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PARACONSISTENT MODAL LOGIC

LOU GOBLE

Abstract
This paper demonstrates soundness and completeness results for
modal extensions of the paraconsistent logics BN4, which allows
propositions to be true, false, both or neither, and RM3, which al-
lows propositions to be true, false or both. The familiar Kripke
semantics is adapted for the interpretation of modalities.

Paraconsistent logics are logics for reasoning with inconsistency without
triviality; they reject the principle ex falso quodlibet, that a contradiction
entails everything. Such logics are often advertized for application in knowl-
edge representation and data-base management, since it is plausible that
a data-base could contain contradictory information, and in deontic logic,
since it is plausible that a body of law or other normative system could both
require and prohibit something. Thus it is natural to extend basic paracon-
sistent logics with modalities to represent knowledge or belief or to repre-
sent obligation, prohibition permission, etc. That invites an investigation of
modal extensions of paraconsistent logic generally.

Modalities have been combined with relevant logics, one type of paracon-
sistent logic, in a number of studies, e.g., [9], [15], [12], [18]. To a lesser
extent, as far as I know, they have been combined with da Costa systems,
especially as deontic logics, e.g., [7] and [10]. I am, however, interested in
logics that derive their paraconsistency through allowing for so-called ‘truth-
value gluts’, i.e., allowing that a proposition might be regarded as both true
and false as well as simply true or simply false, and also for ‘truth-value
gaps’, that a proposition might also be neither true nor false. To allow for
both gluts and gaps leads to the basic logic BN4; to allow only for gluts but
not gaps leads to RM3. Brady [4] axiomatized these two, non-modal propo-
sitional logics, and showed them to be sound and complete with respect to
their natural interpretations. I will build from those results.1

1
RM3 stems from work of Dunn, reported, e.g., in [1], pp. 420–426, and has been studied

by others. BN4 extends the system FDE of First-Degree Entailment of Anderson and Belnap
[1], which was given this sort of semantics also by Dunn [8] and similarly by Belnap [3].
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4 LOU GOBLE

One would expect the modal extension of these logics to be quite straight-
forward. For normal, classically-based modal logics there are standard sets
of modal axioms that can be added to the base of the classical propositional
calculus to produce the familiar systems K, D, T, S4, B and S5, for example.
Adding the counterpart axioms, more or less, to a relevant logic, like R,
likewise generates analogous modal logics that preserve relevance. RM3

can be extended similarly without difficulty. The situation is not so simple
for extensions of BN4, however. Hence, axiomatizing these systems and
demonstrating their soundness and completeness will be the primary result
of this study, though we will also examine modal extensions of RM3 along
the way.

In Section 1 below, I will lay out the details of the semantics for both sorts
of modal logics since these can easily be treated together. In Section 2, I will
present the first K-like extension of BN4 and establish its soundness. Sec-
tion 3 will demonstrate its completeness. Section 4 will show how similar
results obtain for the like extension of RM3. Section 5 extends these results
to other familiar modal logics to be built on these paraconsistent bases. Not
everything works quite so smoothly, however, and so we raise some open
questions in Section 6. Finally, we end with a brief Afterword to show that
these modal logics are all conservative extensions of their nonmodal plat-
forms.

1. Semantics

In all that follows we will consider logics in a propositional language L con-
taining infinitely many atomic formulas, p, q, r, . . . , etc., and the connectives
¬, ∧, ∨, →, with the usual formation rules, and also the single monadic
modal operator 2 such that 2A is well-formed whenever A is. ‘A’, ‘B’,
‘C’, etc. are used as variables for arbitrary well-formed formulas, A ↔ B
abbreviates (A → B) ∧ (B → A). 3A is defined as ¬2¬A.

The formulas of L are interpreted with respect to models I = 〈W, S, v〉,
where W is a non-empty set of points, or ‘worlds’; S is a binary relation on
W , S ⊆ W 2; and v is an assignment function determining truth-values of
atomic formulas, p, at points a ∈ W , v(p, a). We suppose two truth-values,
1 and 0, to represent truth and falsehood, respectively, and in keeping with
the spirit of this enterprise we suppose that any atomic formula, p, might
have either the value 1 at a point a ∈ W or the value 0 at a, or both 1 and
0 at a. For logics based on BN4 we also allow that p have neither value

Priest [13] is another accessible source for information on RM3 and FDE, including tableaux
rules for the latter.



“01goble”
2006/2/13
page 5

i

i

i

i

i

i

i

i

PARACONSISTENT MODAL LOGIC 5

at a. This means, in effect, that there are four potential values for atomic
formulas. Thus, for these logics, we specify only that, for every atomic
formula p and every a ∈ W , v(p, a) ⊆ {1, 0}. I4 is the class of all such
models I = 〈W, S, v〉. For logics based on RM3, we do not allow atomic
formulas to take no value at any point, and so we require both v(p, a) ⊆
{1, 0} and v(p, a) 6= ∅, which means there are, in effect, three potential
values for atomic formulas. I3 is the class of all I4 models I = 〈W, S, v〉
such that v(p, a) 6= ∅, for all p ∈ L and all a ∈ W .

We extend a model’s evaluation to complex formulas in much the usual
way, except that now we need to specify both verification conditions, which
determine if a formula has the value 1 at a point, and falsification conditions,
which determine if it has the value 0 at a point. Thus, given I = 〈W, S, v〉,
for all a ∈ W :

p+) 1 ∈ I(p, a) if and only if 1 ∈ v(p, a)
p−) 0 ∈ I(p, a) iff 0 ∈ v(p, a)
¬+) 1 ∈ I(¬A, a) iff 0 ∈ I(A, a)
¬−) 0 ∈ I(¬A, a) iff 1 ∈ I(A, a)
∧+) 1 ∈ I(A ∧ B, a) iff 1 ∈ I(A, a) and 1 ∈ I(B, a)
∧−) 0 ∈ I(A ∧ B, a) iff 0 ∈ I(A, a) or 0 ∈ I(B, a)
∨+) 1 ∈ I(A ∨ B, a) iff 1 ∈ I(A, a) or 1 ∈ I(B, a)
∨−) 0 ∈ I(A ∨ B, a) iff 0 ∈ I(A, a) and 0 ∈ I(B, a)
→ +) 1 ∈ I(A → B, a) iff if 1 ∈ I(A, a) then 1 ∈ I(B, a),

and if 0 ∈ I(B, a) then 0 ∈ I(A, a)
→ −) 0 ∈ I(A → B, a) iff 1 ∈ I(A, a) and 0 ∈ I(B, a)

So much is familiar, e.g., from Brady [4] p. 23. For modal formulas we add
2+) 1 ∈ I(2A, a) iff, for all b, if Sab then 1 ∈ I(A, b)
2−) 0 ∈ I(2A, a) iff, there is a b such that Sab and 0 ∈ I(A, b)

much as one would expect. Given 3A defined as ¬2¬A, we can derive
3+) 1 ∈ I(3A, a) iff, there is a b such that Sab and 1 ∈ I(A, b)
3−) 0 ∈ I(3A, a) iff, for all b, if Sab then 0 ∈ I(A, b)

Let us say that a model I = 〈W, S, v〉 satisfies a formula A — I |= A —
just in case 1 ∈ I(A, a) for every a ∈ W . Let us say that A is valid on a class
of models I — I |= A — just in case I |= A for every I ∈ I. Alternatively,
when it is clear in context what class of models is intended, we may say
simply that A is valid, or 
 A, when it is valid on that class. Validity thus
amounts to being always true, though it allows also being false. Similarly,
we take logical consequence to be truth-preservation; if all the premises of
an inference are true at a point, then so is the conclusion. More precisely,
we shall say that A is a consequence of a set of formulas Γ on a model
I = 〈W, S, v〉 — Γ 
I A — just in case, for every a ∈ W , if 1 ∈ I(C, a)
for every C ∈ Γ, then 1 ∈ I(A, a), and likewise A is a consequence of Γ for
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6 LOU GOBLE

a set of models I — Γ 
I A — just in case Γ 
I A for every I ∈ I. (Here
too, when context makes clear what model or class of models is intended,
we may drop the subscript on 
.) Note that as usual, for any model or class
of models, 
 A iff ∅ 
 A.

Before leaving this presentation of the semantics of our systems, it is worth
noting that for models in I3 not only does every atom p have the value 1 or
0 (or both) at any point a, the same is true of every formula.

Proposition 1 : For every I ∈ I3, if I = 〈W, S, v〉, then for every formula A
and every a ∈ W , 1 ∈ I(A, a) or 0 ∈ I(A, a).

The proof is straight-forward by induction on the structure of A, and is left
to the reader.

2. Axiomatics: KN4

Brady, [4] p. 22, axiomatized BN4 that is the basis for our modal logics. Any
axiomatization would do for present purposes, but let us follow his, with
some slight variation. (E.g., Brady treated disjunction ∨ as defined in terms
of ∧ and ¬ and so did not posit separate axioms for it. Here we treat ∨ as
primitive and do provide its familiar axioms. This means that the numbering
of postulates will vary slightly from Brady’s. The same is true of the list of
derived theorems.) Thus for axioms we take all instances of:

1) A → A
2) (A ∧ B) → A
3) (A ∧ B) → B
4) ((A → B) ∧ (A → C)) → (A → (B ∧ C))
5) A → (A ∨ B)
6) B → (A ∨ B)
7) ((A → C) ∧ (B → C)) → ((A ∨ B) → C)
8) (A ∧ (B ∨ C)) → ((A ∧ B) ∨ (A ∧ C))
9) (A → ¬B) → (B → ¬A)
10) ¬¬A → A
11) (¬A ∧ B) → (A → B)
12) ¬A → (A ∨ (A → B))
13) A ∨ ¬B ∨ (A → B)
14) A → ((A → ¬A) → ¬A)
15) A ∨ (¬A → (A → B))

and for modalities, all instances of
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PARACONSISTENT MODAL LOGIC 7

K) 2(A → B) → (2A → 2B)
C) (2A ∧ 2B) → 2(A ∧ B)
Bel) 2(A ∨ B) → (3A ∨ 2B)
Nec) If A is an axiom then so is 2A

The principles (K) and (C) are familiar enough from modal logic. In sys-
tems that have A → (B → (A ∧ B)) provable either will suffice for the
other (given other standard principles). Relevant modal logics lack this, and
so does BN4, and so we posit the two principles separately. The axiom
scheme (Bel) was called to attention for relevant modal logics by Belnap,
and so we name it for him. (Cf. [12]). In classically-based modal logics, in
which A → B is equivalent to ¬A ∨ B, (Bel) is a version of (K). Here it is
not, and so we posit it too separately. (Nec) simplifies the standard rule of
Necessitation, if ` A then ` 2A, which is derivable.

