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PREFERENCE SEMANTICS FOR DEONTIC LOGIC
PART II – MULTIPLEX MODELS

LOU GOBLE

Abstract
Part I of this work demonstrated the adequacy of a simple preference
semantics for deontic logic, both for standard deontic logic and for a
logic that allows for conflicts of obligation, and for both as monadic
deontic logics and also as dyadic logics for conditional obligation
and for preferability. This part extends those results through the
use of ‘multiplex’ models that apply multiple preference relations to
represent pluralities of normative standards. This enables two dual
general senses of ‘ought’ to be distinguished, and it allows for the
ranking of normative standards. Logics for these notions are given
and shown to be sound and complete with respect to the multiplex
preference semantics.

In Part I of this work [3], I presented a basic preference semantics for deontic
logic, in which possible worlds are ranked by a preference relation, P,1 and
‘ought’ statements are interpreted so that OA is true just in case there is a
possible world b where A is true which is such that for every world c that
is just as good as b, i.e., where cPb, A must hold at c as well. This basic
idea can also be adapted to give models for conditional obligation and for
the notion of preferability itself. If the preference relation P is required to
be reflexive, transitive and connected on its field, the logic that is determined
by this semantics is standard deontic logic in either its monadic or dyadic
versions. If, however, the preference relation is allowed not to be connected,
then the semantics determines a weaker logic that has the virtue of allowing
for conflicts of obligation, cases in which both OA and O¬A are true. This
too appears in both monadic and dyadic deontic versions, which I call P and
DP respectively. In [3], as part of proving these latter systems to be complete
with respect to the basic preference semantics, I introduced a generalization

1 I use the letter ‘P’ to represent this relation, rather than, say, ‘≥’, to prevent some of
the later proofs becoming optically oppressive.
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336 LOU GOBLE

of that semantics that utilized multiple preference relations. I call this the
‘multiplex’ preference semantics for deontic logic. This Part develops the
multiplex semantics further and uses it to present two contrasting dual gener-
alized senses of ‘ought’, which I call the ‘indefinite’ sense and the ‘definite’
or ‘core’ sense. Here, depending on the conditions on the multiple prefer-
ence relations, the definite sense might follow standard deontic logic even
while the indefinite follows the logic P, or both might follow P. It is note-
worthy that these generalized senses of ‘ought’ can only be distinguished in
the framework of multiplex models, or something similar. Moreover, while
the logic in which both sorts of ‘ought’ follow P can be interpreted in the
preference semantics, it does not have a corresponding Kripke-style multiple
relational semantics (described in [2]; cf. also [5]) or even a corresponding
neighborhood semantics.

In addition to providing an account of these dual senses of ‘ought’, the
multiplex semantics also enables the characterization of a sense of compar-
ative or ranked obligation that derives from an ordering relation imposed on
the multiple preference relations themselves. This reflects the fact that in
certain contexts some normative standards or authorities have priority over
others. Such a notion of comparative obligation combines naturally with the
other generalized oughts.

Section 1 below presents the multiplex preference semantics itself and
shows how it leads to the two dual senses of ‘ought’. Here we give logics for
these operators that are sound and complete with respect to this semantics.
These are considered both from the point of view of standard preference
relations, which leads to an extension of standard deontic logic, SDL, and
from the point of view of weaker preference relations, which leads to an
extension of the logic P, described in [3], where conflicts of obligation can
occur. Section 2 introduces the ordering of the multiple preference relations
and the concomitant sense of comparative or ranked obligation. The logic
for this in combination with the monadic ‘ought’ operators of Section 1 is
given and shown to be sound and complete in the multiplex semantics. Again
we see the two options of extending standard deontic logic and of extend-
ing P.2 Section 3 considers conditional obligation and preferability within
the multiplex framework, for it seems equally apt to distinguish generalized
definite and indefinite senses of the dyadic connectives as for the monadic.
The picture of the logics that emerges is, however, more complex than the
preceding, and the question of their complete characterization remains open.

2 In [2] I presented some of the present results and sketched their proofs. Here I give
more direct proofs, and more details to establish the results.
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As in [3], the results presented here are chiefly formal; I do not develop
philosophical applications of the multiplex framework in any detail. (See [2]
for more discussion along those lines.)

1. Multiplex Models

In [3], as part of the proof of completeness for P, I defined ‘multiple prefer-
ence frames’. These are structures F = 〈W,P〉, in which W is a non-empty
set of points or ‘possible worlds’, and P assigns to each a ∈ W a non-empty
set, Pa, of binary relations on W , with the understanding that every relation
P ∈ Pa is non-empty. If, for every a ∈ W , every relation P ∈ Pa is reflex-
ive on its field and transitive, the frame is correspondingly called reflexive
and transitive. If, moreover, P is also connected on its field, it is called ‘stan-
dard’, and if, for every a ∈ W , every P ∈ Pa is standard, then the frame too
will be called standard. In what follows, we will sometimes be interested in
models on standard frames, and sometimes in a wider class of models. A
‘multiple preference model’, M = 〈F, v〉, is a model on a multiple prefer-
ence frame F where, as usual, v is an function assigning sets of points in W
to atomic formulas, i.e., v(p) ⊆ W . Truth-functional formulas are evaluated
in the usual classical way.

The presence of multiple preference relations in a frame invites introduc-
ing multiple deontic operators. Thus, if one preference relation Pf represents
the system of norms given by federal law, one might have an operator Of by
which OfA says that, according to federal law, it ought to be that A, and if
another relation Pg represents the norms of a given game, one might have an
operator Og by which OgA says that, according to the rules of the game, it
ought to be that A. Each of these would be evaluated in the semantics by the
pattern of the basic preference semantics of [3], i.e.,

M, a |=
MP

OfA iff there is a b ∈ FPf such that M, b |=
MP

A
and, for all c, if cPfb then M, c |=

MP
A

M, a |=
MP

OgA iff there is a b ∈ FPg such that M, b |=
MP

A
and, for all c, if cPgb then M, c |=

MP
A

(The notation ‘FP’ refers to the field of the relation P, i.e., to the set {b :
∃c(bPc or cPb)}. The sign for the modelling relation, ‘|=

MP
’, has the sub-

script to indicate that the relation is defined for the present form of multiple
preference models. Later we will consider such relations for other multiplex
models; the notation helps reduce ambiguity.)

Under these rules, each separate deontic operator will then follow the logic
of the monadic operator O as given in [3] for the simple preference semantics
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338 LOU GOBLE

where only one relation has a role to play. This will be standard deontic logic
(SDL) if the corresponding relation is standard, and P if it is not. Thus,
nothing particularly new is introduced by going multi-modal in this way,
and so we will not pursue this prospect further, although such multi-modal
logics might be useful for a variety of purposes.

In [3] a genuinely multiple evaluation rule was given for formulas OA,
namely

M, a |=
MP

OA iff there is a relation P ∈ Pa such that there
is a b ∈ FP such that M, b |=

MP
A and, for all c, if cPb then

M, c |=
MP

A

which applies the basic pattern for the evaluation of ought-statements in the
preference semantics but now within the context of the quantification on
relations in Pa. In [3] it was shown how this determines the weak deontic
logic P regardless of whether the several relations in Pa are reflexive or
transitive or even standard. P is axiomatized by adding the rule and axioms

(RM) If ` A → B then ` OA → OB
(N) O>
(P) ¬O⊥

to classical PC, with closure under modus ponens. If either of
(C) (OA ∧ OB) → O(A ∧ B)
(K) O(A → B) → (OA → OB)

is added to P the result is SDL, including the consistency principle (D),
OA → ¬O¬A.

P was introduced as a logic that can accommodate conflicts of obligation.
In the framework of the present multiple preference semantics it is easy to
see how there might be such conflicts, for A might be obligatory with re-
spect to one normative standard, one relation P ∈ Pa while ¬A is obligatory
with respect to a different normative standard, a different relation Q ∈ Pa.
Federal law might prescribe one thing while the rules of the game prescribe
the opposite. To say merely that it ought to be that A might thus seem am-
biguous or unspecific; it is to say that A is prescribed by some normative
standard, but it does not indicate which. This is the sense of ‘ought’ I call
’indefinite’; it is reflected in the preceding rule.

There is, however, another way to look at the ambiguity or unspecificity of
‘ought’ in our ordinary discourse. This is to take the expression ‘it ought to
be that A’ to say that A is prescribed by every normative standard, and thus
no specification is necessary. This is the sense I call the ‘core’ or ‘definite’
sense of ‘ought’. It is captured in the multiple preference semantics by the
evaluation rule
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M, a |=
MP

OA iff for every relation P ∈ Pa there is a b ∈ FP
such that M, b |=

MP
A and, for all c, if cPb then M, c |=

MP
A

Both senses can be treated together. This produces a bi-modal deontic logic,
but in a rather different way than that suggested above.

Let us now make this more precise. Let the language Lae of these deontic
logics contain, in addition to all that is required for classical propositional
logic, PC, two monadic operators Oe and Oa. These correspond to the in-
definite and the definite senses of ‘ought’ respectively. The subscripts are
intended to suggest the existential quantification and universal quantification
inherent in their evaluation rules. Thus, for models on multiple preference
frames, we stipulate that

(MP-Oe) M, a |=
MP

OeA iff there is a relation P ∈ Pa such that there
is a b ∈ FP such that M, b |=

MP
A and, for all c, if cPb then

M, c |=
MP

A

(MP-Oa) M, a |=
MP

OaA iff for every relation P ∈ Pa there is a b ∈ FP
such that M, b |=

MP
A and, for all c, if cPb then M, c |=

MP
A

As in [3], it will be convenient to adopt the notation ‘M, P |=
MP

A’ to abbre-
viate

there is a b ∈ FP such that M, b |=
MP

A and, for all c, if cPb then M, c |=
MP

A

So we might give these rules more succinctly as
M, a |=

MP
OeA iff for some P ∈ Pa, M, P |=

MP
A

M, a |=
MP

OaA iff for every P ∈ Pa, M, P |=
MP

A

Oe corresponds to the monadic O of [3] §2 in the proof of completeness
for P. That is its logic here. Oa is new. Its logic depends on the properties of
the relations P ∈ Pa in a way that the logic of Oe does not. If all relations
in the sets Pa are standard, then Oa will behave according to the principles
of SDL even while Oe follows P.

