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A NOTE ON ARISTOTELIAN THEORIES

EDWIN D. MARES

Abstract
This paper examines the formal nature of Aristotle’s principle: if
a theory T does not entail the negation of a proposition, then ac-
cording to T that proposition is possibly true. Aristotle’s principle
is shown to have some elegant and surprising features. It is also ar-
gued that every ideal metaphysical theory is closed under Aristotle’s
principle.

1. Introduction

In [4], Tim Maudlin argues that David Lewis’ modal realism commits Lewis
to holding that there are qualitatively identical but numerically distinct pos-
sible worlds. Maudlin then goes on to argue that this consequence is unto-
ward. In his argument that Lewis must accept indiscernible worlds, Maudlin
appeals to a principle that he extracts from the following passage from Aris-
totle:

I use the terms ‘to be possible’ and ‘the possible’ of that which ...
being assumed results in nothing impossible. (Prior Analytics 32a

17–20)1

In Maudlin’s formulation, Aristotle’s principle, as we shall now call it, says
that if a proposition does not entail any impossible propositions, then it is
possible ([4] p. 671).

In his reply to Maudlin [3], Lewis interprets Aristotle’s principle in terms
of theories. On Lewis’ reading, Aristotle’s principle says that

whatever cannot be refuted in [a theory] T is possibly true [accord-
ing to T ] ([3] p. 683).

In this paper, I examine Lewis’ version of Aristotle’s principle. I look at for-
mal theories that are closed under Aristotle’s principle. That is, we discuss

1 The ellipsis here is in place of the phrase “not being necessary but”. Like most modern
philosophers and unlike Aristotle, Maudlin does not take only contingencies to be possible.
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44 EDWIN D. MARES

theories T of the language of modal logic that satisfy the following rule:

¬A /∈ T

♦A ∈ T
(AP).

Theories that satisfy AP are said to be Aristotelian and are called “A theo-
ries”.

It is not the aim of the present paper to adjudicate the debate between
Maudlin and Lewis, nor do I make it my business to engage in Aristotle
scholarship. Rather, I think that AP is interesting in ways that Maudlin and
Lewis do not acknowledge. In this paper, I undertake a purely formal exam-
ination of AP with the aim of showing that every ideal metaphysical theory
must be Aristotelian. A metaphysical theory, as I use the term here, is not
about the contingent features of the world, but is about the nature of all pos-
sible worlds. Accordingly, ‘necessity’ and ‘possibility’ as they are used in
metaphysical theories are supposed to be universal and existential quantifiers
over the set of all metaphysically possible worlds. I show that every com-
plete metaphysical theory (in a sense specified below) of a set of possible
worlds is Aristotelian. Moreover, in the “natural” model of any Aristotelian
theory — based on the set of its maximal consistent extensions — its modal
operators act as unrestricted quantifiers over worlds. In fact, we will see that
given any possible worlds model of an Aristotelian theory, we can convert it
into a model in which the modal operators are unrestricted quantifiers over
the set of worlds, and the resulting model validates the same set of formulae
as the original model.

2. Language, Schemes, and Logics

We begin by covering some very familiar ground. Since the theories that we
are talking about are modal theories, we need to know of which modal logics
that are theories. The logics that will concern us are the base normal logic K

and its extensions KT, K4, K5, and S5 (= KT45 = KT5).
Before we can set out the logics formally, we need a formal language.

Our language has propositional variables, parentheses, the binary connective
⊃ (the material conditional), and the unary connective � (necessity), and
the zero-place connective ⊥ (the falsum). We use the standard formation
rules. We also utilize the usual defined connectives: ¬A =df A ⊃ ⊥;
A ∧ B =df ¬(A ⊃ ¬B); A ∨ B =df ¬A ⊃ B; ♦A =df ¬�¬A.

