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YET ANOTHER “CHOICE OF PRIMITIVES” WARNING:
NORMAL MODAL LOGICS

LLOYD HUMBERSTONE

1. Introduction

The sensitivity of some claims about modal logics – in particular about the
structure of the lattice of all such logics – to the choice of boolean primitives
was pointed out in [Ma], while the sensitivity of some such claims – in par-
ticular about the completeness of particular axiomatizations – to the choice
of modal primitives was stressed in [Mi]. In the latter case, the logic S0.5
was at issue, while in the former, the example depends again on the inclusion,
in the range of modal logics considered, of non-normal (or more generally,
non-congruential) logics. Here we point out that the choice of modal prim-
itives does not cease to matter when it is specifically, claims about normal
modal logics that are at issue, by noting the inadequacy of a certain style of
(putative) axiomatization.

It should be emphasized that the cases alluded to above of alternative sets
of primitives, what is involved is a choice between pairs of sets of primitives
which are interdefinable: we are not considering the effect of weakening,
to take the boolean case, the stock of primitives in such a way as to make
negation or implication, for instance, not definable in terms of the primitives
chosen (as in [Hu2], [Du], for instance). Similarly, in the modal case, the
distinction in [Mi] is between taking necessity (�) as primitive and taking
possibility (♦) as primitive, rather than using some weaker basis definable
in terms of either of these and the boolean connectives, but from which �

and ♦ cannot in turn be defined, such as contingency (or noncontingency),
on which see [Hu5], [Ku]. (One might think necessity could be defined on
this basis by saying that what is necessary is what is both noncontingent
and also true: but we do not wish to restrict ourselves to logics in which
necessity implies truth, so such a definition is not generally available. Of
course this shows that “necessary”, “possible”, “noncontingent” etc., and so
on, are not really appropriate terms, but we take them simply as convenient
verbalizations of �, ♦, and – to use some obvious notation – � ∨ �¬ .)
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396 LLOYD HUMBERSTONE

The prototype for discussions such as that of [Mi], as well as the inspi-
ration for the title of [Ma], is the classic discussion [Hi] in which the in-
completeness of an axiomatization for conjunction and negation is shown,
this axiomatization being the result of translating the axioms and rules of a
complete system for (classical) disjunction and negation, using the obvious
De Morgan style translation. The topic has been taken up further in [Fr] and
[Sh]; the point is of course not specific to classical logic, and it was raised
for a putative axiomatization of intuitionistic propositional logic in [Hu6].
The theme of [Ma] was further discussed in §4.6 of [Se2] and §3 of [Hu3].1

The simplest illustration of Hiż’s phenomenon known to the present author
concerns the axiomatization of classical propositional logic with → and ⊥
as primitive, with ¬A defined as A → ⊥. Using axioms (1) and (2) from
Section 4 below, and the further axiom ¬¬p → p, together with Modus Po-
nens and Uniform Substitution as rules – or alternatively, using schematic
formulations of these axioms and just the rule Modus Ponens – we have a
complete axiomatization of classical propositional logic, though if we take
as our primitives → and ¬ (bearing in mind the definability of ⊥ in terms of
these primitives) the above axiomatization is incomplete, with, for example
¬¬(p → p) being unprovable therefrom, as interpreting ¬A as false for all
A reveals.2

2. A Failed Axiomatization of K

A common axiomatization of K, smallest normal modal logic, supplies a
stock of boolean primitives, a set of axioms which together with the rule
Modus Ponens provides a complete axiomatization of classical (non-modal)
propositional logic, and adds a new axiom – or, since we shall work here
without the rule of uniform substitution, an infinite set of axioms, namely all
instances of the axiom-schema

(K) �(A → B) → (�A → �B)

