb{N}$. Define

$$\mathcal{A}_1(M^{j_i}) := \{ \mathsf{C}_1[x] \mid [x] \in [M^{j_i}] \},\$$

and, for $x \in A_1(M^{j_i})$, $y \in A_1(M^{j_{i+1}})$,

$$x \epsilon^{j_i} y \text{ iff } [x] [\tilde{\epsilon}^{j_i}] [y].$$

The typed structure $A_1(\mathcal{M})$ *is now defined*

$$\mathcal{A}_1(\mathcal{M}) := \{ \langle \mathcal{A}_1(M^{j_i}), \epsilon^{j_i} \rangle \mid i \in \mathbb{N} \}.$$

Lemma 2.13: Let $\varphi(x_1^{i_1}, \ldots, x_k^{i_k})$ be an $\mathcal{L}_{\mathsf{TT}}$ -formula with all free variables shown, and $x_1^{i_1} \in \mathcal{A}_1(M^{j_{i_1}}), \ldots, x_k^{i_k} \in \mathcal{A}_1(M^{j_{i_k}})$. Then:

$$\mathcal{A}_1(\mathcal{M}) \models \varphi(x_1^{i_1}, \dots, x_k^{i_k}) \iff [\mathcal{M}] \models \varphi([x_1^{i_1}], \dots, [x_k^{i_k}]).$$

Proof. By induction on φ . First remember that we always have $[C_1[x]] = [x]$. The atomic case

$$\mathsf{C}_1[x] = \mathsf{C}_1[y] \Longleftrightarrow [x] = [y]$$

follows from the fact that C_1 is a choice function, the atomic case

$$\mathsf{C}_1[x] \,\epsilon^{j_i} \,\mathsf{C}_1[y] \Longleftrightarrow [x] \,[\tilde{\in}^{j_i}] \,[y]$$

follows from the Definition 2.12 of ϵ^{j_i} .

Theorem 2.14: $A_1(\mathcal{M})$ *is a model of* SCA + Ext.

Proof. Follows from Lemmata 2.5, 2.9, 2.11 and 2.13.

Theorem 2.15:

$$\mathsf{J}(\mathcal{A}_1(\mathcal{M})) \subseteq \mathsf{J}(\mathcal{M}).$$

Proof. From the Definition 2.12 we have $\mathcal{A}_1(M^{j_i}) \subseteq M^{j_i}$, for every $i \in \mathbb{N}$. The Claim now follows from the Definition 1.5.

70

FIXPOINTS OF MODELS CONSTRUCTIONS

2.2. Operation A_2 : securing Ambiguity

Definition 2.16: Let $\mathcal{M} = \{ \langle M^{j_i}, \in^{j_i} \rangle \mid i \in \mathbb{N} \}$ be a typed structure and $i_0 < i_1 < \ldots$ be an increasing sequence of natural numbers. We define a typed structure $\mathcal{N} = \{ \langle M^{j_{i_k}}, \in'^{j_{i_k}} \rangle \mid k \in \mathbb{N} \}$ as follows: for $x \in M^{j_{i_k}}$, $y \in M^{j_{i_{k+1}}}$: $\mathcal{N} \models x \in y$ iff $\mathcal{M} \models \exists z (x \in z \land \{\ldots \{z\} \ldots\} = y)$, where the singleton operation is iterated $i_{k+1} - i_k - 1$ times.

Such a typed structure will be called extracted from \mathcal{M} , written $\mathcal{N} \leq \mathcal{M}$.

Definition 2.17: If $\mathcal{M} = \{ \langle M^{j_i}, \in^{j_i} \rangle | i \in \mathbb{N} \}$ is a typed structure, then \mathcal{M}^+ denotes the typed structure

$$\mathcal{M}^+ := \{ \langle M^{j_{i+1}}, \in^{j_{i+1}} \rangle \mid i \in \mathbb{N} \}.$$

Obviously, \leq is reflexive and $\mathcal{M}^+ \leq \mathcal{M}$. For any x, we denote $\{x\}_0 := x$, $\{x\}_{n+1} := \{\{x\}_n\}, n \in \mathbb{N}$.

Lemma 2.18: Let $\mathcal{M} = \{ \langle M^{j_i}, \in^{j_i} \rangle \mid i \in \mathbb{N} \}$ be a typed structure. If $\mathcal{N} \leq \mathcal{M}$, $x \in M^{j_{i_k}}$, $y \in M^{j_{i_{k+1}}}$, then $\mathcal{N} \models \{x\} = y$ is equivalent to $\mathcal{M} \models \{x\}_{i_{k+1}-i_k} = y$.

