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DETERMINISTIC AND NONDETERMINISTIC STRATEGIES FOR
HINTIKKA GAMES IN FIRST-ORDER AND

BRANCHING-QUANTIFIER LOGIC

THOMAS FORSTER

Abstract
Applications of game-theoretic semantics à la Hintikka can be ex-
tended from Lower Predicate Calculus to languages with branching
quantifiers. When one does this, issues which in the LPC could
be swept under the carpet suddenly cause unwelcome subtleties.
It turns out that which formulæ of the branching quantifier logic
one accounts true comes to depend on whether one requires that the
winning strategies for Team ∃loïse in the Hintikka game be deter-
ministic (or allows them to be nondeterministic). The set of valid
formulæ is affected similarly.

Game-theoretic semantics for a logic L characterises the truth of formulæ
of L in a model M in terms of the existence of a winning strategy — in the
usual (“Hintikka”) game G(M, φ) — for a player variously known as ∃loïse,
True and Eve. I shall be calling her ‘∃loïse’ throughout, because this con-
stant harping on the existential quantifier will remind us of our concern here:
not much attention has hitherto been paid to the question of whether these
strategies are taken to be deterministic or nondeterministic and the existential
case is where any difference is most likely to reveal itself. A deterministic
strategy is one that says “When in situation x, do y”; a nondeterministic
strategy says “When in situation x, do one of the Y : it won’t matter which”.

Greek letters are dummies for complex expressions: Roman letters are
predicate letters. Structures are denoted by letters in fraktur font, and their
carrier sets by the corresponding upper-case Roman letter.

Since one of my purposes here is the elucidation of the rôle played by the
axiom of choice in these games, I shall naturally not be assuming it.

It turns out that in Predicate Calculus the distinction between deterministic
and nondeterministic strategies for player ∃loïse might affect our concept of
truth-in-a-model but not our concept of satisfiability or validity. In the case
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266 THOMAS FORSTER

of branching quantifier logic, the notion of validity is affected by our choice
between deterministic and non-deterministic strategies for ∃loïse.

We have to rule either that
(1) φ is true in M iff ∃loïse has a deterministic strategy to win G(M, φ);

or that
(2) φ is true in M iff ∃loïse has a nondeterministic strategy to win

G(M, φ);
If we adopt (1), so that we require ∃loïse to have a deterministic winning

strategy before we admit that — to take a germane example —

∀x∃yφ(x, y) (A)

is true in a structure M = 〈M, R〉 (where R is the interpretataion of φ) then
A might come out false under this interpretation if M is a counterexample
to DC, the axiom of dependent choices. That is to say, if for every m in
M there is m′ in M such that 〈m, m′〉 ∈ R but there is no ω-sequence
〈mi : i ∈ IN〉 of elements of M with 〈mi, mi+1〉 ∈ R for all i. In these
circumstances we would account (A) true if ∃loïse’s strategies are allowed
to be nondeterministic but false if they are required to be deterministic.

However, a choice of deterministic versus nondeterministic for ∃loïse’s
strategies will not affect our verdicts on whether or not a formula is valid. Au
fond this is no more than the fact that Skolemisation preserves satisfiability.

It is clear that we can use the axiom of choice to show that if a formula
of first-order logic is satisfiable then so is its skolemised version. However
the preservation of satisfiability by skolemisation does not depend on the
axiom of choice. Since there are inconvenient facts awaiting us later in this
discussion which in contrast do rely on the axiom of choice, it is important
to establish this early on.

The fact that Skolemisation preserves satisfiability is well known to the
cognoscenti; and the rest of us can consult — for example — the entry
by Avigad and Zach on the epsilon calculus in the Stanford online Ency-
clopædia of Philosophy. As a gesture in the direction of making this note
self-contained, a sketch follows.

We will illustrate with a simple two-quantifier case. Our proof system
will be sequent calculus; we will outline a proof of the contrapositive: if
∀xφ(x, f(x)) is not satisfiable, then neither is ∀x∃yφ(x, y).

