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THE AGM THEORY
AND INCONSISTENT BELIEF CHANGE

KOJI TANAKA∗

Abstract
The problem of how to accommodate inconsistencies has attracted
quite a number of researchers, in particular, in the area of database
theory. The problem is also of concern in the study of belief change.
For inconsistent beliefs are ubiquitous. However, comparatively lit-
tle work has been devoted to discussing the problem in the literature
of belief change. In this paper, I examine how adequate the AGM
theory is as a logical framework for belief change involving incon-
sistencies. The technique is to apply to Grove’s sphere system, a se-
mantical representation of the AGM theory, logics that do not infer
everything from contradictory premises, viz., paraconsistent logics.
I use three paraconsistent logics and discuss three sphere systems
that are based on them. I then examine the completeness of the pos-
tulates of the AGM theory with respect to the systems. At the end, I
discuss some philosophical implications of the examination.

1. Inconsistent Beliefs

When Alchourrón, Gärdenfors and Makinson (1985) (hereafter AGM) pro-
posed their theory of belief change, known as the AGM theory, they defined
a doxastic state (state of beliefs) as a set and the dynamics of beliefs as
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114 KOJI TANAKA

changes in the set. For AGM, not all sets are belief sets. Belief sets are
special kind of sets that satisfy the following two criteria (Gärdenfors (1988)
p. 22):

1. The set must be consistent.
2. The set must be logically closed.

AGM held that a belief set containing inconsistent beliefs could not be held
by a rational agent. When Gärdenfors (1988) re-presented the AGM theory
in his canonical text (once upon a time at least), it became apparent that the
AGM notion of rationality was mainly driven by consistency.

This consistency driven rationality of beliefs is mainly due to the underly-
ing logic that the AGM theory employs, viz., classical logic. Classical logic
seems to be useful as AGM show. Yet, since a belief set is closed under
logical consequence, any belief is contained in the belief set once a contra-
dictory belief such as A∧¬A is involved. For the logical principle ex contra-
dictione quodlibet (ECQ), that anything follows from inconsistent premises
(A,¬A |= B for any A and B) is valid in classical logic. Consequently, be-
lief sets containing contradictions are trivial, i.e., containing every sentence
of the language. Hence anyone who holds inconsistent beliefs is thought of
as being irrational. For his/her beliefs are trivial.

This classical view of rationality has been criticised, for example, by Priest
(1987).1 The main objection, in the context of beliefs, is notoriously that
beliefs are often inconsistent yet may be non-trivial. This does not mean that
we often believe in ‘true contradictions’ or have beliefs which are both true
and false. But we often catch ourselves having a belief which is inconsistent
with another belief. (See the example given in Lewis (1982).) Moreover,
inconsistent beliefs may even be held rationally. For example, consider the
paradox of the preface. People, after thorough research, write a book in
which they claim in the preface A1, ..., An with rational reasons to believe
them. But they are aware that no books contain no falsehoods. So they
believe ¬(A1 ∧ · · · ∧ An) too. Clearly, the beliefs are inconsistent. Yet they
believe them rationally and the beliefs are non-trivial.

Whether or not one can rationally hold inconsistent beliefs, the imposition
of consistency criterion on beliefs is too strong a requirement for a logi-
cal framework of belief change. There may be some empirical reasons for
thinking that our beliefs are consistent. Our beliefs may indeed turn out to
be consistent. Yet this is a matter of empirical investigation. There are no a
priori or logical reasons to think that our beliefs cannot be inconsistent. The
only logical reason seems to be given once we collapse beliefs into knowl-
edge. There may be logical reasons for the consistency of knowledge. Yet it
is not clear how to motivate collapsing beliefs into knowledge. Consistency

1 See also Priest (2001) and Tanaka (1998) in the context of belief change.
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is thus a too strong requirement for beliefs in a logical framework of belief
change, whether we subscribe to classical logic or not.

Logical closure, on the other hand, seems to be a necessary feature of a
logical framework of belief change. Against this criterion, Fuhrmann (1991),
Hansson (1989), Hansson (1992) and Nebel (1992), for example, have pro-
posed the approach which is based on belief bases that are not closed under
logical consequence. Their approach is tantamount to separating explicit
beliefs from implicit beliefs which are derived from the explicit beliefs, or
separating relevant beliefs from irrelevant beliefs. Based on this approach,
several formal techniques have been developed in recent years to deal with
inconsistent beliefs; for example, Chopra and Parikh (2000), Hansson and
Wassermann (2002) and Wassermann (2003). These techniques allow im-
plicit or irrelevant inconsistencies to arise in the belief system as a whole by
‘localising’ explicit or relevant consistent belief bases.

There are two things that should be said about the above approach. Firstly,
even though the approach may have some advantages, if we give up logical
closure, it is not clear that our attempt will provide a logical framework
for belief change. It is true that the belief base approach does not give up
logical closure all together; implicit beliefs, or all beliefs (whether relevant
or irrelevant), are represented by logically closed sets. Yet the fundamental
units of the framework are logic free: as Rott (2001) points out, the approach
invokes extra-logical factors. Thus, the question arises, in what sense are we
providing a logical framework?

Secondly, the belief base approach itself is not a way to handle inconsis-
tent beliefs in a sensible manner. The above mentioned techniques to handle
inconsistencies are based on the assumption that consistent belief bases can
be isolated. However, this seems too strong an assumption for a logical
framework that can be said to accommodate inconsistent beliefs in a sensi-
ble manner. To see this, consider the Liar sentence: This sentence is false.
Though there is a long history of debates concerning the truth value of the
sentence, if we admit that the sentence is both true and false, a belief about
this sentence itself is inconsistent. Hence, if we decide to revise our belief
about the Liar sentence, we have to deal with one inconsistent belief. It
is not clear how to localise consistency in this case. Moreover, even if we
assume that belief bases are consistent, at some stage we have to consider in-
ferring beliefs from contradictory beliefs in order to sensibly accommodate
inconsistent beliefs. In other words, in order to present a logical model of
belief change that involves inconsistencies, we have to develop a technique
to allow such beliefs in a logically closed set.

For these reasons, I develop in this paper an approach to accommodate
inconsistent beliefs in a sensible manner that has been overlooked by the
advocates of the belief base approach. Specifically, I represent beliefs as a
logically closed set without separating two kinds of beliefs. However, I do
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116 KOJI TANAKA

not impose the criterion that the set must be consistent. Thus, I am concerned
with a belief set defined as follows:

Definition 1 : (Belief Set) Let K be a set of sentences. Then K is a belief set
iff K is logically closed, i.e., K = Cn(K).

In order to accommodate inconsistent beliefs, I employ paraconsistent log-
ics that do not validate ECQ (A,¬A |= B for any A and B). As Rott (2001)
notes, this paraconsistent approach is not the same as a belief base approach.
The former involves only logical factors; the latter invokes extra-logical fac-
tors. Hence the paraconsistent approach to belief change developed in this
paper provides a logical framework of belief change. And to provide a logi-
cal framework is the point of the logical study of belief change.

2. The AGM Theory and Inconsistent Beliefs

Against the consistency-driven notion of rationality adopted by AGM, Priest
(2001) proposes an alternative framework for belief change. His approach
is motivated by the thought that the notion of rationality involves more than
consistency. Priest proposes a framework that considers multiple criteria
for rationality such as a low degree of ad-hocness, fruitfulness, explanatory
power, unifying power as well as consistency. As a result, accepting incon-
sistency may turn out to score a high degree of rationality.

Perhaps, proposing an alternative framework to the AGM theory is the
right path to take in formalising a theory of belief change involving incon-
sistent beliefs. However, the question of how incompatible the AGM theory
is with the paraconsistent approach remains to be answered. As a step to-
wards answering this question, I examine the AGM theory in the presence
of inconsistent beliefs. The technique is to appeal to a semantic representa-
tion of the AGM theory, viz., Grove’s sphere system, which is known to be
sound and complete with respect to the AGM postulates. Instead of using
Grove’s original system which is based on classical logic, I construct three
sphere systems based on three paraconsistent logics. I present semantics for
dealing with inconsistent belief change and examine which of the AGM pos-
tulates fail to be complete with respect to the semantics. That is, I examine
how inadequate the formal AGM theory is if a belief set is allowed to be
inconsistent.2

2 Soundness does not concern us here since the adequacy of the paraconsistent sphere
systems with respect to the AGM postulates is not what is examined in this paper.
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3. Grove’s Systems of Spheres

In presenting a semantic model of the AGM theory, Grove (1988) introduces
systems of spheres that are similar to the sphere semantics for counterfactuals
proposed by Lewis (1973). He shows that the systems of spheres are directly
related to the belief change postulates for the three operations proposed by
AGM:

Expansion

(K+1) K+
A is a belief set.

(K+2) A ∈ K+
A .

(K+3) K ⊆ K+
A .

(K+4) If A ∈ K then K+
A = K.

(K+5) If K ⊆ H then K+
A ⊆ H+

A .
(K+6) For all belief sets K and all sentences A, K+

A is the
smallest belief set that satisfies (K+2)–(K+5).

Contraction

(K−1) K−

A is a belief set.
(K−2) K−

A ⊆ K.
(K−3) If A 6∈ K then K−

A = K.
(K−4) If 6` A then A 6∈ K−

A .
(K−5) If A ∈ K then K ⊆ (K−

A )+A.
(K−6) If ` A ↔ B then K−

A = K−

B .
(K−7) K−

A ∩ K−

B ⊆ K−

A∧B .
(K−8) If A 6∈ K−

A∧B then K−

A∧B ⊆ K−

A .

Revision

(K∗1) K∗

A is a belief set.
(K∗2) A ∈ K∗

A.
(K∗3) K∗

A ⊆ K+
A .