Proof.

$$\mathcal{N} \models \{x\} = y \iff \mathcal{N} \models x \in y \land \forall p (p \in y \to p = x)$$
$$\iff \mathcal{M} \models \exists z (x \in z \land \{z\}_{i_{k+1}-i_k-1} = y)$$
$$\land \forall p (\exists z' (p \in z' \land \{z'\}_{i_{k+1}-i_k-1} = y) \to p = x)$$
$$\iff \mathcal{M} \models \{x\}_{i_{k+1}-i_k} = y:$$

Let's check the last \iff . Reason in \mathcal{M} . Assume LHS. For that z, we already have $\{z\}_{i_{k+1}-i_k-1} = y$, and it remains to show $z = \{x\}$. $x \in z$ is given. Assuming $e \in z$, and taking in the second part of the conjunction p := e and z' := z, we obtain e = x, q.e.d. Conversely, assume RHS. For $\exists z \ (x \in z \land \{z\}_{i_{k+1}-i_k-1} = y)$, take $z := \{x\}$. For the second part, if $\{z'\}_{i_{k+1}-i_k-1} = y$, then z' must be $\{x\}$, and the only element of $\{x\}$ is x, q.e.d.

Lemma 2.19: Let $\mathcal{M} = \{ \langle M^{j_i}, \in^{j_i} \rangle \mid i \in \mathbb{N} \}$ be a typed structure. If $\mathcal{N} \leq \mathcal{M}$, $x \in M^{j_{i_k}}$, $y \in M^{j_{i_{k+n}}}$, then $\mathcal{N} \models \{x\}_n = y$ is equivalent to $\mathcal{M} \models \{x\}_{i_{k+n}-i_k} = y$.

71

SERGEI TUPAILO

Proof. If n = 0, the assertion is obvious. For n > 0, apply the previous Lemma n times.

Lemma 2.20: \leq *is transitive*.

Proof. Let $\mathcal{N} \leq \mathcal{M}$ and $\mathcal{O} \leq \mathcal{N}$. We need to show $\mathcal{O} \leq \mathcal{M}$.

First, the domain of \mathcal{O} is $\{M^{j_{i_{k_l}}} | l \in \mathbb{N}\}$. Assume $x \in M^{j_{i_{k_l}}}$, $y \in M^{j_{i_{k_{l+1}}}}$. Now compute:

$$\mathcal{O} \models x \in y \qquad \stackrel{\mathcal{O} \leq \mathcal{N}}{\longleftrightarrow} \qquad \mathcal{N} \models \exists z \left(x \in z \land \{z\}_{k_{l+1}-k_l-1} = y \right) \\ \stackrel{\mathcal{N} \leq \underbrace{\mathcal{M}, \text{L.2.19}}{\longleftrightarrow} \qquad \mathcal{M} \models \exists z \left(\exists z_1 \left(x \in z_1 \land \{z_1\}_{i_{k_l+1}-i_{k_l}-1} = z \right) \right) \\ \land \{z\}_{i_{k_{l+1}}-i_{k_l+1}} = y) \\ \iff \qquad \mathcal{M} \models \exists z_1 \left(x \in z_1 \land \{z_1\}_{i_{k_{l+1}}-i_{k_l}-1} = y \right),$$

confirming that $\mathcal{O} \leq \mathcal{M}$.

Lemma 2.21: *If* $\mathcal{N} \leq \mathcal{M}$ *and* $\mathcal{M} \models \mathsf{SCA}$ *, then* $\mathcal{N} \models \mathsf{SCA}$ *.*

Proof. Assume $\mathcal{N} \leq \mathcal{M}$ and $\mathcal{M} \models \mathsf{SCA}$. Let $\varphi[x^k] \in \mathcal{L}_{\mathsf{TT}}$. We need to show

$$\mathcal{N} \models \exists y^{k+1} \forall x^k \left(x \in y \leftrightarrow \varphi[x] \right).$$
(9)

Let $\varphi^{\mathcal{N}}$ be obtained from φ by replacing every variable x^{l} by $x^{i_{l}}$, and replacing every $x^{l} \in y^{l+1}$ by $\exists z^{i_{l}+1}(x^{i_{l}} \in z \land \{z\}_{i_{l+1}-i_{l}-1} = y)$. Then $\varphi^{\mathcal{N}} \in \mathcal{L}_{\mathsf{TT}}$. Rephrasing (9), we need to show

$$\mathcal{M} \models \exists y^{i_{k+1}} \forall x^{i_k} \left(\exists z^{i_k+1} (x \in z \land \{z\}_{i_{k+1}-i_k-1} = y) \leftrightarrow \varphi^{\mathcal{N}}[x] \right).$$
(10)

