
“14provijn_meheus”
2005/7/18
page 305

i

i

i

i

i

i

i

i

Logique & Analyse 185–188 (2004), 305–317

DIRECT DYNAMIC PROOFS FOR CLASSICAL COMPATIBILITY∗

DAGMAR PROVIJN AND JOKE MEHEUS

1. Introduction

The scope of formal studies of reasoning has traditionally been restricted to
deductive inference patterns. As a consequence, the contribution of formal
logic to the understanding of actual reasoning processes has been relatively
small. Indeed, both in the sciences and in everyday life, many reasoning
processes are ampliative in nature: they lead to conclusions that ‘extend’
the information contained in the premises. Obvious examples include the
use of induction to generate new generalizations and the use of abduction to
generate new explanatory hypotheses.

It is only in recent years that computer scientists as well as logicians started
paying attention to ampliative forms of reasoning. Important contributions
to the formal study of ampliative reasoning are the (computer science) litera-
ture on non-monotonic logics and some recent results in the adaptive logics
program (see, for instance, [5], [6] and [10]).

Two important insights resulted from these studies. The first is that com-
patibility is one of the basic concepts for the study of ampliative reasoning.1

The reason is simple: a necessary requirement for an ampliative inference to
be sound is that its conclusion is compatible with its premises. In the case of
default reasoning, for instance, only those default rules can be applied that
are compatible with one’s theory. Sometimes it is moreover required that
the different conclusions are mutually compatible. For instance, in order for
an inductive generalization to be sound, it should not only be compatible
with the available data, but also with all other generalizations that can be
generated from the same set of data (see [5]).

The second insight is that compatibility claims are not blind guesses, but
are arrived at by reasoning. A central result in this respect is the logic

∗Research for this paper was supported by subventions from the Fund for Scientific Re-
search – Flanders, and indirectly by the Flemish Minister responsible for Science and Tech-
nology (contract BIL01/80).

1 A sentence A is said to be compatible with a set of premises Γ, according to some logic
L, iff Γ 0L ¬A. What this comes to, semantically, is that A is true in some L-model of Γ.
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COMPAT from [7]. This logic captures the concept of classical compati-
bility. Thus, where CL stands for Classical Logic, COMPAT leads from a
set of sentences Γ to the set of sentences that are CL-compatible with Γ. If
Γ is inconsistent, then, like CL, COMPAT leads to triviality.2

The importance of COMPAT is that it offers a proof theory for compati-
bility. It thus allows one to reason from a set of premises to the sentences
that are compatible with them. A special feature of the proof theory is that
it is dynamic. This is related to the fact that compatibility is non-monotonic
(q is compatible with {p}, but not with {p, ¬q}), and that, moreover, at
the predicative level, there is no positive test for it. As is shown in [7], the
dynamic proof theory warrants that, even for undecidable fragments, one ob-
tains a sensible and rational estimate of which sentences are compatible with
the Γ under consideration. It is also shown that the dynamic proof theory is
sound and complete with respect to a very nice and intuitive semantics.

As all forms of ampliative reasoning are ultimately based on specific kinds
of compatibility relations, it seems warranted to expect that the results from
[7] are a useful basis to design proof theories for different types of ampliative
reasoning.

There is, however, one proviso: in [7], the logic COMPAT is characterized
in an indirect way. More specifically, the definition of the logic is based, on
the one hand, on a modal translation of the premises and the conclusion and,
on the other hand, on a modal logic (based on S5, and called COM) that
allows one to make inferences from this translation. The logic COMPAT is
obtained by stipulating that A is a COMPAT-consequence of Γ iff the modal
translation of A is a COM-consequence of the modal translation of Γ.

The modal translation is quite simple and intuitively appealing. Where
Γ� stands for {�A | A ∈ Γ}, Γ� `COM ♦A is taken to express that A is
compatible with Γ, and Γ� `COM ¬♦A that A is incompatible with Γ. This
is motivated by the fact that A is CL-compatible with Γ iff A is true in some
CL-model of Γ, and hence, iff A is possible in view of Γ. As the members of
Γ are true in all CL-models of Γ, it is easily observed that A is true in some
CL-model of Γ iff ♦A is true in some S5-model of Γ�.