We take a logic to be identical to the set of its theorems. Thus, K is the
smallest set of formulae such that it contains all substitution instances of PC
tautologies, all instances of the scheme K (�(A ⊃ B) ⊃ (�A ⊃ �B)), and



“03mares”
2006/2/13
page 45

i

i

i

i

i

i

i

i
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is closed under the rules
A ⊃ B

A

B
(MP)

and
A

�A
(N).

We will use the following fact about K:2

Lemma 1 : `K (�A ∧ ♦B) ⊃ ♦(A ∧ B).

Proof.

1. �(A ⊃ ¬B) ⊃ (�A ⊃ �¬B) K

2. ¬(�A ⊃ �¬B) ⊃ ¬�(A ⊃ ¬B) 1, PC

3. (�A ∧ ¬�¬B) ⊃ ¬�¬(A ∧ ¬¬B) 2, def ∧
4. (�A ∧ ♦B) ⊃ ♦(A ∧ B) 3, def ♦, PC

�

The logics that we use are created by adding all instances of some or all
of the following schemes to K and closing under MP and N. We include
also variations on each scheme that are easily proved from the scheme by
principles of PC, which variations we use in our argument.

Name Scheme Variation

T �A ⊃ A A ⊃ ♦A
4 �A ⊃ ��A ♦♦A ⊃ ♦A
5 ♦A ⊃ �♦A ♦�A ⊃ �A

The logics KT, K4, and K5 result from the addition of T, 4, and 5 to
K respectively. The logic S5 plays a special role in our discussion. It is
the logic that results from adding all of these schemes to K, although the
addition of 4 is redundant.

3. Theories

Theories are defined in terms of consequence relations. For a logic S, we
define the consequence relation `S such that for a set of formulae Γ, Γ `S B

2 We also tacitly appeal throughout this paper to the fact that in the logics concerned we
can replace probably equivalent formulae for one another in any context.
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46 EDWIN D. MARES

if and only if there are A1, ..., An in Γ (for some n ∈ ω) such that it is a
theorem of S that (A1 ∧ ... ∧ An) ⊃ B. Γ is a theory of S if and only if,
for all formulae B such that Γ `S B, B ∈ Γ, that is, Γ is closed under the
consequence relation for S.

For the logics that we are considering here, every theory of S contains all
the theorems of S. Now let S be one of the logics that results by adding zero
or more of the schemes listed above to K. It is clear that it is equivalent to say
that Γ is an S theory and that it is a K theory that contains all the theorems
of S.

We use the standard definitions of S-consistency and maximality. A set
of formulae Γ is said to be S-inconsistent if Γ `S ⊥. Γ is S-consistent
otherwise. Γ is said to be maximal if and only if for all formulae A either
A ∈ Γ or ¬A ∈ Γ. It is easily shown that every maximal S-consistent set of
formulae is a theory (although the converse is not true).

We will make heavy use in our argument of Lindenbaum’s extension lem-
ma, viz.:

Lemma 2 : (Lindenbaum) Let Γ be an S-consistent set of formulae. Then
there is a maximal S-consistent set of formulae containing Γ.

It is an easy corollary of Lindenbaum’s lemma that every S-consistent
S-theory is the intersection of its maximal S-consistent extensions. For sup-
pose that T is an S-theory and that A /∈ S. Then T,¬A 0 ⊥. So the
closure of T ∪ {¬A} under the rules of S (i.e. the smallest S-theory con-
taining T ∪ {¬A}) is consistent. We then know, by Lindenbaum’s lemma,
that there is a maximal S-consistent set, Γ, that contains T ∪{¬A}. Clearly,
T ⊆ Γ. Generalizing, for each A /∈ T , there is a maximal S-consistent set
that does not contain A. So, T is the intersection of its maximal S-consistent
extensions.

Before we leave the topic of theories, we need two more definitions. Given
a theory T , the de-necessitation of T (written ‘�−1T ’) is the set of formulae
A such that �A ∈ T and the de-possibilization of T (written ‘♦−1T ’) is the
set of formulae B such that ♦B ∈ T .

