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CLASSICAL LOGIC WITH NON-REFERRING NAMES

RICHARD L. EPSTEIN1

The standard semantics for classical predicate logic require that for every
name in the formal language there is some object in the universe to which
it refers. In this paper I will show how we can lift that restriction in a sim-
ple way that allows for modeling various views of the role of non-referring
names in reasoning.

A. Logic for Nothing

Lifting the restriction that names refer is often considered part of a program
called free logic: ridding logic of existential assumptions that are built into
its semantics. Along with no longer requiring names to refer, it is sometimes
suggested that we should also lift the assumption that the universe of a model
must contain at least one object. It is not for logic to assume that there is
anything.

How then would we interpret ‘Everything is a dog’ if the universe is
empty? Typically, ‘All dogs bark’ is taken to be equivalent to ’If there is
anything that’s a dog, then it barks,’ where ‘If ... then ...’ is interpreted clas-
sically. The mathematicians’ view that universal quantification should have
no existential import is normally assumed as well: ‘all’ does not include ‘and
there exists’.2 So ‘Everything is a dog’ should be interpreted as ‘If there is
anything, then it is a dog.’ Thus ‘Everything is a dog’, and hence ‘∀x (x is a
dog)’, is true of the empty universe.

We don’t need any complicated semantics for the logic of the empty uni-
verse. Every closed wff beginning with a universal quantifier is true; every
closed wff beginning with an existential quantifier is false. The resulting

1Research for this paper was supported by a grant from the Advanced Reasoning Forum.
I am grateful to Fred Kroon for discussions and many helpful suggestions in the preparation
of this paper.

2 See the discussion in Chapter V.B of Epstein, 1994.
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190 RICHARD L. EPSTEIN

formal system bears little resemblance to classical predicate logic. For ex-
ample, ∀x(x 6= x) is true in a model with empty universe, so ¬∀x(x 6= x) is
no longer a tautology.

B. Non-Referring Names in Classical Logic?

There is a well-known way due to Bertrand Russell of formalizing descrip-
tive names in classical predicate logic, including descriptive names that do
not refer such as ‘The cat that Richard L. Epstein likes.’ Every apparently
atomic wff in which a non-referring descriptive name appears is converted
into a false proposition.3

With Russell’s analysis we can never formalize a claim we believe is true
that uses a non-referring name. But many say the following is true:

(1) Pegasus is a winged horse.

If the only semantic property of a name is whether it has a reference, and
if so, what that reference is, it is hard to see how we can justify (1) as true.
The most natural place to formalize reasoning with non-referring names is
in a predicate logic in which further semantic values of language beyond
truth-values and reference are taken into account, such as subject matter or
referential content. Elsewhere I have shown how a large range of proposi-
tional logics take into account such semantic values.4 In a subsequent work I
will present predicate logics based on those logics in which the formalization
of claims such as (1) might seem natural.

Nonetheless, we can develop semantics for non-referring names relative to
the assumptions of classical predicate logic, viewing wffs with non-referring
names as propositions, by taking as primitive whether a particular atomic
proposition is true, just as we do in the pre-mathematical development of the
usual semantics of classical predicate logic.5 Such semantics will serve as a
reference for predicate logics based on other semantic values and will also

3 See Chapter VIII of Epstein, 1994 for a presentation of Russell’s analysis, along with a
comparison to Peter Strawson’s analysis of descriptive names.

W.V.O. Quine suggested that we can use the same method to eliminate all names, replac-
ing, for example, ‘Pegasus’ with the predicate ‘– pegasizes’. That, he said, would allow us to
formalize reasoning with atomic non-referring names, that is, ones that have no structure, sin-
gular names. But, as I have discussed in Chapter VIII.D of Epstein, 1994, Quine’s suggestion
miscontrues the role of names in reasoning.

4 Epstein, 1990.

5 See Chapter IV of Epstein, 1994.
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CLASSICAL LOGIC WITH NON-REFERRING NAMES 191

allow a formalization of reasoning with partial functions, which is important
in mathematics.

