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Logique & Analyse 195 (2006), 227–240

CURRY-TYPE PARADOXES

KATALIN BIMBÓ

Abstract
Curry’s paradox primarily concerns some versions of illative combi-
natory logic but, of course, also systems based on untyped λ-calculi.
Typically, the paradox is studied with an eye toward compatibility
of a logic with naive set theory. Our analysis emphasizes recursive
equations together with the logical theorems and rules involved. We
formulate some new paradoxes: one of them relies on reductio, an-
other shows how to use the if then else type constructor and
the double fixed point theorem to prove q.

1. Introduction

H. B. Curry invented the argument that became known as “Curry’s paradox.”
This paradox is based on few logical principles and rules, which have been
questioned rarely. Roughly speaking, only the contraction axiom and modus
ponens is needed. The paradox presented in various ways in the literature
and it has been observed that various other logical principles lead similarly to
inconsistency. Unfortunately, while Russell’s paradox is famous and widely
known, Curry’s paradox seems to be frequently forgotten or overlooked de-
spite its elegance and importance.

First, we recall some “variants” of the paradox from the literature. Then
we introduce three new paradoxes that share certain properties with Curry’s
reasoning.

2. Curry’s paradox(es)

2.1. The implicational type of W

The following natural deduction proof of Curry’s paradox is reproduced
nearly verbatim from one of the appendixes of [2]. (We changed only the
letters to ps and qs.) Based on the fixed point lemma, there is a p such that
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228 KATALIN BIMBÓ

p = p → q. This equality is used twice in the derivation, in the first and in
the last but one step.1

Proof 1 :

[p]1
[p]1

p→ q

q

p→ q
1

p p→ q

q

A more transparent presentation of — essentially — the same proof is
proof 2 in a Fitch-style natural deduction system.

Proof 2 :

1. p [assumption]
2. p→ q [replacement according to p = p→ q]
3. q [MP 1, 2]
4. p→ q [→I [1], 3]
5. p [replacement according to p = p→ q]
6. q [MP 4, 5]

The Fitch-style system shows clearly which formulas depend on the as-
sumptions; in particular, 3 doubly depends on 1, which is an analogue of
contraction. However, the natural deduction systems hide the fact that the
simple type of the identity combinator is used too.

The connection between the implicational fragment of intuitionistic logic
(H→) and simple typed combinatory logic (or the λK-calculus) is well-
known. (Perhaps, intuitionistic beliefs are the reason why the proof steps
are not scrutinized in [2].) There is a connection between the implicational
fragment of relevance logic (R→) and simple typed combinatory logic with
base {B,W,C, I } (or the λI-calculus) that is similar to theH→–λK relation-
ship. Relevance logics were motivated by the aim of avoiding the so-called
paradoxes of material implication including p ∧ ∼ p → q. Thus, it is not
surprising that [9] considers Curry’s paradox, which cannot be avoided by
substitutingR→ forH→, and then introduces a new conjunction–implication
paradox, that is closely related to Curry’s. (We recall these two arguments
as proofs 3 and 6.) The impetus of [9] is an investigation of the possibility of

1 The astute reader might detect a slight incoherence in proof 1 between steps 2 and 4.
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CURRY-TYPE PARADOXES 229

naive set theory via limiting the logical system, hence, the proofs are phrased
appealing to unrestricted comprehension rather that the fixed point lemma.

Proof 3 :

1. C =df {x : x ∈ x→ (x ∈ x→ q) } [comprehension]
2. (p→ (p→ q)) → (p→ q) [type of W, (axiom)]
3. C ∈ C ↔ (C ∈ C → (C ∈ C → q)) [1, set membership]
4. (C ∈ C → (C ∈ C → q)) → (C ∈ C → q) [instance of 2]
5. C ∈ C → (C ∈ C → q) [replacement in 4 acc. 3]
6. C ∈ C [replacement in 5 acc. 3]
7. C ∈ C → q [MP 6, 5]
8. q [MP 6, 7]

Note that the annotation is not unique, in the sense that other justifications
could be given for some of the steps assuming classical, intuitionistic or
relevance logic. For instance, 5 may be obtained from 3 and 4 by transitivity
of implication. Similarly, instead of replacement modus ponens could yield
6 from 3 and 5. (Of course, the change of the annotation on line 5 would add
a principle to those that have been used in the proof.)