1 Readers curious about the authorship of [Mi] are referred to [Hu4].

2 That is, we keep the usual truth-functional interpretation of → but say that ¬ is to be
assigned the 1-ary constant false truth-function; in the case in which ¬ was defined we could
not arrange for this, since there is no way for → ⊥ to be associated with this function
(since whatever fills the blank may have the same truth-value as ⊥). This example first
came to my attention as a result of correspondence with Rob Goldblatt in about 1980; a
variant on the example arises for intuitionistic and for (Johansson’s) Minimal logic, and is
given for the latter case in Proposition 2.7.4 on p. 137 of [Wó]. (The axioms there mentioned
by number are identified on p. 108.) Wójcicki suggests the example illustrates the point of
[Ma], rather than, as claimed here, that of [Hi].
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and a new modal rule, Necessitation, licensing the passage from A to �A.
This is well and good provided that � is taken as a primitive connective.
Given such a choice, one may introduce a dual operator ♦, by defining ♦A
as ¬�¬A. One may, noting the K-provability of all formulas of the form
�A ↔ ¬♦¬A be tempted to take ♦ rather than � as the primitive modal
operator, treating �A as defined to be ¬♦¬A, and then stick with the above
axiomatization in �, now alias ¬♦¬, and think one has a complete axioma-
tization of K on one’s hands. (Some who have succumbed to this temptation
will be mentioned in Section 4, along with an earlier observation of its failure
– from [Hu1] – and some remarks as to how the present section’s approach
differs from the argument given there.) It will help to have the proposed ax-
iomatization before us explicitly, before we go on to note its incompleteness.
The truth-functional axioms and rule need not be listed – though we note that
the axioms are to include all instances in the present language of any chosen
set of schemata complete (with Modus Ponens) for truth-functional logic –
since the changes occur at the modal level, with what we have written as (K)
becoming, given the change of primitives, the following schema once the
occurrences of the defined “�” are spelt out in primitive notation:

(K)♦ ¬♦¬(A → B) → (¬♦¬A → ¬♦¬B)

and with the rule of necessitation becoming

(Nec.)♦ From ` A to ` ¬♦¬A.

To show that not every theorem of traditional �-based K (with ♦ under-
stood as ¬�¬) is forthcoming on this basis (with � understood as ¬♦¬), it
will help to have a modification of the Kripke semantics for normal modal
logics on hand. We will dispense with accessibility relations, since this
makes for a simpler semantics relative to which all we need is the sound-
ness of the current ♦-based axiomatization – not its completeness, but make
use of a device familiar in a different connection (entering into the clause for
the modal primitive in the definition of truth) from [Kr], the idea of a subset
of “normal worlds”, to be used here for the treatment of negation. (Compare
[Cr], p. 453ff.) For present purposes, then, a model is a triple 〈W, N, V 〉
in which W is a set with ∅ 6= N ⊆ W and V is a function assigning to
each propositional variable (sentence letter) a subset of W . Here we take as
the boolean primitives, → and ¬ with (of course) ♦ as our modal primitive.
Given a model M = 〈W, N, V 〉 we define the truth of a formula A at a point
u ∈ W – notated thus: “M �u A” – by induction on the complexity of A,
with the basis clause

• M �u A ⇔ u ∈ V (A) for A a propositional variable
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398 LLOYD HUMBERSTONE

and the inductive clauses for A of the forms B → C, ¬B, ♦B:
• M �u B → C ⇔ M 2u B or M �u C,
• M �u ¬B ⇔ u ∈ N and M 2u B,
• M �u ♦B ⇔ for some v ∈ W , M �v B.

The formula A is true in the model M = 〈W, N, V 〉, written as M � A,
just in case for all u ∈ N , we have M �u A, and valid if it is true in every
model.

Theorem 2.1 : Every formula provable in the above extension of truth-func-
tional logic by means of (K)♦ and (Nec.)♦, alongside Modus Ponens, is
valid.