C. Semantics for Classical Predicate Logic with Non-Referring Singular
Names

I’ll first consider languages without function symbols and without the equal-
ity predicate. I’ll extend the semantics to cover the equality predicate later
in this section and leave languages with function symbols for Section F.

C.1. Assignments of references and atomic predications

Consider the semantics given for classical predicate logic before any math-
ematical abstractions are made.6 We start with a non-empty universe and a
complete set of assignments of references for variables. That is,

There is at least one assignment of references. For every assignment
of references σ, and every variable x, and every object of the uni-
verse, either σ assigns that object to x or there is an assignment τ
that differs from σ only in that it assigns that object to x. If c is a
name, then for every assignment of references σ assigns some ob-
ject to c, and every other assignment of references assigns the same
object to c.

We can extend our semantics by no longer requiring that each name have
a reference. We need not assume that an assignment of references assigns
any value to ‘Pegasus’; indeed, since the only value it could assign in these
semantics is a reference, it cannot assign a value. Thus, an assignment of
references is a mapping from terms to objects of the universe satisfying:

(2) i. For every variable x, σ(x) is defined.
ii. For every name c, if σ(c) is defined, then for every τ , τ(c) is

defined and τ(c) is the same object as σ(c).

For classical predicate logic we need not assume any particular meta-
physics of truth in determining whether, say, ‘Ralph is a dog’ is true or
whether σ � ’x is a dog’ when σ(x) = the brass lamp on my table (here
“�” is read as “validates”). We take the assignment of truth-values to atomic
predications as primitive. Similarly, when we have non-referring names, we
don’t care how or why a claim such as (1) is true or false. All that matters is
that (1) has a truth-value in the model.

6 See Chapter IV of Epstein, 1994.
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192 RICHARD L. EPSTEIN

Now consider a binary predication:

(3) Pegasus is bigger than x.

If σ(x) is Fred Kroon, how are we to determine the truth-value of (3)? Just
as with (1), (3) is an atomic predication. It does not matter to the logician
what truth-value is given to (3), so long as some truth-value is given. Thus,
we have:

(4) For every assignment of references σ, whether σ � P(t1, ..., tn) is
taken as primitive.

Here t1, ..., tn stand for any terms of the language.
This allows for the widest possible application of our logic, depending

on how truth-values are assigned. It does not allow us to model the view
that (1) has no truth-value; but that view is more naturally modeled within a
many-valued logic than classical predicate logic.7

We need to make a restriction on (4). In classical predicate logic we as-
sume that all predicates in our language are extensional: How we refer to an
object in a predication does not matter for the truth-value of that predication.
Given further semantic values, we could reason with non-extensional predi-
cates and drop that requirement. But with the only semantic values available
being truth-values and references, we are stuck with the assumption that
predicates are extensional. We formulate a condition on consistency and ex-
tensionality of predications by modifying the one we that is (usually implic-
itly) adopted for classical predicate logic, noting that for any closed terms t
and u, all we can take into account is whether σ(t) = τ(u) or whether t is u.8

(5) For all atomic wffs Q(t1, ..., tn) and Q(u1, ..., un) and assignments
σ and τ , if for each i ≤ n, either σ(ti) is the same object as τ(ui) or
τi is a closed term and ti is ui, then

σ � Q(t1, ..., tn) iff τ � Q(u1, ..., un).

7 Some logicians think that using supervaluations makes a no-truth-value approach com-
patible with the semantics of classical logic, as described in Bencivenga, 1986.

8 See Epstein, 1994, pp. 72–73, for the usual assumption.
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CLASSICAL LOGIC WITH NON-REFERRING NAMES 193

C.2. The quantifiers

The interpretations I’ll present here are what I consider the most reasonable
in the context of giving the usual semantics for predicate logics.9 Using
these we’ll see in Section E that we can model many other views of how to
interpret the quantifiers.

