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RELEVANT LOGIC, PROBABILISTIC INFORMATION, AND
CONDITIONALS*

EDWIN D. MARES

Abstract

This paper sets out a theory of relevant conditional probability. The
theory is motivated as a way of incorporating probabilistic infer-
ence into the theory of situated inference of [12]. The theory is then
adapted to provide a theory of relevant conditional subjective prob-
abilities and this latter theory is then used to provide a basis for a
theory of indicative conditionals.

1. Introduction

In [12], I set out a theory of “situated inference” in order to give an inter-
pretation of the model theory for relevant logic. According to that theory,
an implication A — B is true in a situation s if and only if in s there is
the information that if there is a situation in the same world as s in which A
obtains, then there is also a situation in that world in which B obtains.'

In situated inferences, one is allowed to manipulate information using log-
ical rules such as being allowed to take the available information in whatever
order one wants, and to “special” pieces of information that tell us about con-
nections between situations. The pieces of information that tells us about
these sorts of links between situations in worlds are called informational
links. A paradigm informational link is a law of nature. For example, if true
in our situation, Newton’s law of universal gravitation would tell us that if
there is a situation in the same world in which two pieces of matter exist,
then we could infer that in our world there is a situation in which these two
pieces of matter attract one another.

*The author would like to thank Patrick Allo for inviting him to submit a paper, as well
as reading and discussing its content. Also he would like to thank the Journal’s referee for
extremely useful suggestions.

'The theory of situated inference is one interpretation of relevant logic. There are other
informational interpretations of relevant logic, such as those in [2], [16], and [19].
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400 EDWIN D. MARES

The informational links that are utilized in [12] are all perfectly reliable.
They must be in order to provide truth-makers for relevant implications. For,
in relevant logic, the arrow is read as telling us that the antecedent in some
way forces the consequent to come true. But much of our information about
the relationship between propositions (and between situations in worlds) is
not perfectly reliable. Much of it is at best probabilistic.

Consider a simple example. A die is thrown. When the die is in the air, if
it is fair, the probability that it will land a six is %. Moreover, the throwing of

the die makes it %—likely that the die will land a six. Thus, we can say that a
fair die’s being thrown implies to the degree of a sixth that it will land 6, or
semi-formally, A fair die is thrown — 1 the die will land 6.

Suppose now that when the die is iﬁn the air, one is considering flipping
a coin. Given the independence of the flipping of the coin and how the die
will land, on the classical theory of probability we have that the conditional
probability of the die landing on a number greater than 2 is % But we would
not want to say that the flipping of the coin (relevantly) implies that the
die will land on 3-6 is % On the theory that we present, the conditional
probability of the die landing on 3-6 is near zero. The fact is that the flipping
of the coin does not make the die land on 3, 4, 5, or 6 and this should be
reflected in a relevant theory of probability.

It is the aim of this paper to set out a semantics for relevant probabilistic
implication and to use that semantics as a basis for a theory of conditionals.

2. Situated Inference

We begin with a distinction between worlds and situations. A world is a
possible world in the sense of contemporary modal logic and metaphysics.
It is a complete universe. To borrow a phrase from Barwise and Perry [3],
worlds “decide every issue”. More formally, worlds support the principle of
bivalence — every statement is either true or false at a world. Situations,
on the other hand, support information about worlds, and they usually do
so in a partial manner. Consider, for example the situation that incorporates
all and only the information currently available in my study as I write this
paragraph. That situation contains information about me and my dog, but
not about, say, the weather in Brussels or Bari.

Thus, situations capture partial information about worlds. The information
that they capture need not be about one place or time in a world, but can be
about information that is widely distributed over time or space. Moreover,
a situation need not accurately characterize only one world. Two or more
worlds might contain the same information, and so have the same situation
“in” them. Situations can be in more than one world, since (in the sense
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RELEVANT LOGIC, PROBABILISTIC INFORMATION, AND CONDITIONALS 401

being used here) situations are abstract entities and, like properties and other
abstracta, can exist in more than one place at one time.> Note also that the
information in a situation need not accurately characterize any world. In this
case the situation is not in any world. In this case, the situation is said to be
an impossible situation.