4. Aristotle’s Principle

Aristotle’s principle (AP) is not an inference rule in any standard sense. We
cannot merely add AP to a system or merely state that theories are closed
under it. For there are not always minimal Aristotelian closures of theories.
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Here is a brief argument for this fact. Let T be a consistent KT-theory
that is not Aristotelian (e.g. the set of theorems of KT)3 . By Lindenbaum’s
lemma, T is the intersection of the maximal KT-consistent sets that extend
T . Let us suppose that there is more than one maximal KT-consistent set
that extends T . Then there is no unique smallest Aristotelian theory that
extends T . For every maximal KT-consistent set is Aristotelian and there is
no theory that is a subset of every maximal KT-consistent set that extends
T and is also bigger than T , since T is the intersection of all these maximal
consistent sets.4

If there is no unique smallest Aristotelian theory that extends T , it makes
no sense to talk about the closure of T under Aristotle’s principle. Hence,
Aristotle’s principle is not an inference rule in any normal sense. But this
does not mean that Aristotle’s principle is not interesting. As we shall see
in what follows, theories that are closed under Aristotle’s principle are very
interesting indeed.

5. Categoricity

Aristotelian theories of some modal logics satisfy what we call categoricity
properties. An S-theory T is said to be �-categorical if for any maximal
consistent extensions Γ and ∆ of T , for all formulae A, �A ∈ Γ if and only
if �A ∈ ∆. Similarly, T is ♦-categorical if for any maximal consistent
extensions Γ and ∆ of T , for all formulae A, ♦A ∈ Γ if and only if ♦A ∈
∆.5

Lemma 3 : Every Aristotelian K5-theory is ♦-categorical.

Proof. Suppose that T is an Aristotelian theory. Let Γ and ∆ be maximal
consistent extensions of T . Assume for the sake of a reductio that ♦A ∈ Γ

3 It is obvious that the set of theorems of KT is not Aristotelian. For ¬p is not a theorem of
KT, for any propositional variable p, but ♦p is not a theorem either. Since the set of theorems
of KT is closed under uniform substitution, if ♦p were a theorem, then all instances of ♦A
would also be theorems.

4 As an annonymous referee pointed out, the problem here is a symptom of a more general
phenomenon. A /∈ T occurs negatively in the definition of an Aristotelian theory. Since
these theories are not characterised by a positive inductive definition there is no guarantee of
a minimal (or any) fixed point.

5 Note that we do not have to specify that the extensions of T are S-consistent, since T
contains all theorems of S so do its extensions. If they are S inconsistent, then they will be
K inconsistent as well.
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and ♦A /∈ ∆ for some formula A. Then, ♦A /∈ T , i.e. ¬�¬A /∈ T .
But, since T is Aristotelian, this implies that ♦�¬A ∈ T . Thus, by 5, we
have �¬A ∈ T . Thus, ♦A ∈ Γ and �¬A ∈ Γ and so, by lemma 1, we
have ♦(A ∧ ¬A) ∈ Γ. But, ¬♦(A ∧ ¬A) is a theorem of K and so Γ is
inconsistent. Thus, by reductio, T is ♦-categorical. �

Lemma 4 : Any Aristotelian K4-theory that is ♦-categorical is also �-cate-
gorical.

Proof. Suppose that T is ♦-categorical. Assume for the sake of a reductio
that it is not �-categorical. Then there are maximal consistent extensions
of T , Γ and ∆ and a formula A such that �A ∈ Γ and �A /∈ ∆. Thus,
�A /∈ T and so ¬♦¬A /∈ T and, because T is Aristotelian, ♦♦¬A ∈ T . By
4, we obtain ♦¬A ∈ T . Therefore �A ∈ Γ and ♦¬A ∈ Γ, hence by lemma
1, ♦(A ∧ ¬A) ∈ Γ. Therefore, T is �-categorical. �

We will use these categoricity results later to prove the central theorems
of this paper. But they are interesting in their own right. For they tell us
that Aristotelian S5 theories are both � and ♦-categorical. To use Lewis’ apt
phrase, these theories do not allow for modal mysteries — they answer all
questions about what is necessary and what is possible.

