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FIXPOINTS OF MODELS CONSTRUCTIONS

SERGEI TUPAILO

Abstract
We start with Specker’s result that NF is equiconsistent with SCA+
Ext + Amb (SCA is the Simple (intensional) Type Theory). First,
there is a model M0 of SCA (simple). We define 2 operations A1

and A2 acting on models of SCA (A2 will be parametrized by a
finite list ψ1, . . . , ψn of LTT-statements, but this is enough by com-
pactness):
(1) M |= SCA =⇒ A1(M) |= SCA + Ext;
(2) M |= SCA =⇒ Aψ1,...,ψn

2
(M) |= SCA + Amb(ψ1, . . . , ψn)

(Jensen-Boffa’s Consis(NFU) proof).
Denote A(M) := Aψ1,...,ψn

2
(A1(M)). If the operation A has a

fixpoint (i.e. M |= SCA s.t. A(M) = M), then this M is a model
of SCA + Ext + Amb(ψ1, . . . , ψn).

For every M |= SCA we define a "complexity measure" J(M)
(which is a set) and show that (a) J(M0) is countable; (b) J(A(M))
⊆ J(M). We also have J(A(M)) = J(M) ==> A(M) = M. It
could be tempting to think that A must have a fixpoint by cardinality
argument (using existence of an uncountable ordinal), but in reality
this is not clear.

The Axiom of Choice of ZFC is used for defining the operations
A1 and A2.

To conclude, NF is consistent assuming that such a fixpoint al-
ways (i.e. for every finite list ψ1, . . . , ψn) exists.

1. Background

Our metatheory is ZFC. LTT is the language of Simple Type Theory.

Comprehension SCA is an axiom scheme

SCA
n : ∃yn+1∀xn

(

x ∈ y ↔ ϕ[x]
)

,
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64 SERGEI TUPAILO

with yn+1 not free in ϕ, for every n and for every formula ϕ ∈ LTT.

Extensionality Ext is an axiom scheme

Ext
n : ∀xn+1∀yn+1

(

∀zn(z ∈ x↔ z ∈ y) → x = y
)

,

for every n.

Given an LTT-formula ϕ, by ϕ+ we denote the result of raising all type
indices in ϕ by 1. The Ambiguity scheme is

Amb : ϕ↔ ϕ+,

for all statements ϕ ∈ LTT.

Theorem 1.1 : (Specker) NF is equiconsistent with SCA + Ext + Amb.

Proof. This follows from Specker’s result [6]. A different, proof-theoretic,
proof of this fact can be found in [2]. �

Definition 1.2 : A typed structure is a set M = {〈M ji ,∈ji〉 | i ∈ IN} s.t.
j0 < . . . < jn < . . . is an increasing sequence of natural numbers, M j0 6=
∅, and ∀i∈IN ∈ji⊆M ji ×M ji+1 .

Definition 1.3 : Assume that M = {〈M ji ,∈ji〉 | i ∈ IN} is a typed structure
and i ∈ IN.

(1) For x ∈M ji , y ∈M ji , M |= x = y means x = y.
(2) For x ∈M ji , y ∈M ji+1 , M |= x ∈ y means 〈x, y〉 ∈∈ji .

For any ϕ ∈ LTT, M |= ϕ is now defined in the standard way.

Lemma 1.4 : If M |= SCA then ∀i∈INM ji 6= ∅.

Proof. For i = 0 the condition is given by Definition 1.2. For i + 1 we use
the fact

M |= ∃yi+1∀xi
(

x ∈ y ↔ x = x
)

.

�

Definition 1.5 : Let M = {〈M ji ,∈ji〉 | i ∈ IN} be a typed stucture. The join
J(M) of M is defined by

J(M) := {〈ji, x〉 | i ∈ IN ∧ x ∈M ji}.
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FIXPOINTS OF MODELS CONSTRUCTIONS 65

Theorem 1.6 : There exists a model M0 of SCA with countable join.

Proof. Take M0 := {〈P i+1(∅),∈〉 | i ∈ IN}. �

2. Operations A1 and A2

2.1. Operation A1: securing Extensionality

In this subsection we are assuming that M = {〈M ji ,∈ji〉 | i ∈ IN} is a
model of SCA.