First, since $\mathcal{M} \models \mathsf{SCA}$, we have

$$\mathcal{M} \models \exists y_1^{i_k+1} \forall x^{i_k} \left(x \in y_1 \leftrightarrow \varphi^{\mathcal{N}}[x] \right).$$
(11)

FIXPOINTS OF MODELS CONSTRUCTIONS

Take $y^{i_{k+1}} := \{y_1\}_{i_{k+1}-i_k-1}$. Observe

$$\mathcal{M} \models \forall x^{i_k} \left(x \in y_1 \leftrightarrow \exists z^{i_k+1} (x \in z \land \{z\}_{i_{k+1}-i_k-1} = y) \right) : \quad (12)$$

Reason in \mathcal{M} . Assume $x \in y_1$. Then RHS is satisfied by taking $z := y_1$. Conversely, assume $\exists z^{i_k+1} (x \in z \land \{z\}_{i_{k+1}-i_k-1} = y)$. Then it must be $z = y_1$ and $x \in y_1$. Q.E.D.

(12) and (11) now imply (10) and (9).

Definition 2.22: For any $\mathcal{M} \models \mathsf{SCA}$ and any sentence $\psi \in \mathcal{L}_{\mathsf{TT}}$, let us say that \mathcal{M} forces ψ when ψ is true in every typed structure extracted from \mathcal{M} , and that \mathcal{M} decides ψ when \mathcal{M} forces either ψ or $\neg \psi$.

Remark 2.23: *If* \mathcal{M} *decides* ψ *, then* $\mathcal{M} \models \psi \leftrightarrow \psi^+$ *.*

Proof. Remember $\mathcal{M}^+ \leq \mathcal{M}$.

Lemma 2.24: (Extraction Lemma, *Boffa* [1]) *Given any* $\mathcal{M} \models \mathsf{SCA}$ *and any sentence* $\psi \in \mathcal{L}_{\mathsf{TT}}$, *there is a model* $\mathcal{N} \models \mathsf{SCA}$ *with* $\mathcal{N} \leq \mathcal{M}$ *which decides* ψ .

Proof. Let k be greater than all type indices appearing in ψ . Define a partition G_1, G_2 of $[\mathbb{N}]^{k+1}$ as follows:

$$G_1 := \{ i_0 < i_1 < \ldots < i_k \mid \langle M^{j_{i_0}}, M^{j_{i_1}}, \ldots, M^{j_{i_k}}, \ldots \rangle \models \psi \}, G_2 := \{ i_0 < i_1 < \ldots < i_k \mid \langle M^{j_{i_0}}, M^{j_{i_1}}, \ldots, M^{j_{i_k}}, \ldots \rangle \models \neg \psi \}.$$

By Ramsey's theorem (cf. [5]), take an infinite set X of natural numbers $i_0 < i_1 < \ldots < i_n < \ldots$ such that $[X]^{k+1} \subseteq G_1$ or $[X]^{k+1} \subseteq G_2$, and set $\operatorname{dom}(\mathcal{N}) := \langle M^{j_{i_0}}, M^{j_{i_1}}, \ldots, M^{j_{i_n}}, \ldots \rangle$. In the first case $([X]^{k+1} \subseteq G_1)$ \mathcal{N} forces ψ , and in the second case \mathcal{N} forces $\neg \psi$. \Box

Lemma 2.25: *Given any* $\mathcal{M} \models$ SCA *and any sentence* $\psi \in \mathcal{L}_{\mathsf{TT}}$, *there is a model* $\mathcal{N} \models$ SCA + $\psi \leftrightarrow \psi^+$ *with* $\mathcal{N} \leq \mathcal{M}$.

Proof. Corollary of Lemma 2.24 and Remark 2.23.

Lemma 2.26: *Given any* $\mathcal{M} \models \mathsf{SCA}$ *and any finite list of sentences* $\psi_1, \ldots, \psi_n \in \mathcal{L}_{\mathsf{TT}}$, there is a model $\mathcal{N} \models \mathsf{SCA} + \bigwedge_{1 \le i \le n} \psi_i \leftrightarrow \psi_i^+$ with $\mathcal{N} \le \mathcal{M}$.