Proof. It suffices to show that every substitution-instance of a classical tau-
tology (in → and ¬) is true in every model, and likewise for any instance
of the schema (K)♦, and that the rules (Nec.)♦ and Modus Ponens preserve,
for an arbitrary model M, the property of being true in M. For the truth-
functional aspects of this axiomatization, it suffices to note that since truth
in a model is a matter of truth throughout the set N of ‘normal’ points, at
which the above clause for ¬ reduces to the usual truth-table stipulation.
This leaves us with (K)♦ and (Nec.)♦ to check. In the case of the former,
suppose for a contradiction that we have for some model M = 〈W, N, V 〉
and some u ∈ N , M 2u ¬♦¬(A → B) → (¬♦¬A → ¬♦¬B), for some
formulas A and B, i.e., (1), (2), and (3):

(1)M �u ¬♦¬(A → B) (2)M �u ¬♦¬A (3)M 2u ¬♦¬B.

Since u ∈ N , these mean respectively that

(1)′M 2u ♦¬(A → B) (2)′M 2u ♦¬A (3)′M �u ♦¬B.

By (3)′ there exists v ∈ W for which M �v ¬B, and by (1)′ and (2)′,
M 2v ¬(A → B) and M 2v ¬A. Since we have M �v ¬B, v ∈ N ,
so these last two claims are equivalent to claiming that M �v A → B
and M �v A, which is not consistent with M �v ¬B, itself equivalent to
M 2v B. Finally, we check that (Nec.)♦, preserves truth in a model. Sup-
pose that for M = 〈W, N, V 〉 we have M � A but not M � ¬♦¬A. The
latter means that for some u ∈ N , M 2u ¬♦¬A and thus that M �u ♦¬A
(since u ∈ N ), so for some v ∈ W , M �v ¬A. Since it verifies a negated
formula, this v also belongs to N , and M 2v A, which facts together con-
tradict our supposition that M � A. �
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Corollary 2.2 : Not every theorem of K is provable from the axiomatization
described in Theorem 2.1.

Proof. Consider the K-provable (with ♦ abbreviating ¬�¬, p a propositional
variable) formula ♦p → ♦¬¬p, which, considered as a formula of the lan-
guage with ♦ primitive is not derivable from the axiomatization using (K)♦

and (Nec.)♦, because by Theorem 2.1 it is not valid in the sense of that Theo-
rem. We can see this with the aid of a two-element model M0 = 〈W, N, V 〉
with W = {u, v}(u 6= v), N = {u}, and V (p) = {v}. (What V assigns to
other variables is immaterial.) M0 �u ♦p, since there is an element of W ,
viz. v, at which p is true, while M0 2u ♦¬¬p, since there is no element of
W at which ¬¬p is true: not u itself, since u ∈ N and M0 2u p, and not v
since although M0 2v ¬p, v /∈ N . �

“For the benefit,” as Krister Segerberg so memorably once put it,3 “of ma-
trix minded readers”, we note that the ‘frame’ 〈W, N〉 of the above model
M0 can be converted into a (logical) matrix, with V corresponding to a par-
ticular assignment of matrix elements to the formulas, by setting 1 = {u, v},
2 = {u}, 3 = {v} and 4 = ∅. Since we defined validity as truth at every
‘normal’ point and u is the only normal point, the designated elements of the
matrix are 1 and 2 – as indicated by the asterisks in Figure 1 – corresponding
to the sets containing u.

→ 1 2 3 4 ¬ ♦ �

*1 1 2 3 4 4 1 1 1 2 1
*2 1 1 3 3 4 2 1 2 2 2
3 1 2 1 2 2 3 1 3 4 3
4 1 1 1 1 2 4 4 4 4 4

Figure 1

The example presented in the proof of Coro. 2.2 then takes the following
form: while every theorem of the logic there considered is valid in the matrix
of Figure 1, in the sense of assuming a designated value whatever values
are assigned to the propositional variables, the same does not hold for the
formula ♦p → ♦¬¬p, since when p takes the value 3, this formula assumes
the value ♦3 → ♦¬¬3 = 1 → ♦¬2 = 1 → ♦4 = 1 → 4 = 4, an
undesignated value.

