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VON WRIGHT’S ACTION REVISITED: ACTIONS AS MORPHISMS†

THIERRY LUCAS

von Wright published his seminal ideas on deontic logic and the logic of
action more than thirty years ago. The subject has considerably evolved, but
many problems remain and we think that it is interesting to return to some
of von Wright’s basic insights: (1) action is in fact the action of one agent
considered in relation with nature; (2) obligation and permission apply to
action; (3) obligation and permission depend on the conditions of action.
The aim of this paper† is to present two systems of deontic logic which draw
largely their inspiration from those insights and pave the way, we hope, for
future research.

The first part of this paper proposes a rather standard reconstruction of von
Wright’s most well-known systems; it is a reconstruction in that it presents
in a unified setting systems underlying his papers “And Next” [AN], “An
Essay in Deontic Logic and the General Theory of Action” [EDL], “Norms,
Truth and Logic” [NTL] and preserves the above quoted insights, which re-
main present in von Wright’s other works. It also preserves most deontic
laws which are accepted in von Wright’s papers and gives counter-examples
for most non-laws of his. It is however not a totally faithful reconstruction,
for it is to be noted that our system is more extensional, for example unable
to distinguish between “bring about ϕ” and “bring about (ϕ∧(ψ∨¬ψ))”(on
this, see e.g. [NTL, pp. 182-183]); we take it to be an advantage but we are
not sure that von Wright would have approved of this! Whatever one’s opin-
ion about extensionality, the advantages of our reconstruction are twofold:
(1) it is standard and is amenable to nowadays usual treatments (axiomatics,
usual semantics and easy construction of counter-models, completeness); (2)
the setting is more formally oriented than von Wright’s, it shows the under-
lying generality and could hopefully inspire further research; note however
that we restrict our attention to an elementary system allowing no iteration
of action.

The second part of this paper is more speculative and it proposes a less
standard logic of action and of obligation. It is still in line with von Wright’s

†Parts of this paper were prepared in 2001 while the author was granted a sabbatical
leave of absence of the Université catholique de Louvain.
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ideas, in particular with his paper “A New system of deontic logic” [NSD]
but goes deeper, we think, into the structure of action: (1) we start from
the idea of an action as a mapping from a set of conditions (essentially de-
scribed as a set of incompatible formulas) to results (described by formulas);
(2) actions thus described appear to have a very rich structure, at least that
of a doubly bi-intuitionistic logic; (3) obligation is defined on actions via a
classical K-necessity operator. An interesting feature of the system is that it
shows the many different senses one can attach to apparently simple opera-
tions: conjunction of actions may be “short” or “long” according to which
set of conditions it applies; similarly for disjunction, implication, etc.; nega-
tion is particularly rich and appears in five different guises.

We will concentrate here on the ideas and results, reserving most proofs
for another paper. Further research should also look for completeness and
possible generalizations of the second system. A word of caution about the
notation: we wanted to keep the notation coherent and exhibiting the many
symmetries we found in our systems, while keeping it as simple and as read-
able as possible; after many hesitations, we decided that it would be better to
change von Wright’s notation. To avoid confusing the reader, when quoting
von Wright, we will stick to our notation, but give here the translation tables
for the interested reader. In the first system presented below, we use ¬, ∧,
∨, →, ↔, >, ⊥ for the usual propositional connectives, where von Wright
would generally use ∼, &, ∨, →, ↔, (p ∨ ∼ p), (p&∼ p) ; we use ¬A

(‘A’ for “action”) where von Wright uses ¬. In the second system presented
below, we distinguish propositional formulas and actions; for propositional
formulas, we go on using ¬, ∧, ∨, →, ↔, >, ⊥; for actions, we have many
operators which will be denoted by 0, 1, ∧, →, ∼, ∨, \, ν, by 0∗, 1∗, ∧∗,
→∗, ∼∗, ∨∗, \∗, ν∗ for the list of duals and by ¬; no confusion should arise,
because actions and formulas are clearly distinguished; let us however make
precise that the ¬ symbol used for actions corresponds to the ¬A used in
the first system and thus to ¬ as used by von Wright. A final word of cau-
tion about the terminology: in general, we consider an action as associating
“results” to “conditions”, but we also use “occasions” or “circumstances”
instead of “conditions” and “effects” instead of “results”; for our purpose,
those words may be regarded as synonyms, but we do not intend to imply
that they should be considered so in other contexts.

Part 1. A first reconstruction

1.1. Description of the system SAcM

A basic feature of von Wright’s first approaches of the notion of action is that
they take into account the present situation, how it evolves under the action
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of the agent and how it would evolve, would the agent be absent (see [EDL,
p. 43]). Thus, beyond the usual operators of propositional logic building
formulas ϕ, χ, ψ, . . . , there is room for a ternary action connectiveAc build-
ing action formulas, with Ac(ϕ, χ, ψ) meaning “ϕ now, χ when the agent
has acted and ψ if he had not acted”. In the simple system which is con-
sidered here, Ac is not iterated; for the sake of reference, it will be called
system SAcM, for “system with action operator and modality”. Here are the
definitions.

The infinite denumerable set of propositional variables is denoted by V .
The propositional connectives are the usual connectives of negation ¬,

conjunction ∧ and the derived connectives of disjunction ∨, implication →
and bi-implication ↔.

The action connective is a ternary connective, denoted by ‘Ac’.
Purely propositional formulas are built from the propositional variables

and the propositional connectives by the usual formation rules. They will be
denoted by ‘ϕ’, ‘χ’, ‘ψ’, with or without indices.

Action formulas are defined inductively:
(1) if ϕ, χ, ψ are purely propositional formulas, then Ac(ϕ, χ, ψ) is an ele-
mentary action formula;
(2) if α and β are action formulas, then so are ¬α and (α ∧ β).

When we come to introduce the deontic operators, we will need a modal
connective ‘�’, which may apply to any formula.

Formulas are defined inductively:
(1) purely propositional formulas and action formulas are formulas;
(2) if ϕ and ψ are formulas, then so are �ϕ, ¬ϕ and (ϕ ∧ ψ).

Disjunction (∨), implication (→), bi-implication (↔) are given by the
usual abbreviations; > is an abbreviation for a classical tautology, say (p ∨
¬p) to be definite; ⊥ is an abbreviation for a classical contradiction, say
(p ∧ ¬p) to be definite; parentheses are omitted according to the customary
conventions.

For the propositional part, any classical system of axioms will do; here are
the axioms governing Ac:

(Ac ∨ 1) Ac(ϕ1 ∨ ϕ2, χ, ψ) ↔ Ac(ϕ1, χ, ψ) ∨Ac(ϕ2, χ, ψ)
(Ac ∨ 2) Ac(ϕ, χ1 ∨ χ2, ψ) ↔ Ac(ϕ, χ1, ψ) ∨Ac(ϕ, χ2, ψ)
(Ac ∨ 3) Ac(ϕ, χ, ψ1 ∨ ψ2) ↔ Ac(ϕ, χ, ψ1) ∨Ac(ϕ, χ, ψ2)
(Ac∧) Ac(ϕ1 ∧ ϕ2, χ1 ∧ χ2, ψ1 ∧ ψ2)

↔ Ac(ϕ1, χ1, ψ1) ∧Ac(ϕ2, χ2, ψ2)
(AcRed) ϕ↔ Ac(ϕ,>,>)
(Ac⊥1) ¬Ac(ϕ,⊥, ψ)
(Ac⊥2) ¬Ac(ϕ, χ,⊥)
(AcEqRule) (ϕ↔ ϕ′, χ↔ χ′, ψ ↔ ψ′)

/(Ac(ϕ, χ, ψ) ↔ Ac(ϕ′, χ′, ψ′))
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Those axioms speak for themselves: let us just say that Red is chosen to
remind “reduction”.

It is easy to develop the consequences of those axioms and rules. Remark
for example that ¬Ac(⊥, χ, ψ) is derivable by the equivalences:

Ac(⊥, χ, ψ) ↔Ac(⊥ ∧ ⊥, χ ∧ >, ψ ∧ >)
↔Ac(⊥, χ, ψ) ∧Ac(⊥,>,>)
↔Ac(⊥, χ, ψ) ∧ ⊥
↔⊥.

For the modal aspects of the system, the reader may impose his preferred
axiomatics, K, S4, S5 or whatever; note that in [EDL], von Wright adopts
Feys’ system ([EDL, p. 50]), KT in Chellas’ [MLI] terminology; K may
be described by the axioms �>, (�ϕ ∧ �ψ) → �(ϕ ∧ ψ) and the rule
(ϕ→ ψ)/(�ϕ→ �ψ) and T is the axiom �ϕ→ ϕ.

We now turn to the semantics of the system. It is given in the familiar
style of possible worlds, representing here possible states of the universe,
the present state, the state after the performance of the action, how it would
be if the action had not been performed, etc. As is rather natural, the action
of the agent is represented as a mapping a (‘a’ for “agent”) from worlds to
worlds: if i is a world, a(i) is the world after the action has been performed;
what i would become if the agent had not acted is equally described by a
mapping n (‘n’ for “nature”) from worlds to worlds; that kind of semantics
thus puts agent and nature on the same foot (and despite possible philosoph-
ical objections, we will speak of nature’s action) and considers their action
as deterministic. Necessity is interpreted using a binary accessibility relation
between worlds. Here are the definitions.

An interpretation M is given by
(1) a non-empty set I (the “possible worlds”);
(2) a mapping a : I −→ I (the “agent’s action”);
(3) a mapping n : I −→ I (“nature’s action”);
(4) a binary relation R ⊆ I × I(the “accessibility relation”);
(5) a mapping M : I × V −→ {0, 1} (giving the values of the propositional
variables in the different worlds).

Moreover, it will be assumed that R satisfies the semantic conditions cor-
responding to the axiomatic system chosen for the necessity operator; say R
reflexive if one adopts KT . Satisfaction of ϕ in M at world i, in symbols
M|=i ϕ, is defined by induction:
(1) for propositional variables p, M|=i p iff M(i, p) = 1;
(2) for negation, M|=i ¬ϕ iff it is not the case that M|=i ϕ;
(3) for conjunction, M|=i ϕ ∧ ψ iff M|=i ϕ and M|=i ψ;
(4) for the action connective, M|=i Ac(ϕ, χ, ψ) iff M|=i ϕ and M|=a(i) χ
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and M|=n(i) ψ;
(5) for necessity, M|=i �ϕ iff for every j ∈ I , iRj implies M|=j ϕ.

