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REMARKS ON THE STRUCTURALISTIC EPISTEMOLOGY OF
MATHEMATICS∗

IZABELA BONDECKA-KRZYKOWSKA AND ROMAN MURAWSKI

Abstract
The paper is devoted to the discussion of structuralistic solutions to
principal problems of the epistemology of mathematics, in particu-
lar to the problem: how can one get knowledge of abstract mathe-
matical entities and what are the methods of developing mathemat-
ical knowledge. Various answers proposed by structuralistic doc-
trines will be presented and critically discussed and some difficul-
ties and problems indicated.

1. Introduction

Mathematical structuralism can be briefly characterized as a view that ob-
jects studied by mathematics are structures. Hence the slogan connected
with this: mathematics is the science of structures. In the philosophy of
mathematic, structuralism is often treated as an alternative to platonism. Its
chief motivation and aim is to avoid some ontological and epistemological
problems of the latter without the necessity of rejecting realism.1

One of the main problems that realism is faced with is the question: how
mathematical methods, in particular computing and proving, could generate

∗The financial support of the Committee for Scientific Research (KBN) (grant no 1 H01A
04227) is acknowledged.

1 Note that structuralism, as defined above, is not a form of platonism (in a strict sense).
In the ontological issues the differences between them seem to be significant. Platonism
claims that mathematics is a science about independently existing mathematical objects —
they are independent of any human activities, of time and space but also of one another.
Structuralism rejects this form of independent existence. It claims that mathematical objects
have no important features outside structures they belong to and that all of the features must
and can be explained in terms of relations of the structures. Note that the ante rem struc-
turalism (see below for an explication of this term) claims that structures exist independently
of human activities (therefore it is sometimes called platonistic structuralism) but it does not
concern the very objects of mathematics (such as numbers, points, lines, etc.).
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information about the mathematical realm and whether such a knowledge
is legitimate. Almost every realist agrees that mathematical objects are ab-
stract entities, hence the problem reduces to the question: how can we know
anything about abstract objects, how can we formulate beliefs about such
objects and claim that our beliefs are true? Structuralism attempts to avoid
those questions by maintaining that mathematical objects, such as numbers
or points, are only positions in appropriate (mathematical) structures and
that we cannot possess knowledge about such isolated objects outside the
structures. On the contrary, we can cognit only structures or their parts and
not single numbers or points. But now a question arises: how can we get
knowledge about structures?

In the contemporary philosophy of mathematics various structuralistic con-
ceptions were formulated — they offer also various solutions to this principal
epistemological question. Let us mention here at least structuralism of Par-
sons, Shapiro’s axiomatic theory of structures, the theory of patterns devel-
oped by Resnik and Hellman’s modal structuralism. Those theories propose
in particular different answers to the question about how structures can be
defined and about the very existence of structures. Generally one can distin-
guish two main attitudes towards ontological problems in structuralism:

(a) in re structuralism (called also eliminative structuralism), and
(b) ante rem structuralism.

The main thesis of the eliminative structuralism (whose examples are Par-
sons’ and Hellman’s structuralistic conceptions) is: statements about some
kind of objects should be treated as universal statements about specific kind
of structures. So in particular all statements about numbers are only gener-
alizations. The in re structuralism claims that the natural number structure
is nothing more than systems which are its instantiations. If such particu-
lar systems were destroyed then there would be also no structure of natural
numbers.

Add that eliminative structuralism does not treat structures as objects. It
is claimed that talking about structures is only a comfortable form of talk-
ing about all systems which are instances of the given structure. Therefore
this form of structuralism is called by many authors “structuralism without
structures”. On the other hand one needs here a basic ontology, a domain of
considerations whose objects could take up places in structures in re. Such an
ontology should be rich enough and we are not interested in the very nature
of objects but rather in their quantity. The ontology of the in re structuralism
requires an infinite base.

The ante rem structuralism (for example Shapiro’s theory of structures)
claims that structures do exist apart from the existence of their particular
examples. It is often said that ante rem structures have ontological priority
with respect to their instantiations.
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The different versions of structuralism have — as indicated above — dif-
ferent ontologies. But they have also different epistemologies and propose
different answers to the main questions formulated above. With respect to
this questions the hard part — from the eliminative perspective — is to un-
derstand how can we know anything about systems of abstract objects that
exemplify in re structures. On the other hand, the ante rem structuralism
must speculate how do we accomplish the knowledge about structures which
exist independently of their instantiations.