The advantage of this modal translation is that it leads in a very natural way
to a semantics for compatibility (see the next section). The problem remains,
however, that the proof theory of COM, precisely because it is formulated in

2 In [7], a second logic of compatibility is presented, COMPAT
∗, that does not have this

property. If Γ is inconsistent, then, according to COMPAT
∗, nothing is compatible with Γ,

not even the members of Γ themselves. In [9], it is argued, however, that both COMPAT and
COMPAT

∗ are inadequate to handle inconsistent sets of premises. In the same paper, a logic
of paraconsistent compatibility is presented that leads to the same results as COMPAT and
COMPAT

∗ for the consistent case, but that nevertheless allows for the sensible handling of
inconsistent sets.
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modal terms, falls short to explicate actual reasoning processes that involve
compatibility considerations.

The aim of this paper is to present a direct proof theory for COMPAT (that
proceeds entirely in the language of CL) and to show that it is equivalent
to the indirect proof theory from [7]. Note that our claim is not that the
direct characterization of COMPAT should replace the indirect one. The
logic COM remains important from a meta-theoretical point of view—it is,
for instance, far from evident that it is possible to design a direct semantics
for compatibility. We do claim, however, that the direct proof theory is better
suited to explicate actual reasoning processes.

2. The Logic COM

In this section, we present a brief overview of the logic COM. For more
details, we refer the reader to [7].

The logic COM is an adaptive logic. The first logic in this family was de-
signed by Diderik Batens around 1980 (see [1]) and was meant to interpret
inconsistent sets of premises ‘as consistently as possible’. Later, the no-
tion of an adaptive logic was generalized not only to include other types of
logical abnormalities (such as negation-incompleteness) but also to include
ampliative forms of reasoning—see [3] and [4] for recent introductions to
the topic.

The basic idea behind adaptive logics is that they interpret sets of premises
‘as normally as possible’. What this comes to is that a sentence A is sup-
posed to behave ‘normally’ with respect to a set of premises Γ unless Γ
explicitly prevents so. Depending on how ‘normal’ is specified, one obtains
a different adaptive logic. Inconsistency-adaptive logics, for instance, inter-
pret sets of premises as consistently as possible; ambiguity-adaptive logics
interpret them as unambiguously as possible.

In the case of the logic COM, it is the incompatibility of A with Γ that
counts as an abnormality.3 Thus, the plot behind COM is to assume that a
sentence A is compatible with Γ unless this is prevented by Γ—that is, unless
A is incompatible with Γ or, what comes to the same, unless Γ� �S5 ¬♦A.

Semantically, this is realized by making a selection of the S5-models of
Γ�. Intuitively, those S5-models of Γ� are selected that verify a formula of
the form ¬♦A iff it is ‘unavoidable’ in view of Γ� (that is, iff it is true in all
S5-models of Γ�). For example, some S5-models of {�p} verify ¬♦q and

3 Note that “abnormality” does not refer to some standard of deduction, say CL. It refers
to presuppositions that, in a particular application context, are regarded as desirable, but that
may be overruled.
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others verify ¬♦¬q—this is the reason why neither ♦q nor ♦¬q is an S5-
consequence of {�p}. However, as neither ¬♦q nor ¬♦¬q are unavoidable
in view of Γ�, S5-models that verify one of them, are not included in the
selection. As a consequence, all selected models verify ♦q as well as ♦¬q,
which is exactly what we want.

In order to formulate the semantics of COM in a more precise way, we first
need some definitions.4

Let L be the standard language of CL (including ⊥, syntactically defined
by ⊥ ⊃ A) and let Ω be the set {¬♦A | A is a wff of L}. Henceforth,
members of Ω will be called “abnormalities”.

The abnormalities that are unavoidable in view of Γ� are defined as:

Definition 1 : Ab(Γ�) = {A ∈ Ω | Γ� |=S5 A}.

and the “abnormal part” of an S5-model M as:

Definition 2 : Ab(M) = {A ∈ Ω | M verifies A}.

For a given set of premises Γ�, the selection of the COM-models is now
defined as follows:

Definition 3 : An S5-model M is a COM-model of Γ� iff Ab(M) = Ab(Γ�).

Definition 3 warrants that, for any Γ�, the selected models verify no other
abnormalities than those that are unavoidable in view of Γ�. Note especially
that, in view of this definition, and as is usual for adaptive logics, it does not
make sense to say that some S5-model is a COM-model, but only that it is a
COM-model of some set of premises Γ�.

As may be expected, the semantic consequence relation is defined with
respect to the selected models:

Definition 4 : Γ� |=COM A iff all COM-models of Γ� verify A.

The following theorem shows the intuitive adequacy of the above defini-
tions.5 We refer to [7] for its proof:

4 In [7], the actual semantics for COM is presented as well as a simplified version; we
immediately give the simplified one.

5 Remember that, for inconsistent sets of premises, COM leads to triviality.
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Theorem 1 : Where A is a wff of L, Γ� |=COM ♦A iff Γ 6|=CL ¬A or Γ |=CL

⊥.