On the theory of situated inference, an implication A — B holds in a sit-
uation q if and only if in a there is the information that, if there is a situation
b in the same world as a in which A is true, then there is also a situation ¢
(perhaps distinct from a and b, but perhaps not) in the same world in which
B is true. We can formalize this as

LalA||BJ,

where |A| and |B| are the propositions expressed by the statements A and
B respectively.> A proposition is just a set of situations. Thus, [aXY says
that @ contains the information that if there is a situation in X which is in the
same world as a then there is also a situation ¢ € Y in that world.

3. Probabilizing Situated Inference

In order to treat probabilistic relevant implication, we develop here a theory
of probabilistic situated inference. Instead of just perfectly reliable links, we
add ones that are probabilistic. The most obvious examples of such links are
probabilistic laws such as the laws of quantum theory, but these are not the
only ones that we need. Consider again the throwing of a die. Suppose for a
moment that we are in a world in which the laws of nature are all determin-
istic. Then, given all the information in the world it is determined when the
die is thrown how it will land. But suppose also that we are considering a
situation in this world in which not enough information is given to determine
how the die will land. Then, there still may be enough information (say that
the die is not loaded and that it is symmetrical) to allow us to infer that the
probability of a die’s landing on any given side is %. How exactly probabili-
ties supervene on partial information is a difficult matter, but what is clear is
that this sort of supervenience is common.

2 Of course, on some theories, individuals can be in more than one world. But this is
controversial and it is not a controversy that I can to enter into in this paper.

3In [12] 1 skipped this step and went right to the relations of the form Iab|B|. Now
I think that it is rhetorically better to start with relations between situations and pairs of
propositions.

“O4mares”

2006/11/13
page 401

— P



402 EDWIN D. MARES

On the face of it, the semantic theory seems easy to produce. We merely
add an extra argument to our implication relation, that is, for any real number
r between 0 and 1,

A —, Bistrue at a if and only if I,a|A||B|.

This seems straightforward enough. We now admit probabilistic informa-
tional links into our theory, and so our semantics recognizes this with the
addition of a parameter in its implication relation between propositions.

4. From I to R

Let’s make this all a bit more formal. In the early 1970s, Richard Routley
and Robert Meyer produced a model theory for relevant logic that uses an ac-
cessibility relation on situations in order to model implication (see [17] and
[18]). In [12] (chapters 2 and 3), I motivate the Routley-Meyer model theory
using the theory of situated inference. We will not reproduce that motivation
here. The upshot is that we can replace our relation I between situations and
pairs of propositions with a ternary relation, R, between situations such that,
for any situations a, b, and c,

Rabc iff, for all propositions X,Y, if laXY andb € X,thenc € Y.
Having done this, the truth condition for implication now reads as follows:

A — Bistrue ata
iff VOVe((Rabe & Ais true at b) D B is true at ¢).

This move to talk about a ternary relation on situations has great value. We
have a good grasp on the mathematics of relations and we know how to ma-
nipulate them. As the work of Routley and Meyer shows, the ternary relation
semantics is very powerful and flexible. It can be used to provide models for
a large range of logical systems and it can be used to prove interesting and
otherwise difficult results about them ([18] and [4]).

Our problem is now to integrate a semantics for probabilistic relevant
implication into the Routley-Meyer Model theory for relevant implication.
Their model theory places an important constraint on the semantics for prob-
abilistic implication. Given that the relevant arrow represents perfectly re-
liable connections between situation types, it seems clear that if A — B is
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RELEVANT LOGIC, PROBABILISTIC INFORMATION, AND CONDITIONALS 403

true at a then so is A —1 B. Thus, if the truth condition for a relevant im-
plication obtains at a situation, the truth condition for the corresponding — 1
formula must also obtain there.

The following is one way of satisfying this constrain and giving an intu-
itive meaning to —,. The idea here is that we look at the set of situations
that are R-related to a and situations in which A is true and find that the
proportion of them that are | B|. If this proportion is r, then the probabilistic
implication A —, B is true at a.