Definition 2.1 : Set

∼j0 := {〈x, y〉 | x ∈M j0 ∧ y ∈M j0}; (1)

∼ji+1 := {〈x, y〉 ∈M ji+1 ×M ji+1 |

∀x′∈jix ∃y′∈ji y x′ ∼ji y′
∧

∀y′∈ji y ∃x′∈jixx′ ∼ji y′}; (2)

∈̃ji := {〈x, y〉 ∈M ji ×M ji+1 | ∃z∈ji y x ∼ji z}. (3)

Definition 2.2 : A weak typed structure (wts) is a set

N = {〈N jk , 〈=jk , εjk〉〉 | k ∈ IN}

s.t. j0 < . . . < jn < . . . is an increasing sequence of natural numbers,
M j0 6= ∅, ∀k∈IN (=jk⊆ N jk ×N jk ∧εjk ⊆ N jk ×N jk+1), and all equality
axioms are satisfied, i.e. for all k ∈ IN and all x, y, z ∈ N jk , u, v ∈ N jk+1 ,
the following hold:

x =jk x; (4)
x =jk y → y =jk x; (5)

x =jk y ∧ y =jk z → x =jk z; (6)
x =jk y ∧ x εjk u→ y εjk u; (7)

x εjk u ∧ u =jk+1 v → x εjk v. (8)

Definition 2.3 : Assume that N = {〈N jk , 〈=jk , εjk〉〉 | k ∈ IN} is a wts and
k ∈ IN.

(1) For x ∈ N jk , y ∈ N jk , N |=w x = y means 〈x, y〉 ∈=jk .
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66 SERGEI TUPAILO

(2) For x ∈ N jk , y ∈ N jk+1 , N |=w x ∈ y means 〈x, y〉 ∈ εjk .

For any ϕ ∈ LTT, M |=w ϕ is now defined in the standard way.

Lemma 2.4 : Mw := {〈M ji , 〈∼ji , ∈̃ji〉〉 | i ∈ IN} is a weak typed structure.

Proof. The requirement ∀i∈ IN (∼ji⊆ M ji ×M ji ∧ ∈̃ji ⊆ M ji ×M ji+1)
is immediate from (1)–(3).

Equality axioms (4)–(6) are proved by induction on i, using defining clauses
(1)–(2):

(4): The Claim is obvious for i = 0. Then,

x ∼ji+1 x
(2)
⇐⇒ ∀x′∈jix ∃y′∈jixx′ ∼ji y′

∧

∀y′∈jix ∃x′∈jixx′ ∼ji y′,

and the RHS is true by IH.

(5): The Claim is obvious for i = 0. Assume x ∼ji+1 y, i.e.

∀x′∈jix ∃y′∈ji y x′ ∼ji y′
∧

∀y′∈ji y ∃x′∈jixx′ ∼ji y′.

Using IH, this implies

∀y′∈ji y ∃x′∈jix y′ ∼ji x′
∧

∀x′∈jix ∃y′∈ji y y′ ∼ji x′,

i.e. y ∼ji+1 x.

(6): The Claim is obvious for i = 0. Assume x ∼ji+1 y and y ∼ji+1 z, i.e.

∀x′∈jix ∃y′∈ji y x′ ∼ji y′
∧

∀y′∈ji y ∃x′∈jixx′ ∼ji y′

and
∀y′∈ji y ∃z′∈ji z y′ ∼ji z′

∧

∀z′∈ji z ∃y′∈ji y y′ ∼ji z′.

Using IH, this implies

∀x′∈jix ∃z′∈ji z x′ ∼ji z′
∧

∀z′∈ji z ∃x′∈jixx′ ∼ji z′,

i.e. x ∼ji+1 z.

Remaining axioms (7)–(8) are proved by using defining clauses (2)–(3) and
already established facts (5)–(6):
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(7): Assume x ∼ji y and x ∈̃ji u. By (3) the latter means ∃z∈ji ux ∼ji z.
For this z, by (5) and (6) we obtain y ∼ji z, i.e. y ∈̃ji u.