Suppose we have a proof of

` ∃x¬φ(x, f(x)) (1)
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There might be more than one application of ∃-R with some contraction
on the right but we will have got this from something like

` ¬φ(x1, f(x1)), ¬φ(x2, f(x2)), ¬φ(xn, f(xn)) . . . (2)

where the various xi are not necessarily variables but might be complex
terms. Now any sequent proof of (2) can be transformed into a proof of

` ¬φ(x1, z1), ¬φ(x2, z2), ¬φ(xn, zn), . . . (3)

simply by replacing ‘f(x1)’, ‘f(x2)’, ‘f(xn)’ etc throughout by fresh vari-
ables zi. (Since we know nothing about f it must destroy all information
about its argument.) We can then do some ∀-R on the zi to obtain

` ∀y¬φ(x1, y), ∀y¬φ(x2, y), ∀y¬φ(xn, y), . . . (4)

and further ∃-R and contraction-on-the-right to get

` ∃x∀y¬φ(x, y) (5)

So if the skolemised version of the formula was refutable then the original
formula was refutable, which is what we wanted.

The Branching-Quantifier Case

Let us now consider a branching-quantifier formula, such as the following:
(

∀x∃y
∀x′∃y′

)

(

(x = x′ → y = y′) ∧ R(x, y) ∧ R(x′, y′)
)

(6)

The intended meaning of this formula, in English is: for all x there is a y
(depending only on x) and for all x′ there is a y′ (depending only on x′) such
that . . .

The game-theoretic semantics for first-order logic extends smoothly to this
new syntax. The difference now is that there is not a single ∃loïse as before,
but one for each path through the prefix: a team of ∃loïses. The team are
allowed a team-talk before the game to agree on strategies, but they may not
communicate during the play of the game. This is to ensure that (to take the
case above) “y depends only on x”.

It makes no difference to the truth of this sentence in any given model
whether or we demand that the team of ∃loïses have a pair of deterministic
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winning strategies or allow them to have nondeterministic winning strate-
gies. If the two ∃loïses are to win, they have to pick the same witnesses.
Since they are not allowed to confer the only way they can be sure of doing
it is to have the same deterministic strategy. The extra leeway they appar-
ently have when we allow them to play nondeterministically is of no use to
them.

Consider now the conditional

∀x∃yR(x, y) →

(

∀x∃y
∀x′∃y′

)

((x = x′ → y = y′) ∧ R(x, y) ∧ R(x′, y′))
(7)

For the ∃loïses to have a strategy to win the conditional they had better
have a strategy to win the consequent whenever they have a strategy to win
the antecedent. There are two cases to consider.

If ∃loïse’s strategies have to be deterministic, then they can have a win-
ning strategy for the antecedent only if there is a choice function. If there is
a choice function, then the consequent is true. Whenever they have a win-
ning strategy for the antecedent, they also have a winning strategy for the
consequent. On this reading formula (7) is valid simpliciter.

On the other hand, if the ∃loïse’s strategies do not have to be deterministic
then the situation is more complicated. In any model M where there is a
choice function for the interpretation of ‘R’ then the ∃loïses will have a
winning strategy for the consequent and therefore (7) will be true in M.
However if M is a model in which the antecedent is true but there is no
choice function for the interpretation of ‘R’ then the ∃loïses have no winning
strategy for the consequent and (7) will come out false in M.

This means that — just as in the LPC case — a decision on the rule-
makers’ part as to whether the ∃loïse’s strategies have to be deterministic
or might be nondeterministic will affect the truth of formulæ in individual
models. However — in contrast to the LPC case — it also means that the
rule-makers’ decision now affects which formulæ are valid. In particular the
decision of whether go for deterministic or nondeterministic strategies for
∃loïse will determine whether formula (7) is valid simpliciter or valid if and
only if the axiom of choice is true.

Coda

“Haven’t we been here before?” people will say: “Isn’t it known that we can
cook up a formula of second-order logic that is valid iff the axiom of choice
is true? Yes it is: the significance of this present note lies in the fact that
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although the choice between deterministic and nondeterministic strategies
for ∃loïse does not affect the semantics in the first order case, it does in the
branching quantifier case. As far as I am aware, nobody has noticed this be-
fore. Perhaps advocates of branching quantifier logics and their descendents
will tell us which semantics they have in mind.
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