Let us now turn to the proof theory. As was mentioned above, the proof
theory of COM is dynamic: formulas that, at some stage of the proof, are
considered to be derived, may at a later stage be ‘withdrawn’. Technically,
this is realized by attaching, to each line in the proof, a ‘condition’ (a possi-
bly empty set of abnormalities).

Thus, lines in a COM-proof have the following structure:
i A j1, . . . , jn RULE ∆

The first four elements are as usual: i is the line number, A is the formula
that is derived, j1, . . . , jn (n ≥ 0) stand for the line numbers of the formulas
from which A is derived, and the fourth element is the justification (the rule
by means of which A is derived). The fifth element, ∆, is the condition.
Intuitively, this set contains the abnormalities that should not be derivable in
order for A to be derivable.

The function of the condition is most easily illustrated by means of an ex-
ample. Consider Γ = {(∀x)(Qx ⊃ ¬Sx), (∀x)(Px ⊃ Rx), Ra∧Sa} and
suppose that we want to check whether (∀x)(Rx ⊃ Qx), (∀x)(Px ⊃ Qx)
and (∀x)(Sx ⊃ Px) are compatible with Γ. In COM, this comes down to
checking whether ♦(∀x)(Rx ⊃ Qx), ♦(∀x)(Px ⊃ Qx) and ♦(∀x)(Sx ⊃
Px) are COM-derivable from Γ� = {�(∀x)(Qx ⊃ ¬Sx), �(∀x)(Px ⊃
Rx), �(Ra ∧ Sa)}. This may be done like this.

First, we enter the premises:
1 �(∀x)(Qx ⊃ ¬Sx) − PREM ∅
2 �(∀x)(Px ⊃ Rx) − PREM ∅
3 �(Ra ∧ Sa) − PREM ∅

Note that the premises are entered on the empty condition. This is as it
should be: the derivability of the premises is not dependent on the normal
behaviour of any formula. If a formula A is derived on a line that has the
empty set as its fifth element, then A will be said to be derived uncondition-
ally.

Next, we add the following lines:
4 ♦(∀x)(Rx ⊃ Qx) − RC {¬♦(∀x)(Rx ⊃ Qx)}
5 ♦(∀x)(Px ⊃ Qx) − RC {¬♦(∀x)(Px ⊃ Qx)}
6 ♦(∀x)(Sx ⊃ Px) − RC {¬♦(∀x)(Sx ⊃ Px)}

The rule RC is a conditional rule: it allows one to add ♦A to the proof
(for any formula A of L) on the condition {¬♦A}. This corresponds to
the assumption that ♦A is COM-derivable from the premises unless ¬♦A is
S5-derivable from them.
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Some readers may object that the condition of line 4 is not satisfied—
¬♦(∀x)(Rx ⊃ Qx) is S5-derivable from the premises—and hence, that it
should not be possible to add this line to the proof. However, as is usual for
adaptive logics, it is allowed in COM-proofs that inferences are made on the
basis of one’s best insights in the premises (that is, on the basis of what is
explicitly written down in the proof). So, as long as ¬♦(∀x)(Rx ⊃ Qx) has
not been derived in the proof, the formula of line 4 will be considered to be
derived.

Suppose now that we continue the proof as follows:
7 ¬♦Qa 1, 3 RU ∅
8 ¬♦(∀x)(Rx ⊃ Qx) 3, 7 RU ∅

The rule RU is a generic rule that allows one to add B to the proof whenever
B is S5-derivable from A1, . . . , An and A1, . . . , An occur in the proof. Note
that RU is an unconditional rule: it does not lead to the introduction of new
conditions. So, if B is derived from A1, . . . , An, the condition of the line at
which B occurs is simply the union of the conditions of the lines at which
A1, . . . , An occur.

At stage 8 of the proof, it has been established that the condition of line 4
is not satisfied. Hence, at this stage of the proof, the formula of line 4 should
no longer be considered as derived in the proof. This will be expressed by
‘marking’ line 4:
1 �(∀x)(Qx ⊃ ¬Sx) − PREM ∅
2 �(∀x)(Px ⊃ Rx) − PREM ∅
3 �(Ra ∧ Sa) − PREM ∅

4 ♦(∀x)(Rx ⊃ Qx) − RC {¬♦(∀x)(Rx ⊃ Qx)} 8

5 ♦(∀x)(Px ⊃ Qx) − RC {¬♦(∀x)(Px ⊃ Qx)}
6 ♦(∀x)(Sx ⊃ Px) − RC {¬♦(∀x)(Sx ⊃ Px)}
7 ¬♦Qa 1, 3 RU ∅
8 ¬♦(∀x)(Rx ⊃ Qx) 3, 7 RU ∅