Of course, while the axiomatization discussed in this section fails to yield
K, there are simple axiomatic bases to be found in the literature which take ♦

3 At p. 196 of [Se1].
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rather than � as primitive and are complete. (See, e.g., [Ch], Thms. 4.4, 4.5,
and [BRV], pp. 9 and 31: these authors take ♦ as primitive, supplementing
(K) (= (K)♦) with ♦p ↔ ¬�¬p as an additional axiom to avoid the cur-
rent difficulty.) We should also note that while our title is intended to echo
the terminology of [Ma] and – more pertinently here – [Mi], it would have
been equally apt to speak of a ‘choice of axioms’ problem, echoing that of
[Hi], rather than a ‘choice of primitives’ problem. The point is simply that
if one is wedded antecedently to a particular axiomatization, then one has
to be careful about making a choice of primitives, given which that axiom-
atization does what is claimed for it, while if one is antecedently wedded to
a particular choice of primitives, then one has to be careful when choosing
axioms and rules, to make sure, again, that a suitable combination has been
selected for the purpose at hand. What we have seen in this section is the un-
suitability of combining the choice of ♦ as primitive with the choice of (K)♦

and (Nec.)♦, i.e. naively using the translation of a successful axiomatic basis
when � is primitive.

3. Some Issues Arising

In drawing up Figure 1, we included also the table for the defined connective
�, computed by taking � as ¬♦¬. In the model-theoretic semantics the
corresponding clause would be (relative to a model M = 〈W, N, V 〉, for
any u ∈ W ):

• M �u �B ⇔ u ∈ N and for all v ∈ N , M �v B.
There is something of a philosophical disagreement over the status of defined
expressions such as � here. (See the discussion and references in [Hu6].) On
one view, that underpinning our own discussion, such expressions are not
part of the object language: rather, when we use an expression such as “�p”
we are simply helping ourselves to an abbreviation in the metalanguage, the
actual formula referred to by this abbreviation being the formula ¬♦¬p. On
the alternative view, a definition like that with which we are currently con-
cerned adds a new symbol to the object language itself, one with which it
is interreplaceable in any context provided by any theorem of the logic un-
der consideration by the corresponding definiens. On this approach �p and
¬♦¬p are distinct formulas which are ‘synonymous’, as [Sm] puts it, in the
logic. It is clear that taking this second position makes no difference to our
discussion, and in particular to Theorem 2.1 and Coro. 2.2, though a devel-
opment along those lines would more naturally place the above clause for
� alongside those given for →, ¬ and ♦ before the formulation of Theorem
2.1.



“19humberstone”
2005/7/18
page 401

i

i

i

i

i

i

i

i

YET ANOTHER “CHOICE OF PRIMITIVES” WARNING: NORMAL MODAL LOGICS 401

In a normal modal logic the provability of A ↔ B (or, given the current
choice of primitives, the provability of both A → B and B → A: though of
course we could use the definition of ↔ from → and ¬ to provide a single
formula) suffices for the synonymy of A and B, and in fact this so for any
merely congruential modal logic (one in which the provable equivalence of
A with B suffices for the provable equivalence of OA with OB, where O is
whichever of � and ♦ is primitive4 ). The logic of Theorem 2.1 is clearly not
congruential, since its theorems include, amongst all other truth-functional
tautologies, p → ¬¬p and the converse implication, while the example of
Coro. 2.2 shows that p and ¬¬p are not interreplaceable in the context ♦(·).
In this setting, therefore, there is no guarantee that we can, while taking the
second of the two views on definition distinguished in the preceding para-
graph, secure the interreplaceability of definiens and definiendum by stipu-
lating that they are to be provably equivalent. For the logic axiomatized in
Section 2, it would be enough (for obtaining a complete axiomatization of K

with ♦ as primitive) to add the schema ♦A ↔ ♦¬¬A, which recalls the ad-
vice given by Hiż ([Hi], p. 614): “A translation of a complete set of axioms
to another set of primitives would be complete only if from the resulting ax-
ioms the definitions of the first set of primitives followed.”5 In the present
case, this means that we need to be able to prove (for any A) ¬�¬A ↔ ♦A,
i.e., in primitive notation, ¬¬♦¬¬A ↔ ♦A, which is an easy consequence
of the schema just mentioned (♦A ↔ ♦¬¬A). However, this advice is not
in general the last word, since there may not be a set of formulas constituting
“the definitions of the first set of primitives”. (For example, in the logic S0.5
mentioned in our opening paragraph there is no binary connective playing
the role here played by ↔, with the provability of the resulting compound
securing the synonymy of the two components: See [Po], Theorem 3.1.)