(8): Assume x ∈̃ji u and u ∼ji+1 v. The former means

∃z∈jiux ∼ji z.

From u ∼ji+1 v, z ∈ji u yields

∃w∈ji v z ∼ji w.

Using transitivity (6), we obtain x ∼ji w, concluding x ∈̃jiv.

�

Lemma 2.5 : Mw is a weak model of Extensionality, i.e.

∀i∈IN∀x∈M ji+1∀y∈M ji+1

(

∀z∈M ji(z ∈̃ji x↔ z ∈̃ji y) −→ x ∼ji+1 y
)

.

Proof. Assume
i ∈ IN ∧ x ∈M ji+1 ∧ y ∈M ji+1

and
∀z∈M ji(z ∈̃ji x↔ z ∈̃ji y).

The latter is the same as

∀z (z ∈̃ji x↔ z ∈̃ji y),

which, using reflexivity (4), implies

∀x′∈jix ∃y′∈ji y x′ ∼ji y′
∧

∀y′∈ji y ∃x′∈jixx′ ∼ji y′.

By (2), this is the same as x ∼ji+1 y.

�
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68 SERGEI TUPAILO

Definition 2.6 : In Simple Type Theory, set

x0 ∼0 y0 :⇔ >;

xi+1 ∼i+1 yi+1 :⇔ ∀ui∈ixi+1 ∃vi∈iyi+1 u ∼i v
∧

∀vi∈iyi+1 ∃ui∈ixi+1 u ∼i v;

xi ∈̃i yi+1 :⇔ ∃zi∈iyi+1 xi ∼i z.

Given an LTT-formula ϕ, the LTT-formula ϕ̃ is defined by replacing every
xi = yi by xi ∼i yi, and every xi ∈ yi+1 by xi ∈̃i yi+1.

Lemma 2.7 : For every LTT-formula ϕ,

Mw |=w ϕ ⇐⇒ M |= ϕ̃.

Proof. By induction on ϕ. The atomic case follows from Definitions 2.1 and
2.6. �

Lemma 2.8 : For every LTT-formula ϕ[xn],

M |= ∀xn1∀x
n
2

(

x1 ∼n x2 → (ϕ̃[x1] ↔ ϕ̃[x2])
)

.

Proof. Since Mw is a wts (Lemma 2.4), we have

Mw |=w ∀xn1∀x
n
2

(

x1 = x2 → (ϕ[x1] ↔ ϕ[x2])
)

.

The Claim now follows from Lemma 2.7. �

Lemma 2.9 : Mw is a weak model of Comprehension, i.e. for every LTT-
formula ϕ[xn],

Mw |=w ∃yn+1∀xn
(

x ∈ y ↔ ϕ[x]
)

.

Proof. By Lemma 2.7 it’s enough to prove

M |= ∃yn+1∀xn
(

x ∈̃n y ↔ ϕ̃[x]
)

.
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FIXPOINTS OF MODELS CONSTRUCTIONS 69

Since M |= SCA, take y ∈M jn+1 so that

M |= ∀xn
(

x ∈ y ↔ ϕ̃[x]
)

.

We have to show
M |= ∀xn

(

x ∈ y ↔ x ∈̃n y
)

.

If x ∈jn y, then x ∈̃jn y follows by reflexivity (4). Conversely, assuming
x ∈̃jn y, we get ∃z ∈jn y x ∼jn z, and then M |= ϕ̃[x] and x ∈jn y by
Lemma 2.8.

�

Definition 2.10 : By Lemma 2.4, every M ji is divided by ∼ji into a set of
non-empty equivalence classes. For every x ∈M ji , we denote

[x] := {x′ | x′ ∼ji x}.

Define
[M ji ] := {[x] | x ∈M ji},

and, for [x] ∈ [M ji ], [y] ∈ [M ji+1 ],

[x] [∈̃ji ] [y] iff ∀x′∈[x]∀y′∈[y]x′ ∈̃ji y′.