(K∗4) If ¬A 6∈ K then K+
A ⊆ K∗

A.
(K∗5) K∗

¬A is trivial iff ` A.
(K∗6) If ` A ↔ B then K∗

A = K∗

B .
(K∗7) K∗

A∧B ⊆ (K∗

A)+B .
(K∗8) If ¬B 6∈ K∗

A then (K∗

A)+B ⊆ K∗

A∧B .

The first postulates of each operation, i.e., (K+1), (K−1) and (K∗1), ensure
that +, − and ∗ are functions that map a pair of a belief set and a sentence
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118 KOJI TANAKA

to a new belief set that satisfies the criteria for a belief set. Though they are
important, these postulates are of a little interest to us in this paper. These
first postulates will not be considered in the following sections.

To make this paper self-contained, I rehearse Grove’s systems of spheres
and their relationship to the AGM theory. Let ML be a set of all maximal
consistent sets of sentences of a language L. Then any belief set K can be
represented by a subset |K| of ML. |K| consists of all maximal consistent
sets in which all the sentences in K are contained. Because of isomorphism
between maximal consistent sets and models, |K| can be thought of as a set
of models of |K|, and formally defined as:

|K| = {m ∈ ML : m |= K}.

The set of models of a sentence A, |A|, can be defined in a similar fashion.
A system of spheres, S , centred on some subset X of ML, is a collection

of subsets, called spheres, of ML. In our context, we only consider the cases
where X is |K|. Then S has to satisfy the following conditions:

(S1) S is totally ordered by ⊆; that is, if S, S ′ ∈ S , then S ⊆ S ′ or
S′ ⊆ S.

(S2) |K| is the ⊆-minimum of S; that is, |K| ∈ S and if S ∈ S then
|K| ⊆ S.

(S3) ML is in S (and so the largest element of S).

(S4) If A is a sentence and there is any sphere in S intersecting |A|, then
there is a smallest sphere in S intersecting |A|.

Intuitively, a system of spheres centred on |K| is a series of sets of possible
worlds which, starting from |K|, covers every possible world or every way
in which the belief set K could be. And each set, represented by a sphere,
gives a measure of closeness to |K| which is ordered by ⊆.

Expansion K+
A , contraction K−

A and revision K∗

A of K by A can then be
defined by the systems of spheres. Let t be a one place function. Then t(S)
defines the set of all formulas in all the elements in S ⊆ ML. So t(S) is the
theory

⋂
S. Precisely, t(S) is defined as follows:

t(S) = {A : m ∈ S ⇒ m |= A}.

Then t(S) will be a belief set. Grove uses the function t to define the be-
lief change functions that are sound and complete with respect to the AGM
postulates.
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THE AGM THEORY AND INCONSISTENT BELIEF CHANGE 119

Grove’s proof for soundness contains an error, as is reported in Priest,
Surendonk and Tanaka (1996) and Priest and Tanaka (1997). There are sev-
eral ways of repairing it. The most general way is to require that any sphere,
S ⊆ ML, is an elementary class, which is defined as follows:

Definition 2 : (Elementary Class) S is an elementary class iff there is a sen-
tence A such that S = |A|.

This means that every sphere including |K| for any K represents a finitely
axiomatisable theory. Note that elementary classes have the following prop-
erties:

Lemma 1 : For any elementary classes S1 and S2,

(EC1) S1 ∩ S2 is an elementary class.
(EC2) S1 ∪ S2 is an elementary class.3

Before presenting the relationship to the AGM theory, we require the fol-
lowing definitions. For any sentence A, if |A| intersects any sphere (i.e.,
any elementary class) in S , the condition (S4) ensures that there will be
some spheres in S which intersects |A|, yet there is exactly one sphere S(A)
which is smaller than any other such sphere. If |A| does not intersect any
spheres, which by (S3) occurs only if |A| = φ, then S(A) is taken to be ML.

By using S(A), we can define the closest worlds in ML to |K| that play
a crucial role in the systems of spheres. Such worlds are represented by the
set C(A), defined as:

C(A) = |A| ∩ S(A).

It is worth noting that, since |A| and S(A) are elementary classes, C(A) is
also an elementary class, as can easily be shown.

3.1. ... and Expansion

We are now in a position to define the belief change functions in terms of the
systems of spheres. For expansion, K+

A is defined as:

Definition 3 : K+
A = t(|K| ∩ |A|).

3 Proofs for all the theorems and the lemmas in this paper are included in the Appendix.
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Then the following theorem shows that K+
A given by the above definition

satisfies the AGM expansion postulates.

Theorem 1 : Let S be any system of spheres in ML centred on |K|. If an ex-
pansion function K+

A is defined as in Definition 3 then the postulates (K+2)
– (K+6) are satisfied.

3.2. ... and Contraction

For contraction, K−

A is defined as follows:

Definition 4 : K−

A = t(|K| ∪ C(¬A)).

Theorem 2 : Let S be any system of spheres in ML centred on |K|. If a
contraction function K−

A is defined as in Definition 4 then the postulates
(K−2) – (K−8) are satisfied.

3.3. ... and Revision

Now for revision, K∗

A is defined as follows:

Definition 5 : K∗

A = t(C(A)) = t(|A| ∩ S(A)).

Theorem 3 : Let S be any system of spheres in ML centred on |K|. If a
revision function K∗

A is defined as in Definition 5 then the postulates (K∗2)
– (K∗8) are satisfied.

4. Relevant Systems

The development of relevant logics was pioneered by Anderson and Bel-
nap (1975). They proposed a number of systems in proof theoretic form.
There are several ways to introduce relevant logics. I choose one that seems
to be simple to grasp due to the simplified semantics provided by Priest and
Sylvan (1992) and Restall (1993). An interpretation for the language is a
5-tuple 〈g, W, R, ∗, ν〉, where W is a set of worlds; g ∈ W (the base world);
R is a ternary relation on W ; ∗ is a one place function from W to W ; and ν
is an evaluation function that assigns to each pair of world, w, and proposi-
tional parameter, p, a truth value νw(p) ∈ {1, 0}. Truth values at worlds are
then assigned to formulas by the following conditions:

νw(¬A) = 1 iff νw∗(A) 6= 1
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νw(A ∧ B) = 1 iff νw(A) = 1 and νw(B) = 1

νw(A ∨ B) = 1 iff νw(A) 1 or νw(B) = 1

νg(A → B) = 1 iff for all x ∈ W , if νx(A) = 1 then νx(B) = 1

and for x 6= g;

νx(A → B) = 1 iff for all y, z ∈ W such that Rxyz,
if νy(A) = 1 then νz(B) = 1.

Semantic consequence is then defined in the usual way in terms of truth
preservation at g:

Σ |= A iff for all interpretations 〈g, W, R, ν〉, if νg(B) = 1

for all B ∈ Σ then νg(A) = 1.

This system is called BM. To obtain semantics for B, ∗ is required to satisfy
the condition that w∗∗ = w in each interpretation. Then it may be that
νw(A) = νw(¬A) = 1 and that νw(A) 6= 1 and νw(¬A) 6= 1. Extensions of
B, such as R and T, are obtained by placing conditions on the accessibility
relation R.4

4.1. Systems of Spheres and Relevant Logics

We now construct the system of spheres that is based on relevant logics,
in particular the relevant logic B. The replacement of classical logic by a
relevant logic leads to two important changes to Grove’s systems of spheres.5

Firstly, instead of maximal consistent sets of sentences, the main focus is
prime theories, where a prime theory is defined as follows:

4 For the simplified semantics for the extensions of B, see Restall (1993).

5 These changes are also discussed by Restall and Slaney (1995) who show, inter alia,
that the system of spheres based on FDE, a fragment of relevant logic containing just ¬, ∧
and ∨, is sound with respect to all of the AGM postulates. Note, however, that there are
some differences between the FDE sphere system presented by Restall and Slaney and the
relevant sphere system developed in this paper. Firstly, Restall and Slaney employ a four-
valued semantics instead of a two-valued semantics. Secondly, their language contains two
propositional constants, ⊥ and >, which denote the ‘false only’ truth value and the ‘true
only’ truth value respectively. The introduction of ⊥ and > gives rise to the possibility that a
belief set be trivial. The approach adopted in this paper is to disallow that possibility.
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122 KOJI TANAKA

Definition 6 : (Prime Theory) Let Σ be a set of sentences. Σ is a prime
theory iff it satisfies the following conditions:

1. if A, B ∈ Σ then A ∧ B ∈ Σ
2. if ` A → B then (if A ∈ Σ then B ∈ Σ)
3. if A ∨ B ∈ Σ then A ∈ Σ or B ∈ Σ

for some sentences A and B.

The semantics of relevant logic ensures that the set of sentences made true by
an evaluation function is a prime theory. Hence such sets replace maximal
consistent sets in systems of spheres.6 Among all prime theories of a lan-
guage, there is a theory in which all sentences of the language are true (the
trivial theory), denoted by ⊥, and a theory in which no sentences are true
(or every sentence is not true and not just false), (the empty theory), denoted
by >. Because of these theories, systems of spheres have some properties
different from those that they have in classical case, as is shown below.

Secondly, the definition of the contraction function has to be changed.
In the original definition, the set |K| ∪ C(¬A) determines the belief set
K−

A . However, this definition is not suitable to the systems of spheres which
are based on prime theories. The first reason is that a prime theory that
contains A may also contain ¬A. As a result, K−

A could still contain A. The
second is that A ∨ ¬A is true in a prime theory where ¬A is true. So if
the original definition is used, the systems of spheres based on relevant logic
gives that A∨¬A ∈ K−

A . Yet this is not in accordance with the semantics of
relevant logic which allows incompleteness (and inconsistencies). One way
to overcome these problems is to define K−

A as |K| ∪ Π where Π is a class
of prime theories m in which A fails (or not true). Then if there is such an
m, A 6∈ K−

A . Also m could reject A ∨ ¬A, and so it could well be the case
that A ∨ ¬A 6∈ K−

A .
By applying the changes mentioned in the previous section, we construct

the system of spheres, so that the sphere semantics is suitable for the theory
of belief change based on relevant logics, B at least. Let MR be a set of
all prime theories of a language L. Then, as mentioned above, ⊥ ∈ MR

and > ∈ MR. ⊥ ∈ MR ensures that every S ⊆ MR intersects every other
sphere in MR. For ⊥ is an element of all spheres in MR. In particular, |K|
intersects every S ⊆ MR.