The proof’s import is that given unrestricted comprehension, contraction,
replacement and modus ponens the system becomes inconsistent. (Incon-
sistency, in the absence of negation, of course, means that any formula is
provable, and we do not change the meaning of the term when negation is
included.) Perhaps, it is useful to emphasize that just as comprehension is
unrestricted, the set of theorems is supposed to be closed under substitution,
that justifies the insertion of 4 into the proof. Substitution is a fundamental
and desirable logical property and hardly avoidable at all.

[11] investigates which implicational formulas (like the type of W) lead
to triviality in the context of naïve comprehension. Since in [11] the only
connective is →, our results in section 3 are complementary to the proofs of
triviality in [11].

We recast proof 3 in an extended untyped λ-calculus, which also includes
some constants, notably, K and Y.2 K stands for truth and Y is the fixed point
combinator. This proof quite closely resembles the one in [10], in particular,
notationally.3

2 In general, constants and λ-terms are not quite the same, but the differences do not enter
into the present considerations, therefore, we use combinators as constants without further
ado.

3 We preserve the dual parenthesis notation of [10] that is very similar to the prefix
notation in logic. While the latter allows complete freedom from parentheses, in the λ-
calculus the grouping has to be indicated explicitly, because variables have no declared arity.
(M, N, P, Q, . . . range over terms, as usual.)
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230 KATALIN BIMBÓ

Proof 4 :

1. C =df λx.((→)x)((→)x)Q [abbreviation]
2. ((→)((→)P )((→)P )Q)((→)P )Q =β K [type of W]
3. (Y)C =β (C)(Y)C [Y’s axiom]
4. (C)(Y)C =β ((→)(Y)C)((→)(Y)C)Q [1, by β-conv.]
5. (Y)C =β ((→)(Y)C)((→)(Y)C)Q [replacement 3, 4]
6. ((→)((→)(Y)C)((→)(Y)C)Q)

((→)(Y)C)Q =β K [instance of 2]
7. (Y)C =β ((→)((→)(Y)C)((→)(Y)C)Q)

((→)(Y)C)Q [replacement 5, 5]
8. (Y)C =β K [replacement 6, 7]
9. ((→)(Y)C)((→)(Y)C)Q =β K [replacement 8, 5]

10. ((→)(Y)C)Q =β K [MP 8, 9]
11. Q =β K [MP 8, 10]

The main moves of the proof are the same as in the previous case, with the
slight difference that the emphasis is on equational reasoning. (In particular,
=β does not imply that the conjoined terms are sentences.) The last line of
the proof means that for any term Q one can prove that it is β-equal to truth,
which is a way to state inconsistency in the λK-calculus. A more obvious
difference from the former proof is the explicit use of the fixed point combi-
nator Y, which (roughly speaking) is an equivalent of the “self-application”
of the set definition in proof 3.

The fixed point combinator solves recursive equations of the form f =
Nf (where f does not occur in N ). The solution for f is (Y)N . Indeed,
(Y)N =β (N)(Y)N — exactly, as in the concrete equality on line 3 above.
One might wonder then what is the equation that is solved by (Y)C. The
answer is, perhaps, shocking at the first sight, because the equation is

P =β (λx.((→)x)((→)x)Q)P.

With some rewriting into logical notation this is the same as

p↔ p→ (p→ q).

The (classical two-valued) truth table for the formula is Table 1 (p. 231).
The formula p ↔ p → (p → q) is true in exactly one of the four possible

cases, and as the italic 1s show, then q is true as well.
Of course, if instead of classical logic we assume intuitionistic logic, for

instance, which is not finitely valued, then no simple truth table can be fur-
nished for the formula; however, a possible worlds model can be given. Let
us assume that w � p → (p → (p → q)) and w � (p → (p → q)) → p.
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CURRY-TYPE PARADOXES 231

p q p ↔ p→ (p→ q)

1 1 1 1 1 1
0 1 0 0 1 1
1 0 1 0 0 0
0 0 0 0 1 1

Table 1. Truth table for p↔ (p→ (p→ q))