C.2.1. The universal quantifier

For the universal quantifier we only have to note that an assignment of refer-
ences does not take into account names that do not refer. Letting c range over
names in the language, we have the evaluation of the universal quantifier:

(6) σ � ∀x A iff both
i. For every assignment of references τ that

differs from σ at most in what it assigns as
reference to x, τ � A(x).

ii. For every name symbol c, σ � A(c).

Clause (ii) adds nothing when c refers; it is non-redundant only for non-
referring names. Hence (6) gives the same evaluation as used for models in
which all names refer. We are only making explicit a distinction between
variables and names that was not needed when all names refer.

C.2.2. The existential quantifier

Suppose we take (1) to be true. Do we then conclude the following is true?

(7) ∃x (x is a winged horse)

Opinion divides. Some say (7) is true because (1) is true. There is something
of which ‘x is a winged horse’ is true, but not an “existent” thing. Others
say (7) is false, because whatever role ‘Pegasus’ plays in our language, it is
not a referring name, so it does not pick out something that exists.10

In the usual semantics for predicate logics, ‘∃’ is taken to mean ‘there
exists’, and that is considered univocal. If we talk about different kinds of
existence, then we should consider how atoms exist as different from dogs,

9 Compare Chapter IV of Epstein, 1994.

10 This view is usually modeled by assuming a second universe of non-existent objects.
See, for example, Bencivenga, 1986 and Lambert, 1991.
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194 RICHARD L. EPSTEIN

numbers as different from tables. We don’t do that in establishing the foun-
dations of predicate logic, though we can model such views within predicate
logic by using predicates, such as ‘– is an abstract thing’ or ‘– is a sensible
object larger than 5 cm in diameter’.

So let’s continue to take ‘∃’ to mean ‘exists’ in only one sense, which can
be qualified, but doesn’t also cover ‘not exists’. Hence, (7) should come out
false if the predicate ‘winged horse’ is not true of any thing, even if (1) is
classified as true for whatever reason. So the evaluation of the existential
quantifier will be the usual one:

σ � ∃xA(x) iff for some τ that differs from σ at most in what it
assigns x, τ � A(x)

Thus, existential generalization, A(c) → ∃xA(x), is no longer valid. And
the classical relation between ∀ and ∃ no longer holds, for the following can
be false:

(8) ¬∀x¬ (x is a winged horse) → ∃x (x is a winged horse)

In a model with universe all living creatures, the antecedent can be true if (1)
is classified as true, while the consequent would be false. We’ll see in Sec-
tion E, though, that we can model within these semantics the view that (8) is
true.

C.3. Summary of the semantics for languages without equality

Since we need not alter our evaluations of the propositional connectives, the
semantics for classical predicate logic with non-referring names amounts to
making only the following changes to the standard semantics for classical
predicate logic:

We allow for non-referring names, with assignments of references as
at (2).
We adopt a condition on consistency and extensionality of predica-
tions (5).
We modify the evaluation of the universal quantifier as at (6).

We are only drawing distinctions we previously ignored: These semantics
when used in a model in which only names refer give the same evaluation of
wffs as the usual semantics.11

11 So far as I can tell, these semantics are not equivalent to any others proposed as a free
logic; compare Bencivenga, 1986 and Lambert, 1991.



“13epstein”
2005/11/15
page 195

i

i

i

i

i

i

i

i

CLASSICAL LOGIC WITH NON-REFERRING NAMES 195

C.4. Equality

The equality predicate ‘=’ is syncategorematic, a single interpretation for
every model, relative to the universe of the model. So we should give an
interpretation for it when we use non-referring names that is compatible with
the interpretation when all names refer. We shall require that if σ(t) and σ(u)
are both defined, then σ � t = u iff σ(t) is the same object as σ(u).

Now consider:

Pegasus = Marilyn Monroe

This can’t be true, because ‘Pegasus’ doesn’t refer to any thing, while ‘Mari-
lyn Monroe’ does. When one side of an equality refers and the other doesn’t,
the proposition is false. Even taking other semantic values into considera-
tion, two names cannot refer in the same way if one refers to something and
the other doesn’t. Since for every assignment of references and every vari-
able x, σ(x) does refer to something, we’ll also have that σ 2 c = x if c
does not refer.