A system of spheres, SR, centred on |K|, is a collection of subsets of MR.
Let |A| be the complement of |A|, i.e., |A| = MR − |A|. Define S(A) to

6 Models and maximal consistent sets are interchangeable in classical logic because of the
isomorphism between them. In relevant logics, however, prime theories and models are quite
distinct. In this paper, I consider relevant sphere systems that are based on prime theories.
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be the smallest sphere in SR, which intersects |A|. Then SR satisfies the
conditions (S1) – (S3) and the following which is a stronger form of (S4):

(S4)′ If A is a sentence and there is any sphere in SR intersecting |A| or
|A|, then there is a smallest sphere in SR intersecting |A| or |A| re-
spectively.

Remark: When relevant logics are applied to the theory of belief change,
belief sets are not closed under logical consequences. They are closed under
provable entailments (see the definition of prime theory). So strictly speak-
ing, (K+1), (K−1) and (K∗1) do not hold. However, as is shown below,
this difference between classical and relevant logics does not produce harm-
ful consequences.

4.1.1. ... and Expansion

As in Grove’s original formulation, the AGM belief change operations can
be defined in the systems of spheres based on relevant logics. For expansion,
the classical definition serves in the relevant case. So an expansion function
is defined as in Definition 3 (K+

A = t(|K| ∩ |A|)).

Theorem 4 : Let SR be any system of spheres in MR centred on |K|. If
an expansion function K+

A is defined as in Definition 3 then the postulates
(K+2) – (K+6) are satisfied.

4.1.2. ... and Contraction

As is mentioned above, we cannot appeal to prime theories where ¬A is
true in defining contraction. The closest theories to |K| to be considered in
contraction must be the complement of the prime theories in which A is true.
So we have to consider a class of prime theories in which A is not true and
not just false. We define this class, C(A), as follows:

C(A) = S(A) ∩ |A|.

Classically the complement of an elementary class, S, is also an elemen-
tary class. For if S = |A| for some sentence A then S = |¬A| and so S is an
elementary class. Yet in a relevant logic even though S = |A|, S 6= |¬A|. In
fact, there is no sentence B such that S = |B|. To verify this claim, suppose
that S = |A| and S = |B| for some sentences A and B. Then for all m ∈ S,
m |= A, and for all n ∈ S, n |= B. But this is impossible, for > must be in
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either S or S. So if S = |A| then there is no sentence B such that S = |B|.
The preceding argument shows that |A| is not an elementary class. Hence
there is no guarantee that C(A) is an elementary class.

We are now in a position to define contraction in the systems of spheres
based on a relevant logic. For contraction, we define a contraction function
as follows:

Definition 7 : K−

A = t(|K| ∪ C(A)).

Note that, as we saw above, C(A) is not an elementary class. So |K|∪C(A)
is not an elementary class in general.

Theorem 5 : Let SR be any system of spheres in MR centred on |K|. If a
contraction function K−

A is defined as in Definition 7 then the postulates
(K−2) – (K−4) and (K−6) – (K−8) are satisfied.

The classical proof for (K−5) does not hold in the relevant case. Yet
whether or not it is satisfied is an open question at time of writing. This
is mainly because of the assumption that every S ⊆ MR is an elementary
class. If this assumption is abandoned, a counter-example for (K−5) can
be established.7 Yet the assumption is needed in order to show that Grove’s
(classical) systems of spheres is sound with respect to the AGM postulates.8

Makinson (1987) calls contraction operations that do not hold (K−5) with-
drawals. Perhaps, a relevant sphere system satisfies only withdrawal rather
than contraction. However, I leave a discussion of (K−5) for another occa-
sion.

4.1.3. ... and Revision

An intuitive understanding of revision is somewhat related to the Ramsey
Test. (See Gärdenfors (1988) for the relationship between the AGM theory
and the Ramsey Test.) A belief set K is revised when the input sentence

7 A counter-example: K = t(|p|) and A = p ∨ q, and |p| and MR are the only members
of SR. Then it can be checked that p ∈ K. Suppose that we have the following easy to prove
lemma: if S = |A| then > ∈ S. By this lemma, > ∈ C(p ∨ q), and so K−

A
= φ. But then

p 6∈ (K−

A
)+
A

, since 6` p ∨ q → p. Hence K 6∈ (K−

A
)+
A

.

8 There is another solution to the problem of Grove’s proof. This solution does not require
introducing the elementary class assumption. See Priest, Surendonk and Tanaka (1996) and
Priest and Tanaka (1997) for this solution. Yet I do not pursue this approach in this paper.
For it works only in the classical case.
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A would not commit one to believe all of the beliefs together with A; in
particular, A contradicts the beliefs that are already in K. In such cases it
is classically necessary to revise K by giving up some beliefs in order to
maintain consistency. For an inconsistent belief set is trivial. The need for
the revision operation is thus driven by consistency. Yet if the concept of
inconsistency is separated from that of triviality, the need for revision seems
to disappear. The new belief A may simply be added to K without concern
for the consistency of the resulting belief set. Hence a relevant logic, which
allows inconsistency without trivialising the belief set, does not seem to give
rise to the need to distinguish revision from expansion.9

This is exactly what the relevant sphere semantics shows. The semantics
of relevant logic ensures that ⊥ ∈ MR and > ∈ MR. In terms of systems
of spheres, ⊥ is an element of all spheres, i.e., all elementary classes, and
> is an element of no spheres, i.e., no elementary classes. Thus in MR,
|K| ∩ |A| 6= φ for all sentences A. So the smallest sphere which intersects
|A|, S(A), is always |K| for all A. Hence by defining a revision function as
in the classical case, i.e., Definition 5 (K∗

A = t(C(A)) = t(|K| ∩ S(A))),
we have the following lemma:

Lemma 2 : K∗

A = K+
A if the underlying logic is a relevant logic.

Though the revision functions are shown to be the same as the expansion
functions, the spirit of revision is satisfied as the following theorem shows.

Theorem 6 : Let SR be any system of spheres in MR centred on |K|. If a
revision function K∗

A is defined as in Definition 5 then the postulates (K∗2)
– (K∗4) and (K∗6) – (K∗8) are satisfied.

As was expected, (K∗5), which allows the belief set to be trivial, fails in
the relevant systems of spheres.

Theorem 7 : Let SR be any system of spheres in MR centred on |K|. If a
revision function K∗

A is defined as in Definition 5 then the postulates (K∗5)
is not satisfied.10

9 This does not mean that an inconsistent belief set should not be revised. For a discussion
of how to motivate revision in the presence of paraconsistent logics, see Priest (2001). A
discussion on revision also appears at the end of this paper.

10 One may wonder what happens if (K∗5) is reformulated as: K∗

¬A is inconsistent iff
` A. Since the paraconsistent approach developed in this paper is to challenge the possibility
of an inconsistent belief set being trivial, I leave such a discussion for another occasion.
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5. Positive-Plus Systems

The study of positive-plus systems was initiated by da Costa who proposed
a family of paraconsistent logics Ci, where 1 ≤ i ≤ ω. (For example, da
Costa (1974) and da Costa and Alves (1977).) The semantics of system Cω

is an illuminating path to da Costa’s systems, so we discuss it first.
Let a da Costa semivaluation be a function ν which maps every proposi-

tion in a language to 1 or 0. Then in Cω, ν satisfies the following conditions:
(See Loparić (1977) and Priest and Routley (1989)).)

1. ν(A ∧ B) = 1 iff ν(A) = 1 and ν(B) = 1.
2. ν(A ∨ B) = 1 iff ν(A) = 1 or ν(B) = 1.
3. If ν(A) = 0 then ν(¬A) = 1.
4. If ν(¬¬A) = 1 then ν(A) = 1.
5. If ν(A ⊃ B) = 0 then ν(B) = 0.
6. If ν(A ⊃ B) = 1 then ν(A) = 0 or ν(B) = 1.

A Cω valuation is any semivaluation ν such that for any formula B of the
form A1 ⊃ (A2 ⊃ (A3 ⊃ · · · (An−1 ⊃ An))) where An is not a conditional,
if ν(B) = 0 there is a semivaluation ν ′ such that ν ′(Ai) = 1, for each i such
that 1 ≤ i < n, and ν ′(An) = 0. (See Priest and Routley (1989) p. 175.)
It is worth noting that if ν(A) = 1 then ν(¬A) is under-determined, so it
may be the case that ν(A) = 1 and ν(¬A) = 1. The value of A is assigned
independently of the value of ¬A under the valuation. As a consequence of
this, the classical rule of double negation: ν(A) = ν(¬¬A), fails.

Semantic consequence is then defined in the usual way:

Σ |= A iff for all ν, if ν(B) = 1 for all B ∈ Σ then ν(A) = 1.

As can be checked, neither {A,¬A} |= B nor {A ∧ ¬A} |= B.
Da Costa strengthens system Cω to produce systems Cn (1 ≤ n < ω). In

introducing system Cn, it is convenient to abbreviate ¬(A ∧ ¬A) to A◦. In
other words, A◦ expresses the consistency of A, and ◦ may be construed as
a classicality operator.

On a Cω valuation, there are two kinds of sentences: those that are con-
sistent, i.e., ν(A) 6= ν(¬A), and those that are dialetheic, i.e., ν(A) =
ν(¬A) = 1. The motivation for Cn is to make this point explicit and achieve
the following: (See Priest and Routley (1989) p. 166.)

If B is a compound of A1, ..., An and Σ |= A◦

1∧· · ·∧A◦

n then Σ |= B
iff B is a classical consequence of Σ.