Using the reflexivity of the accessibility relation repeatedly, we get the suc-
cessive conditions below.

w � p→ (p→ (p→q))
∀w′ ≥ w(w′

� p→ w′
� p→ (p→ q))

w � p→ w � p→ (p→ q)
∀w′ ≥ w(w′

� p→ w′
� p→ q)

w � p→ w � p→ q
∀w′ ≥ w(w′

� p→ w′
� q)

w � p→ w � q

w � (p→ (p→ q))→ q
∀w′ ≥ w(w′

� p→(p→ q) → w′
� p)

w � p→(p→ q) → w � p
∀w′ ≥ w(w′

� p→ w′
� p→ q)

w � p→ w � p→ q
∀w′ ≥ w(w′

� p→ w′
� q)

w � p→ w � q

The models show that when both implications are true at w, then the truth
of p at w implies the truth of p→ (p → q) at w and vice versa, moreover, q
is also true at w.

Before we include further type constructors we return to proofs 1 and 2,
because the expression ‘p = p→ q’ differs from ‘p↔ p→ (p→ q)’ by an
extra antecedent. Indeed, Curry’s original paradox depended on the theorem
p → p too. Curry later changed the formula in the definition that allowed
him to drop the type of I. Proof 5 reconstructs 1 and 2 with set notation.

Proof 5 :

1. C1 =df {x : x ∈ x→ q } [comprehension]
2. (p→ (p→ q)) → (p→ q) [W’s type, (axiom)]
3. C1 ∈ C1 ↔ (C1 ∈ C1 → q) [1, set membership]
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232 KATALIN BIMBÓ

4. (C1 ∈ C1 → (C1 ∈ C1 → q)) →
(C1 ∈ C1 → q) [instance of 2]

5. (C1 ∈ C1 → C1 ∈ C1) →
(C1 ∈ C1 → q) [replacement in 4 acc. 3]

6. p→ p [I’s type, (axiom)]
7. C1 ∈ C1 → C1 ∈ C1 [instance of 6]
8. C1 ∈ C1 → q [MP 5, 7]
9. C1 ∈ C1 [replacement in 8 acc. 3]

10. q [MP 8, 9]

2.2. Conjunction and fusion

In the paper [9] it is shown that it is not necessary to appeal to the contraction
axiom to collapse naive set theory. Instead idempotence of conjunction and
a modus ponens axiom may be used. Proof 6 recalls this paradox.

Proof 6 :

1. M =df {x : x ∈ x→ q } [comprehension]
2. ((p→ q) ∧ p) → q [modus ponens axiom]
3. (p ∧ p) ↔ p [idempotence of ∧]
4. M ∈M ↔ (M ∈M → q) [1, set membership]
5. ((M ∈M → q) ∧M ∈M) → q [instance of 2]
6. (M ∈M ∧M ∈M) → q [replacement in 5 acc. 4]
7. (M ∈M ∧M ∈M) ↔M ∈M [instance of 3]
8. M ∈M → q [replacement in 6 acc. 7]
9. M ∈M [replacement in 8 acc. 4]

10. q [MP 9, 8]

Some of the annotations could be varied in this proof too. Notably, 3 could
be weakened to p → (p ∧ p) and then 8 could be obtained from 7 and 6 by
transitivity of →.

This paradox is not astonishing after the shift in the understanding of ∧ as
a type from pairing to intersection. It is well-known that the combinator WI

(or W∗) has no purely implicational type. Obtaining 5 from 4 (in proof 5)
might be viewed as a fortunate modification to an instance of W that allows
a detachment of a self-implication. Indeed, the modus ponens axiom (2 in
proof 6) is an instance of the intersection type of W∗.

The proof in λK-calculus notation is as follows.