In the proof of Coro. 2.2, only one half of the a representative instance
of the schema considered in the preceding paragraph figured, ♦p ↔ ♦¬¬p,
namely the → direction. It would be interesting to find an equally simple
argument, perhaps a variation on that given there, establishing the unprov-
ability of the converse implication from the failed axiomatization of K. The
author’s attempts in this direction have not been successful. An idea with
some initial promise for finding a notion of validity on which ♦¬¬p → ♦p

4 This notion of congruentiality is adapted from [Ma], where it is remarked that the prob-
lem of sensitivity to a choice of primitives there considered does not arise for congruential
modal logics.

5 This point about being able to recover the definitions from the new axiomatization is
familiar in the setting of first-order theories as what distinguishes definitional equivalence
from (mere) mutual interpretability: see [Co1], [Co2], [Co3], for discussion and references.
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is invalid but with respect to which that axiomatization is sound is the fol-
lowing. One retains models of the 〈W, N, V 〉 form, with validity as truth
throughout N in each such model, and the following change to the clause
for ¬:

• M �u ¬B ⇔ u /∈ N or M 2u B.
Whereas the earlier clause ruled out the joint truth, but allowed for the si-
multaneous falsity at a point of a formula and its negation, this new clause
rules out the simultaneous falsity but allows for the joint truth of B and ¬B.
The possibilities allowed for in both cases are realized only at points out-
side of N , however, so all (substitution instances of) classical tautologies are
again valid. Every instance of (K)♦ also turns out valid, so we are almost
home, in view of the fact that ♦¬¬p → ♦p is invalid. (Simply adjust the
specification of M0 in the proof of Coro. 2.2 so that V (p) = ∅.) Almost,
but not quite: the rule (Nec.)♦ does not preserve truth in a model, or even
validity: ¬♦¬(p → p) is invalid, for example, since whenever W \ N 6= ∅,
〈W, N, V 〉 � ♦¬(p → p) regardless of V , any negated formula being true
throughout W \ N . So we must leave open the problem of supplying a
variation on the earlier semantics which demonstrates the unprovability of
♦¬¬p → ♦p.

Allen Hazen has pointed out to the author that the semantics of the pre-
ceding paragraph can be used instead to demonstrate the unprovability of
�¬¬p → �p, from an axiomatization in which � is primitive but which
is an injudicious translation of a complete ♦-based axiomatization (such as
that of [Ch], mentioned in Section 2); the idea is that the present semantics
makes all negated formulas true at non-normal worlds, so if V (p) comprises
precisely the normal worlds in a model in which there are also non-normal
worlds, all the normal worlds will verify �¬¬p and falsify �p. It would
be interesting to know whether any such translation has in fact ever been
mistakenly proposed as complete.