Now C1 adds to the above conditions 1–6 the following:
7. ν(A◦) = 1 if ν(A) 6= ν(¬A)
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8. ν(A◦) = 0 if ν(A) = ν(¬A) = 1.
C1 also adds the following to fulfill the motivation:

9. ν(A) = 0 if ν(B◦) = ν(A ⊃ B) = ν(A ⊃ ¬B) = 1
10. ν((A ∧ B)◦) = ν((A ∨ B)◦) = ν((A ⊃ B)◦) = ν((¬A)◦) = 1 if

ν(A◦) = ν(B◦) = 1.
Let An be an abbreviation of A◦◦···◦ where ◦ appears n (≥ 1) times, and

A(n) of A1 ∧ A2 ∧ · · · ∧ An. Then the extension of the semantics of C1 to
the systems Cn is immediate. The semantics of Cn gives the inductive truth
conditions of An as:

7′. ν(An) = 1 if ν(An−1) 6= ν(¬An−1)
8′. ν(An) = 0 if ν(An−1) = ν(¬An−1) = 1

and replaces 9 and 10 by the following
9′. ν(A) = 0 if ν(B(n)) = ν(A ⊃ B) = ν(A ⊃ ¬B) = 1

10′. ν((A∧B)(n)) = ν((A∨B)(n)) = ν((A ⊃ B)(n)) = ν((¬A)(n)) =

1 if ν(A(n)) = ν(B(n)) = 1.
Adding the semantic conditions for the classicality operator, i.e., 7′ and 8′,
to those for the semantics of Cω, simplifies the semantic condition for ⊃ to:
(See Priest and Routley (1989) pp. 176–7.)

11. ν(A ⊃ B) = 1 iff ν(A) = 0 or ν(B) = 1.
Then the difference between valuations and semivaluations vanishes. Se-
mantic consequence in Cn is defined as in Cω. The semantic conditions for
Cn (1 ≤ n < ω) show that the positive fragment of Cn is exactly that of clas-
sical logic. Hence Cn is the positive fragment of classical logic plus da Costa
negation. (See Priest and Routley (1989) and Priest and Tanaka (2004).)

5.1. Systems of Spheres and Cω

The adoption of Cω requires some changes to systems of spheres. In the
context of relevant logic, maximal consistent sets of sentences were replaced
by prime theories. In Cω, they are replaced by maximal non-trivial sets of
sentences, where a maximal non-trivial set of sentences is defined as follows:

Definition 8 : (Maximal Non-Trivial Set) Let Σ be a set of sentences in a
language L. Σ is a maximal non-trivial set iff if A 6∈ Σ then Σ ∪ {A} is
trivial, i.e., the set of all sentences of L.

In Cω (and all Cn), this means that either A or ¬A (and maybe both) is in a
maximal non-trivial set.

Now, let MCω
be a set of all maximal non-trivial sets of sentences in a

language L. Then there are no trivial set, ⊥, and no empty set, >, in MCω
.
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However, while |A| ∪ |¬A| = MCω
, as in the classical case, it may be the

case that |A| ∩ |¬A| 6= φ.
A system of spheres, SCω

, centred on |K|, is then a collection of subsets
of MCω

. Although SCω
is different from SR, SCω

satisfies (S1) – (S4)′.

5.1.1. ... and Expansion

For expansion, the classical definition serves here. So an expansion function
is defined as in Definition 3 (K+

A = t(|K| ∩ |A|).

Theorem 8 : Let SCω
be any system of spheres in MCω

centred on |K|. If
an expansion function K+

A is defined as in Definition 3 then the postulates
(K+2) – (K+6) are satisfied.

5.1.2. ... and Contraction

For contraction, the definition in the relevant case can be used. That is, a
contraction function is defined as in Definition 7 (K−

A = t(|K| ∪ C(A))).
Note that C(A) is not an elementary class in general. Thus |K| ∪ C(A) is
not an elementary class.

Theorem 9 : Let SCω
be any system of spheres in MCω

centred on |K|. If
a contraction function K−

A is defined as in Definition 7 then the postulates
(K−2) – (K−4) and (K−6) – (K−8) are satisfied.

For (K−5), whether or not it is satisfied is an open question at time of writ-
ing.

5.1.3. ... and Revision

A revision function can also be defined as in the classical and relevant case.
So it is defined as in Definition 5 (K∗

A = t(C(A)) = t(|K| ∩ S(A))).
Although ⊥ 6∈ MCω

, we have

Lemma 3 : K∗

A = K+
A if the underlying logic is Cω.

This is because, for any sentences A and B, |A| ∩ |B| 6= φ. In particular,
|K| ∩ |A| 6= φ. So the smallest sphere intersecting |A| is |K|.

Theorem 10 : Let SCω
be any system of spheres in MCω

centred on |K|. If a
revision function K∗

A is defined as in Definition 5 then the postulates (K∗2)
– (K∗4) and (K∗6) – (K∗8) are satisfied.
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Theorem 11 : Let SCω
be any system of spheres in MCω

centred on |K|. If a
revision function K∗

A is defined as in Definition 5 then the postulate (K∗5)
is not satisfied.

5.2. Systems of Spheres and Cn

The sphere semantics based on Cn (1 ≤ n < ω) seems to be a combination
of that of Cω and that of classical logic. Let MCn

be the set of all maximal
non-trivial sets of sentences in a language L. MCn

is somewhat different
from all of ML, MR and MCω

. Firstly, unlike the case of MR, the trivial
set, ⊥, and the empty set, >, are not in MCn

, i.e., ⊥ 6∈ MCn
and > 6∈ MCn

.
Yet as in the case of MCω

, |A| ∪ |¬A| = MCn
and it may be the case

that |A| ∩ |¬A| 6= φ, though if A behaves consistently, then |A| ∩ |¬A| =
φ. Secondly, any sentence A divides MCn

into two parts: one in which
ν(A◦) = 1, indicating the sets where A behaves consistently, and the other
in which ν(A◦) = 0, indicating the sets where A maybe inconsistent. The
second part is in fact the complement of the first. We let |A◦| denote the first
and |A◦| (= MCn

− |A◦|) the second.
A system of spheres, SCn, centred on |K|, is a collection of subsets of

MCn
. Then SCn satisfies the conditions (S1) – (S4)′. Despite the fact that

MCn
is divided into two parts for any A, SCn does not introduce any com-

plexity with respect to the belief change functions, as we see below.

5.2.1. ... and Expansion

For expansion, as in the cases of relevant logic and Cω, the function is defined
as in the classical case. So an expansion function is defined as in Definition 3
(K+

A = t(|K| ∩ |A|)).

Theorem 12 : Let SCn be any system of spheres in MCn
centred on |K|. If

an expansion function K+
A is defined as in Definition 3 then the postulates

(K+2) – (K+6) are satisfied.

5.2.2. ... and Contraction

A contraction function is defined as in the cases of relevant logic and Cω

as well, i.e., Definition 7 (K−

A = t(|K| ∪ C(A))). Note that in the case of
Cn, |A| is an elementary class. For |A| = |¬A ∧ A◦|. Hence C(A) is an
elementary class. Thus |K| ∪ C(A) is an elementary class.
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Theorem 13 : Let SCn be any system of spheres in MCn
centred on |K|. If

a contraction function K−

A is defined as in Definition 7 then the postulates
(K−2) – (K−8) are satisfied.

Note that (K−5) is shown to be satisfied. The fact that |K| ∪ C(A) is an
elementary class allows the classical proof to be applicable.

5.2.3. ... and Revision

A revision function is defined as in Definition 5 (K∗

A = t(C(A)) = t(|K| ∩
S(A))). Unlike the cases of relevant logic and Cω, K∗

A 6= K+
A in general

if the underlying logic is Cn. For if |K| ⊆ |A◦| and |K| ⊆ |¬A| then
S(A) 6= |K|. Yet we have the following lemma:

Lemma 4 : Let |K| ∩ |A◦| 6= φ. Then K∗

A = K+
A if the underlying logic is

Cn (1 ≤ n < ω).

That is, if K allows A to be inconsistent, revision of K by A collapses into
expansion.

Theorem 14 : Let SCn be any system of spheres in MCn
centred on |K|. If a

revision function K∗

A is defined as in Definition 5 then the postulates (K∗2)
– (K∗4) and (K∗6) – (K∗8) are satisfied.

Theorem 15 : Let SCn be any system of spheres in MCn
centred on |K|. If a

revision function K∗

A is defined as in Definition 5 then the postulate (K∗5)
is not satisfied.

6. Non-Adjunctive Systems

Non-adjunctive systems were perhaps the first formal systems that were de-
veloped for a paraconsistent purpose. The development of the systems was
pioneered by Jaśkowski (1969) who introduced discussive (discursive) logic
in an axiomatic form. The semantics of discussive logic was later investi-
gated by da Costa and his co-workers. (For example, da Costa and Dubika-
jtis (1977). The development of the semantics started earlier than their paper
however.) Non-adjunctive systems were further developed by a number of
people such as Schotch and Jennings (1980), Rescher and Brandom (1980)
and Rescher and Manor (1970).

The main idea of non-adjunctive systems, in particular of discussive logic,
is as follows. A discourse may be advanced by a number of participants.



“09tanaka”
2005/11/15
page 131

i

i

i

i

i

i

i

i

THE AGM THEORY AND INCONSISTENT BELIEF CHANGE 131

Each participant puts forward some information, beliefs or opinions that are
assumed to be self-consistent. Conceivably, the opinions of one person may
sometimes contradict that of others. So a discourse as a whole may be incon-
sistent. For what is true in a discourse is a sum of information put forward
by participants.

In order to formalise this idea, imagine each participant’s information set
as the set of things true in a possible world of standard modal logic. An
interpretation, I , is a Kripke interpretation of some modal logic, say S5,
employing the usual truth conditions for ∧, ∨ and ¬. Conditionals will be
looked at later. Then I is a discussive model of sentence A iff A holds at
some world. Hence, by appealing to S5, semantic consequence is defined
as: (See Priest (2002).)