Now consider:

Pegasus = the horse beloved by Bellerophon

Both sides of the equality symbol are non-referring names. Any reason we
have for saying this equality is true must be beyond the scope of classical
predicate logic, for we have no other semantic value than reference to as-
cribe to names. (In semantics in which referential content is considered, for
example, we might argue that this identity is true because the two sides point
in the same way, regardless of their not having reference.) So just as with
other atomic predications, we take as primitive whether c = d is true when
both c and d do not refer. But restrictions are needed.

First, consider:

Pegasus = Pegasus

Whatever identity means, this must be true: That’s just how we use identity.
This view can be better defended when other semantic values are ascribed
to names, saying, perhaps, that both sides of the equality symbol pick out
in the same way, though they pick out nothing. Further, whatever value we
give for c = d we must give to d = c. And equalities should be transitive,
too. We stray as little as possible from classical predicate logic.

There are some, like Russell, who hold that ‘Pegasus = Pegasus’ should
be false, since ‘Pegasus’ does not refer. We’ll see in Section E how we can
model that view within these semantics.
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196 RICHARD L. EPSTEIN

To summarize, letting σ, τ stand for any assignment of references, t, u, v
for any terms and c, d for any names, we have the following.

Restrictions on the evaluation of the equality predicate

(9) i. If both σ(t) and σ(u) are defined, then σ � t = u iff σ(t) is
the same object as σ(u).

ii. If only one of σ(t) and σ(u) is defined, then σ 2 t = u.
iii. If both c and d do not refer, then for every σ and τ , σ � c = d

iff τ � c = d.
iv. For all t, σ � t = t.
v. For all t and u, σ � t = u iff σ � u = t.

vi. For all t, u, and v, if σ � t = u and σ � u = v, then
σ � t = v.

Condition (5) on consistency and extensionality of predications can now
be more succinctly stated by taking into account the interpretation of the
equality predicate:

(10) For all atomic wffs Q(t1, ..., tn) and Q(u1, ..., un) and for any as-
signments σ and τ , if for each i ≤ n, σ � ti = ui, then

σ � (Q(t1, ..., tn)) iff τ � (Q(u1, ..., un)).

Thus, the semantics for languages with the equality predicate require only
(9) and (10) in addition to the previous semantics.

This completes the description of the semantics for classical predicate
logic with identity and non-referring names.

In Epstein, 2005 I present a mathematical abstraction of these semantics
in which each predicate in a model is identified with its extension, which
is taken to be a set, and the truth of atomic predications is determined by
whether an element or sequence of elements of the universe is an element of
that set.

D. An Axiomatization

I present here an axiomatization of classical predicate logic with equality
and non-referring names for the language;

L(¬,→, ∀, ∃, =, P0, P1, ..., c0, c1, ...).
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CLASSICAL LOGIC WITH NON-REFERRING NAMES 197

The axiomatization has to yield a collection of theorems of classical pred-
icate logic, since every model of classical predicate logic with only refer-
ring names is a model here, too. Hence, every theorem (consequence) of
classical predicate logic with non-referring names must also be a theorem
(consequence) of classical predicate logic.

Propositional Axioms

The axiom schema of PC in L(¬, →), where A, B, C are replaced by predi-
cate logic wffs and the universal closure is taken:

∀...¬A → (A → B)

∀...B → (A → B)

∀...(A → B) → ((¬A → B) → B)

∀...(A → (B → C)) → ((A → B) → (A → C))

Axioms governing ∀

∀...(∀x(A → B) → (∀xA → ∀xB)) distribution of ∀
∀...(∀x∀yA → ∀y∀xA) commutativity of ∀

When x is not free in A, superfluous quantification
∀...(∀xA → A)

∀...(A → ∀xA)