For rules we take first
Adj) From A and B, infer A ∧ B
MP) From A and A → B, infer B
Prefix) From A → B, infer (C → A) → (C → B)
Suffix) From A → B, infer (B → C) → (A → C)

These are all familiar from basic relevant logic.2 Indeed, Axioms (1)–(8)
and (10) and these four rules and a rule form of contraposition in place of
Axiom (9) suffice for the logic B that is a natural platform for the family of
relevant logics (cf. [16]).

Here, however, we also need some other rules. Brady [4] includes a dis-
junctive version of modus ponens, From C ∨ A and C ∨ (A → B), infer
C ∨B, and we will need that too, though we will take a simpler form, From
C ∨ (A ∧ (A → B)), infer C ∨ B, which is guaranteed from the other by
(Adj) and the distribution axiom (8). (Actually, we will take yet a different
variant on this rule, as will appear below.) In addition, though, we will also
need a necessitative form of the rule, From 2(A ∧ (A → B)), infer 2B,
and also a possibilitative form, From 3(A∧ (A → B)), infer 3B. Not only
that, we need also the disjunctive version of the necessitative version, and
the necessitative version of the disjunctive version and ditto for possibilita-
tive versions, and so on, and on.

Thus we are led to include an infinite class, XMP , of ‘extended modus
ponens’ rules. Given a rule R, From A, infer B, let its disjunctive forms,
DR, be: From C ∨ A, infer C ∨ B, for every formula C. Likewise, let its
conjunctive forms, CR, be: From C ∧ A, infer C ∧ B, and its necessitative
forms, NR, be: From 2A, infer 2B, and its possibilitative forms, MR, be:

2 In place of (Prefix) and (Suffix) we could take the single rule (Affix), From A → B and
C → D, infer (B → C) → (A → D), as Brady does. Either set suffices for the other.
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8 LOU GOBLE

From 3A, infer 3B. We then define XMP recursively as follows; it is the
least set of rules such that

i) All instances of the rule MP∗, From A ∧ (A → B), infer
(A ∧ (A → B)) ∧ B, are in XMP , and

ii) If a rule R is in XMP , then so are all instances of CR,
DR, NR and MR.

(Because of their conjunctive conclusions, these rules are somewhat stronger
than the rules first described. The need for this will become apparent in the
completeness proof below.)3 These rules are not pretty, and I would rather
not posit such a set of them, but they seem to be required, all because of the
absence of the theorem form of modus ponens, (A ∧ (A → B)) → B, from
BN4. I invite anyone to find a more elegant formulation for the system.

For any of the logics L discussed here, let us say, as usual, that a formula
A is a theorem of L or derivable in L — `L A — if and only if there is
a derivation of A in L, where a derivation is a finite sequence of formulas
〈D1, . . . , Dn〉 such that every Di in the sequence is either an axiom of L

or follows from preceding members of the sequence by one of the rules of
L, and Dn is A. We will often treat a logic L as the set of its theorems,
so that A ∈ L iff `L A. Thus, KN4 is the least set of formulas containing
all instances of the axioms (1)–(15), (K), (C), (Nec), and (Bel), and closed
under the rules (Adj), (MP), (Prefix) and (Suffix) and all the rules of XMP .

We also define the derivability of a formula A from a set of formulas, Γ, in
L — Γ `L A — in a classical way, so that Γ `L A iff there is a derivation of
A from Γ in L, where that is a finite sequence of formulas 〈D1, . . . , Dn〉 such
that each Di is either a member of Γ or else a theorem of L or follows from
preceding members of the sequence by one of the rules of L, and Dn = A.
Thus, `L A iff ∅ `L A.4 When context makes the logic obvious, we may
drop the subscript on `.

The following theorems are all derivable in KN4, and hence in its ex-
tensions. In addition to the usual properties for negation, conjunction, and
disjunction, e.g., double-negation introduction, the several forms of contra-
position, associativity, commutivity and idempotence for conjunction and

3 More formally, we should think of a (one-premise) rule of inference as a set of ordered
pairs of formulas, one for the premise, one for the conclusion. Thus, MP

∗ is the set of all
pairs: 〈A ∧ (A → B), (A ∧ (A → B)) ∧ B〉. The set XMP is then the least set containing
every member of MP

∗ and such that if 〈A, B〉 ∈ XMP then 〈C ∧ A, C ∧ B〉 ∈ XMP ,
〈C ∨ A, C ∨ B〉 ∈ XMP , 〈2A, 2B〉 ∈ XMP and 〈3A, 3B〉 ∈ XMP . Then XMP could
itself be considered a single rule of inference, rather than a set of rules. Nonetheless, we will
continue to use the more informal locutions.

4 For relevant logics one often gives a stricter definition of derivability under which this
equivalence does not hold. That is not necessary here.
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PARACONSISTENT MODAL LOGIC 9

disjunction, distribution, the De Morgan equivalences, which we will gener-
ally take for granted in what follows, we also have

T.1) B → (¬B ∨ (A → B))
T.2) (A ∧ ¬B) → ((A ∧ ¬B) → ¬(A → B))
T.3) A ∨ (¬(A → B) → A)
T.4) ¬(A → B) → ¬(¬B → ¬A)

These are due to Brady [4] p. 22; they will figure importantly in the com-
pleteness proof to follow. The following useful rules are also derivable:

trans) A → B, B → C ` A → C
contrap) A → B ` ¬B → ¬A
∧M) A → B ` (C ∧ A) → (C ∧ B)
∨M) A → B ` (C ∨ A) → (C ∨ B)
∧-Int) If A ` B and A ` C, then A ` B ∧ C
∨-Elim) If A ` C and B ` C then A ∨ B ` C
Ent-1) If A ` B and ` B → C then A ` C
Ent-2) If ` A → B and B ` C then A ` C
trans-2) If A ` B and B ` C then A ` C
theo) If ` B then A ` B

Their proofs are all easy and so left to the reader.
For modalities we have the following, all of which are expected:
RN) If ` A then ` 2A
RNM) If ` A → B then ` 2A → 2B
RMM) If ` A → B then ` 3A → 3B
2∧Dist) ` 2(A ∧ B) → (2A ∧ 2B)
3∨Dist) ` 3(A ∨ B) → (3A ∨ 3B)
∨3Dist) ` (3A ∨ 3B) → 3(A ∨ B)
3∧Dist) ` 3(A ∧ B) → (3A ∧ 3B)
23∧Dist) ` (2A ∧ 3B) → 3(A ∧ B)
R233M) If ` (A ∧ B) → C then ` (2A ∧ 3B) → 3C

Proofs of these too are routine. (RN) is demonstrated by induction on the
derivation of A. Given (RN), (RNM) follows quickly via (K), and thence
(RMM) with contraposition and the definition of 3. (2∧Dist) is the converse
of (C); it follows directly from (RNM) and rules for conjunction. Likewise
the (3Dist) principles with (C) and the De Morgan rules. (23∧Dist) is
equivalent to Axiom (Bel). It with (RMM) yields (R233M).

In addition, we can easily derive these simplified versions of the rules of
XMP
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10 LOU GOBLE

CMP) C ∧ (A ∧ (A → B)) ` C ∧ B
CMP′) C ∧ A, C ∧ (A → B) ` C ∧ B
DMP) C ∨ (A ∧ (A → B)) ` C ∨ B
DMP′) C ∨ A, C ∨ (A → B) ` C ∨ B
NMP) 2(A ∧ (A → B)) ` 2B
NMP′) 2A, 2(A → B) ` 2B
MMP) 3(A ∧ (A → B)) ` 3B

These hold by virtue of Axiom (3) and the rule (Ent-1), and in the cases of
(NMP) and (MMP), the rules (RNM) and (RMM). The ′-versions depend on
the distribution principles for ∧, for ∧ and ∨ together, and for 2. Since we
do not have (3A∧3B) → 3(A∧B) we do not have a ′-version for (MMP).
It is chiefly for this that the rules of XMP have been formulated as they are.

It is apparent from the preceding results that the following hold:
If ` A ↔ B then: ` ¬A ↔ ¬B

` (C ∧ A) ↔ (C ∧ B)
` (A ∧ C) ↔ (B ∧ C)
` (C ∨ A) ↔ (C ∨ B)
` (A ∨ C) ↔ (B ∨ C)
` (C → A) ↔ (C → B)
` (A → C) ↔ (B → C)
` 2A ↔ 2B
` 3A ↔ 3B

These suffice for a full-blooded replacement theorem for KN4 and its exten-
sions.

Proposition 2 : If ` A ↔ B then ` C ↔ D, when D is the result of
replacing one or more occurrences of A in C by B.

This is proved in the usual way, by induction on the structure of C. (In what
follows we shall generally take such replacements for granted.)