In order to understand all of this in more depth, we will examine the pre-
cise definition of a Routley-Meyer frame and of our conditional probability
measures.

5. Routley-Meyer Frames

An R-frame is a structure 7 =< S, P, R, * > such that S is a non-empty set
(of “situations”), P is a non-empty subset of .S (of “world-like situations”),
R is a ternary relation on S, and * is a unary operator on .5, which satisfy
the following definition and postulates:

a<b =g Jx(x € P & Rzab).

Fl1 ifa € Pand a < b, thend € P;

F2 < is transitive and reflexive;

F3 if Rabc, then Rbac;

F4 if 3z(Rabx & Rxcd), then Iz(Racr & Rxbd);
F5 Raaa;

F6 if Rabc, then Rac*b*;

F7 if Rbcd and a < b, then Racd;

F8 a** = a.

Where X and Y are sets of situations, we define X = Y =g {a :
VoVe((Rabc &b e X) D ceY)}band —X =g {a: a* ¢ X}. We say
that a set X C S is closed upwards if for any @ € X, if a < b, then b € X.
A set Prop is a set of closed upwards sets that is closed under N, — and =—>.
It is easy to show that Prop is also closed under U.

In what follows, we will also need the following definition: Where X is a
set of situations, let RaX be the set of situations, {c : 3b(b € X & Rabc)}.
The reader should be careful not to confuse the set RaX with an arbitrary
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404 EDWIN D. MARES

set of situations Y such that Ja XY . Rather, it is the intersection of these
sets, i.e. RaX = NyeprplaXY. Thus, RaX is the set of situations that
satisfy all the consequents of all of all the conditionals true at a such that the
antecedents of those conditionals represent the proposition X.

Our base language is a standard propositional language with the connec-
tives A, =, and —, propositional variables and parentheses. It has the stan-
dard formation rules. Later we will add “psuedo-connectives” —,. for each
real number r in the closed interval [0, 1]. The subscripted arrows are not real
connectives, since we will not allow them to be nested in formulae. That is, a
formula containing a subscripted arrow will be well-formed only if the sub-
scripted arrow is the main connective. But for now, we will deal only with
the base language.

A general R-frame is a pair < F,Prop>, where F is a Routley-Meyer
frame and Prop is a set of propositions over F. A valuation over a general
frame < F,Prop> is a function from the propositional variables into Prop.
Each valuation v determines a satisfaction relation |=, between situations
and formulas such that the following truth clauses obtain:

e a |=, piff a € v(p), for all propositional variables p;

e af=, ANBiffal=, Aand a |=, B;

o a =, “Aiff a* £, A

e ay A— Biff VbVe((Rabc & b =y A) D ¢ =y B).

We also set |A|, = {a € S: a =, A}. By an easy but tedious induction
we can show that, for any formula A, |A|, €Prop. And we can show that
|AA By, = |Aly N |Blys |A — B|, = |Aly, = |Bly, and |-A4[, = —|A|,.
A model is a structure < F,Prop,v >, where < F ,Prop> is a general R-
frame and v is a valuation. A formula A is valid on a model < F,Prop,v >
if and only if P C |A|,. A formula is valid on a general R-frame if it is valid
on models based on that frame and it is valid on the class of R-frames if it is
valid on every frame in that class.

The logic R is characterized by the class of general R-frames, as we have
defined them here. The set of propositions plays no role in the soundness or
completeness proofs for R. We add Prop because it is needed for the defini-
tion of relevant probability functions that we present in the next section.

6. Relevant Probability Functions

Now that we have defined a class of frames, we can define probability func-
tions on them. The sort of probability function that we use here is adopted
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RELEVANT LOGIC, PROBABILISTIC INFORMATION, AND CONDITIONALS 405

from the paraconsistent theory of probability given in [11] (also see [15]).
In that paper I generalized the standard Komologorov axioms for probability
theory to fit with Dunn’s logic D4. The relevant logic R, in a certain sense,
results from the addition of the implication connective to D4. And, because
of this, the generalization of probability theory seems to fit equally well with
R.