Those semantics make it quite clear that the proposed system is but a minor
variant of the corresponding modal system, adding two mappings a and n.
However, as will be seen later, is it enough to reconstruct most concepts of
von Wright’s theory of action and deontic logic. Soundness of the system is
easy and completeness will be sketched later when we consider an equivalent
“unary” formulation of the system.

1.2. Equivalent formulations and connections with von Wright’s systems

In [EDL], von Wright gives much attention to his TI-calculus. The ac-
quainted reader will recall that ϕTχ means that ϕ is now the case and χ will
be when the agent performs the action; similarly, ϕIψ means that ϕ is now
the case and ψ would be the case had the agent not performed the action;
von Wright’s notation ϕTχIψ means the same as (ϕTχ) ∧ (ϕIψ).

If one wants to be more formal, it is easy to consider a system such as the
preceding one, but with two binary operators T and I instead of the ternary
operator Ac, obeying the formation rule: if ϕ and χ are purely propositional
formulas, (ϕTχ) and (ϕIχ) are action formulas.

The axioms and rules for T are best written as:

(T ∨ 1) (ϕ1 ∨ ϕ2)Tχ↔ (ϕ1Tχ) ∨ (ϕ2Tχ)
(T ∨ 2) ϕT (χ1 ∨ χ2) ↔ (ϕTχ1) ∨ (ϕTχ2)
(T∧) (ϕ1 ∧ ϕ2)T (χ1 ∧ χ2) ↔ (ϕ1Tχ1) ∧ (ϕ2Tχ2)
(TRed) ϕ↔ (ϕT>)
(T⊥) ¬(ϕT⊥)
(TEqRule) (ϕ↔ ϕ′, χ↔ χ′)/((ϕTχ) ↔ (ϕ′Tχ′))

and similarly for I . This is essentially von Wright’s axiomatics for T and I
in [EDL, p. 41 and p. 44].

It is an easy exercise to show the equivalence of both presentations: given
the system with the ternary operator Ac, translate ϕTχ by Ac(ϕ, χ,>) and
ϕIψ by Ac(ϕ,>, ψ). Conversely, given a TI-formulation, translate Ac(ϕ,
χ, ψ) by (ϕTχ) ∧ (ϕIψ) (or ϕTχIψ in von Wright’s original notation).

Another variant, which is better suited for the given semantics is obtained
by replacing the ternary connectiveAc by two unary operatorsA (for “agent”)
and N (for “nature”) with the formation rule: if ϕ is a purely propositional
formula, then Aϕ and Nϕ are action formulas.

The axioms and rules for A are given by:
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(A¬) A¬ϕ↔ ¬Aϕ
(A∧) A(ϕ1 ∧ ϕ2) ↔ Aϕ1 ∧Aϕ2

(AEqRule) (ϕ↔ ϕ′)/(Aϕ↔ Aϕ′)

and the axioms and rules (N¬), (N∧) and (NEqRule) are defined similarly
fo N . From these, one easily derives:

(A⊥) ¬A⊥
(A∨) A(ϕ ∨ ψ) ↔ Aϕ ∨Aψ,
(A>) A>

and a direct semantics would obviously define:

M|=i Aϕ iff M|=a(i) ϕ

and similarly for N and n:

M|=i Nϕ iff M|=n(i) ϕ.

Again, it is an easy exercise to compare this system with the preceding
ones; given Ac, you can recover A by letting Aϕ be Ac(>, ϕ,>) and Nϕ
be Ac(>,>, ϕ); conversely, given the unary A and N , you can recover Ac
by letting Ac(ϕ, χ, ψ) be ϕ ∧ Aχ ∧ Nψ; you recover T by letting ϕTχ be
ϕ ∧Aχ; you recover I by letting ϕIψ be ϕ ∧Nψ.

1.3. Completeness

Completeness is almost trivial for the unary AN -variant of the system. The
proof may be adapted from the usual proofs for modal systems, concentrat-
ing on the construction of the canonical model. Neglecting refinements, we
can describe it as follows:
(1) I is the set of maximal consistent sets;
(2) a is defined by: ϕ ∈ a(i) iff Aϕ ∈ i;
(3) n is defined by: ϕ ∈ n(i) iff Nϕ ∈ i;
(4) R is defined by: iRj iff {ϕ | �ϕ ∈ i} ⊆ j;
(5) M is defined for propositional variables p by: M(i, p) = 1 iff p ∈ i.
Recall that here, i, a(i), n(i) and j are sets of formulas. Clauses (1), (4)
and (5) are usual. Clauses (2) and (3) are the obvious adaptations for a and
n; that a(i) and n(i) are maximal consistent sets of formulas is ensured by
properties (A¬), (A∧), (A⊥) and (N¬), (N∧), (N⊥) respectively.

Once a canonical model M has been defined, one proves that for every
maximal consistent set i and every formula ϕ,
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M|=i ϕ iff ϕ ∈ i.

The proof is by induction on the form of ϕ and goes as usual, with the easy
addition of the cases of Aϕ and Nϕ; for Aϕ,

M|=i Aϕ iff M|=a(i) ϕ (by the definition of satisfaction)
iff ϕ ∈ a(i) (by the induction hypothesis)
iff Aϕ ∈ i (by the definition of a in a canonical model);

and similarly for Nϕ.

1.4. Typology of action

Let us now consider less superficial connections with von Wright’s systems
and see how we can recover his basic classification of action in eight types
(cfr [NTL p. 174]): Bp (bringing about or producing p); ¬ABp (leaving the
state p to continue about; distinguish carefully ¬A and ¬); Sp (sustaining
the state p); ¬ASp (letting the state p cease to obtain); B¬p (destroying the
state p); ¬AB¬p (letting the state p to continue present); S¬p (suppressing
the state p); ¬AS¬p (letting the state p come to obtain).

As a first approach to those concepts, we will define in our reconstructed
system unary operators B, S and ¬A in such a way that we can recover (up
to logical equivalence) von Wright’s eight types of action and the laws they
obey, with the noteworthy exception of the distribution laws, on which there
will be more later.

Define Bϕ by Ac(¬ϕ,ϕ,¬ϕ); this has the required meaning of “bringing
about” or “producing” ϕ: it is the case that ¬ϕ, the agent’s action gives ϕ
and, had the agent not acted, nature would have maintained ¬ϕ. Define simi-
larly Sϕ byAc(ϕ,ϕ,¬ϕ); “sustaining”ϕmeans that it is the case thatϕ, that
the agent’s action gives ϕ while, left alone, nature would give ¬ϕ. Define
¬A on elementary action formulas by ¬AAc(ϕ, χ, ψ) by Ac(ϕ,¬χ, ψ); the
operator ¬A represents so to speak the “opposite action” of the agent; note
that when α is an elementary action formula, α∧¬Aα is logically equivalent
to ⊥ in the system, but α∨¬Aα is logically equivalent toAc(ϕ,>, ψ) which
is not equivalent to > in general.

With these definitions at hand, using the usual logical equivalence of ¬¬ϕ
withϕ and theAcEqRule, we recover the eight types of action distinguished
by von Wright:
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Bϕ ↔ Ac(¬ϕ,ϕ,¬ϕ)
¬ABϕ ↔ Ac(¬ϕ,¬ϕ,¬ϕ)
Sϕ ↔ Ac(ϕ,ϕ,¬ϕ)
¬ASϕ ↔ Ac(ϕ,¬ϕ,¬ϕ)
B¬ϕ ↔ Ac(ϕ,¬ϕ,ϕ)
¬AB¬ϕ ↔ Ac(ϕ,ϕ, ϕ)
S¬ϕ ↔ Ac(¬ϕ,¬ϕ,ϕ)
¬AS¬ϕ ↔ Ac(¬ϕ,ϕ, ϕ)

Since Ac obeys the AcEqRule, it is another trivial consequence of our
definitions that each one of those eight operators also satisfies an equivalence
rule: (ϕ↔ ϕ′)/(Bϕ↔ Bϕ′), (ϕ↔ ϕ′)/(¬ABϕ↔ ¬ABϕ′), etc. In other
words, each one of those operators is extensional.

The eight operators exhaust all possible actions concerning ϕ in the sense
that we can prove an “octotomy” law:

Bϕ ∨ ¬ABϕ ∨ Sϕ ∨ ¬ASϕ ∨B¬ϕ ∨ ¬AB¬ϕ ∨ S¬ϕ ∨ ¬AS¬ϕ

This is easily proven by writing

> ↔ Ac(>,>,>) (by AcRed)
↔ Ac(ϕ ∨ ¬ϕ,ϕ ∨ ¬ϕ,ϕ ∨ ¬ϕ) (by AcEqRule)
↔ Ac(ϕ,ϕ ∨ ¬ϕ,ϕ ∨ ¬ϕ)

∨Ac(¬ϕ,ϕ ∨ ¬ϕ,ϕ ∨ ¬ϕ) (byAc ∨ 1)

and going on distributing Ac over ∨ at the second and at the third place
(axioms (Ac ∨ 2) and (Ac ∨ 3)).

The eight operators are mutually exclusive; for example, we can prove
¬(Bϕ ∧ ¬ABϕ) as follows:

(Bϕ ∧ ¬ABϕ) ↔ Ac(¬ϕ,ϕ,¬ϕ)∧Ac(¬ϕ,¬ϕ,¬ϕ)
↔ Ac(¬ϕ ∧ ¬ϕ,ϕ ∧ ¬ϕ,¬ϕ ∧ ¬ϕ) (by Ac∧)
↔ Ac(¬ϕ,⊥,¬ϕ) (byAcEqRule)
↔⊥ (byAcCont1)

Using (AcRed), we can prove

ϕ↔ Sϕ ∨ ¬ASϕ ∨B¬ϕ ∨ ¬AB¬ϕ

and

¬ϕ↔ Bϕ ∨ ¬ABϕ ∨ S¬ϕ ∨ ¬AS¬ϕ.
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In a similar vein, observe that “the agent’s action gives ϕ” amounts to a
fourfold case:

Ac(>, ϕ,>) ↔ Bϕ ∨ Sϕ ∨ ¬AB¬ϕ ∨ ¬AS¬ϕ

and “nature would give ϕ” amounts to another fourfold case:

Ac(>,>, ϕ) ↔ B¬ϕ ∨ ¬AB¬ϕ ∨ S¬ϕ ∨ ¬AS¬ϕ.