We are now in a position to demonstrate the coincidence of the axiomatic
system KN4 and the validities of the semantics given in the preceding sec-
tion, that is the soundness and completeness of the logic.

If L is any logic discussed here, let us say that L is weakly sound with
respect to a class of models I just in case if `L A, then 
I A, and L is
strongly sound with respect to a class of models I just in case if Γ `L A then
Γ 
I A. Similarly, L is weakly complete with respect to I just in case, if

I A then `L A, and L is strongly complete with respect to I just in case if
Γ 
I A Γ `L A.

Theorem 1 : KN4 is both weakly and strongly sound with respect to the class
of models I4.
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PARACONSISTENT MODAL LOGIC 11

Proof. Proof of this is routine. One demonstrates that all the axioms are
valid with respect to I4, and that the rules preserve truth, and hence validity.
Most of that can be left to the reader. By way of example, though, I will
present the cases that are less familiar and peculiar to KN4. So, for example,
take the axiom (Bel), 2(A ∨ B) → (3A ∨ 2B), and consider an arbitrary
model I = 〈W, S, v〉 in I4 and an arbitrary a ∈ W , to show that 1 ∈
I(2(A∨B) → (3A∨2B), a). That requires (a) if 1 ∈ I(2(A∨B), a) then
1 ∈ I(3A ∨ 2B, a), i.e., that if 1 ∈ I(2(A ∨ B), a) then 1 ∈ I(3A, a) or
1 ∈ I(2B, a), and also (b) if 0 ∈ I(3A∨2B, a) then 0 ∈ I(2(A∨B), a),
i.e., if 0 ∈ I(3A, a) and 0 ∈ I(2B, a), then 0 ∈ I(2(A ∨ B), a). For
(a), suppose 1 ∈ I(2(A ∨ B), a) but that 1 /∈ I(3A, a), and show 1 ∈
I(2B, a). Consider then any b such that Sab and show that 1 ∈ I(B, b).
Since Sab, 1 ∈ I(A ∨ B, b), and so 1 ∈ I(A, b) or 1 ∈ I(B, b). Since
1 /∈ I(3A, a), for every c such that Sac, 1 /∈ I(A, c); hence, 1 /∈ I(A, b).
Therefore, 1 ∈ I(B, b), as wanted. For (b), suppose that 0 ∈ I(3A, a) and
0 ∈ I(2B, a), and show that 0 ∈ I(2(A ∨ B), a), i.e., that there is a b
such that Sab and 0 ∈ I(A ∨ B, b). Since 0 ∈ I(2B, a), there is a b such
that Sab and 0 ∈ I(B, b), and since 0 ∈ I(3A, a), for all c such that Sac,
0 ∈ I(A, c). So 0 ∈ I(A, b). Thus 0 ∈ I(A ∨ B, b), as required. These two
cases suffice to establish the validity of (Bel).

For axioms generated through (Nec), it is established on a case by case
basis that each first tier axiom is valid, as with (Bel) above. Suppose then
that A is an axiom that has been shown to be valid. To show that 2A is valid,
consider an arbitrary model I = 〈W, S, v〉 in I4 and an arbitrary a ∈ W , to
show that 1 ∈ I(2A, a). Take any b such that Sab and show 1 ∈ I(A, b).
Since A is valid, 1 ∈ I(A, c) for all c ∈ W . Hence, 1 ∈ I(A, b), as required.

To establish that the primitive rules preserve truth, is also straight-forward.
I consider here the cases of the rules R ∈ XMP . First, consider the rule
MP∗, and show that A ∧ (A → B) 
 (A ∧ (A → B)) ∧ B. Thus, suppose
an arbitrary model I = 〈W, S, v〉 in I4 and an arbitrary a ∈ W , to show that
if 1 ∈ I(A∧(A → B), a) then 1 ∈ I((A∧(A → B))∧B, a). Suppose then
that 1 ∈ I(A∧(A → B), a). So 1 ∈ I(A, a) and 1 ∈ I(A → B, a), hence if
1 ∈ I(A, a) then 1 ∈ I(B, a). So 1 ∈ I(B, a) as well as 1 ∈ I((A ∧ (A →
B), a). That suffices for 1 ∈ I((A∧(A → B))∧B, a), as required. Consider
then any rule R ∈ XMP , From A, infer B, that is valid, i.e., A 
 B. Take
CR as a conjunctive form of R, so that CR is the rule, From C ∧ A, infer
C ∧ B, for some C, and show C ∧ A 
 C ∧ B. For any I = 〈W, S, v〉
in I4 and any a ∈ W , suppose 1 ∈ I(C ∧ A, a). Hence 1 ∈ I(C, a) and
1 ∈ I(A, a). Since A 
 B, then 1 ∈ I(B, a). So 1 ∈ I(C ∧ B, a), as
required. The cases of the disjunctive versions (DR), necessitative versions
(NR) and possibilitative versions (MR) of R are similar. Hence all rules
R ∈ XMP express valid consequences. �
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12 LOU GOBLE

3. Completeness for KN4

In this section we demonstrate both the weak and strong completeness of
KN4 with respect to the class of models I4. This again draws on the work
of Brady [4], though with some noticeable differences, and on methods and
results familiar from completeness proofs in relevant logic (cf., e.g., [12],
[14], [17]), adapted to the present framework. We follow familiar Henkin-
style procedures, defining out of the logic a canonical model that falsifies
any non-theorem and invalidates any non-derivable inference.

Because the concepts and results presented here apply as well to any of
the extensions of KN4 to be discussed later, I will present them in terms of
logics L, understood to be any such extension.

For each such L, we define a relation between formulas that is a lot like
derivability, but not quite the same. So we will speak instead of a formula
B being ‘descended’ from A, written A →̀B, such that A →̀B iff there is a
finite sequence of formulas 〈D1, . . . , Dn〉 where D1 = A and Dn = B and
for every 1 < i ≤ n, there is a 1 ≤ j < i such that Di follows from Dj

either (i) by the rule of provable entailment, (Ent), From Dj infer Di when
`L Dj → Di, or (ii) by one of the rules R ∈ XMP . We call such a sequence
a ‘descent’ from A to B.5

These facts about →̀ will be useful. They show it to be very like deriv-
ability.

Lemma 2 : If 〈D1, . . . , Dn〉 is a descent from A to B, then for each Di (1 ≤
i ≤ n), A →̀Di.

Proof. By an easy induction on i and the definition of →̀. �

Lemma 3 : (i) A →̀A; (ii) if A →̀B and B →̀C then A →̀C; (iii) If A →̀B
and ` B → C then A →̀C; (iv) If ` A → B and B →̀C then A →̀C.

Proof. All quite immediate from the definition of →̀. �

Lemma 4 : If A →̀B, then (i) C ∧A →̀C ∧B, (ii) C ∨A →̀C ∨B, (iii) 2A
→̀2B, and (iv) 3A →̀3B.

Proof. For (i), suppose that A →̀B. Let 〈D1, . . . , Dn〉 be a descent from A
to B, so that D1 = A and Dn = B and every Di is in accord with a rule

5 This differs from derivability in not employing a rule of adjunction. Indeed, every rule
of a descent has only one premise; that is to enable Lemma 4 below, especially part (iv), the
case for possibility, which is essential for the key lemma, Lemma 15. It is for this that the
rules of XMP have the cumbersome form that they have.
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as per the definition of →̀. Let 〈E1, . . . , En〉 be the result of prefixing each
Di with C∧, so that E1 = C ∧ A, Ej = C ∧ Dj , Ei = C ∧ Di, etc., and
En = C ∧ B. We show that, for each Ei, C ∧ A →̀Ei by induction on i. If
i = 1, we have C ∧A →̀C ∧A by Lemma 3.i, so immediately C ∧A →̀E1.
Suppose C ∧ A →̀Ej for all 1 ≤ j < i, so that 〈E1, . . . , Ej〉 is a descent
from E1 = C ∧ A to Ej . Suppose Di is from Dj by the rule (Ent), so that
` Dj → Di. Then by (∧M) ` (C ∧ Dj) → (C ∧ Di). So Ei is from Ej by
(Ent) as well, and C ∧ A →̀Ej by Lemma 2. Suppose Di is from Dj by a
rule R ∈ XMP ; then C ∧Di is from C ∧Dj by the conjunctive form of that
rule, CR. So 〈E1, . . . , Ej , Ei〉 is a descent of Ei from C ∧ A, and C ∧ A
→̀Ei, as required.

The arguments for (ii), (iii), and (iv) are similar, making use of the other
parts of Lemma 3 and (∨M), (RNM), and (RMM) and the (DR), (NR) and
(MR) forms of the rules in XMP as appropriate. �

Although descent does not use the rule of Adjunction, or ∧-introduction,
nevertheless, we get the good of it, and also ∨-elimination.

Lemma 5 : (i) If A →̀B and A →̀C then A →̀B ∧ C; (ii) if A →̀C and
B →̀C then A ∨ B →̀C.

Proof. For (i), suppose A →̀B and A →̀C. Then A∧A →̀B ∧A and B ∧A
→̀B ∧ C by Lemma 4.i. Hence A ∧ A →̀B ∧ C by Lemma 3.ii. Further,
` A → (A ∧ A), so A →̀B ∧ C by Lemma 3.iv. For (ii), suppose A →̀C
and B →̀C. Then A ∨ B →̀B ∨ C and B ∨ C →̀C ∨ C by Lemma 4.ii. So
A ∨ B →̀C ∨ C by Lemma 3.ii. Since ` (C ∨ C) → C, A ∨ B →̀C by
Lemma 3.iii. �

Descent is extended to sets of formulas thus: Γ →̀∆ if and only if there
are formulas C1, . . . , Cn ∈ Γ and formulas D1, . . . , Dm ∈ ∆ such that
C1 ∧ · · · ∧ Cn →̀D1 ∨ · · · ∨ Dm. (In case ∆ = {B} we may write Γ →̀B,
and similarly A →̀∆ when Γ = {A}.)