6. Models

In this section we set out the semantics we will use in subsequent proofs and
some definitions that we use later. We will discuss two sorts of models for
our theories: relational and absolute models.

A relational model is a triple < W, R, v > such that W is a non-empty
set (of worlds), R ⊆ W 2, and v is a function from propositional variables to
subsets of W . Given a relational model < W, R, v >, we define a satisfac-
tion relation, |=v between worlds and formulae such that for all worlds w,
all propositional variables p, and all formulae A and B,

• w |=v p if and only if w ∈ v(p);
• w |=v A ⊃ B if and only if either w 6|=v A or w |=v B;
• w 6|=v ⊥;
• w |=v �A if and only if, for all w′ ∈ W, if wRw′, then w′ |=v A.

An absolute model is a pair < W, v > such that W is a non-empty set and
v is a function from propositional variables into ℘(W ). Given an absolute
model < W, v > we define a relation |=′

v between worlds and formulae such
that for all worlds w, all propositional variables p, and all formulae A and
B,

• w |=′

v p if and only if w ∈ v(p);
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• w |=′

v A ⊃ B if and only if either w 6|=′

v A or w |=′

v B;
• w 6|=′

v ⊥;
• w |=′

v �A if and only if, for all w′ ∈ W, w′ |=′

v A.
The only difference between the satisfaction relation in relational models
and that in absolute models is in their truth clauses for necessity.

We say that a relational model < W, R, v > is a model for a theory T if
and only if, for all formulae A in T and all w ∈ W , w |=v A. Similarly, an
absolute model < W, v > is a model for T if and only if, for all formulae A
in T and all w ∈ W , w |=′

v A.
We also use the following definitions. Given a model < W, R, v > (or

< W, v >) and a world w ∈ W , t(w) is the set of formulae A such that
w |=v A (or w |=′

v A). And we define

W̃ =df

⋂

w∈W

t(w).

7. Metaphysical Theories

The theories that we are most interested in here are theories about meta-
physics. A metaphysical theory is not about what is contingently true of the
world, but what is necessarily true, in the sense of metaphysical necessity.
It is generally accepted among philosophers that the logic of metaphysical
necessity is S5, so we can say that

A theory T is a metaphysical theory if and only if (i) T is closed
under the rule A ∈ T ⇒ �A ∈ T (for all formulae A) and (ii) T
includes all the theorems of S5.

A metaphysical theory is an “M theory” and an Aristotelian metaphysical
theory is an “AM theory”.

Theorem 5 below shows that every absolute model characterizes an AM
theory.

Theorem 5 : Let < W, v > be an absolute model. Then, W̃ is an AM theory.

Proof. (a) < W, v > is a model for S5. Thus, every S5 theorem is true at
every world. Hence, every S5 theorem is in W̃ .

(b) Suppose that A is in W̃ . Then A ∈ t(w), for every world w in W .
Thus, �A ∈ t(w) for every w ∈ W . So, �A ∈ W̃ .

(c) Suppose now that ¬A /∈ W̃ . Then there is some world w ∈ W such
that ¬A /∈ t(w). Thus, for all w′ ∈ W , �¬A /∈ t(w′) and so, ¬�¬A ∈
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t(w′). Thus, by the definition of ♦, ♦A ∈ t(w′), for all w′ ∈ W . Hence
♦A ∈ W̃ .

By (a) and (b) W̃ is an M theory, and by (c) W̃ is an A theory. �

The preceding theorem shows that the theory that captures all the truths in
a set of worlds is an AM theory. If W is the (actual? real?) set of possible
worlds and v is the intended interpretation of our language, then, W̃ is the
complete theory of metaphysical necessity and possibility. And W̃ is an AM
theory. Thus the true and complete theory of metaphysics is an AM theory.