In view of the significance ([Ma] and the supplementary discussion cited
in Section 1) of the choice, amongst boolean primitives, between taking →,
¬ as our discussion has, on the one hand, and →, ⊥ on the other, it is of some
interest to see what becomes of Section 2 with a change to the latter pair, with
�A now defined to be ♦(A → ⊥) → ⊥. If in the model-theoretic semantics
we retain the previous clause for →, there will be no way of having A → ⊥
amount to ¬A as previously treated, since the latter could only be true at
normal worlds, while whatever is said about ⊥, the former will be true at
any world at which A fails to be true. For the analogue of the axiomatization
in the primitives →, ⊥, ♦ – and because of its length we will not write
out (as we did with (K)♦ what (K) looks like in the new primitive notation
– we can still show that the current incarnation of ♦p → ♦¬¬p, namely
♦p → ♦((p → ⊥) → ⊥) is not derivable, by the following modification
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of the earlier semantics. We stipulate that, relative to a model 〈W, N, V 〉,
⊥ is false at every point, and an implication B → C is true at an arbitrary
u ∈ W if and only if u ∈ N and either B is false at u or C is true at u.
Validity continues to be defined as truth throughout N in any 〈W, N, V 〉, and
we leave the reader to check that every theorem derivable from the current
axiomatization is valid, while ♦p → ♦((p → ⊥) → ⊥) is not. The point has
nothing in particular to do with ⊥: putting q (another propositional variable)
or p itself, for ⊥ in this formula again gives something that ought to be
provable but, as we see from its invalidity, isn’t.

4. Examples From Life

Thomason, in [Th] – a paper justly celebrated for its early recognition that
not every (bi)modal logic was determined by a class of Kripke frames –
presents what purports to be an axiomatization of the minimal tense logic,
often called Kt (though referred to by Thomason as T0). The language has
primitive connectives →, ¬, F and P , the latter two being the tense logical
♦-operators (“future” and “past” respectively), G and H abbreviating ¬F¬
and ¬P¬. Thomason uses the rules Modus Ponens, Uniform Substitution,
and the (Nec.)-like rules which pass from A to GA and from A to HA, and
the following axioms (numbered as in [Th], p. 150):

(1) p → (q → p)
(2) (p → (q → r)) → ((p → q) → (p → r))
(3) (¬p → ¬q) → (q → p)
(4) G(p → q) → (Gp → Gq)
(5) H(p → q) → (Hp → Hq)
(6) p → HFp
(7) p → GPp

The role of the axioms (1)–(3) is, with the aid of Modus Ponens and Uniform
Substitution, to yield proofs of all formulas which are substitution-instances
of truth-functional tautologies. The intended role of (4) and (5), together
with the H and G Necessitation rules, is to secure that we have a normal
bimodal logic (i.e., each of the operators H , G, is normal in the resulting
logic) – an intention we do not expect to succeed in view of Section 2 above.
There remains the possibility that further inclusion of (6) and (7) – the bridg-
ing axioms which reflect the fact that the accessibility relations for H and G
are each other’s converses – safeguards the present axiomatization from the
objection raised for the monomodal case in Section 2. This possibility, how-
ever, is not realized. We find our old example from Coro. 2.2, ♦p → ♦¬¬p,
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turns out to be unprovable in either the form Fp → F¬¬p or the form
Pp → P¬¬p (both of which are provable in Kt). For one readily sees that
all instances of the schema (sometimes called B) A → �♦A are valid in
the sense of Section 2, so we can interpret P and F in the same way as
the semantics there provided interprets ♦, and all axioms of Thomason’s ax-
iomatization will be valid, the various rules preserving validity, while the
formulas just cited are invalid and therefore unprovable. Note that because
we are now using Uniform Substitution, we can no longer say that each rule
preserves, for any model, the property of being true in that model. How-
ever, we still have the claimed preservation property for this rule for a reason
which is familiar from the literature but which we spell out here because of
its bearing on the topic of the following paragraph. If a formula A(B) re-
sults from a formula A(pi) by uniform substitution of B for pi, then for any
model M = 〈W, N, V 〉 with, for u ∈ W , M 2u A(B), setting V ′ as like V
except that V ′(pi) = {v ∈ W | M �v B}, for the model M′ = 〈W, N, V ′〉
we have M′

2u A(pi).6 So from the invalidity of A(B) the invalidity of
A(pi) follows.