When term t is free for x in A, universal instantiation
∀...(∀xA(x) → A(t/x))

Axioms governing the relation between ∀ and ∃

∀...(∃xA → ¬∀x¬A)

∀...(∀xA(x) → ∃xA(x)) all implies exists

Axioms for Equality

∀x(x = x)

For every n-ary atomic predicate P,
∀...(∧∧i (ti = ui) → (P(t1, ..., tn) → P(u1, ..., un))
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198 RICHARD L. EPSTEIN

Axioms for non-referring names

∀...(∀y(∃x(x = y) → ¬B(y/x)) → ¬∃xB(x))

∀...((A(t/x) ∧ ∃x(x = t)) → ∃xA(x)) existential
generalization

for referring
names

When x is not free in A, superfluous quantification
∀...(∃xA → A)

∀...(A → ∃xA)

Rule modus ponens A,A→B
B

where A and B are closed formulas

In Epstein, 2005 I compare this axiomatization to one for classical predi-
cate logic when all names are required to refer and establish the following,
modifying the usual Henkin-style completeness proof for the case when all
names refer.

Theorem In L(¬, →, ∀, ∃, =, P0, P1, ..., c0, c1, ...) with non-referring
names:

a. Every consistent collection of closed wffs in L has a countable model.
b. For any collection of closed wffs Σ in L, Σ is a complete and consis-

tent theory iff there is a countable model M such that Σ = Th(M).
c. For any model M of L, there is a countable model M∗ such that

Th(M) = Th(M∗).
d. Strong completeness For any collection of closed wffs Γ and closed

wff A, Γ ` A iff Γ � A.
e. Compactness For any collection of closed wffs Γ, Γ has a model iff

every finite subset of Γ has a model.

E. Examples of Formalization

1. Pegasus is a winged horse.
Therefore, something is a winged horse.

Analysis On the usual interpretation of the ordinary English in our models,
the formalization of the example is:



“13epstein”
2005/11/15
page 199

i

i

i

i

i

i

i

i

CLASSICAL LOGIC WITH NON-REFERRING NAMES 199

Pegasus is a winged horse.
∃x (x is a winged horse)

The inference is invalid: In any model in which ‘Pegasus’ does not refer, the
conclusion is false even if the antecedent is true. Existential generalization
fails.

There are some, though, who say Example 1 is valid. This seems to me a
remnant of the idea that the use of any name entails existence of a referent,
which is what we set out to deny. There simply are no winged horses.

That view, though, becomes more respectable if we argue that there is a
difference between ‘there exists’ and ‘there is’ (or ‘something’). The former
requires existence, and it is that which we have modeled with ‘∃’ in our sys-
tem. But the latter does not. That is, the following is invalid:

Pegasus is a winged horse.
Therefore, there exists a winged horse.

But Example 1 and the following are valid:

Pegasus is a winged horse.
Therefore, there is a winged horse.

We can define within our system a generous existence quantifier to model
that view of ‘there is’:

∃GxA(x) ≡Def ¬∀x¬A(x)

Then the following is valid:

Pegasus is a winged horse.
∃Gx (x is a winged horse)

When x is the single variable free in A and c is a name, the following is valid:

A(c/x) � ∃GxA(x)

2. Everything that is a horse is a mammal.
Pegasus is a horse.
Therefore, Pegasus is a mammal.
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200 RICHARD L. EPSTEIN

Analysis On the usual interpretation of the ordinary English, the formaliza-
tion of Example 2 is:

∀x (x is a horse → x is a mammal)
Pegasus is a horse.

Pegasus is a mammal.

This is valid: It follows from universal instantiation and modus ponens.
Some say the example is not valid. We could have a model in which the

universe is all animals that have ever lived, and then the premises are true
even though ‘Pegasus’ does not refer, while the conclusion is false. On this
view, ‘everything’ is interpreted as meaning ‘Every existing thing’: ‘all’ in-
cludes ‘and there exists’. That is the interpretation of ‘all’ which is rejected
in standard classical logic formalizations: ‘All cats that are dogs are loyal’
is counted as true. Mathematicians use ‘all’ without including ‘and there
exists’.