Σ |= A iff ♦Σ |=S5 ♦A where ♦Σ is {♦A : A ∈ Σ}.

It is easy to check that A,¬A 6|= B. For it may be the case that ♦A and
♦¬A, but not ♦B, in an S5 interpretation. It should be noted, however,
that A ∧ ¬A |= B. This means that a single contradictory premise yields
an explosive inference in discussive logic, as in the case of standard modal
logic. Hence adjunction has to fail, i.e., A, B 6|= A ∧ B. For otherwise
A,¬A |= A ∧ ¬A |= B. Thus conjunction has non-standard behaviour
which makes discussive logic paraconsistent.

This leaves us to discuss the conditional. Let ⊃d be a discussive impli-
cation. Then A ⊃d B is defined as ♦A ⊃ B. It is easy to check that
discussive implication satisfies modus ponens: A, A ⊃d B |= B (at least by
appealing to S5 semantic consequence). For the definition of the discussive
biconditional ≡d, it is natural to define A ≡d B as (A ⊃d B) ∧ (B ⊃d A).
Yet this definition gives that A ≡d ¬A |= B, as can easily be checked.
Presumably to avoid the problem, Jaśkowski chose to define A ≡d B as
(A ⊃d B) ∧ (B ⊃d ♦A) (or (♦A ⊃ B) ∧ (♦B ⊃ ♦A)).

6.1. Systems of Spheres and Discussive Logic

We now construct the systems of spheres that are based on discussive logic.
In doing so, we appeal to the modal logic S5. Let MD be the set of all S5

interpretations. |A| is defined to be the set of all interpretations I such that
for some w in I , w |= A. Note that it may be the case that in an interpretation
I , w |= A and w′ |= ¬A. Hence it may be that |A|∩|¬A| 6= φ. Yet ⊥ 6∈ MD.
For there is a sentence B such that w 6|= B for all w in I , for example, the
negation of an S5 logical truth. Also > 6∈ MD and |A| ∪ |¬A| = MD, as
every I ∈ MD is an S5 interpretation.

A system of spheres, SD, centred on |K|, is a collection of subsets of MD.
It satisfies the conditions (S1) – (S4)′.
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6.1.1. ... and Expansion

For expansion, the classical definition serves in the case of discussive logic.
So an expansion function is defined as in Definition 3 (K+

A = t(|K| ∩ |A|)).

Theorem 16 : Let SD be any system of spheres in MD centred on |K|. If
an expansion function K+

A is defined as in Definition 3 then the postulates
(K+2) – (K+6) are satisfied.

6.1.2. ... and Contraction

Contraction is defined as in the cases of relevant logic, Cω and Cn. That is,
a contraction function is defined as in Definition 7 (K−

A = t(|K| ∪ C(A))).
Note that C(A) is not an elementary class in general. Thus, |K| ∪ C(A) is
not an elementary class. In fact, C(A) may not be an elementary class either,
since (EC1) of Lemma 1 fails.

Theorem 17 : Let SD be any system of spheres in MD centred on |K|. If
a contraction function K−

A is defined as in Definition 7 then the postulates
(K−2) – (K−4) and (K−6) – (K−8) are satisfied.

For (K−5), whether or not it is satisfied is an open question at time of writ-
ing.

6.1.3. ... and Revision

A revision function is defined as in Definition 5 (K∗

A = t(C(A)) = t(|K| ∩
C(A))). If the underlying logic is discussive logic, then K∗

A 6= K+
A . For

S(A) 6= |K| in general, since ⊥ 6∈ MD and it is not the case that |A|∩|B| 6=
φ for any A and B.

Theorem 18 : Let SD be any system of spheres in MD centred on |K|. If a
revision function K∗

A is defined as in Definition 5 then the postulates (K∗2)
– (K∗4) and (K∗6) are satisfied.

Theorem 19 : Let SD be any system of spheres in MD centred on |K|. If a
revision function K∗

A is defined as in Definition 5 then the postulates (K∗5)
and (K∗7) are not satisfied.

The non-standard behaviour of conjunction in discussive logic seems to
affect those revision postulates which involve conjunction, though it does
not affect contraction postulates. For (K∗8) too, the classical proof does not
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hold. However, whether or not it is satisfied is an open question at time of
writing.

7. Some Implications

We saw in the previous sections four types of systems of spheres, each of
which is based on classical logic, relevant logics, positive-plus logics and
non-adjunctive logic.11 In general, two AGM postulates seem to require
some attention in the context of paraconsistent logics. The first is (K−5)
the so called recovery postulate. Most paraconsistent sphere systems do not
validate nor invalidate the postulate. As has been argued by many, including
Gärdenfors (1988) himself, the recovery postulate is problematic and open
to many criticisms, as many intuitive contraction operations do not validate
it. For example, suppose that A∧B is in a belief set. Then if A is contracted
from the belief set, A ∧ B may go with it. So when A is added again, B is
not recovered. The information B is lost during the process. This example
indicates that the question about the recovery postulate is not specific to the
context of paraconsistent logics.12

Secondly, paraconsistent sphere systems do not satisfy (K∗5). Classically,
the main objective of introducing this postulate is to maintain that K∗

¬A is
consistent, unless A is a logical truth in which case K∗

¬A becomes incon-
sistent. For the negation of a logical truth is always false classically. And
when a belief set, e.g., K∗

¬A, is inconsistent, it becomes trivial. According to
paraconsistent approaches, however, beliefs may be non-trivial even if they
are inconsistent. Since beliefs should not be trivial simply because they are
inconsistent, as was argued at the beginning of the paper, the classical moti-
vation for (K∗5) goes astray. In order to accommodate inconsistent beliefs
sensibly, therefore, (K∗5) is not adequate as part of the logical framework
of belief change.

By and large, however, the accommodation of inconsistent beliefs does not
require a wholesale rejection of the AGM theory. All we need to reject, as
far as the AGM postulates go, is (K∗5) which is problematic in the presence
of inconsistent beliefs. Although the AGM theory as a whole is motivated
by the consistency criterion, (K∗5) is therefore independent of other AGM

11 The main aim of this paper is to examine the adequacy of the AGM theory in the pres-
ence of inconsistent beliefs. For this reason, I leave aside for now the important question of
which paraconsistent logic is best suited to model inconsistent belief change.

12 For a discussion of recovery postulate in classical context, see for example Makin-
son (1987).
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postulates. This seems to indicate that the AGM theory is not totally an inad-
equate theory of belief change in handling inconsistent beliefs in a sensible
fashion.

Now putting aside the AGM postulates, one interesting result of our in-
vestigation is that revision collapses into expansion. This does not mean,
however, that the revision operation cannot be defined in dealing with in-
consistent beliefs. Indeed, it is more intuitive to think that expansion and
contraction are primitive and revision is a derived operation.13 There are
several ways to define revision in terms of expansion and contraction. The
‘standard’ definition is the Levi Identity: K∗

A = (K−

¬A)+A. If we define re-
vision in this way, some AGM postulates no longer hold in the contexts of
paraconsistent logics.14 However, since inconsistent beliefs can be accom-
modated sensibly in the context of paraconsistent logics, revision can be, so
it seems, defined alternatively by the Reverse Levi Identity: K∗

A = (K+
A )−

¬A,
or by the Consolidated Expansion: K∗

A = (K+
A )−I where I is an inconsis-

tency.15 However, I leave a discussion of the issue of defining revision in
terms of expansion and contraction for another occasion.16

One consequence of our result, that revision collapses into expansion, is
that our framework of belief change in general satisfies the Ramsey Test
which can be formalised as: (RM) A > B ∈ K iff B ∈ K∗

A, where A > B

is a conditional statement.17 For revision is ipso facto expansion and hence
(RM) is tantamount to our assumption that a belief set is closed under logi-
cal consequence, or closed under provable entailments in the case of relevant
logics. In fact, it was (RM) that was the motive behind the idea that revision
needs not be distinguished from expansion.

This consequence, however, goes against the argument of Fuhrmann (1991)
that (RM) should be rejected, even though the choice of underlying logic is
largely in agreement with our approach in this paper. Whether a revision op-
eration should satisfy (RM) or not, a framework of belief change based on a
paraconsistent logic needs not reject (RM), as we have seen above. The issue

13 Gärdenfors (1988) introduces revision before contraction. It is not clear what the reason
behind it is, in particular whether or not he thinks that revision is a derived operation.

14 Proof in the context of relevant logics is included in the Appendix.

15 Thanks are due to Krister Segerberg for bringing my attention to the latter.

16 See Hansson (1992) for a discussion on reversing the Levi Identity.

17 See for example Gärdenfors (1988) p. 148.
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seems to be a matter of further investigation into the definition of revision,
just as in the context of classical logic.18

Appendix

This section contains proofs for the theorems and lemmas that appear in the
paper. To make proofs self-contained, lemmas that are used to prove the the-
orems are also included below. In proving the theorems and lemmas, it is
useful to note the completeness theorem which holds in all of the logics that
we saw above:

Completeness Theorem: Let Σ be a collection of sentences. Then for every
sentence A, if Σ 6` A then for some m ∈ MX , m |= Σ and m 6|= A, where
MX is either ML, MR, MCω

, MCn
or MD.

Grove’s Systems of Spheres

Lemma 1 : For any elementary classes S1 and S2,

(EC1) S1 ∩ S2 is an elementary class.
(EC2) S1 ∪ S2 is an elementary class.

Proof.

(EC1) Since S1 and S2 are elementary classes, there are sentences A and
B such that S1 = |A| and S2 = |B|. So for any m ∈ S1 ∩ S2,
m |= A∧B. Hence m ∈ |A∧B|. Conversely, for any m ∈ |A∧B|,
m |= A ∧ B. So m ∈ |A| ∩ |B|. Hence m ∈ S1 ∩ S2.