The typed structure [M] is now defined

[M] := {〈[M ji ], [∈̃ji ]〉 | i ∈ IN}.

Lemma 2.11 : Let ϕ(xi1
1
, . . . , x

ik
k ) be an LTT-formula with all free variables

shown, and xi1
1
∈M ji1 , . . . , x

ik
k ∈M jik . Then:

Mw |=w ϕ(xi1
1
, . . . , x

ik
k ) ⇐⇒ [M] |= ϕ([xi1

1
], . . . , [xikk ]).

Proof. By induction on ϕ, using non-emptiness of [x] (Lemma 2.4). The
atomic case follows from the equivalences

x ∼ji y ⇐⇒ [x] = [y]

and
x ∈̃ji y ⇐⇒ [x] [∈̃ji ] [y],
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70 SERGEI TUPAILO

which also follow from Lemma 2.4. �

Definition 2.12 : Let C1 be a choice function, picking one element from each
equivalence class in [M ji ], for all i ∈ IN. Define

A1(M
ji) := {C1[x] | [x] ∈ [M ji ]},

and, for x ∈ A1(M
ji), y ∈ A1(M

ji+1),

x εji y iff [x] [∈̃ji ] [y].

The typed structure A1(M) is now defined

A1(M) := {〈A1(M
ji), εji〉 | i ∈ IN}.

Lemma 2.13 : Let ϕ(xi1
1
, . . . , x

ik
k ) be an LTT-formula with all free variables

shown, and xi1
1
∈ A1(M

ji1 ), . . . , xikk ∈ A1(M
jik ). Then:

A1(M) |= ϕ(xi1
1
, . . . , x

ik
k ) ⇐⇒ [M] |= ϕ([xi1

1
], . . . , [xikk ]).

Proof. By induction on ϕ. First remember that we always have [C1[x]] =
[x]. The atomic case

C1[x] = C1[y] ⇐⇒ [x] = [y]

follows from the fact that C1 is a choice function, the atomic case

C1[x] ε
ji C1[y] ⇐⇒ [x] [∈̃ji ] [y]

follows from the Definition 2.12 of εji . �

Theorem 2.14 : A1(M) is a model of SCA + Ext.

Proof. Follows from Lemmata 2.5, 2.9, 2.11 and 2.13. �

Theorem 2.15 :
J(A1(M)) ⊆ J(M).

Proof. From the Definition 2.12 we have A1(M
ji) ⊆M ji , for every i ∈ IN.

The Claim now follows from the Definition 1.5. �
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2.2. Operation A2: securing Ambiguity

Definition 2.16 : Let M = {〈M ji ,∈ji〉 | i ∈ IN} be a typed structure and
i0 < i1 < . . . be an increasing sequence of natural numbers. We define a
typed structure N = {〈M jik ,∈′jik 〉 | k ∈ IN} as follows: for x ∈ M jik ,
y ∈ M

jik+1 : N |= x ∈ y iff M |= ∃z (x ∈ z ∧ {. . . {z} . . .} = y), where
the singleton operation is iterated ik+1 − ik − 1 times.

Such a typed structure will be called extracted from M, written N ≤ M.

Definition 2.17 : If M = {〈M ji ,∈ji〉|i ∈ IN} is a typed structure, then M+

denotes the typed structure

M+ := {〈M ji+1 ,∈ji+1〉 | i ∈ IN}.

Obviously, ≤ is reflexive and M+ ≤ M. For any x, we denote {x}0 := x,
{x}n+1 := {{x}n}, n ∈ IN.

Lemma 2.18 : Let M = {〈M ji ,∈ji〉 | i ∈ IN} be a typed structure. If N ≤

M, x ∈ M jik , y ∈ M
jik+1 , then N |= {x} = y is equivalent to M |=

{x}ik+1−ik = y.

Proof.