Using (Ac⊥1) and (Ac⊥2), it is easy to prove that ⊥ can never be the
result of an action:

B⊥ ↔ ⊥

and similarly for the other seven operators.
Turning now to distribution laws, using the classical tautologies (ϕ∨ψ) ↔

(ϕ ∧ ψ) ∨ (ϕ ∧ ¬ψ) ∨ (¬ϕ ∧ ψ) and ¬(ϕ ∨ ψ) ↔ (¬ϕ ∧ ¬ψ) , we easily
compute B(ϕ ∨ ψ):

B(ϕ ∨ ψ) ↔ Ac(¬(ϕ ∨ ψ), (ϕ ∨ ψ),¬(ϕ ∨ ψ))
↔ Ac((¬ϕ ∧ ¬ψ), (ϕ ∧ ψ) ∨ (ϕ ∧ ¬ψ)

∨(¬ϕ ∧ ψ), (¬ϕ ∧ ¬ψ))
↔ Ac((¬ϕ ∧ ¬ψ), (ϕ ∧ ψ), (¬ϕ ∧ ¬ψ))

∨Ac((¬ϕ ∧ ¬ψ), (ϕ ∧ ¬ψ), (¬ϕ ∧ ¬ψ))
∨Ac((¬ϕ ∧ ¬ψ), (¬ϕ ∧ ψ), (¬ϕ ∧ ¬ψ))

↔ (Ac(¬ϕ,ϕ,¬ϕ) ∧Ac(¬ψ,ψ,¬ψ))
∨(Ac(¬ϕ,ϕ,¬ϕ) ∧Ac(¬ψ,¬ψ,¬ψ))
∨(Ac(¬ϕ,¬ϕ,¬ϕ) ∧Ac(¬ψ,ψ,¬ψ))

↔ (Bϕ ∧Bψ)
∨(Bϕ ∧ ¬ABψ)
∨(¬ABϕ ∧Bψ).

For ¬AB(ϕ ∨ ψ), the computation is even more immediate:

¬AB(ϕ ∨ ψ) ↔ ¬Ac(¬(ϕ ∨ ψ), (ϕ ∨ ψ),¬(ϕ ∨ ψ))
↔ Ac(¬(ϕ ∨ ψ),¬(ϕ ∨ ψ),¬(ϕ ∨ ψ))
↔ Ac((¬ϕ ∧ ¬ψ), (¬ϕ ∧ ¬ψ), (¬ϕ ∧ ¬ψ))
↔ Ac(¬ϕ,¬ϕ,¬ϕ) ∧Ac(¬ψ,¬ψ,¬ψ)
↔ (¬ABϕ ∧ ¬ABψ).

However, for the other distributive laws, the situation is much more complex
than the one described in [NTL, p. 180]. We give the results here below,
without reproducing the tedious but straightforward computations, which
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are similar to the ones above. We also use α ⊕ β as an abbreviation for
(α ∧ β) ∨ (¬Aα ∧ β) ∨ (α ∧ ¬Aβ) to make results more manageable and to
exhibit one of the many dualities present in the system. With that convention
at hand, the results read:

(B∨) B(ϕ ∨ ψ) ↔ Bϕ⊕Bψ
(¬AB∨) ¬AB(ϕ ∨ ψ) ↔ ¬ABϕ ∧ ¬ABψ
(B∧) B(ϕ ∧ ψ) ↔ (Bϕ ∧Bψ)

∨(Bϕ ∧ ¬AB¬ψ) ∨ (Bϕ ∧ Sψ)
∨(Bϕ ∧ ¬AS¬ψ) ∨ (¬AB¬ϕ ∧Bψ)
∨(Sϕ ∧Bψ) ∨ (¬AS¬ϕ ∧Bψ)
∨(Sϕ ∧ ¬AS¬ψ) ∨ (¬AS¬ϕ ∧ Sψ)

(¬AB∧) ¬AB(ϕ ∧ ψ) ↔ (¬ABϕ⊕ ¬ABψ)
∨(¬ABϕ⊕B¬ψ) ∨ (¬ABϕ⊕ ¬ASψ)
∨(¬ABϕ⊕ S¬ψ) ∨ (B¬ϕ⊕ ¬ABψ)
∨(¬ASϕ⊕ ¬ABψ) ∨ (S¬ϕ⊕ ¬ABψ)
∨(¬ASϕ⊕ S¬ψ) ∨ (S¬ϕ⊕ ¬ASψ)

(S∨) S(ϕ ∨ ψ) ↔ (Sϕ⊕ Sψ)
∨(Sϕ⊕Bψ) ∨ (Bϕ⊕ Sψ)

(¬AS∨) ¬AS(ϕ ∨ ψ) ↔ (¬ASϕ ∧ ¬ASψ)
∨(¬ASϕ ∧ ¬ABψ) ∨ (¬ABϕ ∧ ¬ASψ)

(S∧) S(ϕ ∧ ψ) ↔ (Sϕ ∧ Sψ)
∨(Sϕ ∧ ¬AB¬ψ) ∨ (¬AB¬ϕ ∧ Sψ)

(¬AS∧) ¬AS(ϕ ∧ ψ) ↔ (¬ASϕ⊕ ¬ASψ)
∨(¬ASϕ⊕B¬ψ) ∨ (B¬ϕ⊕ ¬ASψ)

Of those distributive laws, only the first disjunct immediately following
the bi-implication sign is present in von Wright’s distributive laws. There
will be more on that soon, but we begin by observing that the eight dis-
tributive laws above can be taken as a basis to erect a “system of actions”,
based onB, ¬AB, S, ¬AS (¬AB and ¬AS each considered as one indecom-
posable symbol). To be more precise, take the eight distributive laws, add
the pairwise incompatibility of the eight actions Bϕ, ¬ABϕ, Sϕ, ¬ASϕ,
B¬ϕ, ¬AB¬ϕ, S¬ϕ, ¬AS¬ϕ; add the “octotomy law” asserting the dis-
junction of those eight actions; add the axioms (Bϕ → ¬ϕ), (Sϕ → ϕ),
(¬ABϕ → ¬ϕ), (¬ASϕ → ϕ); and finally add the equivalence rules for
B, ¬AB, S, ¬AS, ¬AB and ¬AS. It is easy (but rather long and tedious)
to show that such a system is essentially equivalent to the three systems
presented above. We will not do that here, because we think it is more inter-
esting to take explicitly into account the conditions of action and to define
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deontic necessity essentially as “necessity when conditions of action are re-
alized”. That is a constant theme in von Wright’s work and it is especially
explicit in his work on conditional logic [NSD].

1.5. Conditions of action and distributive laws

Consider the action Bϕ, i.e. Ac(¬ϕ,ϕ,¬ϕ). The conditions under which
such an action should take place, as suggested at least partly by the discus-
sion in [NTL p. 175], are that on the one hand ¬ϕ obtains now and, on the
other hand, that, without the action of the agent, nature would maintain ¬ϕ;
in those cases alone does it make sense to consider transforming the situation
into one in which ϕ obtains. We could then define

Cond(Bϕ) ⇔ ¬ϕ ∧N(¬ϕ).

(In the present and in the following section, we use ‘⇔’ as a symbol for
definition and more generally for provable equivalence in the system SAcM.)
Similar considerations for ¬AB, S, ¬AS suggest that we define in general

CondAc(ϕ, χ, ψ) ⇔ ϕ ∧N(ψ)

(or equivalently CondAc(ϕ, χ, ψ) ⇔ Ac(ϕ,>, ψ)). We extend those def-
initions to general action formulas by letting Cond(¬α) ⇔ ¬Cond(α)
and Cond(α ∧ β) ⇔ Cond(α) ∧ Cond(β), from which Cond(α ∨ β) ⇔
Cond(α) ∨ Cond(β) easily follows.

We can now reinterpret von Wright’s very strong distributive laws as “dis-
tributive laws when suitable conditions of action are realized”. That is not a
serious restriction in the present context, for it will be seen later that obliga-
tion is defined as “necessity when the suitable conditions are realized”. Take
(B∧) as a typical example; we claim that

Cond(Bϕ ∧Bψ) → (B(ϕ ∧ ψ) ↔ (Bϕ ∧Bψ))

is a theorem. To see that, note first that one can prove the equivalence

Cond(Bϕ ∧Bψ) ↔ Cond(Bϕ) ∧ Cond(Bψ)
↔ ¬ϕ ∧N(¬ϕ) ∧ ¬ψ ∧N(¬ψ),

and recall that B(ϕ ∧ ψ) is the 9-fold disjunction ϕ1 ∨ · · · ∨ ϕ9 with

ϕ1 ⇔ Bϕ ∧ Bψ ϕ2 ⇔ Bϕ ∧ ¬AB¬ψ ϕ3 ⇔ Bϕ ∧ Sψ
ϕ4 ⇔ Bϕ ∧ ¬AS¬ψ ϕ5 ⇔ ¬AB¬ϕ ∧Bψ ϕ6 ⇔ Sϕ ∧Bψ
ϕ7 ⇔ ¬AS¬ϕ ∧Bψ ϕ8 ⇔ Sϕ ∧ ¬AS¬ψ ϕ9 ⇔ ¬AS¬ϕ ∧ Sψ;
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it suffices now to observe that Cond(Bϕ) is incompatible with ϕ5, ϕ6, ϕ7,
ϕ8, ϕ9 and Cond(Bψ) is incompatible with ϕ2, ϕ3, ϕ4 (as well as with ϕ8

and ϕ9); thus with the conjunction Cond(Bϕ) ∧ Cond(Bψ) as antecedent
of the implication, all terms of the disjunction vanish, except ϕ1, i.e. (Bϕ ∧
Bψ).