Let the logic SDLaPe be axiomatized by PC (with modus ponens) plus
(Ka) Oa(A → B) → (OaA → OaB)
(Da) OaA → ¬Oa¬A
(RNa) If ` A, then ` OaA
(RMe) If ` A → B, then ` OeA → OeB
(Ne) Oe>
(Pe) ¬Oe⊥
(Kae) Oa(A → B) → (OeA → OeB)



“16goble”
2005/7/18
page 340

i

i

i

i

i

i

i

i

340 LOU GOBLE

where the first three postulates plainly give us SDL for Oa while the second
three give us P for Oe. The last postulate links the two operators.

We note too, for future reference, that the principles
(RMa) If ` A → B, then ` OaA → OaB
(Ca) ` (OaA ∧ OaB) → Oa(A ∧ B)
(Na) ` Oa>
(Pa) ` ¬Oa⊥
(OaOe) ` OaA → OeA
(OaPe) ` OaA → ¬Oe¬A

are all derivable in SDLaPe. (Derivations are easy and so left to the reader.)

Theorem 1 : SDLaPe is sound and complete with respect to the class of all
standard multiple preference frames.

Proof of this is contained in the proof of Theorem 3 below, and so we defer
the details to Section 2.1.

If, on the other hand, not all the relations P ∈ Pa are standard, especially if
they are not all connected on their fields, then the core sense of ‘ought’, Oa,
will follow the logic of P rather than SDL, as does the indefinite sense, Oe.
Thus, without connectedness, the principles (Ka), (Da) and also (Kae) are no
longer valid. Instead, the logic characterized by this wider class of frames,
which I call PaPe, will be that axiomatized by the postulates (RMa), (Na),
and (Pa), reflecting the P-character of Oa, as well as (RMe), (Ne), and (Pe)
for the P-character of Oe, and, in place of (Kae), it has the weaker (OaOe)
to connect the two. The rules (RNa), if ` A then ` OaA, and (RNe), if ` A
then ` OeA, are both derivable given (Na) and (RMa) and (Ne) and (RMe).

Theorem 2 : PaPe is sound and complete with respect to the class of all
multiple preference frames (or all reflexive or transitive multiple preference
frames).

Proof of this is contained in the proof of Theorem 8 below; see Section 2.2.
Plainly both the logics SDLaPe and PaPe require the multiplicity of the

multiple preference frames, otherwise the dual senses of ‘ought’ would col-
lapse into one. It is noteworthy, though, that PaPe has only a multiple pref-
erence semantics. Although the basic logic P, here the component Pe, has
a classical neighborhood semantics and can be given a corresponding mul-
tiple Kripke-type relational semantics (cf. [2]; also [5]), and the same can
be said for all of SDLaPe, neither of those methods is applicable to PaPe.
This is evident from the fact that any neighborhood model or multiple re-
lational model, with a rule for evaluating formulas OaA comparable to the
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rule (MP-Oa) with universal quantification on neighborhoods or relations,
will automatically validate the principle (Ca), (OaA∧OaB) → Oa(A∧B),
which is not provable in PaPe, while there are no conditions on such models
that might now be loosened to avoid this consequence.

2. Ranked Obligations

Given the framework of multiple preference frames, it is natural to think that
the relations in the sets Pa (for each a ∈ W ) could themselves be ranked
by an order of priority. This might correspond to the way some normative
standards take precedence over others, as when one body of law is superior
to another, or the instructions of one person in a hierarchy dominate those of
another. To capture this notion, let us extend the previous multiple preference
frames to include an ordering on their respective relations. A ranked multiple
preference frame, or MP6-frame for short, is a triple 〈W,P, 6〉 where W
and P are as before and 6 is a function that assigns to every a ∈ W a
binary relation 6a on Pa that is reflexive and transitive. (Connectedness for
relations 6a is optional. Generally speaking, whatever is said about systems
without this form of connectedness applies mutatis mutandis to systems with
this property. Frames in which every 6a is connected over Pa will be called
6-connected.)

To express this new ordering relation in the language of the logic, let the
language Lae of the preceding section be extended to Lae≤ by adding a bi-
nary connective ‘≤’, so that formulas A ≤ B are well-formed whenever A
and B are. ‘A ≤ B’ could be read as saying that B is at least as obligatory
as A. Given a model M = 〈F, v〉 on a MP6- frame, let these formulas be
evaluated according to the rule

(MP6-≤) M, a |=
MP 6

A ≤ B iff for every relation P ∈ Pa such that
M, P |=

MP 6
A, there is a Q ∈ Pa for which M, Q |=

MP 6
B and

P 6a Q

Within this language formulas OeA and OaA are evaluated exactly as in
Section 1.3

As we formulate the logic of this notion of ranked obligation, let us con-
sider first the case when all the preference relations P ∈ Pa, for every
a ∈ W , are standard, i.e., reflexive, transitive and connected on their fields.
Then we shall examine the case when these relations need not be connected.

3 It is important not to confuse the present notion of comparative or ranked obligation,
A ≤ B, with the notion of preferability, A ≥ B, that was discussed in Part I of this work [3].
We return to that in Section 3 below.
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2.1. Standard Multiplex Models

For purposes of this subsection, let us suppose that MP6-frames F = 〈W,P,
6〉 are such that every P ∈ Pa is standard, i.e., reflexive on its field, tran-
sitive and connected on its field. The logic that is determined by this class
of all standard MP6-frames extends SDLaPe with the following principles
containing ≤:

(Oa ≤) Oa(A → B) → (A ≤ B)
(¬Oe ≤) ¬OeA → (A ≤ B)
(≤ Oe) (A ≤ B) → (OeA → OeB)
(≤-trans) ((A ≤ B) ∧ (B ≤ C)) → (A ≤ C)

and so I call this logic SDLaPe6.4 If all the relations 6a are connected on
Pa then

(≤-connex) (A ≤ B) ∨ (B ≤ A)

will also be valid. Call the result of adding this to SDLaPe6, SDLaPe6c

(and similarly for PaPe6 below).
Given the postulates of SDLaPe, other expected principles are derivable,

e.g.,
(≤-reflex) ` A ≤ A
(R≤) If ` A → B, then ` A ≤ B

both of which come from (RNa) and (Oa ≤).

Theorem 3 : SDLaPe6 is sound and complete with respect to the class of all
standard MP6-frames. (Likewise SDLaPe6c and all standard 6-connected
MP6-frames.)

Proof: Soundness is, as usual, easy to demonstrate, and so is left to the
reader. To prove completeness we follow familiar Henkin-style procedures.
Set F = 〈W,P, 6〉 where W is the class of all maximal consistent exten-
sions of SDLaPe6. To define relations in Pa we combine aspects from the
proofs for Theorems 1 and 7 of [3]. That is, let us define, for each a ∈ W
and each formula A ∈ Lae≤, a binary relation

PA
a = {〈b, c〉 : if c ∈ ΣaA then b ∈ ΣaA}

4 SDLaPe6 is equivalent to Mark Brown’s [1] system CO of comparative obligation ex-
tended with the axiom (Ne), an option Brown allows. Brown gave a neighborhood semantics
for formulas corresponding to our OaA and OeA, and a kind of hyper-neighborhood seman-
tics for formulas A ≤ B.
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where

ΣaA = {b : (if OeA ∈ a then A ∈ b) and (O−1

a a ⊆ b)}

when O−1

a a = {B : OaB ∈ a}. Then let

Pa = {P : ∃A(P = PA
a )}

P in the frame F assigns Pa to a.
For 6, define first, for each a ∈ W and each formula B ∈ Lae≤:

ΨaB = {P ∈ Pa : ∀C(if P ε [C] then B ≤ C ∈ a)}

where the notation ‘[A]’ refers to {a : a ∈ W and A ∈ a}, and ‘P ε [A]’
stands for

∃b ∈ FP(A ∈ b and ∀c(if cPb then A ∈ c))

(This corresponds syntactically to the semantical notation ‘M, P |=
MP

A’
introduced earlier.) We then define, for P, Q ∈ Pa,

P 6a Q iff ∀B(if P ∈ ΨaB, then ∃C(Q ∈ ΨaC and B ≤ C ∈ a))

6 in the frame F assigns each a its relation 6a. Finally, let M = 〈F, v〉
where, as usual,

v(p) = {a ∈ W : p ∈ a}

Lemma 4 : M is a model on a standard MP6-frame.

Proof: Pa 6= ∅ since there are formulas, A, and PA
a ∈ Pa. It is easy to show

that all the relations in Pa are reflexive on W (hence non-empty), transitive
and connected on W ; it is also easy to show that the relations 6a are reflex-
ive and transitive given (≤-reflex) and (≤-trans). These can be left to the
reader. Further, for SDLaPe6c, in the presence of (≤-connex), 6a will be
connected; this too is easily shown.

Lemma 5 : (i) O−1

a a is consistent; (ii) If OaA /∈ a, then O−1

a a ∪ {¬A} is
consistent; (iii) if OeA ∈ a then O−1

a a ∪ {A} is consistent; (iv) if OeA /∈ a
then O−1

a a ∪ {¬A} is consistent.