This brings us to our second example, which again concerns the axioma-
tization of Kt with F and P taken as primitive. McArthur, at p. 18 of [Mc],
offers a variant on the axiomatization with (1)–(7) which replaces these ax-
ioms by corresponding axiom-schemata, distinct propositional variables be-
ing replaced by distinct schematic letters, thereby avoiding the need to in-
clude Uniform Substitution amongst the rules.7 The same definitions are
given of G and H in terms of F and P as in the previous example. The
observation that this does not provide a complete axiomatization of Kt was
made in note 13 of [Hu1], with a justification using only bivalent valua-
tions (truth-value assignments), as opposed to the model-theoretic apparatus
brought to bear in Section 2 above (or its many-valued incarnation, such as
Figure 1 provides for a two-element model). By a boolean valuation we
understand a valuation v satisfying for all formulas A, B, the conditions
(i) v(¬A) = T iff v(A) = F and (ii) v(A → B) = T iff v(A) = F or
v(B) = T . (If other boolean primitives are employed, the corresponding
truth-table conditions should be imposed.) For the language of tense logic,

6 One may draw this conclusion from the fact, proved by induction on the construction
of A(pi), that for M and M

′ as described here, we have M �v A(B) iff M′
�v A(pi), for

all v ∈ W .

7 In fact McArthur also avoids the need for the necessitation rules with G and H by the
device of counting not only any instance of these schemata, but also the result of prefixing
such an instance with G or H , as an axiom. He also collapses the effect of axioms (1)–(3)
into a single schema counting any (substitution-instance of a) truth-functional tautology as
an axiom. These differences do not affect our discussion.
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with additional operators F and P , what in the ad hoc terminology of [Hu1]
is called McValuation is a boolean valuation v satisfying the further condi-
tions that v(FA) = v(PA) = T iff A is not of the form ¬B. Thus for any
formula A and any McValuation v, v(GA) = v(HA) = T . (Here we are
assuming the first – ‘metalinguistic abbreviation’ – view of definitions dis-
tinguished in Section 3.) This observation helps us to see that every instance
of the McArthur axiom schemes is assigned the value T by every McValua-
tion, and that the rules Modus Ponens and G- and H-necessitation preserve
the property of being assigned this value by every McValuation, whereas the
formula Fp → F¬¬p (as well as the corresponding formula with P ) lacks
this property: in fact no McValuation verifies this formula, since all such
valuations verify its antecedent while falsifying its consequent. We con-
clude (as in note 13 of [Hu1]) that the given formula, while Kt-provable, is
not forthcoming on the basis of McArthur’s axiomatization.

The argument just sketched would have worked just as well as that given
in Coro. 2.2 to show that the axiomatization discussed in Section 2 failed
as an axiomatization of K, by giving ♦ the same treatment just accorded to
F and P . Is there any advantage to be gained, then, from the route taken
in Section 2, over this simpler route to the same result? There certainly is,
and we have just seen, in the case of Thomason’s would-be axiomatization
of Kt, one instance of the greater power of the methods of Section 2. The
key difference between Thomason’s and McArthur’s axiomatizations lies in
the former’s using and the latter’s eschewing the rule of Uniform Substitu-
tion. For brevity, let us call a formula true on every McValuation McValid.
Whereas the model-theoretically defined notion of validity deployed in Sec-
tion 2 is preserved by Uniform Substitution, as explained two paragraphs
back, McValidity is not so preserved, so the simple argument given – that all
provable formulas are McValid which proceeded by showing that the axioms
had this property and the rules preserved it – would fail if Uniform Substi-
tution were amongst the rules. As an illustration of the failure of this rule to
preserve McValidity, consider the formula Fp and its substitution instance
F¬p: the first is McValid while the second is not. Now it may be said that we
can supplement the McValuations argument, when we wish to use it à pro-
pos of an axiomatization using Uniform Substitution, with the observation
that the same theorems are evidently provable from the axiomatization drop-
ping this rule in favour of schemata. Certainly: but no such supplementary
considerations are needed if instead the method of Section 2 is employed.

It would probably be worthwhile to make a more detailed study of the
differences (in respect of range of application) of the 〈W, N, V 〉 models and
the method of McValuations – or of the ‘dualized’ version of the former
(attributed to Hazen in Section 3) and a corresponding adaptation of the latter
– but we shall not undertake any such further investigations here.
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