Before we can get to the definition of a probability function itself, we need
to define a lattice of subsets. A lattice of subsets over a set X is a structure
L=< L,N,U,C>suchthat L C pX, where X € L, () € L, L is closed
under N and U, and £ is ordered by C.

A relevant probability function Pr is a function from a lattice of subsets
L over a set X into the closed interval of real numbers, [0, 1] such that the
following conditions are met. Where Y and Z are any members of L,

e Pr(X)=1;Pr(0) = 0;
e PriYUZ)=(Pr(Y)+Pr(2)) —Pr(Y NZ2),
o IfY C Z, then Pr(Z) — Pr(Y) > 0.

The lattice of sets over which our probability function is to be defined is the
closure of Prop U {RaX : a € S & X €Prop} under N and U.

For each situation, we define a conditional probability function Pr, such
that

Pr((RalAly) N |Blo)
Pr(RalAl,) ’

Pro(|Bly, |Aly) =

The idea is that the probability of B on A in a is the proportion of situations
in Ra|A|, that are also in |B|,.

Now we add the subscripted arrows, —,. (for each r € [0, 1]) to our lan-
guage. We use this conditional probability function to give a truth condition
for our psuedo-connective — ., viz.,

a =y A =, Biff Pro(|Blo, |Aly) = r.

Let’s return to the example from the introductory section above. Sup-
pose that a is a situation in which a die is thrown and that an agent in a
is considering whether to flip a coin. The conditional probability of the
die landing on a number greater than 2 (() given that the coin is flipped

(C) is Pro(|Glo, |Cly) = W. The situations in which the

coin is flipped (i.e. the situations in |C/|,) are not restricted here to ones in
which the die is also thrown. They include situations in which the die is
not thrown and ones which contain no information about whether the die
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406 EDWIN D. MARES

is thrown. Unless in a there are informational links that connect the coin’s
being flipped with the die’s landing, there will be a very small percentage
of the worlds in Ra|C|, that actually have the die landing on any number.
Thus, Pr,(|G|y, |C|,) will be very low.

7. Probability and Conditionals

In the majority of the remainder of this paper, we provide a version of the
theory of conditionals due to David Lewis and Frank Jackson. The difference
between our version and theirs is that whereas theirs is based on classical
logic and classical probability theory, ours is based on relevant logic and
relevant probability theory.

The Lewis-Jackson theory (henceforth, the ‘LJ theory’) claims that the
truth condition for indicative conditionals is the same as for the correspond-
ing material conditional (see [6]). They do not hold, however, that indicative
conditionals are merely material conditionals. The material conditional has
properties that the indicative conditional does not seem to share. For exam-
ple, material conditionals contrapose, whereas indicative conditionals do not
always do so. Here is an example due to Frank Jackson:

If Mary makes a mistake, she will not make a big mistake.

.. If Mary makes a big mistake, she will not make a mistake.

Clearly, the conclusion of this argument is absurd. Similarly, the indicative
conditional is not in general transitive and does not allow for strengthening
of the antecedent.

Thus, the LJ theory holds that when one states an indicative conditional,
the truth condition of her utterance is the same as the corresponding material
conditional, but she is also expressing that she holds corresponding condi-
tional probability to be high. Thus, for example, when Susan says ‘if Mary
makes a mistake (M), she will not make a big one (—B)’ she is expressing
that her subjective probability P(—B, M) is high. Just because P(—B, M)
is high, it does not follow that its “contrapositive” P(—M, B) will also be
high. Thus, although the LJ theory claims that the argument given above
is valid (it preserves truth), it holds that the premise may be assertible by
a speaker when the conclusion is not. Thus, the LJ theory does not quite
identify the indicative conditional with the material conditional. They have
the same truth conditions, but different pragmatic properties.