This next fact will be used later to establish the strong completeness of our
logics.

Lemma 6 : For any of the logics L under discussion, if L ∪ Γ →̀ A, then
Γ `L A.

Proof. Suppose that L ∪ Γ →̀A, so that there are C1, . . . , Cn ∈ L ∪ Γ such
that C1 ∧ · · · ∧Cn →̀A. Let 〈D1, . . . , Dm〉 be a descent from C1 ∧ · · · ∧Cn

to A. Thus D1 = C1 ∧ · · · ∧ Cn and Dm = A. We show by induction
on i (1 ≤ i ≤ m) that, for each Di, C1 ∧ · · · ∧ Cn ` Di. If i = 1,
this is obvious since C1 ∧ · · · ∧ Cn ` C1 ∧ · · · ∧ Cn. Suppose then that
C1 ∧ · · · ∧ Cn ` Dj for all j < i. If Di is in the descent by the rule (Ent)
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then there is a Dj (j < i) such that ` Dj → Di. Since, by hypothesis,
C1 ∧ · · · ∧ Cn ` Dj , C1 ∧ · · · ∧ Cn ` Di since ` is closed under modus
ponens. If Di is in the descent by a rule R ∈ XMP , then since by hypothesis
C1∧· · ·∧Cn ` Dj , C1∧· · ·∧Cn ` Di since ` is likewise closed under the
rules of XMP . That completes the induction. Hence, C1 ∧ · · · ∧ Cn ` Dm,
i.e., C1 ∧ · · · ∧ Cn ` A. Further, for each Ci, Γ ` Ci since Ci ∈ Γ or else
Ci ∈ L and Γ ` B for every B ∈ L (by (theo)). Since Γ ` C1 and . . . and
Γ ` Cn, so Γ ` C1 ∧ · · · ∧Cn since ` is closed under adjunction. Therefore
Γ ` A since ` is transitive. �

With →̀ in place, we now define a L-theory (or ‘theory’, for short) as a set
of formulas, Γ, that is closed under Adjunction and Descent. That is, Γ is a
theory just in case, (i) if A ∈ Γ and B ∈ Γ then A∧B ∈ Γ and (ii) if A ∈ Γ
and A →̀B then B ∈ Γ. We note that

Lemma 7 : A set of formulas, Γ, is a theory if and only if, for all formulas A,
if Γ →̀A then A ∈ Γ.

Proof. Left-to-right is trivial. For right-to-left, suppose for all formulas A
such that Γ →̀ A, A ∈ Γ. To show that Γ is a theory it suffices to show
that it is closed under Adjunction and Descent. Suppose then that A ∈ Γ
and B ∈ Γ. Since A ∧ B →̀A ∧ B, there are formulas C1, C2 ∈ Γ and
D1 ∈ {A ∧ B} such that C1 ∧ C2 →̀D1. So Γ →̀A ∧ B. Hence by the
assumption A∧B ∈ Γ as required for Adjunction. Suppose also that A ∈ Γ
and A →̀B. Then trivially Γ →̀B. So by the assumption B ∈ Γ as required
for Descent. �

We have defined theories in a rather different way than Brady does, [4] p.
24 (or indeed as they are usually defined for relevant logics). Nevertheless,
all of our theories are theories in Brady’s sense.

Lemma 8 : If Γ is a theory (present sense) then Γ is closed under the rules
of (i) Adjunction (Adj), if A ∈ Γ and B ∈ Γ then A ∧ B ∈ Γ, (ii) Provable
Entailment (Ent), if A ∈ Γ and ` A → B then B ∈ Γ, (iii) Modus Ponens
(MP), if A ∈ Γ and A → B ∈ Γ then B ∈ Γ, and (iv) Disjunctive Modus
Ponens (DMP), if C ∨ A ∈ Γ and C ∨ (A → B) ∈ Γ then C ∨ B ∈ Γ.

Proof. Suppose Γ is a theory. For (i), suppose A ∈ Γ and B ∈ Γ. Then
trivially Γ →̀A and Γ →̀B. Hence Γ →̀A∧B by Lemma 5.i; so A∧B ∈ Γ
by Lemma 7. For (ii), suppose A ∈ Γ and ` A → B. Then obviously A
→̀B, so Γ →̀B, whence B ∈ Γ by Lemma 7. For (iii), suppose A ∈ Γ
and A → B ∈ Γ. Then A ∧ (A → B) ∈ Γ by (i). A ∧ (A → B) →̀
(A ∧ (A → B)) ∧ B (by MP∗). Since ` ((A ∧ (A → B)) ∧ B) → B,
A ∧ (A → B) →̀ B by Lemma 3.iii. Hence Γ →̀ B, and so B ∈ Γ by
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Lemma 7. For (iv), suppose C ∨ A ∈ Γ and C ∨ (A → B) ∈ Γ, so that
(C∨A)∧ (C∨ (A → B)) ∈ Γ by (i). Since ` (C∨A)∧ (C∨ (A → B)) →
(C∨ (A∧ (A → B))), C∨ (A∧ (A → B)) ∈ Γ by (ii). C∨ (A∧ (A → B))
→̀C∨((A∧(A → B))∧B) by DMP∗. Hence C∨((A∧(A → B))∧B) ∈ Γ,
and since ` (C∨ ((A∧ (A → B))∧B)) → (C∨B), C∨B ∈ Γ by Lemma
3.iii. �

For a given logic L, we define a a set of formulas Γ to be regular iff L ⊆ Γ.

Lemma 9 : L is a regular L-theory.

Proof. That L is regular is trivial. L is closed under Adjunction; hence, to
show that it is a theory, it suffices to show that L is closed under →̀ , that if
A ∈ L and A →̀B then B ∈ L. Suppose then that A ∈ L and A →̀B. Let
〈D1, . . . , Dn〉 be a descent from A to B, so that D1 = A and Dn = B. We
show that for every Di (1 ≤ i ≤ n), Di ∈ L, by induction on i. If i = 1
then D1 ∈ L is given. Suppose this holds for every k < i. If Di is from
Dj by (Ent) then ` Dj → Di. Dj ∈ L by the inductive hypothesis, hence
Di ∈ L because L is closed under modus ponens. If Di is from Dj by a rule
R ∈ XMP , then since, by the inductive hypothesis, Dj ∈ L, Di ∈ L because
L is also closed under all the rules in XMP . That completes the induction.
Therefore, since B = Dn, B ∈ L as required. �

We define a set of formulas Γ to be a prime theory iff Γ is a theory and
prime, i.e., for any A and B, if A ∨ B ∈ Γ, then A ∈ Γ or B ∈ Γ.

Although L is a regular theory, it is not necessarily prime; indeed it is
almost certainly not prime. In what follows we will be particularly inter-
ested in regular prime theories. The next results guarantee that we will have
the prime theories we require. These are familiar from relevant logic (e.g.,
[16], [14] and [17]), but because of the peculiarities of how we have defined
theories, we will demonstrate these results anew.

First, a definition: For sets of formulas Γ and ∆, the pair 〈Γ, ∆〉 is an L-
partition (or just ‘partition’, for short) iff (i) Γ ∪ ∆ = Wff , the set of all
well-formed formulas, and (ii) Γ 6→̀∆.

Lemma 10 : If 〈Γ, ∆〉 is a partition, then Γ is a prime theory.

Proof. Suppose 〈Γ, ∆〉 is a partition. We show first that Γ is a theory, and
then that it is prime. To show that Γ is closed under Adjunction, suppose
A ∈ Γ and B ∈ Γ, but that A ∧ B /∈ Γ. Then A ∧ B ∈ ∆ by (i) of a
partition. A ∧ B →̀A ∧ B. Hence there are C1, C2 ∈ Γ and D1 ∈ ∆ such
that C1 ∧ C2 →̀D1. Therefore, Γ →̀∆, contrary to (ii) of a partition. So,
if A ∈ Γ and B ∈ Γ then A ∧ B ∈ Γ. To show that Γ is closed under
→̀ , suppose A ∈ Γ and A →̀B, but that B /∈ Γ. Then B ∈ ∆ by (i) of



“01goble”
2006/2/13
page 16

i

i

i

i

i

i

i

i
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a partition. Hence immediately, there is a C ∈ Γ and D ∈ ∆ such that C
→̀D. Hence Γ →̀∆, contrary to (ii) of a partition. Hence, if A ∈ Γ and
A →̀B, B ∈ Γ. Therefore Γ is a theory. To see that Γ is prime, suppose
A ∨ B ∈ Γ but that A /∈ Γ and B /∈ Γ. So then A ∈ ∆ and B ∈ ∆ by (i) of
a partition. Since A ∨ B →̀A ∨ B, there are C1 ∈ Γ and D1, D2 ∈ ∆ such
that C1 →̀D1 ∨D2. Hence, Γ →̀∆, contrary to (ii) of a partition. Therefore,
if A ∨ B ∈ Γ, either A ∈ Γ or B ∈ Γ, as required. �

Lemma 11 : For any sets of formulas Γ, ∆, if Γ 6→̀∆, then there are sets Γ′

and ∆′ such that Γ ⊆ Γ′, ∆ ⊆ ∆′ and 〈Γ′, ∆′〉 is a partition.