Nonetheless, we can model the view that ‘all’ includes ‘and there exists’
within this system by defining a restricted universal quantifier:

∀RxA(x) ≡Def ¬∃x¬A(x)

Then we would formalize Example 2 as:

∀Rx (x is a horse → x is a mammal)
Pegasus is a horse.

Pegasus is a mammal.

This is invalid: the premises are true in the model described above, but the
conclusion is false. Instantiation fails for the restricted universal quantifier.

3. Everything that is loved by Bellerophon is a winged horse.
Pegasus is loved by Bellerophon.
Therefore, something that is loved by Bellerophon is a winged horse.

Analysis On our interpretation of the ordinary English in our models, the
formalization of Example 3 is:

∀x (x is loved by Bellerophon → x is a winged horse)
Pegasus is loved by Bellerophon.
∃x (x is loved by Bellerophon ∧ x is a winged horse)
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CLASSICAL LOGIC WITH NON-REFERRING NAMES 201

This is invalid: the conclusion could be false in a model if there are no
winged horses, yet the premises could be true.

However, we can use the other ways to interpret the quantifiers described
in the last two examples to formalize this example:

∀x (x is loved by Bellerophon → x is a winged horse) valid
Pegasus is loved by Bellerophon.
∃Gx (x is loved by Bellerophon ∧ x is a winged horse)

∀Rx (x is loved by Bellerophon → x is a winged horse) valid
Pegasus is loved by Bellerophon.
∃x (x is loved by Bellerophon ∧ x is a winged horse)

∀Rx (x is loved by Bellerophon → x is a winged horse) valid
Pegasus is loved by Bellerophon.
∃Gx (x is loved by Bellerophon ∧ x is a winged horse)

4. Pegasus is Pegasus.

Analysis On our interpretation of the ordinary English, this is formalized as
Pegasus = Pegasus. In all our models this is true: It’s an instance of identity,
∀x(x = x), which is valid.

Some say the example is false because Pegasus does not exist.12 We can
model that view by defining a restricted equality:

x =R x ≡Def ∃y(y = x ∧ x = x)
where y is the least variable different from x

Then ∀x(x =R x) will fail in any model in which there is a non-referring
name. We can have ‘Pegasus = Pegasus’ is true, but ’Pegasus =R Pegasus’
is false.

Similarly, given any predicate A(x) with the single variable x free, we can
define the restriction of the predicate A to be:

AR(x) ≡Def ∃y(y = x ∧ A(x))
where y is the least variable that does not appear in A(x)

Then AR(c/x) is false for any name c that does not refer.

12 See the discussion in Chapter V.B of Epstein, 1994.
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202 RICHARD L. EPSTEIN

F. Classical Predicate Logic with Names for Partial Functions

F.1. Partial functions in mathematics

Mathematicians regularly use function names to create terms that name noth-
ing. Such function names are meant to stand for partial functions, or as
mathematicians say, functions whose domain is not the entire universe. For
example, the name ‘tan’ stands for the tangent function in studies of the real
numbers, and ‘tan(π/2)’ has no reference, nor does ‘tan(x)’ when x stands
for −3π/2. The name ‘−’ is used for the subtraction function on natural
numbers, and ‘5 − 7’ stands for no natural number.

Mathematicians try to avoid using compound names that do not refer by
saying a function such as tangent is defined only for numbers other than
mπ + nπ/2 for m any integer and n an odd integer; an expression such as
‘tan(π/2)’ is not a legitimate term. But to follow that line in our formaliza-
tions creates a serious problem. It is not trivial to determine for what values
cot(tan(

√

x + sin(y + π/3) + cot(z)) is defined. If to decide whether a
concatenation of symbols of the formal language is a term we have to be
able to decide an existence question, then the semantics become thoroughly
enmeshed with the formation rules of the language. We would not be able to
give an inductive definition of the formal language.