"03tupailo" 2007/2/11 page 73

73

SERGEI TUPAILO

Proof. Apply Lemma 2.25 *n* times. Use transitivity of \leq (Lemma 2.20).

Definition 2.27: Let a finite list of sentences $\psi_1, \ldots, \psi_n \in \mathcal{L}_{\mathsf{TT}}$ be given. Let $\mathcal{A}_2^{\psi_1, \ldots, \psi_n}$ be a choice function such that

if
$$\mathcal{M} \models \mathsf{SCA}$$
 then $\mathcal{A}_2^{\psi_1, \dots, \psi_n}(\mathcal{M}) \models \mathsf{SCA}+$

$$\bigwedge_{\leq i \leq n} \psi_i \leftrightarrow \psi_i^+ \text{ and } \mathcal{A}_2^{\psi_1, \dots, \psi_n}(\mathcal{M}) \leq \mathcal{M}.$$

Theorem 2.28: Let a finite list of sentences $\psi_1, \ldots, \psi_n \in \mathcal{L}_{\mathsf{TT}}$ be given. If $\mathcal{M} \models \mathsf{SCA}$ then

$$\mathcal{A}_{2}^{\psi_{1},...,\psi_{n}}(\mathcal{M}) \models \mathsf{SCA} + \bigwedge_{1 \leq i \leq n} \psi_{i} \leftrightarrow \psi_{i}^{+} \text{ and } \mathcal{A}_{2}^{\psi_{1},...,\psi_{n}}(\mathcal{M}) \leq \mathcal{M}.$$

Proof. Follows from Definition 2.27.

1

Lemma 2.29: *If* $\mathcal{N} \leq \mathcal{M}$ *then* $J(\mathcal{N}) \subseteq J(\mathcal{M})$ *.*

Proof. By the Definition 2.16, the domain of \mathcal{N} is just a subsequence of the domain of \mathcal{M} .

Theorem 2.30: For any finite list of sentences $\psi_1, \ldots, \psi_n \in \mathcal{L}_{\mathsf{TT}}$, if $\mathcal{M} \models \mathsf{SCA}$ then

 $\mathsf{J}(\mathcal{A}_2^{\psi_1,\ldots,\psi_n}(\mathcal{M})) \subseteq \mathsf{J}(\mathcal{M}).$

Proof. Follows from Theorem 2.28 and Lemma 2.29.

3. Conclusion

Definition 3.1: Let a finite list of sentences $\psi_1, \ldots, \psi_n \in \mathcal{L}_{\mathsf{TT}}$ be given. For $\mathcal{M} \models \mathsf{SCA}$ we define

$$\mathcal{A}^{\psi_1,...,\psi_n}(\mathcal{M}) := \mathcal{A}_2^{\psi_1,...,\psi_n}(\mathcal{A}_1(\mathcal{M})).$$

74

Definition 3.2: Let a finite list of sentences $\psi_1, \ldots, \psi_n \in \mathcal{L}_{\mathsf{TT}}$ be given. $\mathcal{M} \models \mathsf{SCA} \text{ is a fixpoint of } \mathcal{A}^{\psi_1, \ldots, \psi_n} \text{ iff}$

$$\mathcal{A}^{\psi_1,\dots,\psi_n}(\mathcal{M}) = \mathcal{M}.$$

Lemma 3.3: *If* $\mathcal{M} \models \mathsf{SCA}$ *and* $\mathsf{J}(\mathcal{A}_1(\mathcal{M})) = \mathsf{J}(\mathcal{M})$ *then* $\mathcal{A}_1(\mathcal{M}) = \mathcal{M}$.

Proof. Assume $J(A_1(\mathcal{M})) = J(\mathcal{M})$. By Definitions 1.5 and 2.12, this implies

$$\forall i \in \mathbb{N} \,\mathcal{A}_1(M^{j_i}) = M^{j_i},$$

which, using Definitions 2.12 and 2.10, further yields

$$\forall i \in \mathbb{N} \forall x \in M^{j_i} \forall x' \in M^{j_i} (x \sim^{j_i} x' \leftrightarrow x = x').$$
(13)

By Definition 2.1 furthermore we have

$$\forall i \in \mathbb{N} \forall x \in M^{j_i} \forall y \in M^{j_{i+1}} (x \tilde{\in}^{j_i} y \leftrightarrow x \in^{j_i} y).$$
(14)

(13) and (14) confirm that \mathcal{M} and $\mathcal{A}_1(\mathcal{M})$ is the same set.