N |= {x} = y ⇐⇒ N |= x ∈ y ∧ ∀p (p ∈ y → p = x)

⇐⇒ M |= ∃z (x ∈ z ∧ {z}ik+1−ik−1 = y)

∧∀p (∃z′ (p ∈ z′ ∧ {z′}ik+1−ik−1 = y) → p = x)

⇐⇒ M |= {x}ik+1−ik = y :

Let’s check the last ⇐⇒. Reason in M. Assume LHS. For that z, we already
have {z}ik+1−ik−1 = y, and it remains to show z = {x}. x ∈ z is given.
Assuming e ∈ z, and taking in the second part of the conjunction p := e and
z′ := z, we obtain e = x, q.e.d. Conversely, assume RHS. For ∃z (x ∈ z ∧
{z}ik+1−ik−1 = y), take z := {x}. For the second part, if {z ′}ik+1−ik−1 =
y, then z′ must be {x}, and the only element of {x} is x, q.e.d.

�

Lemma 2.19 : Let M = {〈M ji ,∈ji〉 | i ∈ IN} be a typed structure. If N ≤

M, x ∈ M jik , y ∈ M
jik+n , then N |= {x}n = y is equivalent to M |=

{x}ik+n−ik = y.
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Proof. If n = 0, the assertion is obvious. For n > 0, apply the previous
Lemma n times. �

Lemma 2.20 : ≤ is transitive.

Proof. Let N ≤ M and O ≤ N . We need to show O ≤ M.

First, the domain of O is {M
jikl | l ∈ IN}. Assume x ∈M

jikl , y ∈M
jikl+1 .

Now compute:

O |= x ∈ y
O ≤ N
⇐⇒ N |= ∃z (x ∈ z ∧ {z}kl+1−kl−1 = y)

N ≤ M, L.2.19
⇐⇒ M |= ∃z (∃z1 (x ∈ z1 ∧ {z1}ikl+1−ikl

−1 = z)

∧{z}ikl+1
−ikl+1

= y)

⇐⇒ M |= ∃z1 (x ∈ z1 ∧ {z1}ikl+1
−ikl

−1 = y),

confirming that O ≤ M.

�

Lemma 2.21 : If N ≤ M and M |= SCA, then N |= SCA.

Proof. Assume N ≤ M and M |= SCA. Let ϕ[xk] ∈ LTT. We need to
show

N |= ∃yk+1∀xk
(

x ∈ y ↔ ϕ[x]
)

. (9)

Let ϕN be obtained from ϕ by replacing every variable xl by xil , and re-
placing every xl ∈ yl+1 by ∃zil+1(xil ∈ z ∧ {z}il+1−il−1 = y). Then
ϕN ∈ LTT. Rephrasing (9), we need to show

M |= ∃yik+1∀xik
(

∃zik+1(x ∈ z ∧ {z}ik+1−ik−1 = y) ↔ ϕN [x]
)

.

(10)

First, since M |= SCA, we have

M |= ∃yik+1

1
∀xik

(

x ∈ y1 ↔ ϕN [x]
)

. (11)
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Take yik+1 := {y1}ik+1−ik−1. Observe

M |= ∀xik
(

x ∈ y1 ↔ ∃zik+1(x ∈ z ∧ {z}ik+1−ik−1 = y)
)

: (12)

Reason in M. Assume x ∈ y1. Then RHS is satisfied by taking z := y1.
Conversely, assume ∃zik+1(x ∈ z ∧ {z}ik+1−ik−1 = y). Then it must be
z = y1 and x ∈ y1. Q.E.D.

(12) and (11) now imply (10) and (9).

�

Definition 2.22 : For any M |= SCA and any sentence ψ ∈ LTT, let us say
that M forces ψ when ψ is true in every typed structure extracted from M,
and that M decides ψ when M forces either ψ or ¬ψ.

Remark 2.23 : If M decides ψ, then M |= ψ ↔ ψ+.

Proof. Remember M+ ≤ M. �

Lemma 2.24 : (Extraction Lemma, Boffa [1]) Given any M |= SCA and any
sentence ψ ∈ LTT, there is a model N |= SCA with N ≤ M which decides
ψ.

Proof. Let k be greater than all type indices appearing in ψ. Define a parti-
tion G1, G2 of [IN]k+1 as follows:

G1 := {i0 < i1 < . . . < ik | 〈M
ji0 ,M ji1 , . . . ,M jik , . . .〉 |= ψ},

G2 := {i0 < i1 < . . . < ik | 〈M
ji0 ,M ji1 , . . . ,M jik , . . .〉 |= ¬ψ}.