8. Canonical Models

In this section we show that every consistent AM theory T determines an
absolute model < W, v > such that T = W̃ .

We begin with the canonical model for S5. It is a triple < WS5, RS5, vS5 >
such that WS5 is the set of maximal S5-consistent sets (henceforth, ‘MCS’),
RS5 ⊆ WS5 × WS5 is such that wRS5w

′ if and only if �−1w ⊆ w′, and
vS5(p) = {w ∈ WS5 : p ∈ w} for all propositional variables p. Using
standard methods (see [2] theorem 6.5), it can be shown that, for each w ∈
WS5, w = t(w). Thus, in this section we will dispense with talk of t(w) and
merely discuss the contents of w.

As is shown in the standard completeness proofs for S5, RS5 is an equiv-
alence relation. Since RS5 is an equivalence relation, we can divide WS5

into R-clusters. For each world w in WS5, [w]RS5
(henceforth, abbreviated

as ‘[w]’) is an R-cluster. It is defined so that, for all worlds w′ ∈ WS5,
w′ ∈ [w] if and only if wRS5w

′.
We need the following lemma:

Lemma 6 : For all w ∈ WS5, ♦A ∈ w if and only if there is a w′ ∈ WS5 such
that wRS5w

′ and A ∈ w′.

Proof. Suppose first that ♦A ∈ w. Then ¬�¬A ∈ w. Since w is consistent,
�¬A /∈ w. Then, �−1w ∪ {A} is consistent and so, by Lindenbaum’s
lemma, there is a w′ ∈ WS5 such that wRS5w

′ and A ∈ w′.
Suppose now that there is a w′ ∈ WS5 such that wRS5w

′ and A ∈ w′.
Then, �−1w ∪ {A} is consistent and so �¬A /∈ w. Thus, since w is maxi-
mal, ♦A ∈ w. �

It can also be shown that RS5 is symmetrical, transitive, and reflexive (see,
e.g., [2] theorems 6.7–6.11). This implies the following lemma:

Lemma 7 : [w] = [w′] if and only if w ∈ [w′].
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We now define a canonical model for an S5 theory T . The canonical
model for T is a triple < WT , RT , vT > such that WT is the set of MCS
that extend T , RT is RS5 � WT , and v(p) = {w ∈ WT : p ∈ w} for all
propositional variables p. By Lindenbaum’s lemma, we know that T is the
intersection of WT .

Theorem 8 : If T is an AM theory, then WT = [w], for all w ∈ WT .

Proof. Let T be an AM theory and w and w′ be MCS that extend T . By
lemmas 3 and 4, T is �-categorical, hence �−1w = �−1w′. Moreover,
since w′ contains all instances of T, �−1w′ ⊆ w′, so �−1w ⊆ w′. Thus,
wRT w′ and so w′ ∈ [w]. Therefore, by lemma 7, [w′] = [w], Generalizing,
[w] = WT . �

Theorem 9 : If T is an M theory and WT is an R-cluster in < WS5, RS5 >,
then T is an A theory.

Proof. Suppose that T is metaphysical and that WT is an R-cluster in
< WS5, RS5 >. Also assume that ¬A /∈ T . Since T is metaphysical, it con-
tains all instances of T, and so �¬A /∈ T . Thus, T ∪{♦A} is S5-consistent.
By Lindenbaum’s lemma, there is an MCS w ∈ WT that contains T ∪{♦A}.
Thus, by lemma 6, there is a w′ ∈ WT such that A ∈ w′. But then, since
WT is an R-cluster, by lemma 6, for all w′′ ∈ WT , ♦A ∈ w′′. Therefore,
since T is the intersection of WT , ♦A ∈ T . Hence, T is Aristotelian. �

We can think of the set of MCS that extend T as a natural model for T .
Thus, the model operators work as unrestricted quantifiers over the set of
worlds in the natural model for T .