Proof: (i) and (ii) are standard in modal logic. For (ii), suppose OaA /∈ a but
that O−1

a a ∪ {¬A} is not consistent. O−1

a a 6= ∅ (since Oa> ∈ a). Hence,
there are C1, . . . , Cn ∈ O−1

a a such that ` (C1∧. . .∧Cn) → A. For each Ci,
OaCi ∈ a; hence OaC1∧ . . .∧OaCn ∈ a. By (Ca), Oa(C1∧ . . .∧Cn) ∈ a.
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Since ` (C1 ∧ . . . ∧ Cn) → A, ` Oa(C1 ∧ . . . ∧ Cn) → OaA by (RMa).
Consequently, OaA ∈ a, contrary to the opening hypothesis. Hence, if
OaA /∈ a, then O−1

a a∪{¬A} must be consistent. The same argument applies
to (i) given that Oa⊥ /∈ a by virtue of (Pa). For (iii), suppose OeA ∈ a but
that O−1

a a ∪ {A} is not consistent. Then O−1

a a, A ` ⊥, and so there are
C1, . . . , Cn ∈ O−1

a a (0 ≤ n) such that ` (C1 ∧ . . . ∧ Cn) → (A → ⊥)
and so ` Oa(C1 ∧ . . . ∧ Cn) → Oa(A → ⊥), by (RMa). Since OaC1 ∈
a, . . . , OaCn ∈ a, Oa(C1 ∧ . . . ∧ Cn) ∈ a and so Oa(A → ⊥) ∈ a. Since
` Oa(A → ⊥) → (OeA → Oe⊥), axiom (Kae), OeA → Oe⊥ ∈ a.
Hence Oe⊥ ∈ a, contrary to the consistency of a since ¬Oe⊥ ∈ a from
(Pe), ` ¬Oe⊥. (iv) follows from (ii) since if OeA /∈ a then OaA /∈ a, by
principle (OaOe).

Lemma 6 : (i) If PA
a ε [B] then Oa(A → B) ∈ a (and hence A ≤ B ∈ a);

(ii) if OeA /∈ a and PA
a ε [B] then OaB ∈ a.

Proof: For (i), suppose PA
a ε [B], so that there is a b ∈ FPA

a and B ∈ b and
for all c such that cPA

a b, B ∈ c. Suppose then that Oa(A → B) /∈ a. In
that case, by Lemma 5.ii, O−1

a a∪ {¬(A → B)} is consistent, and so then is
O−1

a a ∪ {A,¬B}. Let c be a maximal consistent extension of that. A ∈ c;
hence if OeA ∈ a then A ∈ c. Also, O−1

a a ⊆ c; hence c ∈ ΣaA, and so if
b ∈ ΣaA then c ∈ ΣaA. Thus cPA

a b. Therefore, B ∈ c, but also ¬B ∈ c,
contrary to the consistency of c. Hence, Oa(A → B) ∈ a, as required. (That
A ≤ B ∈ a follows from axiom (Oa ≤.) For (ii) the argument is similar.
Suppose OeA /∈ a and PA

a ε [B], so that there is a b ∈ FPA
a and B ∈ b and

for all c that cPA
a b, B ∈ c. And suppose that OaB /∈ a. Then O−1

a a∪ {¬B}
is consistent, by Lemma 5.ii, and so has a maximal consistent extension, c.
Since OeA /∈ a, if OeA ∈ a then A ∈ c. Moreover, O−1

a a ⊆ c, and so cPA
a b.

Therefore, B ∈ c, contrary to its consistency. Hence OaB ∈ a, as required.

Lemma 7 : For all A ∈ Lae≤ and all a ∈ W , A ∈ a iff M, a |=
MP 6

A.

Proof: By induction on A; I consider only the deontic cases where (a) A =
OaB, (b) A = OeB, and (c) A = B ≤ C, where we suppose the lemma to
hold for B and C. First, observe that under the inductive hypothesis,

Observation 1 : For any relation P ∈ Pa, P ε [B] iff M, P |=
MP 6

B,

which is easily verified.
For case (a) of the lemma, (i) suppose OaB ∈ a, and let P be some relation

in Pa. There is a formula C such that P = PC
a . Either OeC ∈ a or OeC /∈ a.
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Consider the first case first. If OeC ∈ a, then O−1

a a ∪ {C} is consistent, by
Lemma 5.iii. Let b be a maximal consistent extension of that. We know that
bPC

a b, by reflexivity (Lemma 4), and so b ∈ FPC
a . Further, since B ∈ O−1

a a,
B ∈ b, and so M, b |=

MP 6
B, by the inductive hypothesis. Consider any c

such that cPC
a b; then, by definition, it must be that if b ∈ ΣaC then c ∈ ΣaC.

But since C ∈ b and O−1

a a ⊆ b, b ∈ ΣaC. Therefore, c ∈ ΣaC and so
O−1

a a ⊆ c, and then B ∈ c, and M, c |=
MP 6

B by the inductive hypothesis.
This suffices for M, P |=

MP 6
B, and so for M, a |=

MP 6
OaB. Suppose on

the other hand, that OeC /∈ a. Then, since O−1

a a is consistent, Lemma 5.i,
let b be a maximal consistent extension of that. As before, B ∈ b, and so
M, b |=

MP 6
B, by the inductive hypothesis. And as before, if c is such that

cPC
a b, then if b ∈ ΣaC then c ∈ ΣaC. But since OeC /∈ a and O−1

a a ⊆ b,
b ∈ ΣaC. So c ∈ ΣaC, and we reason as before that B ∈ c and so, by the
inductive hypothesis M, c |=

MP 6
B, which suffices for M, P |=

MP 6
B, and so

for M, a |=
MP 6

OaB, as required.
(ii) Suppose M, a |=

MP 6
OaB, so that for every P ∈ Pa, M, P |=

MP 6
B,

but suppose also that OaB /∈ a. Then, by Lemma 5.ii, O−1

a a ∪ {¬B} is
consistent, and so has a maximal consistent extension, c. Consider now
the relation P>

a ∈ Pa. M, P>
a |=

MP 6
B, so there is a b ∈ FP>

a and M, b

|=
MP 6

B and, for every c, if cP>
a b, M, c |=

MP 6
B. We show that cP>

a b, i.e., if
b ∈ Σa> then c ∈ Σa>. But since > ∈ c, then automatically if Oe> ∈ a
then > ∈ c, and since O−1

a a ⊆ c, it follows that c ∈ Σa>, and so that if
b ∈ Σa> then c ∈ Σa>, and thus cP>

a b. Therefore, M, c |=
MP 6

B. By the
inductive hypothesis, B ∈ c, but ¬B ∈ c, contrary to its consistency. Hence,
OaB ∈ a, as required.

For case (b), (i) suppose OeB ∈ a, and take the relation PB
a ∈ Pa. By

Lemma 5.iii, O−1

a a ∪ {B} is consistent, and so has a maximal consistent
extension, b. bPB

a b, by reflexivity and so b ∈ FPB
a ; also since B ∈ b,

M, b |=
MP 6

B by the inductive hypothesis. Let c be any point such that
cPB

a b. Hence, if b ∈ ΣaB, then c ∈ ΣaB. Since B ∈ b and O−1

a a ⊆ b,
b ∈ ΣaB by definition. Hence c ∈ ΣaB, and so, if OeB ∈ a, then B ∈ c.
Since OeB ∈ a, B ∈ c, and by the inductive hypothesis M, c |=

MP 6
B,

which suffices for M, PB
a |=

MP 6
B, and thus for M, a |=

MP 6
OeB.

(ii) Suppose then that M, a |=
MP 6

OeB, so that there is a P ∈ Pa such that
M, P |=

MP 6
B, but suppose that OeB /∈ a. P = PC

a for some formula C. By
the observation above, PC

a ε [B], and so Oa(C → B) ∈ a, by Lemma 6.i.
Either OeC ∈ a or OeC /∈ a. Consider the first. Then OeB ∈ a, by axiom
(Kae), contrary to the supposition. Consider the second, if OeC /∈ a, then
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OaB ∈ a, by Lemma 6.ii, and so OeB ∈ a, by (OaOe), again contrary to
the supposition. Hence OeB ∈ a, as required.

For case (c), (i) suppose B ≤ C ∈ a, and suppose a P ∈ Pa such
that M, P |=

MP 6
B. P = PD

a for some D, and by the observation above,
PD

a ε [B], whence by Lemma 6.i, D ≤ B ∈ a, and thus D ≤ C ∈ a, by
transitivity. Let Q = PC

a . Either OeC ∈ a or OeC /∈ a. The second is not
a possible case, however, for if OeC /∈ a, then OeD /∈ a, by axiom (≤ Oe),
whence OaB ∈ a, by Lemma 6.ii, and then OeB ∈ a, axiom (OaOe), and
so OeC ∈ a, by (≤ Oe), a contradiction. Therefore, OeC ∈ a, and so
O−1

a a ∪ {C} is consistent, Lemma 5.iii; let c be a maximal consistent ex-
tension of that. As above, c ∈ ΣaC. Consider any d such that dPC

a c. Since
c ∈ ΣaC, d ∈ ΣaC. Hence if OeC ∈ a, then C ∈ d. Thus C ∈ d, and
M, d |=

MP 6
C, by the inductive hypothesis. This suffices for M, PC

a |=
MP 6

C.
We now show that PD

a 6a PC
a , that is, for any E such that PD

a ∈ ΨaE, there
is an F such that PC

a ∈ ΨaF and E ≤ F ∈ a. Suppose such an E; i.e., for
all G, if PD

a ε [G] then E ≤ G ∈ a. Hence, E ≤ B ∈ a and so E ≤ C ∈ a.
PC

a ∈ ΨaC, for given any H such that PC
a ε [H] we have C ≤ H ∈ a, by

Lemma 6.i. Therefore, there is an F that PC
a ε [F ] and E ≤ F ∈ a, which

suffices for PD
a 6a PC

a . And that completes the case for M, a |=
MP 6

B ≤ C.
For the converse (ii), suppose M, a |=

MP 6
B ≤ C. Either OeB ∈ a or

OeB /∈ a. In the latter case, ¬OeB ∈ a, and so B ≤ C ∈ a by axiom
(¬Oe ≤), and we are done. Suppose then that OeB ∈ a. Then O−1

a a ∪ {B}
is consistent, Lemma 5.iii. Let b be a maximal consistent extension of that.
Suppose for reductio that B ≤ C /∈ a. Consider the relation PB

a ∈ Pa. By
general reflexivity bPB

a b, hence b ∈ FPB
a . Also, since B ∈ b, M, b |=

MP 6
B,

by the inductive hypothesis. Consider any c such that cPB
a b; then if b ∈ ΣaB

then c ∈ ΣaB. As above, b ∈ ΣaB (since B ∈ b and O−1

a a ⊆ b), so
c ∈ ΣaB, which means that if OeB ∈ a then B ∈ c. So B ∈ c, and by the
inductive hypothesis, M, c |=