In this section I’ll present a formal system for reasoning about partial func-
tions in which compound terms need not refer.

F.2. Semantics for partial functions

The semantics for languages with names for partial functions is a modifi-
cation of the semantics for languages with non-referring singular names.13

Assignments of references are partial functions from terms to elements of
the universe that satisfy:

(11) i. For every variable x, σ(x) is defined.
ii. For every closed term u, if σ(u) is defined, then for every τ ,

τ(u) is defined and τ(u) is the same object as σ(u).
iii. For every term t and every function name f in the lan-

guage, if σ(t) is not defined, then for every sequence of terms
t1, ..., t, ..., tn, σ(f(t1, ..., t, ..., tn)) is not defined.

13 See Chapter IX.E of Epstein, 1994 for a survey of ways that have been proposed to
reason using descriptive phrases such as ‘the wife of –’ as partial functions.



“13epstein”
2005/11/15
page 203

i

i

i

i

i

i

i

i

CLASSICAL LOGIC WITH NON-REFERRING NAMES 203

Condition (iii) reflects the usual practice that, for example, sin(tan(π/2))
is undefined because tan(π/2) is undefined.

The condition on the consistency and extensionality of predications (10)
remains the same, since it was previously framed for any non-referring terms.
But now we add a similar condition that functions are extensional:

(12) For all terms f(t1, ..., tn) and f(u1, ..., un) and for any assignment σ,
if for each i ≤ n, σ � ti = ui, then σ � f(t1, ..., tn) = f(u1, ..., un).

However, we need something more:

(13) Assignments of references that agree on all the variables in two terms
agree on on those terms.

This seems an essential part of what we mean by saying that applications of
functions are extensional. Yet the restrictions (9) on the equality predicate
plus (12) do not give us (13), for we could have a model satisfying both (9)
and (12) in which c and d do not refer, σ(x) is the same object as τ(x), yet
σ � f(x, c) = d while τ 2 f(x, c) = d. So we modify the restriction on the
evaluation of the equality predicate (9) to read:

(14) (9.i–vi) except that (iii) is replaced by:
iiifunctions. If for every variable x that appears in t or u, σ(x) is the

same object as τ(x), then σ � t = u iff τ � t = u.

The only other modification is to (6) to obtain the evaluation of universal
quantifiers for languages with non-referring names and partial functions:

(15) σ � ∀x A iff i. For every assignment of references τ that differs
from σ at most in what it assigns as reference to
x, τ � A(x).

and
ii. For every τ and every term t free for x in A, τ �

A(t/x).

Clause (ii) requires that we survey not only all elements of the universe as we
did when names refer, but all terms, too, along with all assignments to those.
We are only drawing distinctions that we previously ignored. Except for
allowing non-referring names and partial functions in our language, there is
nothing new in our semantics for classical predicate logic with non-referring
names and partial functions.
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F.3. Examples

a.
The extended real number system consists of the real number sys-
tem to which two symbols, +∞ and −∞ have been adjoined, with
the following properties:

(a) If x is real, then −∞ < x < +∞, and
x + ∞ = +∞, x −∞ = −∞, ...

Rudin, 1964

We can consider a complex number as having the form a+ bi where
a and b are real numbers and i, which is called the imaginary unit,
has the property that i2 = −1. ...

In performing operations with complex numbers we can proceed
as in the algebra of real numbers, replacing i2 by −1 when it occurs.

1. Addition (a+bi)+(c+di) = a+bi+c+di = (a+c)+(b+d)i
Spiegel, 1964

Mathematicians often aren’t clear whether they’re using symbols such as
‘∞’ and ‘i’ as names of things that exist or as nonreferring names, simply
giving the rules for which atomic predications using them are true and which
are false.