Similarly, we can recover the whole set of von Wright’s distributive laws,
if we enunciate them under relevant conditions of action; here is the full list
of those laws, which can be established either trivially or as for B(ϕ ∧ ψ):

(CondB∨)
Cond(Bϕ⊕Bψ) → (B(ϕ ∨ ψ) ↔ Bϕ⊕Bψ)

(Cond¬AB∨)
Cond(¬ABϕ ∧ ¬ABψ) → (¬AB(ϕ ∨ ψ) ↔ ¬ABϕ ∧ ¬ABψ)

(CondB∧)
Cond(Bϕ ∧Bψ) → (B(ϕ ∧ ψ) ↔ Bϕ ∧Bψ)

(Cond¬AB∧)
Cond(¬ABϕ⊕ ¬ABψ) → (¬AB(ϕ ∧ ψ) ↔ ¬ABϕ⊕ ¬ABψ)

(CondS∨)
Cond(Sϕ⊕ Sψ) → (S(ϕ ∨ ψ) ↔ Sϕ⊕ Sψ)

(Cond¬AS∨)
Cond(¬ASϕ ∧ ¬ASψ) → (¬AS(ϕ ∨ ψ) ↔ ¬ASϕ ∧ ¬ASψ)

(CondS∧)
Cond(Sϕ ∧ Sψ) → (S(ϕ ∧ ψ) ↔ Sϕ ∧ Sψ)

(Cond¬AS∧)
Cond(¬ASϕ⊕ ¬ASψ) → (¬AS(ϕ ∧ ψ) ↔ ¬ASϕ⊕ ¬ASψ).

We may note that for any action α of the form Bϕ or Sϕ, Cond(¬Aα) is
equivalent to Cond(α); consequently, in the preceding tableau, we could
replace formulas of the form Cond(α ⊕ β) by the equivalent Cond(α) ∧
Cond(β). Note however that those distributive laws remain quite sensi-
tive to the choice of the condition; e.g., consider again (B∧); if, instead
of Cond(Bϕ ∧ Bψ), we had taken Cond(B(ϕ ∧ ψ)) (which is equivalent
to ¬(ϕ∧ψ)∧N(¬(ϕ∧ψ))) as a condition, we would not have obtained the
same simplified laws.

In a similar vein, the interested reader can computeB⊥, ¬B⊥, S⊥, ¬S⊥,
B>, ¬B>, S>, ¬S>. In agreement with von Wright’s results, they are all
equivalent to ⊥, with the notable exception of ¬B⊥, which is equivalent to
>. The puzzle may be solved if we remember that ⊥ stands for (p ∧ ¬p)
and that all those computations should be interpreted conditionally; thus for
¬B⊥, von Wright’s assertion is that one can prove
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Cond(¬Bp⊕ ¬B¬p) → (¬B(p ∧ ¬p) ↔ ¬Bp⊕ ¬B¬p),

which in fact does not say much, because the antecedent reduces to ⊥:

Cond(¬Bp⊕ ¬B¬p) ⇔ Cond(¬Bp) ∧ Cond(¬B¬p)
⇔ ¬p ∧N(¬p) ∧ p ∧N(p)
⇔ ⊥.

In fact, each one of the conditions relative toB(p∧¬p), ¬B(p∧¬p), etc. re-
duces to ⊥; the conditions being never realized, you can equate those actions
to whichever formula you want.

We emphasize here that our B is extensional so that Bp, B(p ∧ (q ∨ ¬q))
andB((p∧q)∨(p∧¬q)) are all equivalent. It seems puzzling that von Wright
([NTL p. 182]) consideredB(p∧(q∨¬q)) andB((p∧q)∨(p∧¬q)) as false
and not equivalent to Bp. Again, we think that the key to the puzzle is that
von Wright’s computations using distributivity implicitly involve the above
type of conditions for distributivity, which will reduce to ⊥ in the case of
B(p∧ (q∨¬q)) and in the case ofB((p∧q)∨ (p∧¬q)). In the first case, the
computation forB(p∧(q∨¬q)) will be valid under Cond(Bp∧B(q∨¬q)),
which reduces successively to Cond(Bp)∧Cond(B(q∨¬q)), Cond(Bp)∧
⊥ and ⊥. In the second case, using (B∨), one distributesB((p∧q)∨(p∧¬q))
to B(p ∧ q) ⊕B(p ∧ ¬q) under some condition γ; after that, one uses (B∧)
to distributeB(p∧q) toBp∧Bq under Cond(Bp∧Bq); similarly, one uses
(B∧) to distributeB(p∧¬q) toBp∧B¬q underCond(Bp∧B¬q); gathering
those conditions and expanding the two last ones, we obtain a conjunction
which contains Cond(Bq) ∧ Cond(B¬q), which reduces to ⊥.

We think it difficult to accept those of von Wright’s results which depend
so severely on the way action is presented. We think however that there is
some truth in his implicit view that obligation is a conditional necessity, a
view which we explore in the following section.

1.6. Obligation as conditional necessity

We explore here the idea that obligation applies to action formulas and is
defined as conditional necessity:

Oα⇔ �(Condα→ α).

Of course, Cond(α) is not extensional in α: if α is B⊥, i.e. Ac(>,⊥,>),
and β is S⊥, i.e. Ac(⊥,⊥,>), then α ⇔ β ⇔ ⊥ but Condα ⇔ (> ∧
N>) ⇔ > and Condβ ⇔ (⊥ ∧N>) ⇔ ⊥; hence,
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Oα⇔ �(Condα→ α) ⇔ �(> → ⊥) ⇔ �⊥

while

Oβ ⇔ �(Condβ → β) ⇔ �(⊥ → ⊥) ⇔ �>,

which shows that Oα and Oβ are not equivalent in any reasonable modal
logic governing the use of �. It is interesting however to see which laws can
be established using that definition of O and reasonable assumptions on the
necessity operator. It is also interesting to see which formulas are not valid
by sketching countermodels. We will not be systematic here, because we
believe that one should go beyond the system exposed here, but the present
system may serve as a good testing field.

In [NTL, pp. 189-192], von Wright examines typical features of his sys-
tem. Denote Bq, ¬ABq, Sq, ¬ASq, B¬q, ¬AB¬q, S¬q, ¬AS¬q, by q1, ...,
q8 respectively. Then, formulas

OBp↔ O((Bp∧q1)∨ (Bp∧q2))∧· · ·∧O((Bp∧q7)∨ (Bp∧q8)),
O(Bp ∨ ¬ABp),
O(q1 ∨ · · · ∨ q8),
OBp ∧OBq → O(Bp ∧Bq),
OBp→ OB(p ∨ q)

are qualified as “tautologous”. Formulas

O(Bp ∧ ¬ABp),
OB(p ∧ ¬p),
O(Bp ∧ ¬Bp),

deserve mention, because “they all ‘look’ like contradictions; but there are
some differences to be noted. The first norm applies on occasions where the
state of affairs that p is absent and does not originate unless produced [...]
The second and third norm apply under no circumstances [...]” (see [NTL,
pp. 189-190]). On the other hand,

O(Bp ∧Bq) does not entail OBp,
OBp does not entail O(Bp ∨Bq)

in his system.
In our system SAcM, we obtain that the formulas of the first group are the-

orems. For the second group, we obtain that O(Bp ∧ ¬ABp) is equivalent
to �¬Cond(Bp ∧ ¬ABp), which in turn is equivalent to �(¬p → Np),
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an interesting result which means that the impossible obligation to bring
about p and to bring about the negation of p is to be attributed to the im-
possibility of the conditions of the combined action: should ¬p be the case,
Nature would necessarily produce p. For the second formula of the second
group, we obtain that CondB(p ∧ ¬p) is equivalent to > and OB(p ∧ ¬p)
is equivalent to ⊥. For the third formula of the second group, we obtain
that Cond(Bp ∧ ¬Bp) is equivalent to ⊥ and O(Bp ∧ ¬Bp) is equivalent
to >. Those results concerning the second group may look curious; that
CondB(p ∧ ¬p) is equivalent to > does not seem to be in agreement with
von Wright’s remarks quoted above, but on the other hand, the results are
compatible with his observation that “it is a matter of decision whether we
shall say of a norm which never applies [...] that it is necessarily satisfied
and “tautologous” or impossible to satisfy” ([NTL p. 190]). For the third
group, we obtain that both O(Bp∧Bq) → OBp and OBp→ O(Bp∨Bq)
have countermodels.

Instead of giving the straightforward proofs of those facts, we prefer to
give the reader a few generalizing observations and a sketch of some of their
proofs, hoping that they will point out to what we consider to be the notion
of action underlying von Wright’s work. The following are provable:

O(α ∨ ¬Aα) (for elementary action formulas α),
O(α ∧ ¬Aα) ↔ �¬Condα (for elementary action formulas α),
O(α ∧ ¬α),
Oα ∧Oβ → O(α ∧ β).

the proof of this last formula runs as follows:

Cond(α ∧ β) → Condα,
(Condα→ α) → (Cond(α ∧ β) → α);

similarly,

Cond(α ∧ β) → Condβ,
(Condβ → β) → (Cond(α ∧ β) → β);

hence,

(Condα→ α) ∧ (Condβ → β) → (Cond(α ∧ β) → α ∧ β),

from which, by the laws governing �, one obtains

�(Condα→ α) ∧ �(Condβ → β) → �(Cond(α ∧ β) → α ∧ β),
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i.e.,

Oα ∧Oβ → O(α ∧ β).

This type of proof is strongly reminiscent of computations on morphisms in
category theory and it suggests that we consider an action α⇔ Ac(ϕ, χ, ψ)
as a morphism from a source to an aim; quite naturally, the source is here
constituted by the conditions of the action, Sourceα⇔ Condα⇔ ϕ∧Nψ,
and the aim is the state that is produced, Aimα⇔ χ, so that we can write in
the usual category-theoretic style:

α : Sourceα −→ Aimα

Ac(ϕ, χ, ψ) : ϕ ∧Nψ −→ χ.