MP 6
B. This suffices for M, PB

a |=
MP 6

B and
so, by the observation above, PB

a ε [B]. Since M, a |=
MP 6

B ≤ C, there is a
Q ∈ Pa such that M, Q |=

MP 6
C and PB

a 6a Q. Q = PD
a , for some D. Since

M, PD
a |=

MP 6
C, PD

a ε [C], by the observation above. Since PB
a 6a PD

a ,
for any E such that PB

a ∈ ΨaE there is an F such that PD
a ∈ ΨaF and

E ≤ F ∈ a. PB
a ∈ ΨaB, since for any G if PB

a ε [G], B ≤ G ∈ a, by
Lemma 6.i. Hence there is an F such that PD

a ∈ ΨaF and B ≤ F ∈ a. For
such an F , for every H such that PD

a ε [H], F ≤ H ∈ a. Hence F ≤ C ∈ a.
So B ≤ C ∈ a, by (≤-trans), contrary to the assumption above. Therefore,
B ≤ C ∈ a, as required to complete the lemma.
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Theorem 3 now follows from Lemmas 4 and 7 in the usual way. Suppose a
formula A is not provable in SDLaPe6, then {¬A} is consistent and so has
a maximal consistent extension, a. Since, by consistency, A /∈ a, it is not the
case that M, a |= A, by Lemma 7, and thus there is a model on a standard
MP≤-frame on which A does not hold, Lemma 4. By contraposition, if
A is valid on all standard MP≤-frames, A must be provable in SDLaPe6.
Notice that by suppressing all reference to 6 in the canonical model M and
to formulas A ≤ B the proof of Theorem 3 would provide a completeness
proof for SDLaPe (Theorem 1).

It also follows that SDLaPe6 is a conservative extension of SDLaPe

(SDLaPe6c too) since if A is a formula of Lae≤ that contains no occur-
rences of ≤ (and thus would be a formula of Lae) if A is not provable in
SDLaPe, by completeness for that system, there is a model M = 〈F, v〉 on
a multiple preference frame F = 〈W,P〉 such that A does not hold on M .
Take the model M ∗ = 〈F ∗, v〉 on the MP≤-frame F ∗ = 〈W,P, 6〉, where
W and P are the same as for F , and 6 assigns each a ∈ W the universal
relation on Pa. It is a small matter to show that any formula B that contains
no occurrences of ≤ and any a ∈ W , M, a |=

MP
B iff M∗, a |=

MP 6
B. Hence,

the formula A that was not provable in SDLaPe does not hold on M ∗, and
so, by the soundness of SDLaPe6, A is not provable in SDLaPe6. (In a
similar vein, SDLaPe6 is a conservative extension of the fragment Pe itself,
which is P of [3].)

Finally, we end this subsection by noting, without proof, that SDLaPe6

has the finite model property, and so is decidable. Although common fil-
tration methods do not lend themselves easily to proving this, nevertheless,
the result is not difficult to establish using the method of ‘mini-canonical
models’ of Hughes and Cresswell [4], p. 146, wherein one constructs a fi-
nite model that will falsify any non-theorem A from the composition of A
itself. The argument then recapitualates the proof of Theorem 3. SDLaPe6

is therefore sound and complete with respect to the class of finite standard
MP6-frames. This suffices to establish the finite model property for the sys-
tem, and thus its decidability. The same holds for SDLaPe (and Pe, i.e.,
P).

2.2. More General Multiplex Models

In this subsection we consider MP6-frames that are not required to be stan-
dard but allow assigned preference relations P ∈ Pa that are not connected,
and even not reflexive or transitive. (The latter turn out not to affect the re-
sulting logic.) The logic determined by this broader class of models, which
I call PaPe6, extends PaPe of Section 1 with these principles for ≤:
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(¬Oe ≤) ¬OeA → (A ≤ B)
(≤ Oe) (A ≤ B) → (OeA → OeB)
(≤-trans) ((A ≤ B) ∧ (B ≤ C)) → (A ≤ C)
(R≤) If ` A → B, then ` A ≤ B

as given above, together with
(Oa ≤)′ OaA → B ≤ A

in place of (Oa ≤) of SDLaPe6, which is no longer valid. (Note that (R≤)
must now be postulated separately, as it is no longer derivable from the other
postulates. (≤-reflex), A ≤ A, is of course derivable given that rule. If all
relations 6a are connected, then (≤-connex), (A ≤ B)∨ (B ≤ A), is valid;
call the system with that PaPe6c.

Theorem 8 : PaPe6 is sound and complete with respect to the class of all
MP6-frames (or the class of all reflexive or transitive MP6-frames). (Like-
wise PaPe6c and such 6-connected MP6-frames.)

Proof: Soundness as usual. To prove completeness is rather like Theorem
12 of [3] but somewhat more complicated in order to take both Oa and ≤
into account. We begin by taking a detour through a secondary semantics in
which PaPe6 will be treated as a more conventional bi-modal logic, with its
two monadic deontic operators evaluated in the same way but with respect
to separate classes of relations. The binary operator ≤ will continue to be
interpreted much as before.

To this end, consider a 2MP6-frame F = 〈W,Pa,Pe, 6〉 with W as
usual and each of Pa and Pe assigning each a ∈ W a non-empty set, Pa

a

and Pe
a respectively, of binary relations on W , just as in the ordinary multiple

preference semantics, subject to the requirement that Pa
a ⊆ Pe

a . Relations in
Pe

a may be unconstrained, or reflexive, transitive, or standard. As before, 6

assigns each a ∈ W a reflexive, transitive relation, 6a, on Pe
a , subject to the

further frame condition that if P ∈ Pe
a and Q ∈ Pa

a then P 6a Q. Models
on such frames evaluate formulas as expected, with:

M, a |=
2MP 6

OaA iff there is a P ∈ Pa
a such that M, P |=

2MP 6
A;

M, a |=
2MP 6

OeA iff there is a P ∈ Pe
a such that M, P |=

2MP 6
A;

M, a |=
2MP 6

A ≤ B iff for all P ∈ Pe
a if M, P |=

2MP 6
A, then there is

a Q ∈ Pe
a such that M, Q |=

2MP 6
B and P 6a Q.

Lemma 9 : PaPe6 is sound and complete with respect to all such 2MP6

frames, and with respect to all that are reflexive, transitive or standard (for
all relations in Pe

a). (Similarly for PaPe6c and all such 6-connected 2MP6

frames.)
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Proof: Soundness as usual. For completeness, define a canonical model thus:
Let F = 〈W,Pa,Pe, 6〉 with W the set of all maximal consistent extensions
of PaPe6. For Pa and Pe, first define, for each formula A ∈ Lae≤ and each
a ∈ W , the binary relations

aPA
a = {〈b, c〉 : Either OaA /∈ a or A ∈ b or A /∈ c}

ePA
a = {〈b, c〉 : Either OeA /∈ a or A ∈ b or A /∈ c}

and let
Pa

a = {P : ∃A(P = aPA
a )}

Pe∗
a = {P : ∃A(P = ePA

a )}

and then
Pe

a = Pe∗
a ∪ Pa

a

Pa and Pe assign each a ∈ W the sets Pa
a and Pe

a respectively. Define 6

just as for Theorem 3, with the same definitions of Ψa and 6a for all pairs
of relations in Pe

a . Let M = 〈F, v〉 with v(p) = {a ∈ W : p ∈ a} as usual.
Before establishing that M really is a model on a 2MP6-frame and that it is
canonical, it is helpful to have two sublemmas.

Sublemma A : For all formulas A and B, (i) if aPA
a ε [B] then ` A → B;

(ii) if ePA
a ε [B] then ` A → B; (iii) if aPA

a ε [B] and OaA /∈ a then ` B;
(iv) if ePA

a ε [B] and OeA /∈ a then ` B. (v) aPA
a ε [A] iff a ∈ [OaA]; (vi)

ePA
a ε [A] iff a ∈ [OeA].

Proof: This is the same as Lemma 9 of [3] for the two deontic operators.
I repeat that proof here. For (i), suppose aPA

a ε [B], so that there is a b ∈
FaPA

a and B ∈ b and for all c such that caPA
a b, B ∈ c. Suppose that 0 A →

B. Then {A,¬B} is consistent and has a maximal consistent extension, c.
Since A ∈ c, caPA

a b, and so B ∈ c, contrary to its consistency. (ii) for ePA
a

is the same. For (iii), suppose aPA
a ε [B] but that OaA /∈ a, and suppose

0 B. So {¬B} is consistent and has a maximal consistent extension, c.
Since OaA /∈ a, automatically caPA

a b, for the given b. So B ∈ c, contrary
to its consistency. (iv) for ePA

a and OeA is the same. For (v), (a) Suppose
aPA

a ε [A], but that a /∈ [OaA], i.e., OaA /∈ a. Then, by (iii), ` A, so
` OaA by (RNa) and OaA ∈ a, a contradiction. (b) Suppose then OaA ∈ a.
{A} is consistent (else ` A → ⊥, and then by (RMa) ` OaA → Oa⊥,
and so Oa⊥ ∈ a, but since by (Pa) ` ¬Oa⊥, ¬Oa⊥ ∈ a, contrary to its
consistency). Thus {A} has a maximal consistent extension, b. A ∈ b,
hence baPA

a b and b ∈ FaPA
a . Obviously, b ∈ [A]. Suppose any c such that

caPA
a b. Either OaA /∈ a or A /∈ b or A ∈ c. The first two are ruled out,



“16goble”
2005/7/18
page 350

i

i

i

i

i

i

i

i

350 LOU GOBLE

leaving the third, which suffices for aPA
a ε [A]. (vi) for ePA

a and OeA is the
same.

Sublemma B : For any A, (i) aPA
a ∈ ΨaA; (ii) ePA

a ∈ ΨaA; (iii) If aPA
a ∈

Pa
a and OaA /∈ a, then aPA

a ∈ Ψa>; (iv) if ePA
a ∈ Pe

a and OeA /∈ a, then
ePA

a ∈ Ψa>.