By Ramsey’s theorem (cf. [5]), take an infinite set X of natural numbers
i0 < i1 < . . . < in < . . . such that [X]k+1 ⊆ G1 or [X]k+1 ⊆ G2, and set
dom(N ) := 〈M ji0 ,M ji1 , . . . ,M jin , . . .〉. In the first case ([X]k+1 ⊆ G1)
N forces ψ, and in the second case N forces ¬ψ. �

Lemma 2.25 : Given any M |= SCA and any sentence ψ ∈ LTT, there is a
model N |= SCA + ψ ↔ ψ+ with N ≤ M.

Proof. Corollary of Lemma 2.24 and Remark 2.23. �

Lemma 2.26 : Given any M |= SCA and any finite list of sentences ψ1, . . . ,

ψn ∈ LTT, there is a model N |= SCA +
∧

1≤i≤n ψi ↔ ψ+

i with N ≤ M.
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74 SERGEI TUPAILO

Proof. Apply Lemma 2.25 n times. Use transitivity of ≤ (Lemma 2.20). �

Definition 2.27 : Let a finite list of sentences ψ1, . . . , ψn ∈ LTT be given.
Let Aψ1,...,ψn

2
be a choice function such that

if M |= SCA then Aψ1,...,ψn

2
(M) |= SCA+

∧

1≤i≤n

ψi ↔ ψ+

i and Aψ1,...,ψn

2
(M) ≤ M.

Theorem 2.28 : Let a finite list of sentences ψ1, . . . , ψn ∈ LTT be given. If
M |= SCA then

Aψ1,...,ψn

2
(M) |= SCA +

∧

1≤i≤n

ψi ↔ ψ+

i and Aψ1,...,ψn

2
(M) ≤ M.

Proof. Follows from Definition 2.27. �

Lemma 2.29 : If N ≤ M then J(N ) ⊆ J(M).

Proof. By the Definition 2.16, the domain of N is just a subsequence of the
domain of M. �

Theorem 2.30 : For any finite list of sentences ψ1, . . . , ψn ∈ LTT, if M |=
SCA then

J(Aψ1,...,ψn

2
(M)) ⊆ J(M).

Proof. Follows from Theorem 2.28 and Lemma 2.29. �

3. Conclusion

Definition 3.1 : Let a finite list of sentences ψ1, . . . , ψn ∈ LTT be given. For
M |= SCA we define

Aψ1,...,ψn(M) := Aψ1,...,ψn

2
(A1(M)).
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Definition 3.2 : Let a finite list of sentences ψ1, . . . , ψn ∈ LTT be given.
M |= SCA is a fixpoint of Aψ1,...,ψn iff

Aψ1,...,ψn(M) = M.

Lemma 3.3 : If M |= SCA and J(A1(M)) = J(M) then A1(M) = M.

Proof. Assume J(A1(M)) = J(M). By Definitions 1.5 and 2.12, this im-
plies

∀i∈INA1(M
ji) = M ji ,

which, using Definitions 2.12 and 2.10, further yields

∀i∈IN∀x∈M ji∀x′∈M ji (x ∼ji x′ ↔ x = x′). (13)

By Definition 2.1 furthermore we have

∀i∈IN∀x∈M ji∀y∈M ji+1 (x ∈̃ji y ↔ x ∈ji y). (14)

(13) and (14) confirm that M and A1(M) is the same set.

�

Lemma 3.4 : Let a finite list of sentences ψ1, . . . , ψn ∈ LTT be given and
M |= SCA. If J(Aψ1,...,ψn

2
(M)) = J(M) then Aψ1,...,ψn

2
(M) = M.

Proof. Assume that Aψ1,...,ψn

2
(M) is given by an increasing sequence

{ik | k ∈ IN}. Assume J(Aψ1,...,ψn

2
(M)) = J(M), which is, by Defini-

tion 1.5,

{〈ji, x〉 | i ∈ IN ∧ x ∈M ji} = {〈jik , x〉 | k ∈ IN ∧ x ∈M jik}.