Proof 7 :

1. M =df λx.((→)x)Q [abbreviation]
2. ((→)((∧)P )((→)P )Q)Q =β K [modus ponens axiom]
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3. ((↔)((∧)P )P )P =β K [idempotence of ∧]
4. (Y)M =β (M)(Y)M [Y’s axiom]
5. (M)(Y)M =β ((→)(Y)M)Q [from 1 by β-conv.]
6. (Y)M =β ((→)(Y)M)Q [replacement in 4 acc. 5]
7. ((→)((∧)(Y)M)((→)(Y)M)Q)Q =β K [instance of 2]
8. ((↔)((∧)(Y)M)(Y)M)(Y)M =β K [instance of 3]
9. ((→)((∧)(Y)M)(Y)M)Q =β K [replacement in 7 acc. 6]

10. ((→)(Y)M)Q =β K [↔ replacement 9, 8]
11. (Y)M =β K [replacement

in 10 acc. 6]
12. Q =β K [MP 11, 10]

In nonclassical logics sometimes an intensional conjunction ◦ is included
in the language, which is called fusion. The analogy between ∧ and ◦ goes
beyond their “label,” therefore, one might wonder if reasonable principles
involving fusion may lead to inconsistency. Of course, the idea is that the
intensional connectives — such as relevant implication and fusion — are
stricter that their extensional cousins — such as the classical conditional ⊃
or conjunction. Thus, it could happen, perhaps, that intensional connectives
naturally lack properties that allow the derivation of an arbitrary proposition
together with unrestricted comprehension. (For instance, ◦ is idempotent
only in R-mingle, but not in some other well-known relevant logics as B, T ,
E, R or L.) We recall a proof from [12], that shows a “weak” relevant logic
to be incompatible with naive comprehension. We include into the proof the
axioms and rules used, however, we omit listing separately their instances.

Proof 8 :

1. N =df {x : (x ∈ x ◦ x ∈ x) → q } [comprehension]
2. N ∈ N ↔ ((N ∈ N ◦N ∈ N) → q) [1, set membership]
3. p→ p [identity axiom]
4. (p↔ q) → (p→ q) [↔ simplification]
5. ((p ◦ q) → r) ↔ (p→ (q → r)) [residuation axiom]
6. ((p→ q) ∧ (q → r)) → (p→ r) [transitivity of →]
7. p, p→ q // q [modus ponens]
8. p→ q, p→ r // p→ (q ∧ r) [∧ introduction]
9. p→ q, q → r // p→ r [transitivity of →]

10. N ∈ N → ((N ∈ N ◦N ∈ N) → q) [MP 2, 4]
11. N ∈ N →

(N ∈ N → (N ∈ N ◦N ∈ N)) [replacement in 3 acc. 5]
12. N ∈ N →

((N ∈ N → (N ∈ N ◦N ∈ N))∧
((N ∈ N ◦N ∈ N) → q)) [∧ rule 10, 11]
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234 KATALIN BIMBÓ

13. N ∈ N → (N ∈ N → q) [transitivity 11, 6]
14. (N ∈ N ◦N ∈ N) → q [MP 13, 5]
15. N ∈ N [replacement in 14 acc. 2]
16. N ∈ N → q [MP 15, 13]
17. q [MP 15, 16]

3. New Curry-type paradoxes

3.1. Reductio

The beauty of Curry’s paradox (see proofs 3 and 5) — we think — is that
it uses one connective, one axiom and only two rules.4 The other proofs (6
and 8) used further connectives or further — though undeniably plausible —
theorems and rules involving those connectives.

The paradox we now formulate uses one axiom and three rules; however,
negation is added to the set of connectives.

Proof 9 :

1. O =df {x : x ∈ x→ x /∈ x } [comprehension]
2. (ϕ→ ∼ϕ) → ∼ϕ [reductio axiom]
3. O ∈ O ↔ (O ∈ O → O /∈ O) [1, set membership]
4. (O ∈ O → O /∈ O) → O /∈ O [instance of 2]
5. O ∈ O → O /∈ O [replacement in 4 acc. 3]
6. O ∈ O [replacement in 5 acc. 3]
7. O /∈ O [MP 5, 6]
8. ϕ,∼ϕ//ψ [contradiction rule]
9. q [rule 8, 5, 6]

First of all note that (p → ∼ p) → ∼ p is valid classically, intuitionis-
tically, and it is also a theorem of T∼

→

(the implication negation fragment
of “ticket entailment”), and all of its extensions, which include such well-
known relevance logics as T itself, E (the logic of entailment), and R (the
logic of relevant implication), but not L (linear logic). Of course, negation in
classical, intuitionistic and relevance logics is three different sorts of nega-
tion — just as ‘→’ is not the same connective. As a result 8 is a rule of
classical and intuitionistic logics, but only an admissible rule of T , E and R.