Despite the fact that the pragmatic filter avoids some of the problems of
identifying the indicative and material conditionals, it does not avoid all. For
example, as we have already seen, if one knows that a proposition p is true,
then her conditional probability P(p, A) = 1 if P(A) # 0. Thus, the LJ
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RELEVANT LOGIC, PROBABILISTIC INFORMATION, AND CONDITIONALS 407

theory inherits a paradox of material implication: If one knows that p is true,
then ‘If A, then p’ is assertible for any sentence A such that P(A) # 0. Thus
it is assertible that ‘if Brazil wins the next World Cup, 2+2=4’. Similarly, if
one’s probability for p is high, P(q) # 0, and p and ¢ are independent, then
‘if q, then p’ is assertible. So, to return to our example from the introductory
section above, on the LJ theory, when a die is in the air the conditional ‘if
I toss a coin, the die will land on a number greater than two’ is assertible.
Therefore, it would seem that the LJ theory is in need of further emendation.

8. Subjective Probability

One key feature of the LJ theory is that the assertibility conditions of condi-
tionals are conditional subjective probabilities. So far we have dealt with ob-
jective probabilities that supervene on the information available in situations.
In order to produce a theory of subjective probability in our framework, we
treat the content of an agent’s belief state as a set of situations. In doing this,
we are adapting the treatment of contents of intentional states from doxastic
logic — in the semantics for doxastic logics, one takes a content to be a set of
possible worlds. Each of these worlds corresponds to what is possible given
one’s beliefs. Here we change only the view that contents are sets of worlds
to the claim that they are sets of situations. The reason that we need to use
a set of situations, rather than a single situation, is to deal with unresolved
disjunctions. On our semantics, a disjunction A V B is true in a situation if
and only if at least one of A or B is true in that situation.* But we do tend
to have disjunctive beliefs even in cases in which we do not believe either
disjunct. Taking the content of our beliefs to be sets of situations allows
unresolved disjunctions. In addition, the use of sets of situations to model
contents allows us to treat ambiguity of reference and vagueness.

The changes that we suggest to the LJ theory is to take an indicative condi-
tional to have the same truth condition as the corresponding relevant implica-
tion and to have as an assertibility condition that the corresponding relevant
subjective conditional probability be high. Thus, we need a theory of subjec-
tive conditional probability. To represent the degrees of beliefs of an (ideal)
agent ¢, we assume that she has a probability function P; over the closure
under N and U of the set of propositions together with the set of X —=, Y,
which is the set of situations a such that Pr, (Y, X) = r, for all € [0, 1].
The function P; is monadic, that is, it takes propositions as arguments and

* We are assuming that A V B is defined as =(—A A = B). Given this definition, we can
derive the standard truth condition for disjunction.
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408 EDWIN D. MARES

returns values in the unit interval. The task here is to create a binary sub-
jective probability function (a conditional probability function), which takes
pairs of propositions as arguments.

I take a subjective relevant conditional probability Pr; to be a statistical
average of the probabilities of X =, Y. When we have two probability
functions — a first order function and a second order function — the idea
behind taking a statistical average is to give a weighted average of the first
order probabilities. Here we have two probability functions — a relevant
conditional probability function and a subjective probability function. The
conditional relative probability function acts here as the first order function
and the subjective probability function P; acts here as the second order func-
tion. In order to define the subjective conditional probability function, let
R(X,Y) be the set of r € [0, 1] such that P;(X =, Y) # 0. If R(X,Y")
is finite, then we set

Pry(V,X)= Y (B(X=Y)xr) (D).
reR(X,Y)

(compare [8]). If R(X,Y") is countable, then given a discrete ordering on
R(X,Y), we can apply (). If R(X,Y) is uncountable, then we can use
approximation techniques and take a countable partition on R(X,Y"), and
choose one number from each element of the partition and, given a discrete
ordering on the resulting set, apply (1).> For formulas A and B, we set
Pr;y(B, A), = Pri(|Blv, |4|y)-

9. Relevant Conditionals

There are some close connections between natural language conditionals and
corresponding implications. In mathematics in particular, but in ordinary
speech as well, we often use ‘if ... then’ and ‘implies’ interchangeably. The
relevant logic R, I claim, captures the notion of implication well. But rele-
vant implication is transitive, it allows for strengthening of the antecedent,
and it contraposes.