These are immediate from Sublemma A, for suppose, for (i), any B such that
aPA

a ε [B], then by Sublemma A.i, ` A → B, so ` A ≤ B, by rule (R≤),
whence A ≤ B ∈ a, which suffices for aPA

a ∈ ΨaA. (ii) is the same. For
(iii), suppose aPA

a ∈ Pa
a and OaA /∈ a, and let B be any formula such that

aPA
a ε [B], so, by Sublemma A.ii, ` B, and so ` > → B, whence ` > ≤ B

and > ≤ B ∈ a. That suffices for aPA
a ∈ Ψa>. (iv) is the same.

Sublemma C : M is a model on a standard 2MP6 frame.

Proof: That Pa
a and Pe

a are non-empty and that each relation in these sets
is non-empty is obvious. That each relation in these sets is standard follows
directly from the definitions. (Reflexivity figures in what follows, but not
full standardness.) That Pa

a ⊆ Pe
a is trivial. That each 6a is reflexive and

transitive is immediate from the definition and the presence of (≤-reflex)
and (≤-trans). Finally, to show that if P ∈ Pe

a and Q ∈ Pa
a then P 6a Q,

suppose some B such that P ∈ ΨaB. There is an A that Q = aPA
a . By

Sublemma B.i, aPA
a ∈ ΨaA. Either OaA ∈ a or OaA /∈ a. In the first case,

B ≤ A ∈ a, by axiom (Oa ≤)′, and so there is a C such that Q ∈ ΨaC and
B ≤ C ∈ a, which suffices for P 6a Q. In the second case, if OaA /∈ a,
then since aPA

a ∈ Pa
a , aPA

a ∈ Ψ>, by Sublemma B.iii. Since ` B → >,
` B ≤ >, so B ≤ > ∈ a, and again there is a C such that Q ∈ ΨaC and
B ≤ C ∈ a, which suffices for P 6a Q.

Sublemma D : For all A and all a ∈ W , A ∈ a iff M, a |=
2MP 6

A.

Proof: As usual, by induction on A. The interesting cases are the deontic
ones, (a) when A = OaB, (b) when A = OeB, and (c) when A = B ≤ C.
The arguments for (a) and (b) reprise the argument for Lemma 10 in [3] with
Sublemma A in place of Lemma 9 there. Here is the argument for (a); (b) is
similar. Suppose the sublemma holds for B and C.

(a.i) Suppose OaB ∈ a. Then by Sublemma A.v, aPB
a ε [B], i.e., there is a

b ∈ FaPB
a such that B ∈ b and for every c if caPB

a b then B ∈ c, but, with the
inductive hypothesis, this yields M, a |=

MP
OaB directly since aPB

a ∈ Pa
a .

(a.ii) Suppose M, a |=
MP

OaB, i.e., there is a P ∈ Pa
a and M, P |=

MP
B.
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P = aPC
a for some C. Since M, aPC

a |=
MP

B, the inductive hypothesis
yields aPC

a ε [B], and so by Sublemma A.i, ` C → B, whence, by (RMa)
` OaC → OaB. Suppose, however, OaB /∈ a. Then OaC /∈ a. But then,
by Sublemma A.iii, ` B, in which case ` OaB, by (RNa), and so OaB ∈ a,
a contradiction. Therefore, if M, a |=

MP
OaB, then OaB ∈ a.

The argument for case (c) is a reprise of the argument for this case under
Lemma 7 above in Subsection 2.1, but with Sublemma A in place of Lemma
6. The reader can fill in the details.

The present Lemma 9 now follows in the usual way. As a corollary we
have that PaPe6 is sound and complete with respect to all 2MP6 frames
that are (a) reflexive, (b) reflexive and transitive, (c) standard. These results
apply mutatis mutandis to PaPe6c since the relations 6a will be connected
in the presence of (≤-connex).

We are now back in line to prove Theorem 8, that PaPe6 (PaPe6c) is
complete with respect to the class of all original, non-bi-modal (6-connected)
MP6 frames. The argument proceeds from Lemma 9 much as Theorem 12
of [3] for the simple logic P followed from Theorem 7 there.5

Given a model M = 〈F, v〉 on a 2MP6 frame F = 〈W,Pa,Pe, 6〉 in
which, for every a ∈ W , every relation in P ∈ Pe

a is reflexive on its field, let
F ∗ = 〈W ∗,P∗, 6∗〉, be defined thus: Let each relation P ⊆ W × W bear a
distinct index i and let I be the set of these indexes. Let W ∗ = {〈a, i〉 : a ∈
W and i ∈ I}. For each relation Pj ⊆ W × W let

P×j = {〈b∗, c∗〉 : there are b, c ∈ W such that b∗ = 〈b, j〉 &
c∗ = 〈c, j〉 & bPjc}

(We note that that if j 6= k, then P×j and P×k are disjoint, and that if
b∗ ∈ FP×j then b∗ = 〈b, j〉, for some b ∈ W .)

For each 〈a, i〉 ∈ W ∗, let

Ω〈a,i〉 =
⋃

{P×j : Pj ∈ Pa
a}

and let
P∗j
〈a,i〉 = P×j ∪ Ω〈a,i〉

then
P∗
〈a,i〉 = {P∗ : ∃j ∈ I(P∗ = P∗j

〈a,i〉 & Pj ∈ Pe
a)}

P∗ of F ∗ assigns P∗
〈a,i〉 to 〈a, i〉.

5 The proof for this result that was briefly described in [2] p. 131 contained an error in its
definition of relations corresponding to 6

∗
〈a,i〉 below; that is repaired here.
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Next, for all P∗, Q∗ ∈ P∗
〈a,i〉, let

P∗
6

∗
〈a,i〉 Q∗ iff ∀j ∈ I( if P∗ = P∗j

〈a,i〉

then ∃k ∈ I(Q∗ = P∗k
〈a,i〉 and Pj

6a Pk))

6∗ of F ∗ assigns 6∗
〈a,i〉 to 〈a, i〉.

Finally, let M∗ = 〈F ∗, v∗〉 where

v∗(p) = {〈a, i〉 : a ∈ v(p) & i ∈ I}

Lemma 10 : M∗ is a model on a reflexive MP6-frame (and if F is transitive,
then so is F ∗ and if F is 6-connected, then so is F ∗).

Proof: That each P∗
〈a,i〉 is non-empty follows from Pe

a being non-empty,

and that each P∗j
〈a,i〉 ∈ P∗

〈a,i〉 is non-empty likewise follows from the non-
emptiness of the Pj ∈ Pe

a . That each 6∗
〈a,i〉 is reflexive and transitive follows

from the definition and the same properties of 6a. (Further, for PaPe6c, if
6a is connected then so too is 6∗

〈a,i〉.)

Lemma 11 : For all formulas A, for all a ∈ W and i ∈ I , M, a |=
2MP 6

A iff
M∗, 〈a, i〉 |=

MP 6
A

Proof: As usual, by induction on A. We consider the cases (a) A = OaB,
(b) A = OeB, and (c) A = B ≤ C, supposing the lemma to hold for B and
C, for any a ∈ W and i ∈ I . It expedites these to have

Sublemma E : Under the inductive hypothesis, given 〈a, i〉 ∈ W ∗, for any
j ∈ I , M∗, P∗j

〈a,i〉 |=MP 6
B iff M, Pj |=

2MP 6
B or there is a k ∈ I such that

Pk ∈ Pa
a and M, Pk |=

2MP 6
B.

Proof: Given 〈a, i〉 ∈ W ∗, (i) suppose M∗, P∗j
〈a,i〉 |=

MP 6
B, so that there is

a b∗ ∈ FP∗j
〈a,i〉 such that M∗, b∗ |=

MP 6
B and for all c∗ such that c∗P∗j

〈a,i〉b
∗,

M∗, c∗ |=
MP 6

B. Since b∗ ∈ FP∗j
〈a,i〉, either b∗ ∈ FP×j or b∗ ∈ FΩ〈a,i〉.

In the first case, b∗ = 〈b, j〉 and b ∈ FPj . Also M, b |=
2MP 6

B by the
inductive hypothesis. Consider any c such that cPjb. 〈c, j〉P×j〈b, j〉, and so
〈c, j〉P∗j

〈a,i〉〈b, j〉 in which case M ∗, 〈c, j〉 |=
MP 6

B, and then M, c |=
2MP 6

B
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by the inductive hypothesis, which suffices for M, Pj |=
2MP 6

B. If, on the
other hand, b∗ ∈ FΩ〈a,i〉, then there is a k ∈ I such that Pk ∈ Pa

a and b∗ ∈

FP×k. In that case, b∗ = 〈b, k〉 and b ∈ FPk. Moreover, M, b |=
2MP 6

B by
the inductive hypothesis. Consider any c such that cPkb. 〈c, k〉P×k〈b, k〉 so
〈c, k〉Ω〈a,i〉〈b, k〉 and then 〈c, k〉P∗j

〈a,i〉〈b, k〉, whence M ∗, 〈c, k〉 |=
MP 6

B. So,

M, c |=
2MP 6

B by the inductive hypothesis. That suffices for M, Pk |=
2MP 6

B.
Therefore, under either case, either M, Pj |=

2MP 6
B or there is a k ∈ I such

that Pk ∈ Pa
a and M, Pk |=

2MP 6
B.