Lemma 3.4: Let a finite list of sentences $\psi_1, \ldots, \psi_n \in \mathcal{L}_{\mathsf{TT}}$ be given and $\mathcal{M} \models \mathsf{SCA}$. If $\mathsf{J}(\mathcal{A}_2^{\psi_1, \ldots, \psi_n}(\mathcal{M})) = \mathsf{J}(\mathcal{M})$ then $\mathcal{A}_2^{\psi_1, \ldots, \psi_n}(\mathcal{M}) = \mathcal{M}$.

Proof. Assume that $\mathcal{A}_{2}^{\psi_{1},...,\psi_{n}}(\mathcal{M})$ is given by an increasing sequence $\{i_{k} \mid k \in \mathbb{N}\}$. Assume $J(\mathcal{A}_{2}^{\psi_{1},...,\psi_{n}}(\mathcal{M})) = J(\mathcal{M})$, which is, by Definition 1.5,

$$\{\langle j_i, x \rangle \mid i \in \mathbb{N} \land x \in M^{\mathcal{I}i}\} = \{\langle j_{i_k}, x \rangle \mid k \in \mathbb{N} \land x \in M^{\mathcal{I}i_k}\}$$

<u>*Claim.*</u> $\forall k \in \mathbb{N}$ $i_k = k$. /- By induction on k. First denote

$$A := \{ \langle j_i, x \rangle \mid i \in \mathbb{N} \land x \in M^{j_i} \}, \\ B := \{ \langle j_{i_k}, x \rangle \mid k \in \mathbb{N} \land x \in M^{j_{i_k}} \}.$$

75

SERGEI TUPAILO

Ind. base: Take any $x \in M^{j_0}$ (by Lemma 1.4 such an x exists). Then $\langle j_0, x \rangle \in A$, so we must have $\langle j_0, x \rangle \in B$. If $i_0 > 0$, then $j_{i_0} > j_0$, and $j_{i_k} \ge j_{i_0} > j_0$ for every k. Therefore $i_0 = 0$ must hold.

Ind. step: Take any $x \in M^{j_{k+1}}$ (by Lemma 1.4 such an x exists). Then $\langle j_{k+1}, x \rangle \in A$, so we must have $\langle j_{k+1}, x \rangle \in B$. If $i_{k+1} > k + 1$, then $j_{i_{k+1}} > j_{k+1}$, and $j_{i_{k'}} \ge j_{i_{k+1}} > j_{k+1}$ for every $k' \ge k + 1$. On the other hand, by IH we have $i_{k'} = k'$ and $j_{i_{k'}} = j_{k'} < j_{k+1}$ for every k' < k + 1. Since we always have $i_{k+1} \ge k+1$, it remains to conclude that $i_{k+1} = k+1$.

Since $\forall k \in \mathbb{N}$ $i_k = k$, by Definition 2.16 the \in relation is the same in \mathcal{M} and $\mathcal{A}_2^{\psi_1,\dots,\psi_n}(\mathcal{M})$, so \mathcal{M} and $\mathcal{A}_2^{\psi_1,\dots,\psi_n}(\mathcal{M})$ is the same set.

Theorem 3.5: Let a finite list of sentences $\psi_1, \ldots, \psi_n \in \mathcal{L}_{\mathsf{TT}}$ be given and $\mathcal{M} \models \mathsf{SCA}$. If $\mathsf{J}(\mathcal{A}^{\psi_1, \ldots, \psi_n}(\mathcal{M})) = \mathsf{J}(\mathcal{M})$ then $\mathcal{A}^{\psi_1, \ldots, \psi_n}(\mathcal{M}) = \mathcal{M}$.

Proof. Assume $J(\mathcal{A}^{\psi_1,\dots,\psi_n}(\mathcal{M})) = J(\mathcal{M})$, which is, by Definition 3.1,

$$\mathsf{J}(\mathcal{A}_{2}^{\psi_{1},\dots,\psi_{n}}(\mathcal{A}_{1}(\mathcal{M}))) = \mathsf{J}(\mathcal{M}).$$
(15)

By Theorems 2.30 and 2.15 we must have

$$\mathsf{J}(\mathcal{A}_{2}^{\psi_{1},...,\psi_{n}}(\mathcal{A}_{1}(\mathcal{M}))) \subseteq \mathsf{J}(\mathcal{A}_{1}(\mathcal{M})) \subseteq \mathsf{J}(\mathcal{M}),$$

which, together with (15), implies

$$\mathsf{J}(\mathcal{A}_{2}^{\psi_{1},\dots,\psi_{n}}(\mathcal{A}_{1}(\mathcal{M}))) = \mathsf{J}(\mathcal{A}_{1}(\mathcal{M})) = \mathsf{J}(\mathcal{M}).$$

The claim of the Theorem now follows from Lemmata 3.3 and 3.4.