The main reason for introducing the symbols ‘+∞’ and ‘−∞’, however, is
to have values for functions that would otherwise be undefined. For example,
tan(π/2) = ∞ and tan(3π/2) = −∞. If we read the new symbols as non-
referring names, we can model such reasoning with the semantics above. We
can model reasoning with expressions such as ‘tan(π/2) = tan(π + π/2)’
and ‘tan(π/2) 6= tan(3π/2)’.

b. In recursive function theory, mathematicians use a notion of equality for
non-referring terms:

f(x) ' g(x) ≡ f(x) and g(x) are both defined and equal,
or both are undefined

All undefined terms are taken as equal, since undefined terms all arise in the
same way: a calculation does not halt. We can model such reasoning with
the semantics given above.
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c. Here is a simple model that shows how complicated these semantics can
become.

U = {1, 2, 3, 4, 5}
referring names: none.
non-referring names: a, b, c, d.
function symbol f Interpret this as the partial function f ,

where f (1) = 2 and f (3) = 3.
equality The evaluation is the least collection of pairs

of assignments of references and equality wffs
given the conditions of (14) plus, for all σ:

σ � a = b σ � f(a) = f(d)
σ 2 a = c σ � f(b) = f(c)
(so by 9.vi, σ 2 b = c) σ � f(c) = f(x) when σ(x) = 2
σ 2 a = d σ � f(f(c)) = f(x) when σ(x) = 4
σ 2 b = d
σ 2 c = d

binary predicate symbol P Interpreted as P , where for every σ,
σ � P (x, y)
(i.e., P is interpreted as the universal
function on U) and for all σ:

σ 2 P (a, y) when σ(y) = 4
σ 2 P (x, c) when σ(x) = 2
σ 2 P (f(x), c) when σ(x) = 4

d. Modify the previous model by first taking A, an undecidable set of natural
numbers . Writing ‘fn’ for the iteration n times of f , set:

σ � fn(c) = f(x) iff σ(x) = 4 for n > 2 and n ∈ A

Even though the resulting model M has a finite universe and only finitely
many names, functions, and predicates, the set of wffs true in M is not
decidable. In particular, {n : M � ∃x(fn(c) = f(x))} is not decidable.

In contrast, for any model in which there are no partial functions and which
has a finite universe and only finitely many names, functions, and predicates,
the set of wffs valid in the model is decidable. Hence, we have shown the fol-
lowing, which is in contrast to classical predicate logic with referring names



“13epstein”
2005/11/15
page 206

i

i

i

i

i

i

i

i

206 RICHARD L. EPSTEIN

and total functions.14

Theorem Functions cannot in general be translated into predicates in clas-
sical predicate logic with non-referring names and partial functions.

We could ensure the translation of functions into predicates by allowing for
partial predicates, saying, for example, that ‘Pegasus is bigger than Juney’
has no truth-value. But that is a major departure from classical logic which
does not seem justified by the enjoinder to make logic free of existential
assumptions (see the discussion below (4) above).

To my knowledge, no one proposes models as complicated as (d). Stip-
ulations are usually made, such as that for all σ, for all non-referring terms
t, u, σ 2 t = u, or as in (a) above, certain symbolic elements are added to
the universe that determine the collection of equalities in a constructive man-
ner. The evaluations of predicates are also usually simplified, for example,
requiring σ 2 P n

i (t1, ..., tn) if σ(ti) is not defined for some i.

F.4. An axiomatization

To axiomatize classical predicate logic with non-referring names and partial
functions we add just one axiom scheme to our previous list.

Axioms for functions

For every n-ary function symbol f,
∀...(∧∧i (ti = ui) → (f(t1, ..., tn) = f(u1, ..., un)).

Since this axiom is true in all models in which all names refer and all
functions are total, if Γ ` A in this axiomatization, then A is a consequence
of Γ in classical predicate logic.

The proof of strong completeness for this logic is presented in Epstein,
2005, where a mathematical abstraction of the semantics is also given.

Advanced Reasoning Forum
P.O. Box 635

Socorro, NM 87801
USA

E-mail: rle@AdvancedReasoningForum.org

14 Compare Chapter VIII.E of Epstein, 2005.
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