For the converse, (ii) suppose M, Pj |=
2MP 6

B or there is a k ∈ I such that
Pk ∈ Pa

a and M, Pk |=
2MP 6

B. In the first case, there is a b ∈ FPj such that
M, b |=

2MP 6
B and for all c that cPjb, M, c |=

2MP 6
B. bPjb, so 〈b, j〉P×j〈b, j〉

and so 〈b, j〉P∗j
〈a,i〉〈b, j〉 and 〈b, j〉 ∈ FP∗j

〈a,i〉. Further, M∗, 〈b, j〉 |=
MP 6

B by

the inductive hypothesis. Consider any c∗ such that c∗P∗j
〈a,i〉〈b, j〉. Either

c∗P×j〈b, j〉 or c∗Ω〈a,i〉〈b, j〉. In the first case, c∗ = 〈c, j〉 and cPjb, and then
M, c |=

2MP 6
B and so M∗, 〈c, j〉 |=

MP 6
B by the inductive hypothesis. If

c∗Ω〈a,i〉〈b, j〉, there is a k ∈ I such that Pk ∈ Pa
a and c∗P×k〈b, j〉, but then

k = j, and so c∗P×j〈b, j〉; also c∗ = 〈c, j〉, so 〈c, j〉P×j〈b, j〉. Hence, as
before, cPjb, and then M, c |=

2MP 6
B, so M∗, 〈c, j〉 |=

MP 6
B by the inductive

hypothesis. That suffices for M ∗, P∗j
〈a,i〉 |=

MP 6
B. For the second case, in

which there is a k ∈ I such that Pk ∈ Pa
a and M, Pk |=

2MP 6
B, the argument

is similar.
It also helps to know that, although in general P∗j

〈a,i〉 = P∗k
〈a,i〉 does not

imply that Pj = Pk, nevertheless this is true:

Sublemma F : For any 〈a, i〉 ∈ W ∗, for all P∗ ∈ P∗
〈a,i〉, if P∗ = P∗j

〈a,i〉, then

either (a) for all Pk ∈ Pe
a , if P∗ = P∗k

〈a,i〉 then Pj = Pk, or (b) Pj ∈ Pa
a , or

(c) there is a Pk ∈ Pa
a such that P∗ = P∗k

〈a,i〉 and Pj ⊆ Pk.

Proof: Suppose that P∗ = P∗j
〈a,i〉, but that (a) is not the case, i.e., there is a

k ∈ I such that P∗ = P∗k
〈a,i〉 but Pj 6= Pk. So there will be a pair of points

b, c ∈ W such that bPjc but not bPkc or else a pair of points b, c ∈ W such
that bPkc but not bPjc. In the first case, since bPjc, 〈b, j〉P×j〈c, j〉; hence
〈b, j〉P∗j

〈a,i〉〈c, j〉. So 〈b, j〉P∗k
〈a,i〉〈c, j〉, and thus either 〈b, j〉P×k〈c, j〉 or else

〈b, j〉Ω〈a,i〉〈c, j〉. But if 〈b, j〉P×k〈c, j〉, j = k, by definition, and then Pj =



“16goble”
2005/7/18
page 354

i

i

i

i

i

i

i

i

354 LOU GOBLE

Pk, contrary to the supposition. Hence 〈b, j〉Ω〈a,i〉〈c, j〉. Then there is an
l ∈ I such that 〈b, j〉P×l〈c, j〉 and Pl ∈ Pa

a . As noted above, 〈b, j〉 ∈ FP×l

only if j = l; hence, Pj = Pl and Pj ∈ Pa
a , and (b) must hold. In the second

case, with bPkc but not bPjc, argue similarly that Pk ∈ Pa
a . Now suppose

that Pj * Pk. So there is a pair of points d, e ∈ W such that dPje but not
dPke. Argue as before that Pj ∈ Pa

a Hence, if neither (a) nor (c), then (b).
Returning now to the cases of the lemma, given a ∈ W and 〈a, i〉 ∈ W ∗,

for case (a), (i) suppose M, a |=
2MP 6

OaB, i.e., there is a P ∈ Pa
a such

that M, P |=
2MP 6

B. P = Pj for some j ∈ I . Consider any P∗ ∈ P∗
〈a,i〉.

P∗ = P∗k
〈a,i〉 for some k ∈ I and Pk ∈ Pe

a . There is a b ∈ FPj such that M, b

|=
2MP 6

B and for all c such that cPjb, M, c |=
2MP 6

B. Since Pj ∈ Pa
a and

bPjb, 〈b, j〉P×j〈b, j〉 and hence, 〈b, j〉Ω〈a,i〉〈b, j〉 so that 〈b, j〉P∗k
〈a,i〉〈b, j〉

and 〈b, j〉 ∈ FP∗k
〈a,i〉. M∗, 〈b, j〉 |=

MP 6
B by the inductive hypothesis. Con-

sider any c∗ such that c∗P∗k
〈a,i〉〈b, j〉. Either c∗P×k〈b, j〉 or c∗Ω〈a,i〉〈b, j〉,

in which case there is an l ∈ I such that c∗P×l〈b, j〉 and Pl ∈ Pa
a . In

either case, Pk = Pj or Pl = Pj and c∗ = 〈c, j〉. Hence cPjb, and
so M, c |=

2MP 6
B, whence M∗, c∗ |=

MP 6
B by the inductive hypothesis,

which suffices for M ∗, 〈a, i〉 |=
MP 6

OaB. For the converse, (ii) suppose
M∗, 〈a, i〉 |=

MP 6
OaB, i.e., for all P∗ ∈ P∗

〈a,i〉, M∗, P∗ |=
MP 6

B. There

is a Pj ∈ Pa
a , hence P∗j

〈a,i〉 ∈ P∗
〈a,i〉, and M∗, P∗j

〈a,i〉 |=
MP 6

B. By Sub-

lemma E, either M, Pj |=
2MP 6

B or there is a k ∈ I such that Pk ∈ Pa
a and

M, Pk |=
2MP 6

B. Either case suffices for M, a |=
2MP 6

OaB.

Case (b), when A = OeB, is even more immediate from Sublemma E; it
is left to the reader.

For case (c), when A = B ≤ C, (i) suppose M, a |=
2MP 6

B ≤ C so that
for every P ∈ Pe

a such that M, P |=
2MP 6

B there is a Q ∈ Pe
a for which

M, Q |=
2MP 6

C and P 6a Q. Now consider an arbitrary P∗ ∈ P∗
〈a,i〉 such

that M∗, P∗ |=
MP 6

B. P∗ = P∗j
〈a,i〉 for some j ∈ I . By Sublemma F there

are three cases: (i.a) for all k ∈ I if P∗j
〈a,i〉 = P∗k

〈a,i〉 then Pj = Pk; (i.b)

Pj ∈ Pa
a ; (i.c) there is an k ∈ I such that P∗j

〈a,i〉 = P∗k
〈a,i〉 and Pk ∈ Pa

a and

Pj ⊆ Pk. We treat (i.a) and (i.b) together. In these cases, by Sublemma E
either M, Pj |=

2MP 6
B or there is a k ∈ I such that Pk ∈ Pa

a and M, Pk

|=
2MP 6

B. In either case, there is a Q ∈ Pe
a for which M, Q |=

2MP 6
C

and either Pj 6a Q or, for such a k, Pk 6a Q. But in the latter case,
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since Pk ∈ Pa
a , Pj 6a Pk by the frame condition, and so Pj 6a Q by

transitivity. So Pj 6a Q. Q = Pm for some m ∈ I and Pj 6a Pm. Since
M, Pm |=

2MP 6
C, M∗, P∗m

〈a,i〉 |=
MP 6

C by Sublemma E. We now show that

P∗j
〈a,i〉 6∗

〈a,i〉 P∗m
〈a,i〉. Consider any x ∈ I such that P∗j

〈a,i〉 = P∗x
〈a,i〉. Under

(i.a), Pj = Px and so Px 6a Pm, which suffices for P∗j
〈a,i〉 6∗

〈a,i〉 P∗m
〈a,i〉.

Under (i.b), Px 6a Pj by the frame condition, so Px 6a Pm by transitivity,
which suffices for P∗j

〈a,i〉 6∗
〈a,i〉 P∗m

〈a,i〉. Hence under these two cases there is
a Q∗ ∈ P∗

〈a,i〉, namely P∗m
〈a,i〉, such that M∗, Q∗ |=

MP 6
C and P∗ 6∗

〈a,i〉 Q∗,
which suffices for M ∗, 〈a, i〉 |=

MP 6
B ≤ C. For case (i.c), where there

is an k ∈ I such that P∗j
〈a,i〉 = P∗k

〈a,i〉 and Pk ∈ Pa
a and Pj ⊆ Pk, since

M∗, P∗k
〈a,i〉 |=

MP 6
B, either M, Pk |=

2MP 6
B or there is a l ∈ I such that

Pl ∈ Pa
a and M, Pl |=

2MP 6
B, by Sublemma E, and as before, in either case,

there is a Q ∈ Pe
a for which M, Q |=

2MP 6
C and either Pk 6a Q or for such

an l, Pl 6a Q, and again since Pk 6a Pl by the frame condition, Pk 6a Q.
As before, Q = Pm for some m ∈ I and thus Pk 6a Pm. Since M, Pm

|=
2MP 6

C, M∗, P∗m
〈a,i〉 |=

MP 6
C by Sublemma E. To show that P∗j

〈a,i〉 6∗
〈a,i〉

P∗m
〈a,i〉, consider any x ∈ I such that P∗j

〈a,i〉 = P∗x
〈a,i〉. Px 6a Pk by the frame

condition; hence Px 6a Pm, which suffices for P∗j
〈a,i〉 6∗

〈a,i〉 P∗m
〈a,i〉. Since

M∗, P∗m
〈a,i〉 |=

MP 6
C, this in turn suffices for M ∗, 〈a, i〉 |=

MP 6
B ≤ C, as

required to complete case (c.i).
For (c.ii), suppose M ∗, 〈a, i〉 |=

MP 6
B ≤ C, so that for every P∗ ∈ P∗

〈a,i〉

such that M∗, P∗ |=
MP 6

B there is a Q∗ ∈ P∗
〈a,i〉 such that M∗, Q∗ |=

MP 6
C

and P∗ 6∗
〈a,i〉 Q∗. Consider any relation Pj ∈ Pe

a such that M, Pj |=
2MP 6

B,
and find a Q ∈ Pe

a such that M, Q |=
2MP 6

C and Pj 6a Q. By Sublemma E,

M∗, P∗j
〈a,i〉 |=MP 6

B. Thus there is a Q∗ ∈ P∗
〈a,i〉 such that M∗, Q∗ |=

MP 6
C

and P∗j
〈a,i〉 6∗

〈a,i〉 Q∗. Q∗ = P∗k
〈a,i〉 for some k ∈ I and Pk ∈ Pe

a . Hence, by

Sublemma E either M, Pk |=
2MP 6

C or there is an l ∈ I such that Pl ∈ Pa
a

and M, Pl |=
2MP 6

C. If the latter, then for such an l, Pj 6a Pl, by the frame
condition, and so there is a Q ∈ Pe

a that M, Q |=
2MP 6

C and Pj 6a Q, which
suffices for M, a |=

2MP 6
B ≤ C. Suppose then that M, Pk |=

2MP 6
C. Since

P∗j
〈a,i〉 6∗

〈a,i〉 P∗k
〈a,i〉, there is an x ∈ I such that P∗k

〈a,i〉 = P∗x
〈a,i〉 and Pj 6a Px.