Theorem 3.6: Let a finite list of sentences $\psi_1, \ldots, \psi_n \in \mathcal{L}_{\mathsf{TT}}$ be given. If \mathcal{M} is a fixpoint of $\mathcal{A}^{\psi_1,\ldots,\psi_n}$ then

$$\mathcal{M} \models \mathsf{SCA} + \mathsf{Ext} + \bigwedge_{1 \le i \le n} \psi_i \leftrightarrow \psi_i^+.$$

Proof. Let \mathcal{M} be a fixpoint of $\mathcal{A}^{\psi_1,\ldots,\psi_n}$. Then

$$\mathsf{J}(\mathcal{A}^{\psi_1,\dots,\psi_n}(\mathcal{M}))=\mathsf{J}(\mathcal{M}),$$

and, as in the proof of the previous Theorem,

ale. ale

$$\mathsf{J}(\mathcal{A}_{2}^{\psi_{1},...,\psi_{n}}(\mathcal{A}_{1}(\mathcal{M}))) = \mathsf{J}(\mathcal{A}_{1}(\mathcal{M})) = \mathsf{J}(\mathcal{M})$$

and

$$\mathcal{A}_{2}^{\psi_{1},...,\psi_{n}}(\mathcal{A}_{1}(\mathcal{M})) = \mathcal{A}_{1}(\mathcal{M}) = \mathcal{M}.$$

The Claim now follows from Theorems 2.14 and 2.28.

Definition 3.7: Let FIX_A be the following assumption:

For every finite list of sentences $\psi_1, \ldots, \psi_n \in \mathcal{L}_{\mathsf{TT}}$, there exists a fixpoint of the operation $\mathcal{A}^{\psi_1,\ldots,\psi_n}$.

Theorem 3.8: NF is consistent relative to $ZFC + FIX_A$.

Proof. Assume $\mathsf{FIX}_{\mathcal{A}}$. By Theorem 3.6, there is a model of $\mathsf{SCA} + \mathsf{Ext} + \bigwedge_{1 \leq i \leq n} \psi_i \leftrightarrow \psi_i^+$ for every finite list ψ_1, \ldots, ψ_n of $\mathcal{L}_{\mathsf{TT}}$ -sentences. Then, by compactness, there is a model of $\mathsf{SCA} + \mathsf{Ext} + \mathsf{Amb}$. By Specker's Theorem 1.1, there is a model of NF, i.e. NF is consistent.

Remark about FIX_A . It could tempting to think that since the "value" $J(\mathcal{M})$ is descending with the operation \mathcal{A} (Theorems 2.30 and 2.15), starting with a countable set (Theorem 1.6), it must have a fixpoint by cardinality argument (using existence of an uncountable ordinal). Unfortunately, the operation \mathcal{A} is defined on \mathcal{M} 's, not on $J(\mathcal{M})$'s, and the "evaluation" J is not one-to-one.

Tallinn University of Technology Institute of Cybernetics Estonia E-mail: sergei@cs.ioc.ee

REFERENCES

[1] M. Boffa. The consistency problem for NF. *Journal of Symbolic Logic* 42, pp. 215–220, 1977.

77

 \oplus

SERGEI TUPAILO

- [2] M. Crabbe. Ambiguity and stratification. *Fundamenta Mathematicae*, pp. 11–17, 1978.
- [3] T. E. Forster. *Set Theory with a Universal Set,* second edition. Clarendon Press, Oxford, 1995.
- [4] R. B. Jensen. On the consistency of a slight(?) modification of Quine's NF. Synthese 19, pp. 250–263, 1969.
- [5] F. Ramsey. On a Problem of Formal Logic. *Reprinted* in *The Foundations of Mathematics*, Kegan Paul, London, 1931.
- [6] E. P. Specker. Typical ambiguity. In: E. Nagel (ed.), Logic, methodology and philosophy of science, Stanford University Press, pp. 116– 123, 1962.
- [7] S. Tupailo. Monotone Inductive Definitions and consistency of *New Foundations*. *To appear* in the *Proceedings of Logic Colloquium* 2005.