Further logics that validate reductio include such 3-valued logics as Heyt-
ing’s, Bochvar’s external logic and Post’s system (with one designated value).
All these logics assign a designated value to (p ∧ ∼ p) → q as well.

4 We do not count substitution and to emphasize this we use axiom schemes below.
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The λK-calculus version of the proof is as follows.

Proof 10 :

1. O =df λx.((→)x)(∼)x [abbreviation]
2. ((→)((→)(Y)O)(∼)(Y)O)

(∼)(Y)O =β K [instance of reductio axiom]
3. (Y)O =β (O)(Y)O [instance of Y’s axiom]
4. (O)(Y)O =β ((→)(Y)O)(∼)(Y)O [from 1 by β-conv.]
5. (Y)O =β ((→)(Y)O)(∼)(Y)O [replacement in 3 acc. 4]
6. ((→)(Y)O)(∼)(Y)O =β K [replacement in 6 acc. 5]
7. (Y)O =β K [replacement in 6 acc. 5]
8. ∼(Y)O =β K [MP 8, 7]
9. Φ =β K,∼Φ =β K //Ψ =β K [contradiction rule]

10. Q =β K [by 10 from 8, 9]

Curry called Y the “paradoxical combinator.” The naming seems to us
somewhat misleading, because Y leads to no paradoxes in pure combinatory
logic (or λK-calculus). A closed term — like O — could be more justly
called so, although this illative term has to be combined with further quasi-
equations to yield a “paradox” or inconsistency.

Perhaps, it is interesting to note that in proofs 9 and 10 the formula p ↔
(p → ∼ p) is what corresponds to the recursive equation f = (λx. ((→
)x)(∼)x)f . p ↔ (p → ∼ p) is always false classically. Intuitionistically,
if w � p ↔ (p → ∼ p) then w � p if and only if w � p → ∼ p follows,
however, no possible world satisfies the latter formula, and so w � p ↔
(p→ ∼ p) implies w 2 p.

Since the defining formula is similar to that of the Russell set, it is inter-
esting to make a comparison with Russell’s paradox.5 By comprehension,
R =df {x : x /∈ x }, and by instantiation R ∈ R ↔ R /∈ R. In the λ-
notation, R =df λx.(∼)x, and the solution of f = (λx.(∼)x)f by the fixed
point combinator is (Y)R, which β-equals to (∼)(Y)R. Sometimes no rules
or axioms are made explicit, rather it is simply assumed that p ↔ ∼ p is a
contradiction and leads to the provability of an arbitrary q. In other words,
the derivation up to (Y)R =β (∼)(Y)R does not establish inconsistency,
rather, it proves that a particular set is both an element of itself and not an
element of itself.6

5 Even more so, because as it is pointed out in [6], the natural translation of the Russell
paradox (more precisely, of R ∈ R) into map theory is (λx.(∼)(x)x)λx.(∼)(x)x.

6 We intentionally do not use the term ‘class’ — which would be the appropriate term
according to the NBG set theory — to emphasize the naive point of view. (Not that we think
that that is the right one.)
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3.2. Peirce’s law

Now we show that using a variant of the reductio axiom and Peirce’s law,
together with naive comprehension, inconsistency results. The formulas and
the proof contain only negation and implication and the rules of ↔ weaken-
ing to →, modus ponens and replacement are used.