Proof. Suppose Γ and ∆ are given such that Γ 6→̀∆. Let A0, A1, . . . , Ai, . . .
be an enumeration of all the well-formed formulas. Define sets of formulas
Γi and ∆i recursively as follows.

i) Γ0 = Γ and ∆0 = ∆;
ii) If Γi ∪ {Ai} 6→̀∆i, then Γi+1 = Γi ∪ {Ai} and ∆i+1 = ∆i;
iii) If Γi ∪ {Ai} →̀∆i, then Γi+1 = Γi and ∆i+1 = ∆i ∪ {Ai}

Then let Γ′ =
⋃

i<ω Γi and ∆′ =
⋃

i<ω ∆i. Obviously Γ ⊆ Γ′ and ∆ ⊆ ∆′.
We show that 〈Γ′, ∆′〉 is a partition. Obviously Γ′ ∪ ∆′ = Wff . It remains
to show that Γ′ 6→̀∆′. This follows if, for all i, Γi 6→̀∆i. We show that by
induction on i. Γ0 6→̀∆0 is given. We assume for the induction (IH) that Γi

6→̀∆i, and show that Γi+1 6→̀∆i+1. Suppose otherwise, for reductio, i.e.,
suppose (1) Γi+1 →̀∆i+1. Suppose also, for another reductio (2) Γ ∪ {Ai}
→̀∆i. Then by the definition.iii, Γi+1 = Γi and ∆i+1 = ∆i ∪ {Ai}. So, by
(1), Γi →̀∆i ∪ {Ai}. Hence there are C1, . . . , Cn ∈ Γi and D1, . . . , Dm ∈
∆i such that C1 ∧ · · · ∧ Cn →̀D1 ∨ · · · ∨ Dm ∨ Ai. For convenience let
us call C1 ∧ · · · ∧ Cn just C and D1 ∨ · · · ∨ Dm just D, so that (3) C →̀
D ∨ Ai. From (2) there are E1, . . . Ek ∈ Γi and F1, . . . , Fl ∈ ∆i such that
E1 ∧ · · · ∧ Ek ∧ Ai →̀ F1 ∨ · · · ∨ Fl. We call E1 ∧ · · · ∧ Ek just E and
F1 ∨ · · · ∨ Fl just F , so that (4) E ∧ Ai →̀F .

(4) and ` F → (D ∨ F ) entail E ∧Ai →̀D ∨ F by Lemma 3.iii, and that
with ` (C∧E∧Ai) → (E∧Ai) entails (5) C∧E∧Ai →̀D∨F by Lemma
3.iv.

(3) and ` (D ∨ Ai) → (D ∨ F ∨ Ai) entail C →̀D ∨ F ∨ Ai by Lemma
3.iii, and that with ` (C ∧ E) → C entails (6) C ∧ E →̀D ∨ F ∨ Ai by
Lemma 3.iv.

(5) and (6) entail that C ∧ E →̀D ∨ F as follows: ` (C ∧ E) → ((D ∨
F ) ∨ (C ∧ E)); so C ∧ E →̀ (D ∨ F ) ∨ (C ∧ E). That with (6) entails
C ∧ E →̀ ((D ∨ F ) ∨ (C ∧ E)) ∧ (D ∨ F ∨ Ai) by Lemma 5.i. Since
` (((D ∨ F ) ∨ (C ∧ E)) ∧ (D ∨ F ∨ Ai)) → ((D ∨ F ) ∨ (C ∧ E ∧ Ai))
(Distribution), we have (7) C ∧ E →̀(D ∨ F ) ∨ (C ∧ E ∧ Ai) by Lemma
3.iii. (5), C ∧ E ∧ Ai →̀D ∨ F , along with D ∨ F →̀D ∨ F entails (8)
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(D ∨ F ) ∨ (C ∧ E ∧ Ai) →̀ D ∨ F by Lemma 5.ii. (7) and (8) entail (9)
C ∧ E →̀D ∨ F , as claimed, by Lemma 3.ii, transitivity for →̀.

Unpacking C, E, D and F in (9) gives (10) C1∧· · ·∧Cn ∧ E1∧· · ·∧Ek

→̀ D1 ∨ · · · ∨ Dm ∨ F1 ∨ · · · ∨ Fl, where each Ci, Ej ∈ Γi and Dg, Fh ∈
∆i. Hence Γi →̀ ∆i, contrary to the inductive hypothesis (IH). Thus, we
conclude (2) is false, and so (11) Γi ∪ {Ai} 6→̀∆i must be true. In that case,
Γi+1 = Γi ∪ {Ai} and ∆i+1 = ∆i. Then (1) says that Γi ∪ {Ai} →̀∆i,
contrary to (11) that was just established. Hence we must conclude that (1)
is false, i.e., Γi+1 6→̀∆i+1, as required to complete the induction, and the
lemma. �

Corollary 12 : If Γ is a theory and A /∈ Γ then there is a set of formulas Γ′

such that Γ ⊆ Γ′ and Γ′ is a prime theory and A /∈ Γ′.

Proof. Suppose Γ is a theory and A /∈ Γ. Then Γ 6→̀A by Lemma 7. Hence
there are Γ′ and ∆′ such that Γ ⊆ Γ′, {A} ⊆ ∆′ and 〈Γ′, ∆′〉 is a partition,
by Lemma 11. Γ′ is a prime theory, Lemma 10. And A /∈ Γ′ since A ∈ ∆′

and Γ′ ∩ ∆′ = ∅. �

We are now, finally, in a position to specify our designated canonical
model for a logic L. Let I = 〈W, S, v〉 where (i) W is the set of all regular,
prime L-theories, (ii) For all a, b ∈ W , Sab iff 2

−1a ⊆ b and b ⊆ 3
−1a,

where
2

−1a = {C : 2C ∈ a}, and
3

−1a = {C : 3C ∈ a}

and (iii) v is such that for every atomic formula p and every a ∈ W ,
1 ∈ v(p, a) iff p ∈ a, and
0 ∈ v(p, a) iff ¬p ∈ a

Lemma 13 : I , as defined, is a model in I4.

Proof. Obvious, since there are regular prime L-theories. Wff is one. �

Before establishing that this is indeed the model we want, let us have this
quick fact.

Lemma 14 : For any a ∈ W , if 2
−1a ⊆ Γ, then Γ is regular.

Proof. If a ∈ W , then a is regular, so L ⊆ a. Suppose A ∈ L, then 2A ∈
L by necessitation (RN). So 2A ∈ a and A ∈ 2

−1a, whence A ∈ Γ.
Therefore, L ⊆ Γ, and Γ is regular. �

This brings us to the key lemma. Given I as defined,
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Lemma 15 : For every A ∈ Wff and every a ∈ W , A ∈ a iff 1 ∈ I(A, a)
and ¬A ∈ a iff 0 ∈ I(A, a).

Proof. By induction on A. In case A = p, an atomic formula, this is im-
mediate from the definition of v in I . Suppose then the lemma holds for all
B and C up to A (IH). In case A = ¬B or A = B ∧ C or A = B ∨ C,
the demonstration is straight-forward and easy, and can be left to the reader.
We consider the interesting cases where (1) A = B → C and (2) A = 2B.
There are four cases to consider for each, (a) left-to-right and (b) right-to
left, both (i) positive and (ii) negative.

(1.a.i) Suppose B → C ∈ a, and suppose 1 ∈ I(B, a). Then B ∈ a by the
inductive hypothesis (IH), so C ∈ a by Lemma 8.iii, and then 1 ∈ I(C, a) by
(IH) again. Hence, if 1 ∈ I(B, a) then 1 ∈ I(C, a). Suppose then that 0 ∈
I(C, a). In that case ¬C ∈ a by (IH). Since ` (B → C) → (¬C → ¬B),
¬C → ¬B in a, by Lemma 8.ii, and then ¬B ∈ a by the same lemma.iii.
Hence 0 ∈ I(B, a) by IH. Thus, if 0 ∈ I(C, a) then 0 ∈ I(B, a). These
facts suffice for 1 ∈ I(B → C, a).

(b.i) Suppose 1 ∈ I(B → C, a), but B → C /∈ a. Since if 1 ∈ I(B, a)
then 1 ∈ I(C, a) and if 0 ∈ I(C, a) then 0 ∈ I(B, a), by (IH) if B ∈ a then
C ∈ a and if ¬C ∈ a then ¬B ∈ a. Thus either B /∈ a or C ∈ a. Take the
first case first. Suppose B /∈ a. Also either ¬C /∈ a or else ¬B ∈ a. Suppose
¬C /∈ a. ` B ∨ ¬C ∨ (B → C) (Axiom 10), so B ∨ ¬C ∨ (B → C) ∈ a
since a is regular. Hence B ∈ a or ¬C ∈ a or B → C ∈ a because a
is prime. But all three are excluded by our assumptions. Hence this is not
a possible case. Suppose then that ¬B ∈ a. ` ¬B → (B ∨ (B → C))
(Axiom 9). Hence B ∨ (B → C) ∈ a by Lemma 8.ii, and then B ∈ a or
B → C ∈ a because a is prime. But both of these have been excluded,
hence this too is not a possible case. Hence B /∈ a is ruled out. Consider
then C ∈ a. As before, either ¬C /∈ a or ¬B ∈ a. For the first case,
` C → (¬C ∨ (B → C)) (Theorem T.1), So, ¬C ∨ (B → C) ∈ a by
Lemma 8.ii, in which case ¬C ∈ a or B → C ∈ a because a is prime. But
both of these have been excluded too by our assumptions; hence this is not a
possible case. That leaves us with C ∈ a and ¬B ∈ a. Hence, ¬B ∧ C ∈ a
by Lemma 8.i. Since ` (¬B ∧ C) → (B → C) (Axiom 8), B → C ∈ a
by Lemma 8.ii, contrary to the opening assumption. Hence that assumption
must be false, and B → C ∈ a as required.