Observe also that

Oα ⇔ �(Condα→ α)
⇔ �(Condα→ Condα ∧Aimα)
⇔ �(Condα→ Aimα)
⇔ �(Sourceα→ Aimα);

the last line represents quite clearly obligation as an operator applying to
action, conceived as a morphism, embodying its conditions and the effect
produced. We will adopt the point of view of actions as morphisms in the
second part of this paper, but we can already say that many observations fall
under the trivial but fundamental rule:

Sourceβ → Sourceα Aimα→ Aimβ

Oα→ Oβ

Another interesting observation is that if Condα and Condβ are incompat-
ible, then one can prove

O(α ∨ β) ⇔ Oα ∧Oβ;

this is because

O(α ∨ β) ⇔ �(Cond(α ∨ β) → α ∨ β)
⇔ �(Condα ∨ Condβ → α ∨ β)
⇔ �((Condα→ α ∨ β) ∧ (Condβ → α ∨ β));
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but Condα, being incompatible with Condβ, is also incompatible with β
(because β ⇔ β ∧ Condβ), so that

(Condα→ α ∨ β) ⇔ (Condα→ α)

and similarly,

(Condβ → α ∨ β) ⇔ (Condβ → β);

it follows that

O(α ∨ β) ⇔ �(Condα→ α) ∧ (Condβ → β))
⇔ �(Condα→ α)) ∧ �(Condβ → β))
⇔ Oα ∧Oβ.

Again, this strongly suggests that not only will we have to consider el-
ementary actions as morphisms from a source to an aim, but that more
complex actions may be obtained by “pasting together” elementary actions
whose sources are disjoint.

For formulas of the third group, we indicate here how we can work with
usual Kripke models to show for example that O(Bp ∧ Bq) → OBp has
a counter-model M. Let the set of possible worlds have three worlds i, j,
k; a(i) = j; n(i) = k; the relation of accessibility R binds i with itself
and binds no other pair of worlds; M(i, p) = M(j, p) = M(k, p) = 0
and M(i, q) = 1; M(j, q) and M(k, q) may be defined at will. In that
model, we will obtain that Source(Bp∧Bq) is not satisfied in i, hence is not
satisfied in any l related to i, so that M|=i O(Bp ∧Bq); on the other hand,
M|=i Source(Bp) and M6|=i Aim(Bp); hence M6|=i Source(Bp) →
Aim(Bp), M6|=i OBp, and finally M6|=i O(Bp ∧Bq) → OBp.

Part 2. Actions as morphisms

2.1. Description of the system SMorM

As already said in the introduction, we propose here a system based on the
idea of action as a mapping from a set of conditions to results. We need
therefore a logic L1 to describe conditions and a logic L2 to describe results.
L1 and L2 may be the same and should have the power to describe all the
constructions one considers relevant on conditions and results. For the sake
of simplicity, we assume here that L1 and L2 are identical and coincide with
classical propositional logic, but we keep on using L1 and L2 to distinguish
conditions and results. L1 and L2 come thus equipped with the usual logical
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connectives and relations which will be denoted in the first sections in the
algebraic style by 1 for the tautologically true, 0 for contradiction, ∧ for con-
junction, ∨ for disjunction, → for implication, ≤ for logical consequence,
= for logical equivalence (rigorously speaking, we are thus identifying log-
ically equivalent formulas). Our reason for choosing that notational style is
that we want to emphasize the algebraic structure of actions and contrast it
with the propositional structure of obligation sentences. The system will be
denoted SMorM for “system with (actions as) morphisms and modality”.

Actions α are defined to be mappings from finite subsets Σ of the set F1

of formulas of L1 to the set F2 of formulas of L2, in symbols α : Σ −→ F2,
satisfying a coherence condition:

(Coh) for σ, σ′ ∈ Σ, σ ∧ σ′ 6= 0 implies α(σ) = α(σ′).

The coherence condition translates the idea that, should one find oneself in a
situation satisfying two conditions σ and σ′, the action α should prescribe the
same behavior, i.e. α(σ) and α(σ′) should be logically equivalent. The set
Σ will be referred to as the domain of α and sometimes denoted by domα.

The interplay of the logical consequence relations of F1 and F2 induces
two fundamentally different orderings between actions. We begin here with
the ordering which translates the idea that “doing the action α logically im-
plies doing the action β”: this is clearly the case when circumstances for β
logically imply those for α and the results for α logically imply the results
for β:

(Def ≤) For α : Σ −→ F2, β : Π −→ F2, α ≤ β iff
∨

Π ≤
∨

Σ and for
all σ ∈ Σ, π ∈ Π, σ ∧ π 6= 0 implies α(σ) ≤ β(π).

It is easy to see that the relation ≤ between actions is reflexive and transi-
tive. It induces therefore an equivalence ≈ described by:

for α : Σ −→ F2, β : Π −→ F2, α ≈ β iff
∨

Σ =
∨

Π and for all
σ ∈ Σ, π ∈ Π, σ ∧ π 6= 0 implies α(σ) = β(π).

In some contexts, it is better to describe α ≤ β in a more intuitive manner,
equivalent to the preceding one and translating the idea that each condition
π of β is “covered” by conditions of α on which α logically implies β(π):

for α : Σ −→ F2, β : Π −→ F2, α ≤ β iff for all π ∈ Π, there exists a
Σ′ ⊆ Σ such that π ≤

∨
Σ′ and for all σ′ ∈ Σ′, α(σ′) ≤ β(π).

This suggests a more explicit description of the relation α ≈ β. Every
action α : Σ −→ F2 may be “glued” into an α : Σ −→ F2, by grouping
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together those σ ∈ Σ on which α coincides: σ1Eσ2 iff α(σ1) = α(σ2); E
is an equivalence relation on Σ, which gives sense to the equivalence class
σ of σ, to the set of formulas Σ = {

∨
σ | σ ∈ Σ} and to the definition

α(
∨
σ) = α(σ). In that way, the action α may be characterized by three

conditions: (1) α ≈ α; (2) α is injective (for X1, X2 ∈ Σ, α(X1) = α(X2)
implies X1 = X2); (3) α is disjointed (for X1, X2 ∈ Σ, X1 6= X2 implies
X1 ∧X2 = 0).

From the above description, we can derive three interesting consequences:
(1) α ≈ β iff α = β, i.e. α and β are identical as mappings; (2) it does not
matter whether we impose that the domain of an action does or does not have
0 as an element (we will therefore generally assume that 0 does not belong
to the domain of actions); (3) we could adopt in the definition of actions an
apparently stronger but in the end equivalent coherence condition saying that
the domain Σ must be a disjointed set of conditions (for σ, σ ′ ∈ Σ, σ 6= σ′

implies σ ∧ σ′ = 0); for the sake of simplicity, it is often useful to assume
that the domains are disjointed.

2.2. Properties of the ordering ≤ of actions

We want to show here that the ordering ≤ induces a very rich structure on the
set of actions: there is a maximum 1 and a minimum 0; there is an infimum
∧, an adjoint implication → and an associated negation ∼; there is also a
supremum ∨, an adjoint difference \ and an associated negation ν. We give
the definitions, descriptions and relevant remarks without proofs.

The maximum 1 is defined by: for every action α, α ≤ 1. It is in fact the
empty action ∅ : ∅ −→ F2.

The minimum 0 is defined by: for every action α, 0 ≤ α. It is the total
action 0 : {1} −→ F2 with constant value zero: 0(1) = 0.

The conjunction or infimum ∧ is defined by: for every action α, β, γ,
γ ≤ α ∧ β iff γ ≤ α and γ ≤ β. To obtain an explicit description of the
operation, it is useful to define operations on sets Σ and Π of formulas of L1:

Σ · Π = {σ ∧ π | σ ∈ Σ, π ∈ Π, σ ∧ π 6= 0}
−Σ = {¬

∨
Σ}

Σ + Π = (Σ · Π) ∪ (−Σ · Π) ∪ (Σ · −Π).

For α : Σ −→ F2 and β : Π −→ F2, the conjunction α∧ β has (Σ + Π) for
domain and it is defined according to the form of the domain by three cases:
(1) if ω ∈ Σ · Π, then ω = σ ∧ π for some σ ∈ Σ and π ∈ Π and one lets
(α ∧ β)(ω) = α(σ) ∧ β(π);
(2) if ω ∈ −Σ · Π, then ω = ¬

∨
Σ ∧ π for some π ∈ Π and one lets

(α ∧ β)(ω) = β(π);
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(3) if ω ∈ Σ · −Π, then ω = σ ∧ ¬
∨

Π for some σ ∈ Σ and one lets
(α ∧ β)(ω) = α(σ).

The conjunction ∧ is thus a “long” conjunction and a rather “exacting”
one: the action α∧β is to be performed under any circumstance under which
one of them is to be performed; when the circumstances are common, both
actions should be performed and should the circumstances be realized for
one but not for the other, the corresponding action should also be performed.
That “long” conjunction is to be contrasted with the “short conjunction” (see
below) defined only on the set Σ ·Π of common circumstances. The follow-
ing picture is useful in showing the difference and it is given here as a typ-
ical schematic representation of action-as-morphism that we have in mind.
The x-axis represents conditions; the y-axis represents results; the two thin
oblique lines represent two different actions, defined on two different sets of
conditions; the “long” conjunction of the two actions is then represented by
the bold line, while the “short” conjunction is represented by the “dashed”
line.

long
conjunction)

short
conjunction)

Note also that when α and β are total, i.e. when
∨
domα =

∨
domβ = 1,

α ∧ β is again total and is pointwise evaluated by the usual conjunction
α(σ) ∧ β(π).

General arguments show that the conjunction is compatible with ≤, is
compatible with ≈, is idempotent, associative, commutative, etc.

The conjunction ∧ possesses a right adjoint, the implication →, defined
by: α ∧ β ≤ γ iff α ≤ (β → γ). To describe (β → γ) for β : Π −→ F2

and γ : Ξ −→ F2, let Π/Ξ = {π ∧ ξ | π ∧ ξ 6= 0 and β(π) 6≤ γ(ξ)} and
dom(β → γ) = (−Π · Ξ) ∪ (Π/Ξ); for ω ∈ dom(β → γ), (β → γ)(ω) is
defined by two cases:
(1) if ω ∈ (−Π ·Ξ), then ω = ¬

∨
Π∧ ξ for some ξ ∈ Ξ and (β → γ)(ω) =

γ(ξ)
(2) if ω ∈ (Π/Ξ), then ω = π∧ξ for some π ∈ Π, ξ ∈ Ξ and (β → γ)(ω) =
β(π) → γ(ξ).