Proof 11 :

1. E =df {x : (q → ∼x ∈ x) → ∼x ∈ x } [abbreviation]
2. (ϕ→ ψ) ↔ ((ψ → ∼ϕ) → ∼ϕ) [reductio’s variant]
3. ((ϕ→ ψ) → ϕ) → ϕ [Peirce’s law]
4. ϕ↔ ψ //ϕ→ ψ [↔ weakening]
5. E ∈ E ↔ ((ψ → E /∈ E) → E /∈ E) [1, set membership]
6. E ∈ E ↔ (E ∈ E → ψ) [replacement in 5 acc. 2]
7. (E ∈ E → ψ) → E ∈ E [↔ weakening, 6]
8. E ∈ E [MP 7, 3]
9. E ∈ E → (E ∈ E → ψ) [↔ weakening, 6]

10. E ∈ E → ψ [MP 8, 9]
11. ψ [MP 8, 10]

This proof is interesting, because unlike the previous proof it does not
rely on the rule ϕ,∼ϕ//ψ, nonetheless, proves inconsistency. Of course,
Peirce’s law is “very classical” in the sense that it is not a theorem of intu-
itionistic or relevance logics.7

The next proof formalizes the same reasoning in extended λK-calculus.

Proof 12 :

1. E =df λx.((→)((→)Q)(∼)x)(∼)x [abbreviation]
2. ((↔)((→)Φ)Ψ)

((→)((→)Ψ)(∼)Φ)(∼)Φ =β K [reductio’s version]
3. ((→)((→)((→)Φ)Ψ)Φ)Φ =β K [Peirce’s law]
4. ((↔)(Φ))Ψ =β K // ((→)(Φ))Ψ =β K [↔ weakening]
5. (Y)E =β (E)(Y)E [instance of Y’s axiom]
6. (E)(Y)E =β

((→)((→)Q)(∼)(Y)E)(∼)(Y)E [from 1 by β-conv.]
7. (Y)E =β

((→)((→)Q)(∼)(Y)E)(∼)(Y)E [replacement in 5 acc. 6]
8. ((↔)((→)(Y)E)Q)(Y)E =β K [replacement in 2 acc. 7]

7 As it is mentioned in [11], Curry’s original “paradoxical set” together with Peirce’s law
and modus ponens has been shown before to lead to inconsistency.
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9. ((→)((→)(Y)E)Q)(Y)E =β K [↔ weakening, 8]
10. (Y)E =β K [MP 9, 3]
11. ((→)(Y)E)Q =β K [replacement in 10 acc. 8]
12. Q =β K [MP 10, 11]

In this proof the formula corresponding to the recursive equation solved is
p ↔ ((q → ∼ p) → ∼ p). Again, the truth of this formula in classical logic
implies the truth of q.

3.3. Double fixed points

Combinatory logic (or λK-calculus) has double and multiple fixed points
— see [13]. The single fixed point theorem in combinatory logic states that
∀M ∃N.N = MN (where the quantifiers belong to the metalanguage). The
double fixed point theorem says that ∀M1,M2 ∃N1, N2 such that bothN1 =
M1N1N2 and N2 = M2N1N2. (For instance, the two terms Y(W(BM2(YB

(CM1)))) and Y(CM1(Y(W(BM2(YB(CM1)))))) suffice for a proof, when
the combinators in the terms are in the combinatory base.)

We show that the solvability of double recursive equations can also be
used to construct a paradox. The sets contain pairs and for easy comprehen-
sion we use the ‘if then else ’ type constructor, that is common
in computer science and a basic connective in map theory (cf. [6]). The use
of pairs corresponds to taking the fixed points of a pair of recursive equa-
tions both of which contain a binary function followed by two arguments
(i.e., ((λxy.M)N)Q, where N,Q do not occur in M ). The equations are as
follows.

D1 = ((λxy.(((IF)x)((∧)((∼)y)Q)(∼)y)D1)D2

D1 = ((λxy.(((IF)y)((∧)((∼)x)Q)(∼)x)D1)D2,

or in a simpler form, D1 = (λxy. if x then ∼ y∧Q else ∼ y)D1D2

and D2 = (λxy. if y then ∼x ∧Q else ∼x)D1D2.