(a.ii) Suppose ¬(B → C) ∈ a. ` (¬B ∧ C) → (B → C) (Axiom 8),
hence ` ¬(B → C) → ¬(¬B∧C) by contraposition. Hence ¬(¬B∧C) ∈
a by Lemma 8.ii, and since ` ¬(¬B ∧C) → (B ∨¬C), B ∨¬C ∈ a by the
same. Hence B ∈ a or ¬C ∈ a because a is prime. Suppose B ∈ a. Then
1 ∈ I(B, a) by (IH). Furthermore, since ` ¬(B → C) → ¬(¬C → ¬B)
(Theorem T.4), ¬(¬C → ¬B) ∈ a by Lemma 8.ii. Also ` ¬C ∨ (¬(¬C →
¬B) → ¬C) (Theorem T.3), so ¬C ∨ (¬(¬C → ¬B) → ¬C) ∈ a since
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a is regular. Therefore, ¬C ∈ a or ¬(¬C → ¬B) → C ∈ a because a is
prime. In either case ¬C ∈ a, either immediately or by Lemma 8.iii. Since
¬C ∈ a, 0 ∈ I(C, a) by (IH). With both 1 ∈ I(B, a) and 0 ∈ I(C, a),
0 ∈ I(B → C, a). On the other hand, suppose ¬C ∈ a. Then 0 ∈ I(C, a)
by (IH). Since ` B∨(¬(B → C) → B) (Theorem T.3), B∨(¬(B → C) →
B) ∈ a because a is regular. Hence B ∈ a or ¬(B → C) → B ∈ a because
a is prime. Either way B ∈ a, either immediately or by Lemma 8.iii. Since
B ∈ a, 1 ∈ I(B, a) by (IH). With both 1 ∈ I(B, a) and 0 ∈ I(C, a), again
0 ∈ I(B → C, a). Hence in both cases, 0 ∈ I(B → C, a), as required.

(b.ii) Suppose 0 ∈ I(B → C, a). Then 1 ∈ I(B, a) and 0 ∈ I(C, a),
and so B ∈ a and ¬C ∈ a by (IH). Hence, B ∧ ¬C ∈ a by Lemma
8.i. Since ` (B ∧ ¬C) → ((B ∧ ¬C) → ¬(B → C)) (Theorem T.2),
(B ∧ ¬C) → ¬(B → C) ∈ a by Lemma 8.ii, whence ¬(B → C) ∈ a by
Lemma 8.iii, as required to complete this part.

(2.a.i) Suppose 2B ∈ a. To show 1 ∈ I(2B, a), suppose some b such
that Sab. By definition, 2

−1a ⊆ b. Since B ∈ 2
−1a, B ∈ b, whence

1 ∈ I(B, b) by (IH), as required.
(b.i) Suppose 1 ∈ I(2B, a), so that, for every b such that Sab, 1 ∈

I(B, b). By (IH), for all b such that Sab, B ∈ b. Suppose 2B /∈ a. We
show that (α) 2

−1a 6→̀ {B} ∪ (Wff − 3
−1a). Suppose otherwise, suppose

2
−1a →̀ {B} ∪ (Wff − 3

−1a). Then there are C1, . . . , Cn ∈ 2
−1a and

D1, . . . , Dm ∈ Wff −3
−1a such that C1∧· · ·∧Cn →̀B∨D1∨· · ·∨Dm.

So, by Lemma 4.iii, 2(C1 ∧ · · · ∧ Cn) →̀ 2(B ∨ D1 ∨ · · · ∨ Dm).
2C1 ∈ a and . . . and 2Cn ∈ a. Hence 2C1 ∧ · · · ∧ 2Cn ∈ a by
Lemma 8.i. And so, given Axiom (C), 2(C1 ∧ · · · ∧ Cn) ∈ a. There-
fore, 2(B ∨ D1 ∨ · · · ∨ Dm) ∈ a since a is closed under →̀ . With the
axiom (Bel), ` 2(B ∨ D) → (2B ∨ 3D), 2B ∨ 3(D1 ∨ · · · ∨ Dm) ∈ a.
So either 2B ∈ a or 3(D1 ∨ · · · ∨ Dm) ∈ a. Not the first, by hypothe-
sis, so the second. Since ` 3(D1 ∨ · · · ∨ Dm) → (3D1 ∨ · · · ∨ 3Dm)
(3∨Dist), 3D1 ∨ · · · ∨3Dm ∈ a by Lemma 8.ii, and then 3D1 ∈ a or . . .
or 3Dm ∈ a since a is prime. Suppose it is 3Di ∈ a. Then Di ∈ 3

−1a;
so Di /∈ Wff − 3

−1a, contrary to the specification of Di. Hence, (α) must
hold. Since 2

−1a 6→̀ {B} ∪ (Wff −3
−1a), by Lemma 11, there are sets of

formulas Γ′ and ∆′ such that 2
−1a ⊆ Γ′ and {B} ∪ (Wff − 3

−1a) ⊆ ∆′

and 〈Γ′, ∆′〉 is a partition. Γ′ is a prime theory, by Lemma 10, and it is reg-
ular, by Lemma 14. Hence there is a b ∈ W such that b = Γ′. Sab, for
obviously 2

−1a ⊆ b, and also b ⊆ 3
−1a. Thus consider any D ∈ b and

suppose D /∈ 3
−1a; then D ∈ Wff − 3

−1a and so D ∈ ∆′, in which case
D /∈ Γ′ because of the partition, and so D /∈ b, a contradiction. Since Sab,
B ∈ b. But B ∈ ∆′, so that B /∈ b, a contradiction. Therefore, 2B ∈ a, as
required.
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20 LOU GOBLE

(a.ii) Suppose ¬2B ∈ a. To show that 0 ∈ I(2B, a), we construct a b ∈
W such that Sab and 0 ∈ (B, b), i.e., ¬B ∈ b by (IH). Similar to (b.i) above,
(β) 2

−1a ∪ {¬B} 6→̀ Wff − 3
−1a, for suppose otherwise; i.e., suppose

2
−1a ∪ {¬B} →̀ Wff − 3

−1a. Then there are C1, . . . , Cn ∈ 2
−1a and

D1, . . . , Dm ∈ Wff −3
−1a such that C1∧· · ·∧Cn∧¬B →̀D1∨· · ·∨Dm.

By Lemma 4.iv, 3(C1 ∧ · · · ∧ Cn ∧ ¬B) →̀ 3(D1 ∨ · · · ∨ Dm). Given
(23∧Dist), ` (2C ∧ 3¬B) → 3(C ∧ ¬B), 2(C1 ∧ · · · ∧ Cn) ∧ 3¬B
→̀ 3(D1 ∨ · · · ∨ Dm) by Lemma 3.iv. As under (b.i), 2C1 ∈ a and . . .
and 2Cn ∈ a, so 2C1 ∧ . . .2Cn ∈ a and then 2(C1 ∧ · · · ∧ Cn) ∈ a. By
definition 3¬B ∈ a. Hence 2(C1 ∧ · · · ∧ Cn) ∧ 3¬B ∈ a by Lemma 8.i,
and then 3(D1 ∨ · · · ∨ Dm) ∈ a since a is closed under →̀ . Then, as in
(b.i) 3D1 ∨ · · · ∨ 3Dm ∈ a by Lemma 8.ii, and then 3D1 ∈ a or . . . or
3Dm ∈ a since a is prime. Suppose it is 3Di ∈ a. Then Di ∈ 3

−1a;
so Di /∈ Wff − 3

−1a, contrary to the specification of Di. Hence (β) must
hold. Since 2

−1a∪{¬B} 6→̀ Wff −3
−1a, by Lemma 11, there are sets of

formulas Γ′ and ∆′ such that 2
−1a∪{¬B} ⊆ Γ′ and Wff −3

−1a ⊆ ∆′ and
〈Γ′, ∆′〉 is a partition. Γ′ is a prime theory, by Lemma 10, and it is regular,
by Lemma 14. Hence there is a b ∈ W such that b = Γ′. Obviously ¬B ∈ b.
Sab by the argument of (b.i) above. Thus we have a b ∈ W such that Sab
and ¬B ∈ a, i.e., 0 ∈ I(B, b) by (IH). That suffices for 0 ∈ I(2B, a), as
required.

(b.ii) Suppose 0 ∈ I(2B, a), so that there is a b such that Sab and 0 ∈
I(B, b). By (IH), ¬B ∈ b. Since Sab, by definition, b ⊆ 3

−1a. Hence,
¬B ∈ 3

−1a. Thus, 3¬B ∈ a, which is to say ¬2B ∈ a, as required for
this case, and to complete the lemma. �

From this completeness for L = KN4 follows quickly.

Theorem 16 : KN4 is both weakly and strongly complete with respect to the
class of models I4; (a) if 
 A then ` A, and (b) if Γ 
 A then Γ ` A.

Proof. For (a), suppose 0 A i.e., A /∈ KN4. KN4 is a regular theory, Lemma
9. Hence there is a Γ′ such that KN4 ⊆ Γ′ and Γ′ is a prime theory and
A /∈ Γ′, Corollary to Lemma 11. Γ′ is obviously regular. Hence, given
I = 〈W, S, v〉 as defined, there is an a ∈ W and a = Γ′. Since A /∈ a,
1 /∈ I(A, a), Lemma 15. I ∈ I4, Lemma 13. Hence there is a model I ∈ I4

and an a ∈ W such that 1 /∈ I(A, a). In other words, 1 A. Therefore, if
0 A, 1 A, or by contraposition, if 
 A then ` A.