The implication (β → γ) thus intermingles a comparison of the values and
a comparison of the domains of β and γ: look in particular at the common
domain Π · Ξ where β(π) → γ(ξ) may be used to compare β(π) and γ(ξ);
if β(π) ≤ γ(ξ), then β(π) → γ(ξ) = 1 and (β → γ) is undefined on
π ∧ ξ; on the other hand, if β(π) 6≤ γ(ξ), then β(π) → γ(ξ) 6= 1 and
β(π) → γ(ξ) gives the value of (β → γ) on π ∧ ξ. That observation shows
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also that that implication is not an immediate generalization of the classical
implications present in L1 and L2, because when β and γ are total, (β → γ)
is not necessarily so; it remains undefined for those π ∧ ξ 6= 0 such that
β(π) ≤ γ(ξ).

The status of → as giving a right adjoint to ∧ has a lot of well-known
consequences which may be broadly described by saying that → is an intu-
itionistic implication.

In particular, the negation ∼ associated to → is defined by ∼α = α →
0. For α : Σ −→ F2, the negation ∼α may be described as follows:
dom(∼α) = −Σ ∪ Σ 6=0 with Σ 6=0 = {σ | α(σ) 6= 0}; for ω ∈ dom(∼α),
(∼α)(ω) is defined by two cases:
(1) if ω ∈ −Σ, then ω = ¬

∨
Σ and (∼α)(ω) = 0

(2) if ω ∈ Σ 6=0, then ω = σ for some σ ∈ Σ and (∼α)(ω) = ¬α(σ).
Note again that when α is total, ∼α does not in general remain so: ∼α is

not defined on those σ ∈ Σ for which α(σ) = 0.
As often, ∼∼α is interesting and worth being described explicitly: for

α : Σ −→ F2, dom(∼∼α) = {σ | σ ∈ Σ, α(σ) 6= 1} and for σ ∈
dom(∼∼α), (∼∼α)(σ) = α(σ). The action ∼∼α is thus the action α
restricted to the conditions where α really “means” something (α(σ) 6= 1); it
is so to speak the “core” of α or its “effective part”. That description makes
it also clear that ∼∼α 6= α: ∼α is an intuitionistic negation but certainly
not a classical one.

2.3. Further properties of the ordering ≤ of actions

If we turn to the reverse ordering of ≤, we obtain notions which are sym-
metric of the ones obtained so far: 0, 1, ∨, \, ν, corresponding to 1, 0, ∧, →,
∼. Here are some indications.

The disjunction or supremum ∨ is defined by: for every action α, β, γ,
α ∨ β ≤ γ iff α ≤ γ and β ≤ γ. For α : Σ −→ F2 and β : Π −→ F2, the
disjunction α∨β is described by dom(α∨β) = Σ·Π and for every ω ∈ Σ·Π,
ω = σ ∧ π for some σ ∈ Σ and π ∈ Π and (α ∨ β)(ω) = α(σ) ∨ β(π).

The disjunction ∨ is thus a “short” disjunction, a rather “lax” one: (α∨β)
has prescriptions only for circumstances common to α and β, and then leaves
the choice between α and β. The “short” disjunction α∨β is to be contrasted
with the “long” disjunction α∨∗β, defined on Σ+Π, which will be examined
later.

Note also that when α and β are total, α∨β is again total and is pointwise
evaluated by the usual disjunction α(σ) ∨ β(π).

General arguments symmetric of those given for ∧, show that ∨ is compat-
ible with ≤, is compatible with ≈ and is idempotent, associative and com-
mutative.
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It is not difficult to prove the expected distributivities between ∧ and ∨
and, generally speaking, one can show that the connectives introduced so far
(0, 1, ∧, →, ∼, ∨) have an intuitionistic behavior. But there is more, because
∨ itself has a left adjoint.

The connective ∨ has a left adjoint, a “difference” \, defined by: γ ≤ α∨β
iff (γ \ β) ≤ α. The difference (γ \ β) is symmetric of (β → γ) when the
ordering ≤ is reversed. It is described for β : Π −→ F2 and γ : Ξ −→ F2

by: dom(γ \ β) = −Π ∪ (Π · Ξ) and for ω ∈ dom(γ \ β), (γ \ β)(ω) is
defined by two cases:
(1) if ω ∈ −Π, the (γ \ β)(ω) = 0
(2) if ω ∈ (Π ·Ξ), then ω = π ∧ ξ for some π ∈ Π, ξ ∈ Ξ and (γ \ β)(ω) =
γ(ξ) \ β(π)
where γ(ξ) \ β(π) is the usual difference γ(ξ) ∧ ¬β(π) computed in L2.

The difference γ \ β intermingles a comparison of the values and of the
domains of β and γ, but in a less intricate way than β → γ: when β and γ are
total , γ \ β remains total and is pointwise evaluated by the usual difference
γ(ξ) \ β(π).

It is easy to write down for γ \ β the laws which are symmetric of those
valid for β → γ. In particular, there is also a negation here, denoted by ν and
defined by να = 1 \ α. The negation να is easily described; for α : Σ −→
F2, dom(να) = −Σ = {¬

∨
Σ} and (να)(¬

∨
Σ) = 0. The interpretation

of (να) is thus particularly simple: it is a characteristic function with value
0 on the complement of the (disjunction of the) domain of α, undefined on
the domain of α, or, better said, it is the 0-cosupport of α, to be denoted here
also byC0α. In more intuitive terms, we can says that να (orC0α) is a rough
negation of α in that it represents the conditions which are the complement
of the conditions of α.

Double negation ννα is also easily described by dom(ννα) = {
∨

Σ} and
(ννα)(

∨
Σ) = 0. The action ννα is thus a 0-characteristic function of the

domain of α or, better said, it is the 0-support of α, to be denoted here also
by S0α; in intuitive terms, we can say that ννα (or S0α) represents the set
of conditions of the action α.

The existence of the left adjoint \ and of the negation ν turns the logic
of action developed so far into a bi-intuitionistic logic (taken here in the
sense of having a difference, left adjoint to disjunction, and an associated
negation), but we can prove other laws, for example the following ones,
which can be expected of supports and co-supports: C0(α∨β) = C0α∧C0β,
S0(α∨ β) = S0α∨S0β, C0(γ \ β) = C0γ ∨S0β, S0(γ \ β) = S0γ ∧C0β.

2.4. The ordering ≤∗ of actions

We have considered in section 2.1 the ordering ≤ of actions and defined in
sections 2.2 and 2.3 notions based on that ordering. There is also another
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natural ordering ≤∗ of actions; α ≤∗ β translates the idea that β is at least as
defined as α and that on the domain of α, doing α implies doing β; α ≤∗ β
thus essentially means that β is an extension of α, but be careful that that
does not mean that doing β implies doing α: the circumstances for doing β
do not necessarily imply those for doing α. Here is the formal definition:
(Def ≤∗) For α : Σ −→ F2, β : Π −→ F2, α ≤∗ β iff

∨
Σ ≤

∨
Π and for

all σ ∈ Σ, π ∈ Π, σ ∧ π 6= 0 implies α(σ) ≤ β(π).
To establish properties of ≤∗, observe first that α ≤∗ β and β ≤∗ α

together imply that α ≈ β. Note then that many properties of ≤∗ may be
obtained as duals of the properties of ≤ via a negation, denoted here ¬,
which is naturally present in the structure of actions. That negation is the
third negation considered so far; it should not be confused with ∼ and ν
and it is defined for α : Σ −→ F2, by dom(¬α) = Σ and for σ ∈ Σ,
(¬α)(σ) = ¬α(σ), this ¬α(σ) being the usual negation of α(σ) in L2.
When α describes a simple action such as B or S considered in the first part
of this paper, the negation ¬α is indeed the same as ¬AB, ¬AS. Since the
action ¬α has the same conditions as α, when α is total, ¬α remains total.

It is clear that ¬¬α ≈ α and that a strong relation between ≤∗ and ≤ is
given by: α ≤∗ β iff ¬α ≤ ¬β; α ≤ β iff ¬α ≤∗ ¬β. Such ties between
≤∗ and ≤ build thus into a duality and the actions 0, 1 and the operations
∧, ∨, →, ∼, \, ν introduced so far are automatically dualized by letting:
1∗ = ¬0, 0∗ = ¬1, α ∨∗ β = ¬(¬α ∧ ¬β), α ∧∗ β = ¬(¬α ∨ ¬β),
α \∗ β = ¬(¬β → ¬α), ν∗α = ¬∼¬α, α →∗ β = ¬(¬β \ ¬α), ∼∗ α =
¬ν¬α. As a consequence of that duality, 1∗ is the maximum element for ≤∗,
0∗ is the minimum element for that ordering, α ∨∗ β is the supremum of α
and β for that ordering, etc. We can in that manner dualize all the properties
described earlier, but it is more interesting to give here a direct description of
those actions and operations, concentrating on the most noteworthy points.
In Section 2.5, we will turn to further properties relating ≤ and ≤∗.

Description of 1∗: it is the action having {1} as its domain and defined by
1∗(1) = 1 (the ‘1’ between parentheses is in L1, the ‘1’ on the right of the
equality sign is in L2).

Description of 0∗: it is the empty action, already denoted 1, which is there-
fore auto-dual.

Description of α∨∗β, dual of α∧β. For α : Σ −→ F2 and β : Π −→ F2,
the domain of α∨∗β is Σ+Π; on (σ∧π) ∈ Σ·Π, it is defined by α(σ)∨β(π);
on (¬

∨
Σ) ∧ π ∈ −Σ · Π, it is defined by β(π); on σ ∧ (¬

∨
Π) ∈ Σ · −Π,

it is defined by α(σ). The disjunction α ∨∗ β is thus a “long” disjunction,
defined on Σ + Π, while the “short” disjunction α ∨ β is defined only on
Σ · Π. Note that when α and β are total, α ∨∗ β coincides with α ∨ β and is
similarly pointwise evaluated by the usual disjunction α(σ) ∨ β(π).