Proof 13 :

1. D1 =df {〈x, y〉 : if 〈x, y〉 ∈ xthen 〈x, y〉 /∈
y ∧ q else 〈x, y〉 /∈ y } [comp.]

2. D2 =df {〈x, y〉 : if 〈x, y〉 ∈ y then 〈x, y〉 /∈
x ∧ q else 〈x, y〉 /∈ x } [comp.]

3. (〈D1, D2〉 ∈ D1 ∨ 〈D1, D2〉 /∈ D1)∧
(〈D1, D2〉 ∈ D2 ∨ 〈D1, D2〉 /∈ D2) [excluded middle]
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238 KATALIN BIMBÓ

4. (〈D1, D2〉 ∈ D1 ∧ 〈D1, D2〉 ∈ D2)∨
(〈D1, D2〉 /∈ D1 ∧ 〈D1, D2〉 ∈ D2)∨
(〈D1, D2〉 ∈ D1 ∧ 〈D1, D2〉 /∈ D2)∨ [distributivity
(〈D1, D2〉 /∈ D1 ∧ 〈D1, D2〉 /∈ D2) of ∧, ∨]

5. (〈D1, D2〉 ∈ D1 ∧ 〈D1, D2〉 ∈ D2)∨
(〈D1, D2〉 /∈ D1 ∧ ((〈D1, D2〉 /∈ D1∧
〈D1, D2〉 ∈ D2 ∧ q) ∨ (〈D1, D2〉 /∈ D1∧
〈D1, D2〉 /∈ D2)) ∨ ((〈D1, D2〉 ∈ D1∧
〈D1, D2〉 /∈ D2 ∧ q) ∨ (〈D1, D2〉 /∈ D1∧
〈D1, D2〉 /∈ D2)) ∧ 〈D1, D2〉 /∈ D2∨ [replacement in
〈D1, D2〉 /∈ D1 ∧ 〈D1, D2〉 /∈ D2 4 acc. 1, 2]

6. (〈D1, D2〉 ∈ D1 ∧ 〈D1, D2〉 ∈ D2)∨
(〈D1, D2〉 /∈ D1 ∧ 〈D1, D2〉 ∈ D2∧
q) ∨ (〈D1, D2〉 /∈ D1 ∧ 〈D1, D2〉 /∈ D2)∨
(〈D1, D2〉 ∈ D1 ∧ 〈D1, D2〉 /∈ D2 ∧ q)∨ [distribution,
(〈D1, D2〉 /∈ D1 ∧ 〈D1, D2〉 /∈ D2) idempotence]

7. (〈D1, D2〉 ∈ D1 ∧ 〈D1, D2〉 ∈ D2)∨
〈D1, D2〉 ∈ D1 ∨ 〈D1, D2〉 ∈ D2 [replacement 6, 1, 2]

8. 〈D1, D2〉 ∈ D1 ∨ 〈D1, D2〉 ∈ D2 [absorption]
9. (〈D1, D2〉 ∈ D1 ∧ 〈D1, D2〉 ∈ D1)∨

(〈D1, D2〉 ∈ D2 ∧ 〈D1, D2〉 ∈ D2) [idempotence of ∧]
10. (〈D1, D2〉 ∈ D1 ∧ 〈D1, D2〉 ∈ D1∧

〈D1, D2〉 /∈ D2 ∧ q) ∨ (〈D1, D2〉 ∈ D1∧
〈D1, D2〉 /∈ D1 ∧ 〈D1, D2〉 ∈ D2)∨ [replacement 9, 1,
(〈D1, D2〉 ∈ D2 ∧ 〈D1, D2〉 ∈ D2) distributivity]

11. (〈D1, D2〉 ∈ D1 ∧ 〈D1, D2〉 /∈ D2 ∧ q)∨
(〈D1, D2〉 ∈ D2 ∧ 〈D1, D2〉 ∈ D2) [bottom element]

12. q ∨ (〈D1, D2〉 ∈ D2 ∧ 〈D1, D2〉 ∈ D2) [∧ elimination]
13. q ∨ (〈D1, D2〉 ∈ D2 ∧ 〈D1, D2〉 /∈ D1∧

q ∧ 〈D1, D2〉 ∈ D2) ∨ (〈D1, D2〉 /∈ D1∧ [rep. 12, 2,
〈D1, D2〉 /∈ D2 ∧ 〈D1, D2〉 ∈ D2) distributivity]

14. q ∨ (〈D1, D2〉 ∈ D2 ∧ 〈D1, D2〉 /∈ D1 ∧ q) [bottom element]
15. q ∨ q [∧ elimination]
16. q [idempotence]