For (b), suppose Γ 0 A. Then KN4∪Γ 6→̀A, Lemma 6. So there are sets of
formulas Γ′ and ∆′ such that KN4∪ Γ ⊆ Γ′ and {A} ⊆ ∆′ and 〈Γ′, ∆′〉 is a
partition, Lemma 11. Γ′ is a prime theory, Lemma 10, and since KN4 ⊆ Γ′,
it is regular. Thus, given I = 〈W, S, v〉 as defined, there is an a ∈ W such
that a = Γ′. For every C ∈ Γ obviously C ∈ a, hence for every such C,
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1 ∈ I(C, a), Lemma 15. Since A ∈ ∆′, A /∈ Γ′ because of the partition.
Since A /∈ a, 1 /∈ I(A, a), Lemma 15. I ∈ I4, Lemma 13. Therefore there
is a model I ∈ I4 and an a ∈ W such that, for every C ∈ Γ, 1 ∈ I(C, a)
but 1 /∈ I(A, a), which is to say Γ 1 A. Thus, if Γ 0 A then Γ 1 A. By
contraposition, if Γ 
 A then Γ ` A, as required. �

4. KM3

In this section we extend the preceding results to the K-like modal logic
based on the three-valued paraconsistent logic RM3 under which proposi-
tions may be true or false or both, but not neither. These results are far easier
to establish. Indeed, they can be quickly spun off from the preceding, but I
will also sketch how they could be proved directly.

Brady, [4] p. 11, axiomatized RM3 as follows, though again any axiomati-
zation would do for present purposes. As before, we also include postulates
for ∨ considered as primitive.

1) A → A
2) (A ∧ (A → B)) → B
3) (A ∧ B) → A
4) (A ∧ B) → B
5) ((A → B) ∧ (A → C)) → (A → (B ∧ C))
6) A → (A ∨ B)
7) B → (A ∨ B)
8) ((A → C) ∧ (B → C)) → ((A ∨ B) → C)
9) (A ∧ (B ∨ C)) → ((A ∧ B) ∨ (A ∧ C))
10) (A → ¬A) → ¬A
11) (A → ¬B) → (B → ¬A)
12) ¬¬A → A
13) (¬A ∧ B) → (A → B)
14) ¬A → (A ∨ (A → B))

with the rules
Adj) From A and B, infer A ∧ B
MP) From A and A → B, infer B
Prefix) From A → B, infer (C → A) → (C → B)
Suffix) From A → B, infer (B → C) → (A → C)

as before. (Brady uses the single rule (Affix) instead of the separate (Prefix)
and (Suffix); cf. footnote 2.)

For KM3, the first modal extension of RM3, we add the familiar K postu-
lates
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22 LOU GOBLE

K) 2(A → B) → (2A → 2B)
C) (2A ∧ 2B) → 2(A ∧ B)
Bel) 2(A ∨ B) → (3A ∨ 2B)
Nec) If A is an axiom then so is 2A

Because RM3 contains the thesis form of modus ponens, Axiom 2, it is
not necessary to postulate the disjunctive version of the MP rule; that is now
derivable. Similarly, for KM3 it is not necessary to postulate the rules of
XMP ; they too are all derivable, since:

Proposition 3 : If R ∈ XMP is a rule, From A infer B, then `KM3 A → B.

Proof. If R is MP∗, From A ∧ (A → B), infer (A ∧ (A → B)) ∧ B,
we have ` (A ∧ (A → B)) → ((A ∧ (A → B)) ∧ B) by A.1, A.2, and
A.5, etc. Assuming that corresponding to R, From A, infer B, we have
` A → B, then corresponding to its conjunctive version, CR, From C ∧ A,
infer C∧B, we have ` (C∧A) → (C∧B), by monotonicity for ∧. Similarly
for the disjunctive version, DR, From C ∨A, infer C ∨B, the necessitative
version NR, From 2A, infer 2B, and the possibilitative version MR, From
3A, infer 3B, by virtue of the monotonicity of these connectives, that if
` A → B then ` (C ∨ A) → (C ∨ B), ` 2A → 2B and ` 3A → 3B,
which are all easy to verify. �

It is then easy to establish that KN4 ⊆ KM3, just as BN4 ⊆ RM3. Thus
we can draw on all the preceding theorems, like T.1–T.4, etc. to establish
the present results. In addition to having the thesis form of modus ponens,
Axiom 2, RM3 also has the advantage (unless it is a fault) of containing the
law of the excluded middle,

LEM) ` A ∨ ¬A

This reflects its exclusion of truth-value gaps.
KM3 is sound and complete with respect to the class of models I3 de-

scribed in Section 1, models I = 〈W, S, v〉 in which, for every atomic for-
mula p and every a ∈ W , either 1 ∈ v(p, a) or 0 ∈ v(p, a).

Theorem 17 : KM3 is both weakly and strongly sound with respect to the
class of models I3.

Proof. As usual this is merely a matter of verifying that all the axioms are
valid with respect to this class and that the rules preserve truth, and hence
validity. In contrast to the case with KN4, this is very routine, and can be left
to the reader. �
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Theorem 18 : KM3 is both weakly and strongly complete with respect to the
class of models I3.

Proof. This follows directly from Theorem 16 once we re-establish Lemma
13, to show that the canonical model I as defined in Section 3, now for
L = KM3, is a member of I3. That follows from (LEM). Since every a ∈ W
is a regular theory it contains every instance of p ∨ ¬p and since it is prime
it thus must contain either p or ¬p. Hence by the specification for v of I ,
1 ∈ v(p, a) or 0 ∈ v(p, a). �

This theorem can also be established directly much more easily than The-
orem 16. We can use a much simpler definition for →̀, and with that comes
a much easier notion of a theory that is more in line with the way it is often
defined for relevant logics.

Thus, for extensions of RM3, we can define →̀ to be nothing but provable
entailment, i.e., A →̀B iff ` A → B. A theory is still a set of formulas
closed under Adjunction and →̀, but that now comes to being closed under
(Ent), provable entailment. All other notions from the proof of Section 3
remain, mutatis mutandis, as before. With the revised definition of →̀
all the preceding lemmas continue to hold, but their proofs, especially for
Lemma 4, are much easier because of the absence of the rules of XMP . (See
any standard source on relevant logic to see how they go for the principle
lemmas, e.g., [16], [14] or [17].) Then the theorem will follow in just the
same way.

5. Extensions

In this section we extend the preceding results for the K-like modal logics,
KN4 and KM3, to the counterparts for other familiar normal modal logics.
These are formed by adding to the base of either KN4 and KM3 (any com-
bination of) the axioms:

(D) 2A → 3A
(T) 2A → A
(4) 2A → 22A
(B) A → 23A
(5) 3A → 23A

and we will include
(U) 2(2A → A)

which sometimes comes up in discussions of deontic logic.
Following the style of Chellas’s nomenclature [6], we might then speak of

systems KN4.D KN4.T, KN4.45, etc. (and similarly for extensions of KM3).
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24 LOU GOBLE

Just as with classically-based systems these postulates are valid with re-
spect to the class of I4 (I3) models I = 〈W, S, v〉 for which S satisfies the
following conditions, respectively, for all points a, b, c ∈ W :

(c.d) Seriality ∃bSab
(c.t) Reflexivity Saa
(c.4) Transitivity If Sab and Sbc then Sac
(c.b) Symmetry If Sab then Sba
(c.5) Persistence If Sab and Sac then Sbc
(c.u) Near-Reflexivity If ∃aSab then Sbb

Theorem 19 : If L is the result of adding any of the axiom schemes (D)–(U)
above to KN4 (KM3), then L is sound with respect to the class of I4 (I3)
models in which S satisfies the corresponding condition(s) from (c.d)–(c.u).

Proof. Given the soundness of KN4 (KM3), it suffices to establish that the
new axioms are valid with respect to the models that meet the additional
conditions on S. This is routine, and can be left to the reader. �

Theorem 20 : If L is the result of adding any of the axiom schemes (D)–
(U) above to KN4 (KM3), then L is both weakly and strongly complete with
respect to the class of I4 (I3) models in which S satisfies the corresponding
condition(s) from (c.d)–(c.u).

Proof. Given the proof of completeness for KN4 (KM3), it suffices now to
establish that if L contains all instances of one of the new axiom schemes
then S in the canonical model I defined in Section 3 satisfies the requisite
condition. We do this on a case by case basis.

(i) If L contains all instances of (D), then S satisfies (c.d): Consider any
a ∈ W . Since a is regular, L ⊆ a so a contains all instances of (D). We show
that 2

−1a 6→̀Wff −3
−1a. For suppose otherwise; if 2

−1a →̀Wff −3
−1a,

then there are C1, . . . , Cn ∈ 2
−1a and D1, . . .Dm ∈ Wff − 3

−1a such
that C1 ∧ · · · ∧ Cn →̀D1 ∨ · · · ∨ Dm. In that case, 2(C1 ∧ · · · ∧ Cn) →̀
2(D1 ∨ · · · ∨ Dm) by Lemma 4.iii. 2(C1 ∧ · · · ∧ Cn) ∈ a, as usual with
Axiom (C); hence 2(D1∨· · ·∨Dm) ∈ a. Given this instance of Axiom (D)
` 2(D1∨· · ·∨Dm) → 3(D1∨· · ·∨Dm), 3(D1∨· · ·∨Dm) ∈ a, by Lemma
8.iii. Therefore 3D1∨· · ·∨3Dn ∈ a, and so 3D1 ∈ a or . . . or 3Dm ∈ a
because a is prime. Suppose 3Di ∈ a. Then Di ∈ 3

−1a, in which case
Di /∈ Wff −3

−1a, a contradiction. Therefore 2
−1a 6→̀Wff −3

−1a. Hence
there are Γ′, ∆′ such that 2

−1a ⊆ Γ′ and Wff −3
−1a ⊆ ∆′ and 〈Γ′, ∆′〉 is

a partition, Lemma 11. Γ′ is a prime theory, Lemma 10, and regular, Lemma
14. Hence there is a b ∈ W such that b = Γ′, and Sab, as in Lemma 15.2.b.i,
as required for Seriality. (The cases to come are easier.)
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(ii) If L contains all instances of (T), then S satisfies (c.t): To show that
Saa, we need that 2

−1a ⊆ a and that a ⊆ 3
−1a. For the first, suppose

C ∈ 2
−1a. Then 2C ∈ a, and given ` 2C → C, C ∈ a by Lemma 8.ii.