Description of α∧∗β, dual of α∨β. For α : Σ −→ F2 and β : Π −→ F2,
the domain of α ∧∗ β is Σ · Π and on (σ ∧ π) ∈ Σ · Π, it is defined by
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α(σ) ∧ β(π). The conjunction α ∨∗ β is thus a “short” conjunction, defined
on Σ · Π, while the “long” conjunction α ∧ β is defined on the whole of
Σ + Π. Note also that when α and β are total, α ∧∗ β coincides with α ∧ β
and is pointwise evaluated by the usual conjunction α(σ) ∧ β(π).

Description of γ\∗β, dual of β → γ. For β : Π −→ F2 and γ : Ξ −→ F2,
the domain of γ \∗ β is (Ξ · −Π) ∪ (Ξ/Π); on (ξ ∧ −

∨
Π) ∈ (Ξ · −Π), it

is defined by γ(ξ); on (ξ ∧ π) ∈ (Ξ/Π), it is defined by γ(ξ) \ β(π), i.e.
the usual difference γ(ξ) ∧ ¬β(π) computed in F2. As its dual β → γ, the
difference γ \∗ β involves a comparison γ(ξ) \ β(π) of the values γ(ξ) and
β(π) in L2 as well as a comparison of the domains Π and Ξ. If β and γ are
total, γ \∗ β does not necessarily remain so: adapt the remarks concerning
β → γ.

Description of ν∗α, dual of ∼α. For α : Σ −→ F2, the domain of ν∗α is
−Σ ∪ {σ | σ ∈ Σ and α(σ) 6= 1}. On −Σ, its value is 1, and for σ ∈ Σ and
α(σ) 6= 1, (ν∗α)(σ) = ¬α(σ). here again, we note that if α is total, ν∗α is
not necessarily so: it is defined only on the set {σ | σ ∈ Σ, α(σ) 6= 1}.

Description of ν∗ν∗α. For α : Σ −→ F2, ν∗ν∗α has {σ | σ ∈ Σ, α(σ) 6=
0} as its domain and coincides with α on it.

Description of β →∗ γ, dual of γ\β. For β : Π −→ F2 and γ : Ξ −→ F2,
the domain of β →∗ γ is −Π ∪ (Π · Ξ). On −Π, the value of β →∗ γ is 1;
on (π ∧ ξ) ∈ Π ·Ξ, its value is given by β(π) → γ(ξ), the usual implication
in L2. Note that when β and γ are total, β →∗ γ remains so and is pointwise
evaluated by the usual implication β(π) → γ(ξ).

Description of ∼∗ α, dual of να. For α : Σ −→ F2, the domain of ∼∗ α
is −Σ and its value is 1 on it; it is thus the 1-cosupport of α, also denoted by
C1α.

Description of ∼∗∼∗ α. For α : Σ −→ F2, the domain of ∼∗∼∗ α may
be taken as Σ or {

∨
Σ}; the value on the domain is 1; ∼∗∼∗ α is thus the

1-support of α, also denoted by S1α.

2.5. Relating the two orderings

We turn now to the problem of further relating ≤ and ≤∗, be it for positive
or for negative correlations.

On the negative side, observe that α ∧∗ β ≤∗ α, but that in general α ∧∗

β 6≤ α; the simple reason is that the domain of α is in general bigger than
the domain of the short conjunction α ∧∗ β. Similarly, α ≤∗ α ∨∗ β, but
α 6≤ α ∨∗ β.

Similar observations, already hinted at by von Wright’s discussions, seem
to us fundamental for a good understanding of the notion of action, because
they show the potential ambiguities present in e.g. the conjunction of ac-
tions. That notion of conjunction is simple only on the surface; by the con-
junction of α and β, do we understand the short conjunction α ∧∗ β, or the
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long conjunction α ∧ β or even - to overstate a bit the case - an asymmetric
conjunction “do αwhen the conditions for α are realized and if moreover the
conditions for β are realized, do also β”, represented here by (α∧β)∧∗S1α
(α ∧ β restricted to the support of α); or is it the other asymmetric conjunc-
tion (α ∧ β) ∧∗ S1β?

Similar remarks naturally apply to all the other connectives. Note in par-
ticular that we have here no less than five different negations: ¬, ∼, ν, ∼∗,
ν∗.

For positive correlations, we may note:

α ≤ β iff S1β ≤∗ S1α and α ∧∗ S1β ≤∗ β;
α ≤ β implies C1β ≤ C1α and S1α ≤ S1β;
α ≤ S1α;
S1α = (α ∨ ¬α) = (α ∨∗ ¬α)

and other properties, usual for supports and cosupports, such as S1α =
C1C1α, C1α = S1C1α, etc.

Regarding conjunctions and disjunctions, note:

α ∧ β ≤ α ∧∗ β ≤ α ∨ β,
α ∧ β ≤ α ∨∗ β ≤ α ∨ β

and the distributivities:

(α ∧∗ β) ∨ γ ≈ (α ∨ γ) ∧∗ (β ∨ γ)
(α ∨ β) ∧∗ γ ≈ (α ∧∗ γ) ∨ (β ∧∗ γ) (dual of the preceding)
(α ∧ β) ∧∗ γ ≈ (α ∧∗ γ) ∧ (β ∧∗ γ)
(α ∨∗ β) ∨ γ ≈ (α ∨ γ) ∨∗ (β ∨ γ) (dual of the preceding),

but in general,

(α ∧ β) ∨∗ γ 6≈ (α ∨∗ γ) ∧ (β ∨∗ γ)
(α ∧∗ β) ∧ γ 6≈ (α ∧ γ) ∧∗ (β ∧ γ)

and similarly for their duals.
It is true that α ≤ α′ and β ≤ β′ together imply α ∧∗ β ≤ α′ ∧∗ β′, but

they do not in general imply that α ∨∗ β ≤ α′ ∨∗ β′.
Operations based on ≤ and operations with the same name, based on ≤∗,

may be related by formulas such as:

α ∧ β = (α ∧∗ β) ∨∗ (α ∧∗ C1β) ∨∗ (β ∧∗ C1α)
α ∧∗ β = (α ∧ β) ∧∗ S1α ∧∗ S1β
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or by observations such as

(
∨
domα) ∧ (

∨
domβ) = 0 implies α ∨∗ β = α ∧ β.

The study of the combinations of the different negations leaves, besides
evident relations, less expected connections such as ∼¬∼¬α ≈ ∼¬∼∼α
and ¬∼∼¬∼α ≈ ∼∼¬∼∼α.

2.6. Making an action total

How do actions defined on sets of conditions relate to total actions? Total
actions are particular cases of actions defined on sets of conditions; in the
other direction, there are two canonical ways of turning an action into a total
one, one way being dual of the other. The operation T1 turns the action α
into the total action T1α, by giving the value 1 to the complement of the (dis-
junction of the) domain; in formulas, T1α = α ∧ C1α or T1α = α ∨∗ C1α
or T1α = α ∧ 1∗. Dually, the operation T0, defined by T0α = ¬T1¬α
gives the value 0 to the complement of the (disjunction of the) domain of α;
in formulas, T0α = α ∨∗ C0α = α ∧ C0α = α ∨∗ 0. The operation T1

changes the formal nature of the action α, since it makes it total, but we can
ask whether that change is “real”, because when α is undefined, T1α simply
requires to “do 1”, something which is automatically satisfied! We will see
in the next section that the difference between α and T1α is indeed thin: un-
der reasonable hypotheses on obligation, making α obligatory is equivalent
to making T1α obligatory. Dual remarks apply to T0α and to interdiction:
forbidding α is equivalent to forbidding T0α. However, putting aside formal
considerations, we may note that T0α is conceptually more artificial than
T1α because it puts the finger on the idea of “locally contradictory” action:
“outside the domain of α, do 0”. Notwithstanding that remark, further devel-
opments make us think that we should admit such notions, considering them
if necessary like “ideal elements” in Hilbert’s sense, because they reveal the
very rich structure of actions, which otherwise would remain hidden.

On specific families of connectives, T0 and T1 have a simple behavior:

T10 = 0 T01
∗ = 1∗

T11 = 1∗ T00
∗ = 0

T1(α ∧ β) = T1α ∧ T1β T0(α ∨∗ β) = T0α ∨∗ T0β
T1(α ∨ β) = T1α ∨ T1β T0(α ∧∗ β) = T0α ∧∗ T0β
T1(β → γ) = ¬T1β ∨ T1γ T0(γ \∗ β) = T0γ ∧∗ ¬T0β
T1(∼α) = ¬T1α T0(ν

∗α) = ¬T0α
T0(γ \ β) = T0γ ∧ ¬T1β T1(β →∗ γ) = ¬T0β ∨ T1γ
T0(να) = 0 T1(∼

∗ α) = 0∗ = 1
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Technically speaking, that means that T0 and T1 send homomorphically
reducts of the complete structure of actions on the more usual essentially
classical logic of total actions. The effect of T0 and T1 on connectives not
considered above does not seem to obey such simple rules.

2.7. Obligation

We discuss here the notion of obligation, considered as applying to actions.
We should thus make sense of Oα, α being an action. A possible way of
doing that is to consider besides L1 and L2 yet another language L3 endowed
with the classical connectives ¬, ∧, ∨, ... and a necessity operator �, in
which L1 and L2 may be embedded. To be specific, we assume here that
the set F3 of formulas of L3 is obtained by combining F1 and F2 with the
connectives ¬, ∧, ∨ and �; we assume also that the axioms for ¬, ∧, ∨
are the axioms of classical logic and that the axioms for � turn it into an
(at least) K-modal operator: axioms �>, �ϕ ∧ �ψ → �(ϕ ∧ ψ) and rule
(ϕ → ψ)/(�ϕ → �ψ). In that setting, it is clear that formulas provable
in L1 or in L2 remain so in L3, and sensible generalizations of the setting
should preserve that property. We have said before that we like to think of
actions in algebraic terms; we add now that we prefer to think of obligation
and of relations between obligations in terms of propositions; for that reason,
we denote entailment in L3 by ⇒, definitions and logical equivalence in L3

by ⇔, and the 1 (resp. 0) of L1 and L2 will be denoted by > (resp. ⊥) when
considered as a formula of L3.