2. How do we get knowledge about structures?

Structuralism claims that mathematical objects are only positions in struc-
tures and that consequently one cannot possess any knowledge about, say,
single numbers or points — on the contrary, one can cognit only structures.
But how can one get knowledge about structures? The answer to this ques-
tion depends on the type, more exactly, on the size of the considered struc-
tures. So let us distinguish some cases:

• Small finite structures. In this case knowledge about structures is
apprehended through abstraction from their physical instances via
pattern cognition. The process of acquiring beliefs about patterns
(structures)2 can be described as a series of stages: (a) experienc-
ing something as patterned, (b) recognizing structural equivalence
relations, (c) level of predicates, (d) supplementing predicates with
names for shapes, types and other patterns.
It is worth noticing that the abstraction process yields necessary truths
or a priori knowledge. Such approach treats mathematics like other
sorts of empirical knowledge.

• Large finite structures. The method of pattern cognition described
above works only for small structures whose instances can be per-
ceived. This idea is not appropriate with respect to structures we
have never seen, for example a billion-pattern. In this case another
strategy is used.
A small finite structure, once abstracted, can be seen as forming a
pattern itself. Next one projects this pattern or those patterns beyond
the structures obtained by simple abstraction. Reflecting on finite
patterns one realizes that the sequence of patterns goes well beyond

2 The term “pattern” appears in papers and books by Resnik and it is used either as a
synonym of the term “structure” or to indicate a physical example of an abstract structure.
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those one has ever seen, for example the billion-pattern. Hence we
have the first step to knowledge about ante rem structures.

• Countable structures. The strategy of grasping large finite structures
described above can be adopted to the simplest infinite structure, i.e.,
to the natural number structure.
One first observes that finite structures can be treated as objects in
their own right. Then a system of such objects with the appropri-
ate order is formed. Finally the structure of this system is being
discussed. The important point that should be stressed here is that
such strategy fits the ante rem structuralism, because in the case of
the eliminative structuralism there might not be enough finite struc-
tures.3
After a given structure has been understood one can discuss and de-
scribe other structures in terms of this structure and structures one
had known before. For example, the integer structure can be under-
stood as a structure similar to the natural number structure but un-
ending in both directions. The rational number system can be seen as
a structure of pairs of natural numbers with the appropriate relations.
Another original method of introducing abstract objects was pre-
sented by S. Shapiro in (1997). A kind of linguistic abstraction over
an equivalence relation on a base class of entities has been used there.

Notice that all the methods of apprehending structures described above can
be applied only to denumerable structures, i.e., to structures with denumer-
ably many places. But what about larger structures?

• Infinite uncountable structures. The most powerful but simultane-
ously most speculative technique of grasping structures is their di-
rect description by an implicit definition (statements used in it are
usually called axioms). Such a definition provides a characterization
of a number of items in terms of their mutual relations. It can charac-
terize a structure or a possible system. In this way one defines, e.g.,
natural numbers or real numbers.

• From old structures to new ones. There are still other ways of getting
knowledge about new structures: one can collect patterns (originally

3 On requirements needed for the ontology of the ante rem and in re structuralism we
wrote above. Add also that Filed in (1980) tried to give an argument that there is enough
concrete stuff to get the continuum. His ideas have been discussed (but also criticized) by
many authors.
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treated in isolation) into a new pattern or “extend” the old ones (com-
pare the definition of integers or the definition of the rationals). Math-
ematics itself also produces new structures and theories by proving,
calculating and finding solutions to problems. This can lead to new
theories of new mathematical objects such as the theory of equations,
proof theory or the computation theory.

3. Mathematical methods and knowledge of structures

One of the major problems facing mathematical realism is to explain how do
mathematical methods — such as, e.g., computing and proving — generate
information about the mathematical realm. One of the possible answers is
that mathematicians learn about this realm appealing to structural similarities
between abstract mathematical structures and physical computations and di-
agrams (note that the latter are always finite whereas patterns may be vastly
infinite). But mathematicians can and do obtain evidence of higher-level the-
ories also through results belonging to more elementary levels. Resnik tried
in (1997) to describe connections between certain elementary mathematical
results and physical operations that we can perform.

The examples given by him show that operations on dot templates can
generate information about some features of sequences of natural numbers.4

Of course finite templates can represent only initial segments of an infinite
number sequence. Some properties of initial segments can be generalized to
the infinite sequence of natural numbers, however this generalization is not
always simple and straightforward. Observe also that mathematicians do not
work with dots but they are doing computations using Arabic numerals and
methods we learned at school. Nevertheless Resnik (1997, p. 236) claims
that this is not important because “if we seek a more basic explanation of
why they work, we can appeal to theorems of some axiomatic number theory,
or alternatively we can explain our current rules in terms of dot arithmetic”.

Notice that, unfortunately, we cannot explain the computation of the val-
ues of a derivative, a trigonometric expression or a transfinite polynomial by
the arithmetic of dots. In those cases there is no straightforward connection
between computations and patterns they concern. So rules of such computa-
tions are theorems of some axiomatic system describing the pattern.