As before, under Sublemma F, there are three subcases, either (ii.a) for every
m ∈ I if P∗k

〈a,i〉 = P∗m
〈a,i〉 then Pk = Pm, or (ii.b) Pk ∈ Pa

a or (ii.c) there
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is an m ∈ I such that P∗k
〈a,i〉 = P∗m

〈a,i〉 and Pm ∈ Pa
a and Pk ⊆ Pm. Under

(ii.a), take Q = Pk, for Pk = Px, so Pj 6a Pk. Under (ii.b) take Q = Pk,
for then Pj 6a Pk by the frame condition. Under (ii.c), if m ∈ I is such
that P∗k

〈a,i〉 = P∗m
〈a,i〉 and Pm ∈ Pa

a and Pk ⊆ Pm, then M∗, P∗m
〈a,i〉 |=

MP 6
C

and P∗j
〈a,i〉 6∗

〈a,i〉 P∗m
〈a,i〉. By Sublemma E either M, Pm |=

2MP 6
C or there

is an n ∈ I such that Pn ∈ Pa
a and M, Pn |=

MP 6
C. Take Q to be Pm or

Pn as appropriate. In either case Pj 6a Q by the frame condition. Hence,
under all three subcases, there is a Q ∈ Pe

a such that M, Q |=
2MP 6

C and
Pj 6a Q, which suffices for M, a |=

2MP 6
B ≤ C, to complete case (ii), and

so the lemma.
Theorem 8 now follows as expected. That is, suppose a formula A is not

provable in PaPe6 (PaPe6c). Then, by Lemma 9, there is a model on a
reflexive (transitive; 6-connected) 2MP6 frame that falsifies A, and so, by
Lemmas 10 and 11 there is a model on a conventional reflexive (transitive;
6-connected) MP6 frame that falsifies A. Thus, if A is valid in all MP6

frames, then A must be provable in PaPe6 (PaPe6c).
As with Theorem 3, the proof of Theorem 8 contains a proof of Theorem

2, the completeness of PaPe, by suppressing reference to 6 in models and
to formulas B ≤ C. So also PaPe6 is a conservative extensions of PaPe,
by the argument given after Theorem 3. Likewise, just as SDLaPe6 and
SDLaPe possess the finite model property and are decidable, the same holds
for PaPe6 and PaPe. To establish this, it is easiest to apply the method
of mini-canonical models in the framework of the bi-modal 2MP6 frames,
recapitulating the proof of Lemma 9, and so establish an analogous com-
pleteness result with respect to finite frames.

3. Dyadic Connectives

On the face of it, the results of the previous sections should extend naturally
to the dyadic deontic connectives of conditional obligation and its correlative
for preference. In Part I of this work, [3] §4, multiple preference models for
conditional obligation and preference were introduced as part of proof of the
completeness of the logics DP of conditional obligation and PPref of pref-
erence. There those logics were proved complete with respect to the class of
all reflexive, transitive multiple preference frames, Theorem 28 of that Part,
which led to the proof of their completeness with respect to the class of all
reflexive and transitive simple preference frames, Theorem 33 of that Part.
The use of multiple preference models there was largely a technical device
to obtain the primary result of Theorem 33. From a philosophical point of
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view, however, it makes as much sense to develop such multiple preference
models for conditional obligation as for simple obligation, as in Section 1
here. For just as it is plausible to allow for conflicts of (simple) obligation
that might arise from different normative standards, so it is plausible for
there to be conflicts of conditional obligation that arise in the same way. It
might be, for example, that, according to the laws of the land, Jones should
be executed given that he robbed a bank, while, according to the norms of
humane justice, Jones should not be executed, given that he robbed a bank.
Furthermore, once the framework of multiple preference relations is in place,
it seems just as appropriate to distinguish an indefinite sense of conditional
obligation from a definite or core sense as for the monadic case. Neverthe-
less, although this extension should be routine, there are complications, and
significant questions remain open.

Let the propositional language Lcae contain operators for an indefinite and
a definite sense of conditional obligation, Oe(−/−) and Oa(−/−), respec-
tively. These will be treated analogously to the monadic operators of Section
1, as well as to conditional obligation introduced in [3]. (For convenience
we shall not now consider ranked obligations from Section 2; this is solely
to avoid an extra dimension of complication.) To evaluate this language in
the multiplex semantics, we consider now only multiple preference frames
in which, for every a ∈ W , every relation P ∈ Pa is reflexive on its field and
transitive. For some purposes we may also require that every such relation is
standard, i.e., also connected on its field.

Formulas Oe(B/A) and Oa(B/A) are to be evaluated in models M on
multiple preference frames F = 〈W,P〉 according to the rules:

(MP-COe)M, a |=
MP

Oe(B/A) iff for some P ∈ Pa, there is a b ∈ FP
such that M, b |=

MP
A∧B and, for all c, if cPb and M, c |=

MP
A

then M, c |=
MP

B

(MP-COa)M, a |=
MP

Oa(B/A) iff for every P ∈ Pa, there is a b ∈ FP
such that M, b |=

MP
A∧B and, for all c, if cPb and M, c |=

MP
A

then M, c |=
MP

B

which follow the standard pattern for conditional obligation within the con-
text of the quantification on relations P ∈ Pa. Indeed, Oe(−/−) is nothing
but the conditional obligation of [3] §4, as interpreted in the multiple pref-
erence semantics that was introduced in passing there. Now it comes to the
fore, and has its dual companion to accompany it.

Each of these connectives allows the definition of a connective for prefer-
ence, following the pattern described in [3] §3. Thus:

A ≥a B =df ¬Oe(¬A/A ∨ B)
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A ≥e B =df ¬Oa(¬A/A ∨ B)

Given these definitions these rules of evaluation are derivable:
(MP-≥a) M, a |=

MP
A ≥a B iff for all P ∈ Pa, for every c ∈ FP, if

M, c |=
MP

B then there is a b such that bPc and M, b |=
MP

A

(MP-≥e) M, a |=
MP

A ≥e B iff there is a P ∈ Pa, such that, for every
c ∈ FP, if M, c |=

MP
B then there is a b such that bPc and

M, b |=
MP

A

(Note that the subscripts ‘a’ and ‘e’ are merely mnemonics for the quantifi-
cation in the evaluation rules. Oe(−/−) corresponds to ≥a and not to ≥e,
and similarly for Oa(−/−) and ≥e.)

Alternatively, as we saw in [3], the preference connectives could be in-
troduced as primitives and conditional obligation defined in terms of them.
Thus, in the language L≥ae containing the connectives ≥a and ≥e evaluated
according to the rules (MP-≥a) and (MP-≥e) stipulated, one could define
Oe(−/−) and Oa(−/−) thus

Oe(B/A) =df ¬((A ∧ ¬B) ≥a (A ∧ B))

Oa(B/A) =df ¬((A ∧ ¬B) ≥e (A ∧ B))

and then the evaluation rules (MP-COe) and (MP-COa) are derivable. Be-
cause of these reciprocal equivalences, we shall treat the two forms of con-
nective, conditional obligation and preference, simultaneously, and for the
most part not worry about which is primitive.

The logic of the indefinite conditional obligation Oe(−/−) follows the
logic DP that was described in [3] §4 since Oe(−/−) is effectively the same
as the conditional obligation given there. DP is axiomatized by adding to
PC with modus ponens:

(RCEe) If ` A ↔ A′ then ` Oe(B/A) ↔ Oe(B/A′)
(RCMe) If ` B → C then ` Oe(B/A) → Oe(C/A)
(CNe) Oe(>/>)
(CPe) ¬Oe(⊥/A)
(COe∧) Oe(B/A) → Oe(A ∧ B/A)
(transa) ((A ≥a B) ∧ (B ≥a C)) → (A ≥a C)
(Oe∨) Oe(A/B ∨ C) → (Oe(A/B) ∨ Oe(A/C))

Similarly, ≥a follows the logic of PPref defined in the same place. It is
given by:
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(R.1a) If ` A → B then ` B ≥a A
(transa) ((A ≥a B) ∧ (B ≥a C)) → (A ≥a C)
(≥a ∨) ((A ≥a B) ∧ (A ≥a C)) → (A ≥a (B ∨ C))
(possa) ¬(⊥ ≥a >)

Of course, (reflexa), A ≥a A, is derivable directly from (R.1).
Both logics DP and PPref — or as we might now say, DPe and PPrefa —

are characterized by the class of all reflexive transitive multiple preference
frames, and also the class of all standard multiple preference frames. (Cf.
Theorem 28 of [3].)

By analogy with the results of Section 1 above, one would expect that
the logic of the definite Oa(−/−) would be standard dyadic deontic logic
(SDDL) when all relations P ∈ Pa are standard, and that it would be DP
when they are not required to be standard. Similarly, one would expect ≥e

to behave according to SPref when all preference relations are standard, and
according to PPref when they are not. This is almost, but not quite, the case.