We now associate canonically to every action α a formula F (α) of L3,
expressing the idea that to every condition σ of α is associated the effect
α(σ). If α : Σ −→ F2 is singletonic, i.e. if Σ = {σ}, we let F (α) ⇔
(σ → α(σ)) ⇔ ασ. For general α, let F (α) ⇔

∧
σ∈Σ ασ. It is easy to prove

that α ≤ β implies F (α) ⇒ F (β); hence, α ≈ β implies F (α) ⇔ F (β)
and F (α) is independent of the particular representation chosen for α. One
proves also that F (1) ⇔ > and that F (α) ∧ F (β) ⇔ F (α ∧ β).

To express obligation, we recall the idea underlying Section 1.6 that the
obligation to do α (α : Σ −→ F2) is the necessity to produce α(σ) on
every occasion σ ∈ Σ; in other words, Oα is defined to be �F (α). Our
observations concerning F and our assumption that � is a K-modal oper-
ator make it clear that O itself is a K-modal operator in the sense that O
transforms in a K-like fashion the initial ordering ≤ of actions into the or-
dering ⇒ of entailment in F3: α ≤ β implies Oα ⇒ Oβ, O1 ⇔ > and
Oα ∧ Oβ ⇒ O(α ∧ β). As a corollary, we may deduce that all relations
α ≤ β obtained before give rise to corresponding relations between obliga-
tions, e.g. O(α∧β) ⇒ Oα,Oα⇒ O(α∨β), etc.; one proves also in a stan-
dard way: O(α → β) ⇒ (Oα → Oβ), O∼∼α ⇔ Oα, O(γ \ β) ⇒ Oγ,
etc. If one assumes that the modal connective � satisfies ¬�⊥, one can also
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prove formulas like ¬O0 (which expresses that the total contradictory action
0 is not obligatory) and O∼α⇒ ¬Oα. Other relations dealing with ≤, but
less easy to obtain will not be given here.

We now turn to the relation between O and the ordering ≤∗ of actions. If
one wants to make the most of dualities obtained for actions, one should ob-
serve that permission P , generally defined by ¬O¬, is indeed the dual of O
and that α ≤∗ β implies Pα⇒ Pβ; one obtains thus in a systematic way for
P and ≤∗ results which are dual of those obtained for O and ≤. It is worth
pondering an instant on the precise definition of P and on the intermediate
definitions of non-obligation ¬O and interdiction I = O¬. Interdiction is
given by

Iα⇔ O¬α⇔
∧

σ∈Σ �(σ → ¬α(σ))

which expresses an “absolute” interdiction: whatever the condition, we
should avoid α; non-obligation is given by

¬Oα⇔
∨

σ∈Σ ♦(σ ∧ ¬α(σ)),

meaning the possibility of not having α on at least one occasion; for permis-
sion, we have

Pα⇔
∨

σ∈Σ ♦(σ ∧ α(σ)),

meaning the possibility of having α on at least one occasion. There is also
room for other combinations, such as strong permissions

∧
σ∈Σ ♦(σ∧α(σ))

or weak interdictions
∨

σ∈Σ �(σ → ¬α(σ)) or other combinations involving
two modal operators such as �(σ → �α(σ)), �(♦σ → α(σ)) (see e.g.
[EDL pp. 25 sq]), but we do not know whether our setting leads to new
insights here.

Results relating ≤ and ≤∗ yield relations betweenO and ≤∗; thus e.g., α∧
β ≤ α∧∗β yieldsO(α∧β) ⇒ O(α∧∗β) ; hence, usingOα∧Oβ ⇒ O(α∧
β), we derive Oα ∧ Oβ ⇒ O(α ∧∗ β), recapturing and generalizing thus a
basic observation of [NTL, p. 190]. Another basic observation of [NTL, p.
190] is recaptured by observing that, in the other direction,O(α∧∗β) ⇒ Oα
(1) is not valid. We prove this here by starting from a counterexample to
the relation α ∧∗ β ≤ α and constructing a Kripke model which validates
the axioms adopted, but falsifies (1). Here is a possible specification; take
α : {σ} −→ F2 and β : {π} −→ F2 with σ ∧ π = 0 and α(σ) = ¬σ; by
easy computations, α∧∗ β = 1, O(α∧∗ β) ⇔ O1 ⇔ > and Oα⇔ �(σ →
¬σ) ⇔ �¬σ, showing that (1) reduces to the validity of �¬σ; it is then easy
to use standard techniques to obtain a countermodel of �¬σ which is also a
model of the axioms adopted.
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Results of the preceding kind are particularly interesting because they
show that a good deal of the distinctions made between actions carry over to
obligations to accomplish those actions. For example, Oα ⇒ O(α ∨ β) but
Oα 6⇒ O(α∨∗ β) (use the same counterexample as above). Another signifi-
cant example is given byO(¬α),O(∼α),O(να),O(ν∗α),O(∼∗ α), which
are all distinct in general; to see that, take for example α : {σ0, σ1, σ2} −→
F2 and a σ3 in such a way that {σ0, σ1, σ2, σ3} form a partition of 1 and
α(σ0) = 0, α(σ1) = p 6= 0, p 6= 1 and α(σ2) = 1; one easily computes that

O(¬α) ⇔ �(σ1 → ¬p) ∧ �¬σ2

O(∼α) ⇔ �(σ1 → ¬p) ∧ �¬σ2 ∧ �¬σ3

O(να) ⇔ �¬σ3

O(ν∗α) ⇔ �(σ1 → ¬p)
O(∼∗ α) ⇔>,

and that gives formulas which are easily differentiated in models.
Note however that when an action α associates to a determined condition

σ the effect 1, the condition may be dropped from the obligation, because the
contribution of condition σ for that obligation is �(σ → α(σ)) i.e. �(σ →
1) or �(σ → >), which reduces to �> and finally to the tautology >. As a
corollary, if two conditions α and β differ only by conditions to which they
assign the tautological effect 1 the obligation of doing one is equivalent to the
obligation of doing the other: Oα⇔ Oβ. Another corollary: from the point
of view of obligation, α and its “totalization” T1α do not differ: Oα ⇔
OT1α. From the point of view of obligation, we could in principle deal
exclusively with total actions; however, we do not recommend that approach
because only a rather artificial reintroduction of the domains would allow us
to recover the rich structure of actions conceived of as associating effects to
conditions.

On the other hand, note also that when an action α associates to a de-
termined condition σ the contradictory effect 0, the contribution of σ for
that obligation is �(σ → α(σ)) i.e. �(σ → 0) or �(σ → ⊥), which re-
duces to �¬σ, a formula which is not in general a contradiction; it seems
that �(σ → α(σ)) loses in that case its deontic content to gain the more
contentual interpretation of impossibility of doing σ; in a certain sense,
we should not be surprised by that more than by other limit cases such as
�(σ → 1) considered above or �(σ → σ) (which both reduce to >) or
�(1 → 0) (which reduces to ⊥ if ¬�⊥ is among the axioms); in another
sense, we may perhaps find here a good reason for tolerating those “local”
deontic contradictions. We have however no objections to the rejection of
“global” deontic contradictions; it is indeed very reasonable that ¬O0 should
be provable; moreover, it is ensured here by the adoption of the rather natural
axiom ¬�⊥.
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2.8. Connections with von Wright’s systems

We have already shown in the first part of this paper, in particular in Sec-
tion 1.6, how von Wright’s systems lead naturally to the idea of action as
morphism and of obligation as conditional necessity. von Wright himself
did not emphasize that notion of action as morphism and he did not study
explicitly the different operations on actions which we mentioned before,
e.g. choosing for his purposes (in [NTL]) the short conjunction (our α∧∗ β)
and long disjunction (our α ∨∗ β); this had the merit of exhibiting natural
counterexamples to laws such as O(α ∧∗ β) → Oα and Oα → O(α ∨∗ β);
the disadvantage is that those notions are based on ≤∗, an ordering which
is not the most natural one in terms of obligation, and that they are consid-
ered independently of their duals α ∧ β and α ∨ β which are based on the
more natural ordering ≤, as well as independently of other operations such
as implication →, negation ∼, difference \, negation ν, *-implication →∗,
*-negation ∼∗, etc.

On the other hand, von Wright presented in [NSD] a conditional logic
where the main notion O(A/B) represents “one ought to see to it that A
when B” (von Wright’s own words, p. 108). This clearly corresponds to
the consideration of the singletonic action α : Σ −→ F2 where Σ = {σ},
σ = B and α(σ) = A in such a way that his formula O(A/B) corresponds
to our Oα. His axiom O(A/B ∨C) ↔ O(A/B)∧O(A/C) corresponds to
our consideration of more complex actions, in this case α : {π, ξ} −→ F2

with π = B, ξ = C and α(π) = α(ξ) = A, which is equivalent (in the
sense of ≈) to β : {π∨ ξ} −→ F2 with β(π∨ ξ) = A; the axiom is provable
in our system by computations embedded in the proof that α ≈ β entails
Oα ⇔ Oβ. von Wright’s axiom O(A ∧ B/C) ↔ O(A/C) ∧ O(B/C)
clearly corresponds to some of our considerations on the conjunction α∧β of
two actions. Finally, von Wright’s discussions of ¬(O(A/B) ∧ O(¬A/B))
and of contrary to duty imperatives which he amends to weaker versions
clearly correspond to our observations in section 2.7 on global and local
contradictions. In relation to conditional logic, we think that the merit of our
approach is to exhibit more structure than is given by the raw consideration
of axioms such as those chosen by von Wright.

Conclusion

To conclude, let us first repeat that we are indebted to von Wright’s basic
insights and that we think that they remain a good source of inspiration.
Secondly, let us emphasize that our approach, although starting from a very
simple setting, reveals nevertheless a very rich and quite natural structure
of actions and of obligation. And lastly, let us speculate that the next step
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in such an approach is to look for a more intrinsic theory of action and of
obligation; this means that one should look for a good axiomatization of our
system SMorM and for good generalizations which make it less dependent
from our particular setting, but on the other hand remains more specific than
the very broad category-theoretic observation that actions should be consid-
ered as morphisms.
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