Although the proof might look complicated, the theorems justifying the
steps are rather simple, for instance, absorption and idempotence of ∨. It
seems to us that the possibility of arriving at inconsistency assuming the
double fixed point theorem is interesting from the point of view of com-
binatory logic itself. Given a combinatorially complete base, the double
fixed point combinators are obviously definable (e.g., from the two terms we
gave). Considering the other direction, from the existence of double fixed
points the existence of single fixed points follows. (One can find the fixed



“01bimbo”
2006/8/16
page 239

i

i

i

i

i

i

i

i

CURRY-TYPE PARADOXES 239

point ofM from the double fixed point of KM , because fromN = KMNN
it is immediate that the single fixed point of M is N .) However, it is not
obvious — without the proviso of combinatorial completeness — that the
fixed point theorems are equipotent.

4. Conclusion

We examined Curry’s and related paradoxes from the point of view of re-
cursive equations. This allowed us to formulate new paradoxes that are
somewhat similar to Curry’s, but involve negation. One of these paradoxes
depends only on one axiom — reductio — somewhat similarly as Curry’s
paradox, at the same time it has a certain resemblance to Russell’s paradox
too. Lastly, we demonstrated that the existence of double fixed points is
incompatible with unrestricted comprehension.

ACKNOWLEDGEMENTS

During my stay in New Zealand in 2003–2004, I had an opportunity — for
what I am grateful — to use the library of Victoria University of Wellington
for research, including what is reported in this paper. I am indebted to the
referee too for calling to my attention a paper that appeared after I submitted
this one.

School of Informatics
Indiana University

Bloomington, IN 47408, U.S.A.
E-mail: kbimbo@indiana.edu

REFERENCES

[1] A. R. ANDERSON, Fitch on consistency, The logical enterprise. Essays
in honor of F. B. Fitch (A. R. Anderson, R. B. Marcus, and R. M. Mar-
tin, editors), Yale University Press, New Haven, 1975, pp. 123–141.

[2] H. P. BARENDREGT, The lambda calculus. Its syntax and semantics,
Studies in Logic and the Foundations of Mathematics, vol. 103, North-
Holland, Amsterdam, 1981.

[3] H. B. CURRY AND R. FEYS, Combinatory logic, 1st ed., vol. I, North-
Holland, Amsterdam, 1958.

[4] H. B. CURRY, J. R. HINDLEY, AND J. P. SELDIN, Combinatory logic,
vol. II, North-Holland, Amsterdam, 1972.



“01bimbo”
2006/8/16
page 240

i

i

i

i

i

i

i

i

240 KATALIN BIMBÓ

[5] K. GRUE, Map theory, Theoretical Computer Science, vol. 102 (1992),
pp. 1–133.

[6] , λ-calculus as a foundation for mathematics, Logic, meaning
and computation. Essays in memory of Alonzo Church (C. A. Anderson
and M. Zelëny, editors), Synthese Library, vol. 305, Kluwer Academic
Publishers, Dordrecht, 2001, pp. 287–311.

[7] J. R. HINDLEY, Basic simple type theory, Cambridge University Press,
Cambridge, UK, 1997.

[8] D. LEIVANT, Assumption classes in natural deduction, Zeitschrift für
Mathematische Logik und Grundlagen der Mathematik, vol. 25 (1979),
pp. 1–4.

[9] R. K. MEYER, R. ROUTLEY, AND J. M. DUNN, Curry’s paradox,
Analysis (n.s.), vol. 39 (1979), pp. 124–128.

[10] G. E. REVESZ, Lambda-calculus, combinators and functional pro-
gramming, Cambridge University Press, Cambridge, UK, 1988.

[11] S. ROGERSON AND G. RESTALL, Routes to triviality, Journal of
Philosophical Logic, vol. 33 (2004), pp. 421–436.

[12] R. ROUTLEY, R. K. MEYER, V. PLUMWOOD, AND R. BRADY, Rel-
evant logics and their rivals, vol. I, Ridgeview Publishing Company,
Atascadero, CA, 1982.

[13] R. M. SMULLYAN, Diagonalization and self-reference, Clarendon,
Oxford, UK, 1994.