9. Absolute Models for AM Theories

Let T be an AM theory and < W, R, v > be a relational model for T . Then
we will show that < W, v > is an absolute model for T .

Lemma 10 : For all w ∈ W , w |=v �A if and only if, for all w′ ∈ W ,
w′ |=v A.

Proof. =⇒ Suppose that w |=v �A. Let w′ be an arbitrary world in W .
Since < W, R, v > is a model for T , for all B ∈ T , w |=v B and w′ |=v B.
Thus, t(w) and t(w′) are MCS that extend T . By lemma 4, �−1t(w) =
�−1t(w′). Since T is in t(w′), �−1t(w) ⊆ t(w′). Thus, w′ |=v A.
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⇐= Suppose that, for all w′ ∈ W , w′ |=v A. Then, for all w′′ such that
wRw′′, w′′ |=v A. Thus, by the truth condition for necessity, w |=v �A. �

Lemma 11 : For all formulae A and all w ∈ W , w |=v A if and only if
w |=′

v A.

Proof. By induction on the length of A. The cases in which A is a propo-
sitional variable, a material conditional, or ⊥ are trivial. The case in which
A = �B is only slightly more difficult:

w |=′

v �B iff ∀w′(w′ |=′

v B) by def of |=′

v

iff ∀w′(w′ |=v B) by inductive hypothesis
iff w |=v �B by lemma 10

�

It follows directly from lemma 11 that theorem 12 holds:

Theorem 12 : If T is an AM theory and < W, R, v > is a model for T , then
< W, v > is also a model for T .

10. Completeness of AM Theories

Perhaps the strangest feature of AM theories is that every model for an AM
theory characterizes that theory. This means that if an AM theory T is true
at every world in a model < W, v >, then W̃ = T . This is proven in the
following manner.

Theorem 13 : Let T be an AM theory. If < W, v > is a model for T then
W̃ = T .

Proof. Suppose that T is an AM theory and that < W, v > is a model for T .
Then, T ⊆ t(w), for every w ∈ W . So, T ⊆ W̃ . Thus, it suffices to show
that W̃ ⊆ T . Suppose that A ∈ W̃ and assume, for the sake of a reductio,
that A /∈ T . Thus, ¬¬A /∈ T . Since T is Aristotelian, ♦¬A ∈ T , hence
¬�A ∈ T . Since T ⊆ t(w), for every w ∈ W , w |=′

v ¬�A for all w ∈ W .
Thus there is a w′ ∈ W such that w′ 6|=′

v A. But then A /∈ W̃ contradicting
the assumption of the reductio. Therefore, W̃ ⊆ T . �

Theorem 13 says that if T is sound over {< W, v >}, then T is semanti-
cally complete over {< W, v >}. This is a very surprising result indeed!
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11. Conclusion

Starting from a set of worlds, we end up with an AM theory. As we have
seen, every absolute Kripke model characterizes an Aristotelian metaphysi-
cal theory. Thus, the theory of the set of possible worlds, in which necessity
and possibility act as unrestricted quantifiers over the set of worlds, is an AM
theory. Therefore, our ideal metaphysical theory — the one true metaphysi-
cal theory — is an AM theory.

If we start with an AM theory, like any theory, it defines a set of models. In
its natural model — the set of MCS that extend it — the modal operators act
like unrestricted quantifiers over worlds. In fact, we can convert any model
of an AM theory into an absolute model merely by removing the accessibility
relation, and this removal does not alter the set of formulae that are true at
any world.

Moreover, if we have an intended model and an AM theory, then (if this
model is a model of our theory) we have a complete theory of our intended
model.

Thus, AM theories have several virtues. The only problem with them is
that a satisfactory Aristotelian metaphysical theory will clearly be rather dif-
ficult to construct!
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