In practice most proofs of theorems are in fact not proofs within an ex-
plicitly formulated axiomatic system. This is no problem when the premises
of a given mathematical proof state uncontroversial features of the pattern

4 The term “pattern” (or “structure”) is reserved by Resnik for abstract patterns. The term
“template” is used to refer to concrete devices representing how things are shaped, designed
or structured.
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in question. On the other hand there is a problem if a proof of a theorem
about some simple structure employs facts concerning other, more complex,
structures. For example, proofs in elementary number theory can appeal to
premises from real or complex analysis. Resnik claims, however, that it is
not really a problem because this situation is similar to the situation when
one is proving a fact concerning the natural number system by appealing to
some features of its initial segment. In our opinion this is not so simple. In-
deed, one of the major presuppositions of structuralism is that all facts about
mathematical objects should be expressed and explained in the language of
the structure they belong to. Hence using facts about a different structure in
order to prove a statement about the given one does not fit to it (even if one
notice that, e.g., the natural number structure can be treated as a part of the
real or complex number structure5 ).

So we might get information about structures by manipulating templates,
one can even prove theorems in such a way. The question is: how can we
know that the premises of proofs are true of the pattern. Resnik responds here
by saying that they constitute an implicit definition of the pattern. Theorems
of a given branch of mathematics are supposed to be true in the structure
they are describing, they follow from the clauses defining the structure in
question. But one should remember that this claim is connected with the
claim that structures of the considered type do exist. The latter existential
claim is not a logical consequence of the very definition of the structure.
Thus combining structuralism with the doctrine of implicit definitions does
not make mathematics analytic.

The problem of existence together with another one, namely the problem
of categoricity, appears quite clearly in the situation when the structure is
introduced by implicit definitions where one characterizes objects in terms
of their interrelations (this is the method mostly used in mathematics, the
axiomatic method). Mathematical logic and in particular model theory pro-
vide some methods of solving them and indicate simultaneously various con-
nections and interdependencies between structures (models) and languages
used. But are they compatible with structuralistic attitude and structuralistic
presuppositions? The answer seems negative. In fact the most delicate prob-
lem is the existence problem. Can one claim that a structure defined by an
implicit definition, hence by a set of axioms, does exist by appealing to the
consistency of the axioms and to the completeness theorem (stating that a
consistent set of axioms has a model)? No “normal” mathematician is doing
so. Furthermore, the proof of the completeness theorem provides a model
constructed on terms. From the point of view of a real mathematics this is

5 To explain this one should recall some facts from model theory, in particular the dis-
tinction between being a submodel, being an elementary submodel and being elementarily
equivalent.
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extremely artificial and unnatural! If such methods were rejected so where
from should we know then that structures defined by implicit definitions do
exist? What influence would it have on the distinctions between in re and
ante rem structuralism? Would the structuralism in re be possible in this
situation?

There are also other methods of showing that defined structures do exist
— one of them is to construct examples of them in set theory. But the latter
has no structuralistic base and is not founded and justified in a structuralistic
way.6 In which sense can one say then that instantiations of defined abstract
structures are known?

Another problem is the problem of uniqueness, i.e., the problem whether
the implicit definitions, hence the axioms, define the appropriate needed
structure in a unique way. Even in the simplest case of the structure of natural
numbers there arise big problems. In fact first order arithmetic is not cate-
gorical, i.e., it has nonstandard models, hence models different (non-similar,
non-isomorphic) to standard, intended one. On the other hand Löwenheim-
Skolem theorems show that any theory with an infinite model has also mod-
els of any cardinality. Thus nonstandard models of first-order arithmetic can
be even uncountable! This is very far from the intended structure of natural
numbers! To characterize natural numbers in a categorical way and to ob-
tain a categorical arithmetic one should use second-order logic (which is in
fact natural for mathematical research practice). Unfortunately there arises a
problem: how second-order variables should be understood in structuralistic
terms7 ?

Besides difficulties indicated above there are also other connected with
the structuralistic approach that should be considered and solved. The most
important is the problem of infinite and more complex structures studied by
mathematicians.

One can try to look for a solution using Takeuti’s result (cf. Takeuti,
1978) which states that more complex mathematical theories such as (parts
of) analysis can be translated into number theory if the definitions are ex-
plicit. In other words: there exist extensions of number theory8 which are
conservative over it and in which one can develop a sufficiently large por-
tion of analysis provided that one uses only predicative definitions. Though
promising this does not give a solution. Indeed, most more complex theories
are extensions of number theory obtained by adding implicit definitions, i.e.,

6 An attempt to provide structuralistic account of set theory made by Hellman in (1989)
is — in our opinion — not satisfactory.