(EC2) For any m ∈ S1 ∪S2 = |A| ∪ |B|, m |= A or m |= B. In either case
m |= A∨B. Hence m ∈ |A∨B|. Conversely, for any m ∈ |A∨B|,
m |= A ∨ B. So m |= A or m |= B. Hence m ∈ |A| ∪ |B|, and so
m ∈ S1 ∪ S2. �

Lemma 5 : The function t has the following properties:

(t1) t(|K|) = K for all belief sets K.
(t2) S = |t(S)| for S ⊆ MX if S is an elementary class.
(t3) t(S) is non-trivial if S is nonempty, for S ⊆ MX .
(t4) If S ⊆ S′ then t(S′) ⊆ t(S), for S, S ′ ⊆ MX .

18 For a discussion of (RM) in the context of classical logic, see Gärdenfors (1988).
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(t5) t(S) ∩ t(S ′) = t(S ∪ S′) for S, S′ ⊆ MX .
(MX is either ML, MR, MCω

, MCn
or MD.)

Proof.

(t1) Take any A ∈ t(|K|). Then
A ∈ t(|K|) iff for all m ∈ |K|, m |= A

iff for all m such that m |= K, m |= A.
If A ∈ K then it is clear that for all m such that m |= K, m |= A.
If A 6∈ K, then by the completeness theorem, for some m, m |= K
and m 6|= A. Hence A ∈ t(|K|) iff A ∈ K.

(t2) By the definition of elementary class, S = |A| for some sentence A.
Then
m ∈ |t(|A|)| iff m |= t(|A|)

iff m |= A
iff m ∈ |A|.

Hence |A| = |t(|A|)|, and so S = |t(S)|.

(t3) If t(S) is trivial for S ⊆ MX , then S is empty.

(t4) Suppose S ⊆ S ′. Take any A ∈ t(S ′). Then for all m ∈ S ′, m |= A.
Since S ⊆ S ′, for all n ∈ S, n |= A. Hence A ∈ t(S).

(t5) By general set theory
⋂

S∩
⋂

S′ =
⋂

(S∪S′). Since t(S) is defined
as

⋂
S, t(S) ∩ t(S ′) = t(S ∪ S′). �

Theorem 1 : Let S be any system of spheres in ML centred on |K|. If an ex-
pansion function K+

A is defined as in Definition 3 then the postulates (K+2)
– (K+6) are satisfied.

Proof.

(K+2) For all m ∈ |K| ∩ |A|, m |= A. So A ∈ t(|K| ∩ |A|). Hence by
Definition 3, A ∈ K+

A .

(K+3) |K| ∩ |α| ⊆ |K|
iff t(|K|) ⊆ t(|K| ∩ |A|) by (t4)
iff K ⊆ K+

A by Definition 3 and (t1)
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(K+4) Suppose A ∈ K. Then for all m ∈ |K|, m |= A. Hence |K| ∩
|A| = |K|. So t(|K| ∩ |A|) = t(|K|). Hence by Definition 3 and
(t1), K+

A = K.

(K+5) Suppose K ⊆ H . Then
|H| ⊆ |K| iff |H| ∩ |A| ⊆ |K| ∩ |A|

iff t(|K| ∩ |A|) ⊆ t(|H| ∩ |α|) by (t4)
iff K+

A ⊆ H+
A by Definition 3.

(K+6) Suppose there is a function K
]
A for some belief set K and sentence

A satisfying (K+2) – (K+5) and K ⊆ K
]
A ⊆ K+

A . By (K+5),
K+

A ⊆ (K]
A)+A ⊆ (K+

A )+A. But by (K+2), A ∈ K
]
A. So by (K+4),

K+
A ⊆ K

]
A ⊆ K+

A . Hence K
]
A = K+

A . Hence K+
A is the smallest

belief set that satisfies (K+2) – (K+5). �

Lemma 6 : If |A| ⊆ |B| for any sentences A and B then S(B) ⊆ S(A).

Proof. Suppose |A| ⊆ |B|. Then any sphere intersecting |A| also intersects
|B|. Hence S(B) ⊆ S(A). �

Theorem 2 : Let S be any system of spheres in ML centred on |K|. If a
contraction function K−

A is defined as in Definition 4 then the postulates
(K−2) – (K−8) are satisfied.

Proof.

(K−2) |K| ⊆ |K| ∪ C(¬A)
iff t(|K| ∪ C(¬A)) ⊆ t(|K|) by (t4)
iff K−

A ⊆ K by Definition 4 and (t1)

(K−3) Suppose A 6∈ K. By the completeness theorem, for some m ∈
ML, m |= K and m 6|= A. So m |= ¬A. Hence |K| ∩ |¬A| 6= φ.
So by (S2), |K| is the smallest sphere intersecting |¬A|. Hence
|K| ∪ C(¬A) = |K|. Hence |K−

A | = |K| ∪ C(¬A) = |K|. Then
t(|K−

A |) = t(|K|). Hence by (t1) and Definition 4, K−

A = K.

(K−4) Suppose 6` A. Then, since there is at least one sphere intersecting
|¬A| (viz., ML itself), by (S4) there is a smallest such sphere. So
C(¬A) 6= φ. Hence A 6∈ t(|K| ∪ C(¬A)), i.e. A 6∈ K−

A .
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(K−5) Suppose A ∈ K. Then |K| ∩ |A| = |K|. Now
(K−

A )+A = t(|K−

A | ∩ |A|)
= t(|t(|K| ∪ C(¬A))| ∩ |A|) by Definition 4
= t((|K| ∪ C(¬A)) ∩ |A|) by (EC2) and (t2)
= t((|K| ∩ |A|) ∪ (C(¬A) ∩ |A|))

But C(¬A) ∩ |A| = φ. Hence (K−

A )+A = t(|K| ∩ |A|) = t(|K|).
Hence K = (K−

A )+A.

(K−6) If ` A ↔ B then ` ¬A ↔ ¬B. So for all m in ML, m |= ¬A iff
m |= ¬B. So C(¬A) = C(¬B), and so K−

A = K−

B .

(K−7) Since ` ¬A → ¬A∨¬B, |¬A| ⊆ |¬A∨¬B|. Hence by Lemma 6,
S(¬A∨¬B) ⊆ S(¬A) iff |¬A| ∩S(¬A∨¬B) ⊆ S(¬A)∩ |¬A|.
Similarly, ` ¬B → ¬A∨¬B. So |¬B|∩S(¬A∨¬B) ⊆ S(¬B)∩
|¬B|. Hence

(|¬A| ∩ S(¬A ∨ ¬B)) ∪ (|¬B| ∩ S(¬A ∨ ¬B))
⊆ (S(¬A) ∩ |¬A|) ∪ (S(¬B) ∩ |¬B|)

iff (|¬A| ∪ |¬B|) ∩ S(¬A ∨ ¬B)
⊆ (S(¬A) ∩ |¬A|) ∪ (S(¬B) ∩ |¬B|)

iff C(¬(A ∧ B)) ⊆ C(¬A) ∪ C(¬B).

Now take any D ∈ K−

A ∩ K−

B . Then by (t5), t(|K| ∪ C(¬A)) ∩
t(|K| ∪ C(¬B)) = t((|K| ∪ C(¬A)) ∪ (|K| ∪ C(¬B))). So
m |= D for any m ∈ (|K| ∪ C(¬A)) ∪ (|K| ∪ C(¬B)) = |K| ∪
C(¬A) ∪ C(¬B). Since C(¬(A ∧ B)) ⊆ C(¬A) ∪ C(¬B), for
any n ∈ |K| ∪ C(¬(A ∧ B)), n ∈ |K| ∪ C(¬A) ∪ C(¬B). So
n |= D. Hence D ∈ t(|K| ∪ C(¬(A ∧ B))), i.e. D ∈ K−

A∧B .
Hence K−

A ∩ K−

B ⊆ K−

A∧B .

(K−8) Suppose A 6∈ K−

A∧B . There are three cases.

i) |K| ∩ |A| ∩ |B| 6= φ but |K| 6⊆ |A| and |K| 6⊆ |B|.
K 6|= A. Then S(¬A) = |K| = S(¬(A ∧ B)). So
K−

A = t(|K| ∪ (|K| ∩ |¬A|))
= t(|K|)
= K by (t1).

K−

A∧B = t(|K| ∪ (|K| ∩ |¬(A ∧ B)|))
= t(|K|)
= K by (t1).
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Hence K−

A∧B = K−

A , and so K−

A∧B ⊆ K−

A .

ii) |K| ∩ |A| ∩ |B| 6= φ and |K| ⊆ |A| but |K| 6⊆ |B|.
K |= A and K 6|= B. Then S(¬(A ∧ B)) = |K|. So K−

A∧B = K

as in i). Since K |= A, A ∈ K−

A∧B , which contradicts assumption.

iii) |K| ∩ |A| ∩ |B| 6= φ and |K| ⊆ |A| and |K| ⊆ |B|.
K |= A and K |= B. Since ` A ∧ B → A, |A ∧ B| ⊆ |A|. So
|¬A| ⊆ |¬(A∧B)|. Hence S(¬(A∧B)) ⊆ S(¬A) by Lemma 6.
Now by assumption, A 6∈ K−

A∧B = t(|K| ∪ C(¬(A ∧ B))). So
for some m ∈ C(¬(A ∧ B)), m 6|= A, since K |= A. Hence
S(¬A) ⊆ S(¬(A ∧ B)). Thus S(¬A) = S(¬(A ∧ B)). Then

|¬A| ∩ S(¬A) ⊆ |¬(A ∧ B)| ∩ S(¬(A ∧ B))
iff |K| ∪ (|¬A| ∩ S(¬A)) ⊆ |K|

∪(|¬(A ∧ B)| ∩ S(¬(A ∧ B)))
iff t(|K| ∪ (|¬(A ∧ B)| ∩ S(¬(A ∧ B)))

⊆ t(|K| ∪ (|¬A| ∩ S(¬A))) by (t4)
iff t(|K| ∪ C(¬(A ∧ B))) ⊆ t(|K| ∪ C(¬A))
iff K−

A∧B ⊆ K−

A by Definition 4. �

Theorem 3 : Let S be any system of spheres in ML centred on |K|. If a
revision function K∗

A is defined as in Definition 5 then the postulates (K∗2)
– (K∗8) are satisfied.