Claim. ∀k∈IN ik = k.

/- By induction on k. First denote

A := {〈ji, x〉 | i ∈ IN ∧ x ∈M ji},

B := {〈jik , x〉 | k ∈ IN ∧ x ∈M jik}.
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Ind. base: Take any x ∈ M j0 (by Lemma 1.4 such an x exists). Then
〈j0, x〉 ∈ A, so we must have 〈j0, x〉 ∈ B. If i0 > 0, then ji0 > j0, and
jik ≥ ji0 > j0 for every k. Therefore i0 = 0 must hold.

Ind. step: Take any x ∈ M jk+1 (by Lemma 1.4 such an x exists). Then
〈jk+1, x〉 ∈ A, so we must have 〈jk+1, x〉 ∈ B. If ik+1 > k + 1, then
jik+1

> jk+1, and ji
k′

≥ jik+1
> jk+1 for every k′ ≥ k + 1. On the other

hand, by IH we have ik′ = k′ and ji
k′

= jk′ < jk+1 for every k′ < k + 1.
Since we always have ik+1 ≥ k+1, it remains to conclude that ik+1 = k+1.

-/

Since ∀k∈IN ik = k, by Definition 2.16 the ∈ relation is the same in M and
Aψ1,...,ψn

2
(M), so M and Aψ1,...,ψn

2
(M) is the same set.

�

Theorem 3.5 : Let a finite list of sentences ψ1, . . . , ψn ∈ LTT be given and
M |= SCA. If J(Aψ1,...,ψn(M)) = J(M) then Aψ1,...,ψn(M) = M.

Proof. Assume J(Aψ1,...,ψn(M)) = J(M), which is, by Definition 3.1,

J(Aψ1,...,ψn

2
(A1(M))) = J(M). (15)

By Theorems 2.30 and 2.15 we must have

J(Aψ1,...,ψn

2
(A1(M))) ⊆ J(A1(M)) ⊆ J(M),

which, together with (15), implies

J(Aψ1,...,ψn

2
(A1(M))) = J(A1(M)) = J(M).

The claim of the Theorem now follows from Lemmata 3.3 and 3.4.

�

Theorem 3.6 : Let a finite list of sentences ψ1, . . . , ψn ∈ LTT be given. If M
is a fixpoint of Aψ1,...,ψn then

M |= SCA + Ext +
∧

1≤i≤n

ψi ↔ ψ+

i .
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Proof. Let M be a fixpoint of Aψ1,...,ψn . Then

J(Aψ1,...,ψn(M)) = J(M),

and, as in the proof of the previous Theorem,

J(Aψ1,...,ψn

2
(A1(M))) = J(A1(M)) = J(M)

and
Aψ1,...,ψn

2
(A1(M)) = A1(M) = M.

The Claim now follows from Theorems 2.14 and 2.28. �

Definition 3.7 : Let FIXA be the following assumption:

For every finite list of sentences ψ1, . . . , ψn ∈ LTT, there exists a fixpoint of
the operation Aψ1,...,ψn .

Theorem 3.8 : NF is consistent relative to ZFC + FIXA.

Proof. Assume FIXA. By Theorem 3.6, there is a model of SCA + Ext +
∧

1≤i≤n ψi ↔ ψ+

i for every finite list ψ1, . . . , ψn of LTT-sentences. Then,
by compactness, there is a model of SCA + Ext + Amb. By Specker’s The-
orem 1.1, there is a model of NF, i.e. NF is consisent. �

Remark about FIXA. It could tempting to think that since the "value" J(M)
is descending with the operation A (Theorems 2.30 and 2.15), starting with a
countable set (Theorem 1.6), it must have a fixpoint by cardinality argument
(using existence of an uncountable ordinal). Unfortunately, the operation A
is defined on M’s, not on J(M)’s, and the "evaluation" J is not one-to-one.

Tallinn University of Technology
Institute of Cybernetics

Estonia

E-mail: sergei@cs.ioc.ee
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