7 Note that Boolos in (1985) has made an attempt to solve this problem.

8 In (Takeuti, 1978) two such systems are described and studied.
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axioms. So even if, as Takeuti in (1978) shows, “theorems which can be
proved in analytic number theory can be proved in Peano arithmetic”, this
does not solve the problem.

One can also try to argue using results of the so called reverse mathematics
initiated by H. Friedman and developed intensively by S.G. Simpson. They
show that a significant and important part of mathematics can be developed
in fragments of analysis (second-order arithmetic) which are conservative
with respect to arithmetic of natural numbers.9 The problem is here that
such reductions and proofs in those systems are quite different than proofs
presented in “real” mathematics, in fact they are far from real research prac-
tice of mathematicians and are artificial from a point of view of a working
mathematician. They can be considered only as (foundational) reconstruc-
tions of mathematics and do not explain the real mathematics as it is being
done.

Artificial is also an attempt to reduce a more complex theory to num-
bertheoretic structure using completeness theorem or Löwenheim-Skolem
theorem. According to them every consistent theory has a countable model,
hence a model whose universe is the set of natural numbers and whose rela-
tions can be interpreted as relations among natural numbers. Though it gives
a reduction of a complex theory to a simple one, namely to the arithmetic
of natural numbers, but this reduction is entirely unnatural from the point of
view of the mathematical practice and from what mathematicians are really
doing. No “normal” mathematician will accept this as a picture, as a model
of his/her research practice.

On the other hand there are results in number theory whose proofs really
need much more than Peano arithmetic and consequently much more than
the considerations of finite patterns (proposed by structuralists) can give. We
mean here results by Kirby, Paris, Harrington and Friedman on true arith-
metical sentences which can be proved only using necessarily some meth-
ods of set theory, i.e., some infinite objects (cf. Friedman, 1998 or Murawski,
1999). One can argue — trying to defend the structuralistic doctrine — that
those results provide examples coming from metamathematical and not di-
rectly mathematical considerations or mathematical practice but it does not
help and the problem is not solved.

9 A presentation of those results and of their meaning for foundations of mathematics, in
particular for Hilbert’s programme, can be found in (Murawski, 1999).
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4. Conclusions

The main question considered in this paper was: how can one know anything
about abstract mathematical objects which are only positions in structures?
Since — as structuralism claims — one cannot get to know isolated math-
ematical objects, the problem is: how can one recognize structures or their
parts?

Structuralists are providing various answers to those questions. Resnik for
example claims that mathematicians are getting knowledge about the math-
ematical realm by appealing to structural similarities between abstract math-
ematical structures and physical computations and diagrams.

It is often stressed that one gets the knowledge about structures by ab-
straction from concrete examples of them. This can work fairly well in the
case of finite small structures which can be apprehended through abstraction
from their physical instances via pattern cognition.10 It is possible also in
the case of finite large structures. But what about infinite structures which
do not have any concrete instantiations that could be investigated directly?

Observe that all examples provided and considered by structuralists are
usually restricted to natural numbers (and sometimes other number struc-
tures). But what about other (really abstract) objects like those studied in
more advanced branches of mathematics as functional analysis, topology,
etc.? Explanations provided by structuralists are not fully satisfactory in
those cases!

In the case of more advanced and more sophisticated structures one can
refer in fact to methods of model theory. But does it suffice to explain the
full richness of the realm of structures of the real mathematics? On the other
hand all restrictions and specifications of methods and theorems of the the-
ory of models should be taken into account and respected. This concerns
in particular the problem of proving categoricity usually connected with the
language chosen to describe and characterize the defined structures — we in-
dicated it above on the example of the categoricity of the structure of natural
numbers defined as a structure satisfying appropriate axioms (i.e., Peano’s
axioms).

It should be also added that the usage of methods of mathematical logic
and in particular of the model theory can be a source of doubts whether the
proposed explanations do concern the real cognitive and epistemic activity
of a real mathematician (as it seems to be the case when simple structures
are being considered) or provide rather an artificial reconstruction of real

10 This indicates also the role of pictures and diagrams in the process of developing math-
ematical knowledge (cf. Brown, 1999).
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mental processes (in the spirit of foundationalist theories in the philosophy
of mathematics).

* * *
Structuralism is an interesting proposal in the epistemology of mathemat-

ics and provides a reasonable alternative to the platonism (not rejecting re-
alism). But explanations of the process of getting and developing mathe-
matical knowledge given by it are in fact mostly restricted to simple number
structures. Above we indicated some difficulties one meets when trying to
apply structuralistic approach in the case of more abstract, more complex
and more sophisticated parts of mathematics. If structuralism wants to be a
doctrine explaining the whole real mathematics (and not only its elementary
fragments) then those problems should be solved.

Faculty of Mathematics and Computer Sci.
Adam Mickiewicz University

ul. Umultowska 87
61-614 Poznań, Poland
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