Proof.

(K∗2) For any m ∈ |A| ∩ S(A), m |= A. So A ∈ t(|A| ∩ S(A)). Hence
by Definition 5, A ∈ K∗

A.

(K∗3) By (S2), |K| ⊆ S(A). So |K| ∩ |A| ⊆ S(A) ∩ |A|. By (t4),
t(S(A) ∩ |A|) ⊆ t(|K| ∩ |A|). Hence by Definition 3 and Defini-
tion 5, K∗

A ⊆ K+
A .

(K∗4) Suppose that ¬A 6∈ K. By the completeness theorem, for some
m ∈ ML, m |= K and m 6|= ¬A, i.e., m |= A. By (S2), |K|
is the smallest sphere intersecting |A|. So S(A) = |K|. Hence
K∗

A = t(|A| ∩ S(A)) = t(|A| ∩ |K|) = K+
A . Hence K+

A ⊆ K∗

A.
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(K∗5) If ` A then |¬A| = φ, so C(¬A) = φ. Hence K∗

¬A is trivial. If
6` A then |¬A| 6= φ. Since there is at least one sphere intersect-
ing |¬A| (viz., ML itself), by (S4) there is a smallest such sphere
S(¬A). So |¬A| ∩ S(¬A) 6= φ. Hence by (t3) and Definition 5,
K∗

¬A is non-trivial. Hence K∗

¬A is trivial iff ` A.

(K∗6) If ` A ↔ B then for all m in ML, m |= A iff m |= B. Hence
C(A) = C(B), and so K∗

A = K∗

B .

(K∗7) Since ` A ∧ B → A, |A ∧ B| ⊆ |A|. Hence by Lemma 6
S(A) ⊆ S(A ∧ B)

iff |A| ∩ |B| ∩ S(A) ⊆ |A| ∩ |B| ∩ S(A ∧ B)
= |A ∧ B| ∩ S(A ∧ B)

iff |t(|A| ∩ S(A))| ∩ |B| ⊆ |t(|A ∧ B| ∩ S(A ∧ B))|
by (EC1) and (t2)

iff |K∗

A| ∩ |B| ⊆ |K∗

A∧B| by Definition 5
iff t(|K∗

A∧B|) ⊆ t(|K∗

A| ∩ |B|) by (t4)
iff K∗

A∧B ⊆ (K∗

A)+B by Definition 5 and (t1)

(K∗8) Suppose that ¬B 6∈ K∗

A. By the completeness theorem, for some
m ∈ ML, m |= K∗

A and m 6|= ¬B, i.e., m |= B. So |K∗

A| ∩
|B| 6= φ. Hence by Definition 5 and (t2), |A| ∩ S(A) ∩ |B| 6= φ,
i.e., |A ∧ B| ∩ S(A) 6= φ. Hence S(A ∧ B) = S(A), and so
S(A ∧ B) ⊆ S(A). Then as in (K∗7), (K∗

A)+B ⊆ K∗

A∧B . �

Relevant Systems

Theorem 4 : Let SR be any system of spheres in MR centred on |K|. If
an expansion function K+

A is defined as in Definition 3 then the postulates
(K+2) – (K+6) are satisfied.

Proof. The proof is the same as in the classical case, except that S and ML

are replaced by SR and MR respectively. �

Theorem 5 : Let SR be any system of spheres in MR centred on |K|. If a
contraction function K−

A is defined as in Definition 7 then the postulates
(K−2) – (K−4) and (K−6) – (K−8) are satisfied.
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Proof.

(K−2) Proof is the same as in the classical case, except that C(¬A) is
replaced by C(A).

(K−3) Suppose A 6∈ K. By the completeness theorem, for some m ∈
MR, m |= K and m 6|= A. So by (S2), |K| is the smallest sphere
intersecting |A|. Hence |K| ∪C(A) = |K|. Hence K−

A = t(|K| ∪

C(A)) = t(|K|) = K.

(K−4) Since there is at least one sphere intersecting |A| (viz., MR itself)
by (S4)′ there is a smallest such sphere. So C(A) 6= φ. Hence
A 6∈ t(|K| ∪ C(A)), i.e., A 6∈ K−

A .19

(K−6) If ` A ↔ B then for all m in MR, m 6|= A iff m 6|= B. So
C(A) = C(B), and so K−

A = K−

B .

(K−7) Since ` A∧B → A, |A∧B| ⊆ |A|. So |A| ⊆ |A ∧ B|. Hence by
Lemma 6, S(A ∧ B) ⊆ S(A). So |A| ∩ S(A ∧ B) ⊆ S(A) ∩ |A|.
Similarly, |B| ∩ S(A ∧ B) ⊆ S(B) ∩ |B|, since ` A ∧ B → B.
Then as in the classical case, K−

A ∩ K−

B ⊆ K−

A∧B , except that
everything of the form S(¬A), |¬A|, and C(¬A) is replaced by
S(A), |A|, and C(A) respectively.

(K−8) Proof is the same as in the classical case, except that everything of
the form S(¬A), |¬A|, and C(¬A) is replaced by its appropriate
form. �

Lemma 2 : K∗

A = K+
A if the underlying logic is a relevant logic.

Proof. Since S(A) = |K|, K∗

A = t(|A| ∩ |K|) = K+
A . �

Theorem 6 : Let SR be any system of spheres in MR centred on |K|. If a
revision function K∗

A is defined as in Definition 5 then the postulates (K∗2)
– (K∗4) and (K∗6) – (K∗8) are satisfied.

19 Note that the condition of (K−4), 6` A, is not required in the proof, and so what is
proved here is stronger than (K−4).
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Proof.

(K∗2) K∗

A = t(|A| ∩ S(A)) = t(|A| ∩ |K|). For any m ∈ |K| ∩ |A|,
m |= A. So A ∈ t(|K| ∩ |A|). Hence A ∈ K∗

A.

(K∗3) By Lemma 2, K∗

A = K+
A . Hence K∗

A ⊆ K+
A .

(K∗4) As in (K∗3), K+
A = K∗

A. Hence K+
A ⊆ K∗

A.20

(K∗6) If ` A ↔ B then for all m ∈ MR, m |= A iff m |= B. Hence
C(A) = C(B), and so K∗

A = K∗

B .

(K∗7) K∗

A∧B = K+
A∧B = t(|A ∧ B| ∩ |K|). And

(K∗

A)+B = t(|B| ∩ |K∗

A|)
= t(|B| ∩ |K+

A |) by Lemma 2
= t(|B| ∩ (|A| ∩ |K|)) by Definition 5 and (t2)
= t(|A ∧ B| ∩ |K|)

Hence K∗

A∧B = (K∗

A)+B , and so K∗

A∧B ⊆ (K∗

A)+B .

(K∗8) As in (K∗7), (K∗

A)+B = K∗

A∧B . Hence (K∗

A)+B ⊆ K∗

A∧B .21 �

Theorem 7 : Let SR be any system of spheres in MR centred on |K|. If a
revision function K∗

A is defined as in Definition 5 then the postulates (K∗5)
is not satisfied.

Proof.

(K∗5) A counter-example: Let K = Cn(p) and A = p → p. Then ` A
and K∗

¬A = t(|¬(p → p)| ∩ |p|) by Lemma 2. But then q 6∈ K∗

¬A
for some q such that p and q are different propositional parameters,
since p,¬(p → p) 6` q in any standard system of relevant logic.
Hence K∗

¬A is non-trivial. �

Positive-Plus Systems

Theorem 8 : Let SCω
be any system of spheres in MCω

centred on |K|. If
an expansion function K+

A is defined as in Definition 3 then the postulates
(K+2) – (K+6) are satisfied.

20 Note that the condition, ¬A 6∈ K, is not required in the proof.

21 Note that the condition, ¬B 6∈ K∗

A, is not required in the proof.
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Proof. The proof is the same as in the classical case, except that S and ML

are replaced by SCω
and MCω

respectively. �

Theorem 9 : Let SCω
be any system of spheres in MCω

centred on |K|. If
a contraction function K−

A is defined as in Definition 7 then the postulates
(K−2) – (K−4) and (K−6) – (K−8) are satisfied.

Proof. Proofs for (K−2) – (K−3) and (K−6) – (K−8) are the same as in
the case of relevant logic except that MR is replaced by MCω

. The proof
for (K−4) is the same as in the classical case, except that ML is replaced by
MCω

and everything of the form |¬A|, S(¬A), and C(¬A) is replaced by
its appropriate form. Also (S4)′ is used instead of (S4). �

Lemma 3 : K∗

A = K+
A if the underlying logic is Cω.

Proof. In virtue of the semantics of Cω, for any sentences A and B, |A| ∩
|B| 6= φ. In particular, |K| ∩ |A| 6= φ. So S(A) = |K|. Hence K∗

A =
t(|A| ∩ |K|) = K+

A . �

Theorem 10 : Let SCω
be any system of spheres in MCω

centred on |K|. If a
revision function K∗

A is defined as in Definition 5 then the postulates (K∗2)
– (K∗4) and (K∗6) – (K∗8) are satisfied.

Proof. The proof is the same as in the relevant case, except that SR and MR

are replaced by SCω
and MCω

respectively, and Lemma 3 is used instead of
Lemma 2. �

Theorem 11 : Let SCω
be any system of spheres in MCω

centred on |K|. If a
revision function K∗

A is defined as in Definition 5 then the postulate (K∗5)
is not satisfied.

Proof.