3Note that this method will return a value for Pr;(Y, X) only when lim,, o ((P;
(X = Y)xr)+ ...+ (P(X =, Y) X rp)) is defined. The possibility of un-
defined conditional probabilities does not, however, affect my theory.
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RELEVANT LOGIC, PROBABILISTIC INFORMATION, AND CONDITIONALS 409

So, I suggest here® that we take the truth condition of indicative condi-
tionals to be the same as their corresponding relevant implications and their
assertibility condition to be that the corresponding subjective relevant con-
ditional probability to be high. To make the theory more precise, let’s for-
malize the indicative conditional with the arrow, ~~. Thus, we set A ~» B is
assertible for ¢ on v iff Pr;(B, A), is high.

Apart from avoiding the problems already cited, the relevant theory of
conditionals has some advantages over the LJ theory. First, consider a con-
ditional with a antecedent that is known to be impossible. On the LJ theory,
such conditionals are never assertible. But just because a proposition is nec-
essarily false, need not mean that it is always irrational to assert conditionals
with it as an antecedent. For example, consider the conditional ‘if Fermat’s
last theorem is false, then Wiles’ proof is wrong’ is assertible (and true).
Similarly, ‘if Fermat’s last theorem is right, then Wiles’ proof is wrong’ is
not assertible (and false). Second, the present theory does better with nested
conditionals. Where P is a classical probability function, the conditional
probability P(q D p,p) is always 1, where P(p) # 0. Thus, the LJ theory
is stuck with a paradox of material implication, that is, they have to accept
‘if p, then if g, p’ whenever the probability of p is non-zero. But, where P;
is a relevant subjective conditional probability function, P;(q ~+ p,p) (i.e.
P;(q — p, p)) need not be high (regardless of the value of P;(p)).

It would also be interesting to combine relevant logic with the logic of
being informed (see [5]). Instead of looking at the set of the situations that
matches one’s overall belief state, we could look at the set of situations that
is the content of one’s information. That is, we could look at the set of
situations s that is such that if one is informed that A, then A is true in s.
We could then combine our relevant logic with the logic of being informed.
If, as is argued in [5], this logic is the modal logic KTB, then this task is
straightforward, for it is not difficult to add a binary accessibility relation to
our semantics that is reflexive and symmetrical (see, e.g., [10]).”

10. Concluding Remarks

We have set out a theory of probability based on the semantics for relevant
logic. We have motivated this theory as a basis for probabilistic inference

%I'm not claiming that this is the right theory of conditionals. In [12], chapter 7, I develop
a non-probabilistic theory of indicative conditionals. I still prefer that other theory, but the
present theory is an interesting alternative that deserves to be explored.

"It would be more difficult, but also very interesting, to combine relevant logic (and
relevant probability), with the adaptive logic given in [1].
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410 EDWIN D. MARES

from partial information. We have also used it as basis for providing a rele-
vant version of the LJ theory of conditionals.

There is clearly much more work to be done. In particular, it would be
interesting to investigate whether it is possible to allow nested probabilistic
implications. The problem here is to set out a theory of nested conditional
probability that does not collapse into triviality. As David Lewis has shown,
in classical probability theory, allowing nested conditionals the probability
of which is equal to their corresponding conditional probabilities leads to a
form of triviality — probability functions of this sort do not allow formu-
las to take more than a small number of values [7]. Moreover, some non-
classical probability functions that obey quite weak conditions trivialize as
well given the assumption that the probability of a conditional is the same as
the corresponding conditional probability (see [14]).

This work should be of interest both to philosophers working on condi-
tionals and those interested in a theory of information. The theory fixes
certain problems in the LJ theory of conditionals — by making it relevant.
The theory of situated inference of [12] is a theory about how we use partial
information to make inferences about the world. The current paper extends
the theory of situated inference to handle probabilistic inference. There is
also more work to be done on the theory of inference. We need a theory that
also treats defeasible (and perhaps other non-monotonic) inference, where
specific probabilities are not available.
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