For the second, suppose C ∈ a. Since ` 2¬C → ¬C (T), ` C → 3C by
contraposition, replacement, etc. Therefore, 3C ∈ a by Lemma 8.ii, and so
C ∈ 3

−1a, as required.
(iii) If L contains all instances of (4), then S satisfies (c.4): Suppose Sab

and Sbc. Then 2
−1a ⊆ b and 2

−1b ⊆ c and also b ⊆ 3
−1a and c ⊆ 3

−1b.
To show that Sac we need that 2

−1a ⊆ c and that c ⊆ 3
−1a. For the

first, suppose C ∈ 2
−1a. Then 2C ∈ a. Since by (4) ` 2C → 22C,

22C ∈ a by Lemma 8.ii, and so 2C ∈ 2
−1a. Then 2C ∈ b and so

C ∈ 2
−1b, whence C ∈ c, as required. For the second, suppose C ∈ c.

Then C ∈ 3
−1b, so that 3C ∈ b, and then 3C ∈ 3

−1a, and 3C3C ∈ a.
From (4), with contraposition, etc. ` 33C → 3C, so that 3C ∈ a by
Lemma 8.ii, and C ∈ 3

−1a, as required.
(iv) If L contains all instances of (B), then S satisfies (c.B): Suppose Sab,

so that 2
−1a ⊆ b and b ⊆ 3

−1a. For Sba we need that 2
−1b ⊆ a and a ⊆

3
−1b. For the first, suppose that C ∈ 2

−1b so that 2C ∈ b. Then 2C ∈
3

−1a and so 32C ∈ a. From (B), by contraposition, etc., ` 32C → C,
whence C ∈ a, Lemma 8.ii, as required. For the second, suppose C ∈ a. By
(B), ` C → 23C, so 23C ∈ a by Lemma 8.ii. Hence 3C ∈ 2

−1a, and
then 3C ∈ b and C ∈ 3

−1b, as required.
(v) If L contains all instances of (5), then S satisfies (c.5): Suppose Sab

and Sac, so that 2
−1a ⊆ b and 2

−1a ⊆ c and also b ⊆ 3
−1a and c ⊆

3
−1a. For Sbc we need that 2

−1b ⊆ c and that c ⊆ 3
−1b. For the first,

suppose C ∈ 2
−1b so that 2C ∈ b. Then 2C ∈ 3

−1a and 32C ∈ a.
From (5), by contraposition, etc., ` 32C → 2C, whence 2C ∈ a, by
Lemma 8.ii, and then C ∈ 2

−1a, so that C ∈ c, as required. For the second,
suppose C ∈ c. Then C ∈ 3

−1a so that 3C ∈ a. By (5), ` 3C → 23C,
so that 23C ∈ a, by Lemma 8.ii, and then 3C ∈ 2

−1a, whence 3C ∈ b,
and so C ∈ 3

−1b, as required.
(vi) If L contains all instances of (U), then S satisfies (c.u): Suppose b ∈

W is such that there is an a such that Sab, so that 2
−1a ⊆ b and b ⊆

3
−1a. To show Sbb, we need that 2

−1b ⊆ b and b ⊆ 3
−1b. For the first,

suppose C ∈ 2
−1b, so that 2C ∈ b. By (U), ` 2(2C → C). Hence

2(2C → C) ∈ a, because a is regular. Therefore, 2C → C ∈ 2
−1a and

then 2C → C ∈ b. Since 2C ∈ b, C ∈ b, by Lemma 8.iii, as required.
For the second, suppose C ∈ b. By (U), and contraposition, replacement,
etc., ` 2(C → 3C) so that 2(C → 3C) ∈ a, since a is regular, and then
C → 3C ∈ 2

−1a and C → 3C ∈ b. Since C ∈ b, 3C ∈ b, by Lemma
8.iii, and then C ∈ 3

−1b, as required. This completes this list of cases, and
so the theorem. �
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6. Open Questions

The results of Theorems 1, 16, 19 and 20 are satisfying. They show that
natural modal extensions of BN4 (and RM3) can be accommodated in a very
straight-forward way. Not all is so rosy, however, and some problems re-
main. I have not yet succeeded in establishing that systems that extend KN4

(or KM3) with the axiom scheme
G) 32A → 23A

are determined by the class of I4-models that satisfy the condition
c.g) If Sab and Sac then there is a d such that Sbd and Scd

as one would expect. (The logics are sound with respect to this class of
frames; it is completeness that has proved recalcitrant. The problem lies in
establishing that the relation S in the canonical model satisfies the condition,
which requires constructing an appropriate d ∈ W . For classically based
logics that is easy; not so here.)

Hence, I have not been able to establish the more general result that sys-
tems that extend KN4 (or KM3) with any axiom scheme of the type

Gk,l,m,n) 3
k
2

lA → 2
m

3
nA

for arbitrary k, l, m, n ≥ 0, are determined by the class of models that meet
the corresponding condition

c.gk,l,m,n) If Skab and Smac then there is a d such that S lbd and Sncd

Each of the postulates (D)–(5) is of this form, but the procedures that enabled
their completeness proofs, and those for sundry other special cases, do not
generalize easily. I leave the completeness proof for the general case of
systems with (Gk,l,m,n) as an open problem.

I have not attempted even more general results, such as a full-fledged
Sahlqvist Theorem for modal logics based on BN4 or RM3. I leave that
to anyone interested.

Here is another open question, which I have not yet investigated, but which
might prove interesting. Consider systems containing the Löb axiom (not of
the previous type)

L) 2(2A → A) → 2A

which is appropriate when 2 is interpreted as ‘provability’. The classi-
cally based logic GL = K4 + (L) = K + (L) is determined by the class of
finite strict partial orders. ([5] p. 150, Theorem 5.46). Mares [11], however,
demonstrated that the relevant counterpart RGL of this system, which adds
the modal postulates to the base of the relevant logic R, is semantically in-
complete, characterized by no class of relevant models. I do not know which
way KN4 + (L) falls.
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Afterword

We conclude this study by showing that the modal extensions of BN4 de-
scribed here are all conservative extensions of that system (and similarly for
extensions of RM3).

Brady ([4], Theorems 9 and 11) demonstrated that BN4 is sound and com-
plete with respect to the following semantics, which has provided the basis
for the present work. Let a valuation v be a function assigning a subset of
{1, 0} to each atomic formula p; we write v(p) ⊆ {1, 0}. Such a valuation
is extended to an interpretation Iv thus:

p+) 1 ∈ Iv(p) if and only if 1 ∈ v(p)
p−) 0 ∈ Iv(p) iff 0 ∈ v(p)
¬+) 1 ∈ Iv(¬A) iff 0 ∈ Iv(A)
¬−) 0 ∈ Iv(¬A) iff 1 ∈ Iv(A)
∧+) 1 ∈ Iv(A ∧ B) iff 1 ∈ Iv(A) and 1 ∈ Iv(B)
∧−) 0 ∈ Iv(A ∧ B) iff 0 ∈ Iv(A) or 0 ∈ Iv(B)
∨+) 1 ∈ Iv(A ∨ B) iff 1 ∈ Iv(A) or 1 ∈ Iv(B)
∨−) 0 ∈ Iv(A ∨ B) iff 0 ∈ Iv(A) and 0 ∈ Iv(B)
→ +) 1 ∈ Iv(A → B) iff if 1 ∈ Iv(A) then 1 ∈ Iv(B),

and if 0 ∈ Iv(B) then 0 ∈ Iv(A)
→ −) 0 ∈ Iv(A → B) iff 1 ∈ Iv(A) and 0 ∈ Iv(B)

In this notation we say that a formula A is valid just in case 1 ∈ Iv(A)
for every valuation v. To show that the modal logics described here are
conservative extensions of BN4 we show that any formula A containing no
modal operators that is provable in the modal logic is valid in this sense.
Then from Brady’s completeness result it follows that A is provable in BN4.

Consider an arbitrary valuation v, and define a corresponding (modal)
model I∗v ∈ I4 thus: I∗v = 〈W, S, v∗〉, where W = {v} (W could be any
unit set; it is convenient to let it be v itself.) S = W 2, and 1 ∈ v∗(p, v) iff
1 ∈ v(p) and 0 ∈ v∗(p, v) iff 0 ∈ v(p). I∗v is obviously in I4. Moreover, I∗v
satisfies all of the extra conditions (c.d)–(c.u) described in Section 5 for the
various extensions of KN4.

Lemma 21 : For any valuation v and any formula A containing no modal
operators, 1 ∈ I∗v (A, v) iff 1 ∈ Iv(A) and 0 ∈ I∗v (A, v) iff 0 ∈ Iv(A).

Proof. This is an easy induction on the structure of A, and can be left to the
reader. �

Theorem 22 : If L is any modal extension of BN4 discussed here, then L is a
conservative extension of BN4; i.e., if A contains no modal operators, then
if A is provable in L then A is provable in BN4.
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Proof. Suppose A contains no modal operators and is provable in L. We
show that A is valid in Brady’s sense. Consider an arbitrary valuation v, and
let I∗v be the I4 model defined from v as described above. By the soundness
results of the modal systems with respect to the appropriate classes of I4

models, 1 ∈ I∗v (A, v). By the lemma, 1 ∈ Iv(A). Since v is arbitrary,
1 ∈ Iv(A) for all valuations v, i.e., A is valid in Brady’s sense. Hence, by
his completeness result, A is provable in BN4. �

The same obtains for modal extensions of RM3 given that Brady estab-
lished completeness for that system with respect to valuations v in which
v(p) ⊆ {1, 0} and v(p) 6= ∅. ([4], Theorem 4.)
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