(K∗5) A counter-example: Let K = Cn(p) and A = p ⊃ p. Then ` A
and K∗

¬A = t(|¬(p ⊃ p)| ∩ |p|) by Lemma 3. But then q 6∈ K∗

¬A
for some q such that p and q are different propositional parameters,
since p,¬(p ⊃ p) 6` q in Cω. Hence K∗

¬A is non-trivial. �

Theorem 12 : Let SCn be any system of spheres in MCn
centred on |K|. If

an expansion function K+
A is defined as in Definition 3 then the postulates

(K+2) – (K+6) are satisfied.
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Proof. The proof is the same as in the classical case, except that S and ML

are replaced by SCn and MCn
respectively. �

Theorem 13 : Let SCn be any system of spheres in MCn
centred on |K|. If

a contraction function K−

A is defined as in Definition 7 then the postulates
(K−2) – (K−8) are satisfied.

Proof. Proofs for (K−2) – (K−4) and (K−6) – (K−8) are the same as in
the case of Cω, except that MCω

is replaced by MCn
. The proof for (K−5) is

the same as in the classical case, except that ML is replaced by MCn
and ev-

erything of the form |¬A|, S(¬A), and C(¬A) is replaced by its appropriate
form. �

Lemma 4 : Let |K| ∩ |A◦| 6= φ. Then K∗

A = K+
A if the underlying logic is

Cn (1 ≤ n < ω).

Proof. If |K| ∩ |A◦| 6= φ then S(A) = |K|. Hence K∗

A = t(|A| ∩ |K|) =
K+

A . �

Lemma 7 : If m ∈ |A| then m ∈ |¬A| for any sentence A and m ∈ MCn
.

Proof. The proof is immediate in virtue of the semantics of Cn. �

Theorem 14 : Let SCn be any system of spheres in MCn
centred on |K|. If a

revision function K∗

A is defined as in Definition 5 then the postulates (K∗2)
– (K∗4) and (K∗6) – (K∗8) are satisfied.

Proof. The proof is the same as in the classical case, except:

(K∗4) Suppose that ¬A 6∈ K. By the completeness theorem, for some
m ∈ MCn

, m |= K and m 6|= ¬A. Then m ∈ |K| and m ∈ |¬A|.
So m ∈ |A| by Lemma 7. Thus by (S2), |K| is the smallest sphere
intersecting |A|. Then as in the classical case, K+

A ⊆ K∗

A.

(K∗8) Suppose that ¬B 6∈ K∗

A. By the completeness theorem, for some
m ∈ MCn

, m |= K∗

A and m 6|= ¬B. Then m ∈ |K∗

A| and m ∈

|¬B|. So m ∈ |B| by Lemma 7. Hence |K∗

A| ∩ |B| 6= φ. Then as
in the classical case, (K∗

A)+B ⊆ K∗

A∧B . �
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Theorem 15 : Let SCn be any system of spheres in MCn
centred on |K|. If a

revision function K∗

A is defined as in Definition 5 then the postulate (K∗5)
is not satisfied.

Proof.

(K∗5) A counter-example: Let K = Cn(p), A = p ⊃ p. Then ` A.
Also |K| ∩ |A◦| 6= φ. Hence K∗

¬A = t(|¬(p ⊃ p)| ∩ |p|) by
Lemma 4. But then q 6∈ K∗

¬A for some q such that p and q are
different propositional parameters, since p,¬(p ⊃ p) 6` q in Cn.
Hence K∗

¬A is non-trivial. �

Non-Adjunctive Systems

Theorem 16 : Let SD be any system of spheres in MD centred on |K|. If
an expansion function K+

A is defined as in Definition 3 then the postulates
(K+2) – (K+6) are satisfied.

Proof. The proof is the same as in the classical case, except that S and ML

are replaced by SD and MD respectively. �

Theorem 17 : Let SD be any system of spheres in MD centred on |K|. If
a contraction function K−

A is defined as in Definition 7 then the postulates
(K−2) – (K−4) and (K−6) – (K−8) are satisfied.

Proof. The proof is the same as in the case of Cω, except:

(K−7) There are two cases.

i) K 6|= A∧B. Then S(A ∧ B) = |K|. So |K|∪C(A ∧ B) = |K|.
Hence

|K| ∪ C(A ∧ B) ⊆ |K| ∪ C(A) ∪ C(B)

iff t(|K| ∪ C(A) ∪ C(B)) ⊆ t(|K| ∪ C(A ∧ B))
by (t4)

iff t((|K| ∪ C(A)) ∪ (|K| ∪ C(B))) ⊆ t(|K| ∪ C(A ∧ B))

iff t(|K| ∪ C(A)) ∩ t(|K| ∪ C(B)) ⊆ t(|K| ∪ C(A ∧ B))
by (t5)

iff K−

A ∩ K−

B ⊆ K−

A∧B .

ii) K |= A∧B. This part of the proof requires epistemic entrench-
ment which is not provided in this paper. So the proof is not given
here. None the less, it can be shown that (K−7) is satisfied. �



“09tanaka”
2005/11/15
page 146

i

i

i

i

i

i

i

i

146 KOJI TANAKA

Theorem 18 : Let SD be any system of spheres in MD centred on |K|. If a
revision function K∗

A is defined as in Definition 5 then the postulates (K∗2)
– (K∗4) and (K∗6) are satisfied.

Proof. The proof is the same as in the case of Cn, except that MCn
is re-

placed by MD. �

Theorem 19 : Let SD be any system of spheres in MD centred on |K|. If a
revision function K∗

A is defined as in Definition 5 then the postulates (K∗5)
and (K∗7) are not satisfied.

Proof.

(K∗5) A counter-example: Let A = �¬p ∨ p. Then ` A, since `S5

♦(�¬p∨p).22 But |¬A| 6= φ, since 6`S5 ¬♦¬(�¬p∨p). Now since
there is at least one sphere intersecting |¬A| = |¬(�¬p∨p)| (viz.,
MD itself), by (S4)′, there is a smallest such sphere S(¬(�¬p ∨
p)). So C(¬(�¬p∨p)) 6= φ. Hence by (t3) and Definition 5, K∗

¬A
is non-trivial.

(K∗7) A counter-example: Let A = p and B = ¬p. Since |p ∧
¬p| = φ, C(p ∧ ¬p) = φ. Thus K∗

p∧¬p is trivial. But for any
m ∈ |t(|p| ∩ S(p))| ∩ |¬p|, m 6|= p ∧ ¬p. Hence p ∧ ¬p 6∈
t(|t(|p| ∩ S(p))| ∩ |¬p|) = (K∗

p)+
¬p. So (K∗

p)+
¬p is non-trivial.

Hence K∗

p∧¬p 6⊆ (K∗

p)+
¬p. Thus K∗

A∧B 6⊆ (K∗

A)+B . �

Levi Identity and Relevant Logics

Lemma 8 : (K+
α )+β ⊆ K+

α∧β .

Proof. By (K+3), K ⊆ K+
α∧β . So (K+

α )+β ⊆ ((K+
α∧β)+α )+β by (K+5)

twice. By (K+2), α, β ∈ K+
α∧β , since ` α ∧ β → α and ` α ∧ β → β. So

((K+
α∧β)+α )+β = K+

α∧β by (K+4) twice. Hence (K+
α )+β ⊆ K+

α∧β . �

22 This can be shown by the following:

�A ⊃ A Reflexivity axiom
iff �♦p ⊃ ♦p
iff ¬�♦p ∨ ♦p
iff ♦�¬p ∨ ♦p
iff ♦(�¬p ∨ p).

I owe this proof to Tim Surendonk.
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Theorem 20 : If a revision function K∗

α is defined as K∗

α = (K−

¬α)+α then the
postulates (K∗2)–(K∗4), (K∗6) and (K∗8) are satisfied.

Proof.

(K∗2) The result follows from (K+2).

(K∗3) By (K−2), K−

¬α ⊆ K. Hence by (K+5), (K−

¬α)+α ⊆ K+
α .

(K∗4) Suppose ¬α 6∈ K. Then K−

¬α = K by (K−3). Hence K+
α =

(K−

¬α)+α . Then the result follows.

(K∗6) Suppose ` α ↔ β. Then ` ¬α ↔ ¬β. So K−

¬α = K−

¬β by
(K−6). Hence (K−

¬α)+α = (K−

¬β)+β .

(K∗8) Suppose that ¬β 6∈ (K−

¬α)+α . Then ¬β 6∈ K−

¬α. Also ¬α 6∈ K−

¬α.
Hence by the primeness of a belief set, ¬α ∨ ¬β 6∈ K−

¬α. Since
` ¬α ↔ (¬α ∨ ¬β) ∧ ¬α, K−

¬α = K−

(¬α∨¬β)∧¬α
by (K−6). So

by (K−8), K−

¬α = K−

(¬α∨¬β)∧¬α
⊆ K−

¬α∨¬β = K−

¬(α∧β). Hence
(K−

¬α)+α∧β ⊆ (K−

¬(α∧β))
+
α∧β by (K+5). Hence ((K−

¬α)+α )+β ⊆

(K−

¬(α∧β))
+
α∧β by Lemma 8.23 �

Theorem 21 : If a revision function K∗

α is defined as K∗

α = (K−

¬α)+α then the
postulates (K∗5) and (K∗7) are not satisfied.

Proof.

(K∗5) A counter-model: Let K = Cn(p) and α = p → p. Then ` α, and
p,¬(p → p) ∈ (K−

α )+
¬α by (K+2). But q 6∈ (K−

α )+
¬α for some

q such that p and q are different propositional parameters, since
p,¬(p → p) 6` q in any standard system of relevant logic. Hence
(K−

α )+
¬α is non-trivial.

23 The proofs given here are the same as the classical proofs. See Gärdenfors (1988),
p. 215.
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(K∗7) The proof requires more machinery than we have got in this paper.
So the proof is not provided here. None the less, it can be shown
that (K∗7) is not satisfied.24 �
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