The following from SDDL are valid in all standard multiple preference
frames:

(RCEa) If ` A ↔ A′ then ` Oa(B/A) ↔ Oa(B/A′)
(RCMa) If ` B → C then ` Oa(B/A) → Oa(C/A)
(CKa) Oa(B → C/A) → (Oa(B/A) → Oa(C/A))
(CDa) Oa(B/A) → ¬Oa(¬B/A)
(CNa) Oa(>/>)
(COa∧) Oa(B/A) → Oa(A ∧ B/A)

Also valid is
(∨ ≥e) ((A ∨ B) ≥e C) → ((A ≥e C) ∨ (B ≥e C))

And as one would expect, this mixed principle, which connects the two con-
ditional obligation operators, is also valid in all standard multiple preference
frames,

(CKae) Oa(B → C/A) → (Oe(B/A) → Oe(C/A))

These further mixed principles are also valid in all standard multiple prefer-
ence frames

(transae) ((A ≥a B) ∧ (B ≥e C)) → (A ≥e C)
(transea) ((A ≥e B) ∧ (B ≥a C)) → (A ≥e C)
(connexae) (A ≥a B) ∨ (B ≥e A)
(≥ae ∨) ((A ≥a B) ∧ (A ≥e C)) → (A ≥e (B ∨ C))
(R∨ ≥ae) If ` A → (B ∨ C), then ` (B ≥a A) ∨ (C ≥e A)

≥e may be thought to be defined in terms of Oa(−/−), or not. If it is, then

Oa(B/A) ↔ ¬((A ∧ ¬B) ≥e (A ∧ B))
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is derivable from the preceding. Similarly, if ≥e is taken as primitive and
Oa(−/−) defined in terms of it, then

(A ≥e B) ↔ ¬Oa(¬A/A ∨ B)

is derivable.
With ≥e defined, then from the preceding, together with the principles of

DPe or PPrefa, the following validities, familiar from SDDL, can likewise
be derived:

(D.1a) Oa(>/A) ↔ Oa(A/A)
(D.1aa) Oa(B/A) → Oa(A/A)
(D.2a) ¬Oa(¬A/A)
(D.3a) (Oa(A/C) ∧ Oa(B/C)) → Oa(A ∧ B/C)
(D.4a) (Oa(A/B) ∧ Oa(A/C)) → Oa(A/B ∨ C)
(D.5e) A ≥e A
(D.6e) (A ≥e B) ∨ (B ≥e A)
(D.7e) (A ≥e (A ∨ B)) ∨ (B ≥e (A ∨ B))
(D.8e) ¬(⊥ ≥e >)
(DR.1e) If ` A → B then ` B ≥e A
(DR.2e) If ` A → (B ∨ C) then ` (B ≥e A) ∨ (C ≥e A)
(DR.2gene) If ` A → (B1 ∨ · · · ∨ Bn)

then ` (B1 ≥e A) ∨ · · · ∨ (Bn ≥e A)
(DR.3a) If ` A → B then ` A ≥e C → B ≥e C
(DR.4a) If ` A → B then ` C ≥e B → C ≥e A
(D.9ae) Oa(B/A) → Oe(B/A)
(D.10ae) (A ≥a B) → (A ≥e B)

If one begins with ≥e primitive, and Oa(−/−) defined, then all of the pre-
ceding can be derived from (DR.1e), (reflexe) = (D.5e), (connexae), (posse) =
(D.8a), and (∨ ≥e), along with (transae), (transea), (≥ae ∨), and (R∨ ≥ae),
and the principles of DPe or PPrefa. (I leave these derivations as a diversion
for the reader.)

Of the preceding, (CKa), (CDa), and (CKae) depend for their validity on
relations P ∈ Pa being connected on their fields. So do (D.3a), (D.4a),
(D.6a), (D.7a), (DR.2a) and its generalization (DR.2gena), (∨ ≥e), (con-
nexae), (≥ae ∨), and (R∨ ≥ae). All the rest remain valid when the require-
ment of connectedness is given up.

Conspicuous for its absence from the preceding lists is the principle of
transitivity for ≥e, namely

(transe) ((A ≥e B) ∧ (B ≥e C)) → (A ≥e C)
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This is not valid under the rule (MP-≥e). That it is not is easily seen as one
considers that a state of affairs A might be at least as good as another B un-
der one set of norms while B is at least as good as a third C under some other
set of norms, but A might not be as good as C under any norms. The pos-
sibility that transitivity might fail for a preference connection is analogous
to the possibility of conflicts of obligation that arise from distinct normative
standards. Hence, it seems quite reasonable to have a sense of preference,
‘≥e’, for which transitivity, (transe), would not be valid.6

Although transitivity fails for ≥e, a strict counterpart to ≥e is transitive.
That is, define A >e B =df ¬(B ≥e A), (equivalent to (A ≥e B)∧¬(B ≥e

A) in the presence of (D.6e), connectedness for ≥e), then
(s-transe) ((A >e B) ∧ (B >e C)) → (A >e C)

is valid. Plainly too >e is irreflexive (given (reflexe)), and hence asymmetric.
By contrast, the strict counterpart of ≥a — A >a B =df ¬(B ≥a A) (or
even (A ≥a B) ∧ ¬(B ≥a A)) — is not transitive. In a similar vein, we see
that just as transitivity fails for ≥e but holds for ≥a, connectedness fails for
≥a and holds for ≥e (within standard models). Thus these two properties are
divided between the indefinite and the definite preference connectives. This
is due entirely to the quantification on relations P ∈ Pa.

So far this all seems quite reasonable and natural. Nevertheless, the failure
of transitivity for ≥e, or perhaps we should say, the combined failure of
transitivity for ≥e and of connectedness for ≥a, plays havoc with the effort
to form a complete axiomatization for the logic of ≥e and with it Oa(−/−)
in combination with ≥a and Oe(−/−).

By analogy with SDLaPe, one might define a logic SDDLaDPe that com-
bines the principles of SDDL for Oa(−/−) and DP for Oe(−/−). That is,
its axioms would be the initial formulas listed above as valid (with respect
to all standard frames), along with the postulates for DPe, and including the
several mixed principles that were mentioned, and even including (s-transe).
One might similarly define an equivalent logic SPrefePPrefa that takes the
preference connectives as primitive and combines principles from SPref for
≥e and PPref for ≥a. Plainly these logics would be sound with respect to
the class of all standard multiple preference frames. Completeness, however,
is another matter.

6 One might also consider the possibility of a failure of transitivity due to a single pref-
erence relation not being transitive; this would be like conflicts of obligation that arise with
respect to a single preference relation due to a sort of internal incoherence of the normative
standard it represents. This is what led to the logic P and away from standard deontic logic
SDL. Although this seems to be a reasonable possibility, it is not included in the present
framework for dyadic deontic systems, for it is here required that all preference relations
P ∈ Pa be transitive. Without that, transitivity of ≥a would also fail.
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One can see the difficulty as one considers constructing a canonical model
along the lines described in Section 2.1 above for SDLaPe (ignoring ranked
obligations) but adapted to suit SDDL as described in [3] §3, and DP as in
[3] §4. Needed are a set of relations, PA

a , that are reflexive, transitive and
connected on their fields. Combining the lessons of [3] §§3, 4, these might
be defined so that, for each formula A,

PA
a = {〈b, c〉 : if c ∈ ΘaA then (b ∈ ΘaA and bXac)}

where
ΘaA = {b : ∀B(if B ∈ b then ¬A ≥a B /∈ a)}

which is designed to accommodate formulas Oe(B/C) and B ≥a C and so
to take care of the DPe part of the logic, and Xa is a relation corresponding
to the relation Pa that was given in the completeness proof for SDDL in [3]
§3. So long as this relation Xa is reflexive, transitive and connected on its
field, then so will be PA

a , as required.
In [3] §3, Pa was defined so that, given ΠaA = {b : ∀B ∈ b, B ≥ A ∈ a},

Pa = {〈b, c〉 : 3ab and 3ac and ∀C(c ∈ ΠaC ⇒ ∃B(b ∈ ΠaB

and B ≥ C ∈ a))}

In the present framework, however, this is ambiguous, depending on which
connective, ≥a or ≥e, is applied in the definition. To define Xa, if the clause
B ≥ C is read B ≥e C, then the relation will not be transitive, because
transitivity fails for ≥e. If, on the other hand, the clause is read B ≥a C
then the relation will not be connected on its field, because connectedness
fails for ≥a. I see no way out of this dilemma.

The situation is even more dire if one tries to adapt the completeness proof
for DP and PPref from [3] to apply to logics DPaDPe and PPrefePPrefa
that result from combining the principles of DP, respectively PPref, for both
Oa(−/−) and (Oe(−/−)), or ≥e and ≥a, e.g., taking as axioms and rules
those validities listed above that do not require connectedness for all rela-
tions P ∈ Pa.

As we saw in Section 2.2 above, it seems easiest to prove completeness
for P-like systems (not requiring connectedness) by taking a detour through
a framework of bi-modal 2MP-frames, F = 〈W,Pa,Pe, 6〉, where the op-
erators Oa and Oe were evaluated in the same way but with respect to the
two classes of relations Pa

a and Pe
a assigned to a ∈ W . The same could

be done for the conditional operators Oa(−/−) and Oe(−/−) and prefer-
ence connectives ≥e and ≥a. There is a problem, however. In order for that
framework to be equivalent to the basic multiple preference framework, all
the relations in Pe

a must be transitive in order that (transa) be valid. At the
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same time, it must not be the case that all the relations in Pa
a are transitive,

lest (transe) be valid. But it is also required that Pa
a ⊆ Pe

a in order to validate
(D.9ae) or its counterpart for preference, (D.10ae), which would be axioms
of the weaker systems. These are incompatible requirements. I see no way
out of this dilemma either.

Thus the techniques used to demonstrate completeness for SDDL or SPref
and SDLaPe, or for DP or PPref and PaPe, do not lend themselves to a
demonstration for SDDLaDPe or SPrefePPrefa or for DPaDPe or PPrefe
PPrefa, even if these systems are enriched with hitherto unnoticed valid
postulates. This does not mean that these systems are not complete with re-
spect to the multiple preference semantics as described. For all we know,
it is possible that other techniques would be more succesful in establishing
that. It is also possible, however, that the set of valid principles for condi-
tional obligation and preference in the multiple preference semantics is not
axiomatizable. The question remains open.7
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