A formula is considered to be derived at a stage s of a COM-proof from
Γ� iff it occurs on line i that, at that stage of the proof, is not marked. So,
the formulas on lines 4 to 6 are all considered to be derived up to stage 7
of the proof, but the one on line 4 is no longer considered to be derived
at stage 8. Note that, no matter how the proof is extended, it will not be
possible to mark lines 5 and 6. This is why we say that ♦(∀x)(Px ⊃ Qx)
and ♦(∀x)(Sx ⊃ Px), unlike ♦(∀x)(Rx ⊃ Qx), are finally derivable from
the premises (see below for the definition).

We now give the precise formulation of the proof theory for COM. Adding
lines to a proof from Γ� is governed by the rules PREM, RU and RC:
PREM If A ∈ Γ�, then one may add to the proof a line consisting of

(i) the appropriate line number,
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(ii) A,
(iii) “−”,
(iv) “PREM”, and
(v) ∅.

RU If A1, . . . , An `S5 B, and A1, . . . , An (n ≥ 0) occur in the proof
on the conditions ∆1, . . . , ∆n respectively, then one may add to the
proof a line consisting of:

(i) the appropriate line number,
(ii) B,

(iii) the line numbers of the Ai or “−” if n = 0,
(iv) “RU”, and
(v) ∆1 ∪ . . . ∪ ∆n.

RC At any point of the proof, one may, for any formula A of L, add to
the proof a line consisting of:

(i) the appropriate line number,
(ii) ♦A,

(iii) “−”,
(iv) “RC”, and
(v) {¬♦A}.

The marking of lines is governed by the following definition:

Definition 5 : Marking for COM: Line i is marked at stage s of a COM-
proof from Γ� iff, where ∆ is the condition of line i, some A ∈ ∆ has been
unconditionally derived at stage s.

In view of the marking definition, two notions of derivability may be defined:
derivability at a stage (see above) and final derivability. The latter is defined
as follows:

Definition 6 : A formula A is finally derived on line i of a COM-proof from
Γ� iff (i) A is the second element of line i, (ii) line i is not marked in the
proof, and (iii) line i will not be marked in any extension of the proof.

As may be expected, the consequence relation is defined with respect to final
derivability:

Definition 7 : Γ� `COM A (A is finally derivable from Γ�) iff A is finally
derived on a line in a COM-proof from Γ�.

As is proven in [7], the semantics of COM is, in a restricted way, sound and
complete with respect to its proof theory:
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Theorem 2 : Where A is a wff of L, Γ� `COM ♦A iff Γ� |=COM ♦A.

3. Direct Proofs for COMPAT

In [7], the logic COMPAT is indirectly defined as follows:

Definition 8 : Γ `COMPAT A iff Γ� `COM ♦A.

In view of the proof theory for COM, a direct proof theory for COMPAT

can easily be obtained. It suffices to extend CL with the following conditional
rule:
RC’ At any point of the proof, one may, for any formula A of L, add to

the proof a line consisting of:
(i) the appropriate line number,

(ii) A,
(iii) “−”,
(iv) “RC”’, and
(v) {¬A}.

and to formulate an appropriate marking definition.
The idea behind RC’ is simple and nicely captures the intuition behind

compatibility: we assume that A is compatible with the premises unless and
until this assumption is proven to be false (that is, unless and until ¬A is
CL-derivable). In view of the meta-proofs, we shall, however, rely on a
conditional rule that is slightly more general (and from which RC’ may be
derived). The idea will be that, whenever a disjunction B ∨

∨
(∆) is CL-

derivable in the proof, B may be derived on the condition ∆.
Here are the generic rules for COMPAT-proofs:

PREM If A ∈ Γ, then one may add to the proof a line consisting of
(i) the appropriate line number,

(ii) A,
(iii) “−”,
(iv) “PREM”, and
(v) ∅.

RU If A1, . . . , An `CL B, and A1, . . . , An (n ≥ 0) occur in the proof
on the conditions ∆1, . . . , ∆n respectively, then one may add to the
proof a line consisting of:

(i) the appropriate line number,
(ii) B,

(iii) the line numbers of the Ai or “−” if n = 0,
(iv) “RU”, and
(v) ∆1 ∪ . . . ∪ ∆n.
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RC If A1, . . . , An `CL B∨
∨

(∆), and A1, . . . , An (n ≥ 0) occur in the
proof on the conditions ∆1, . . . , ∆n respectively, then one may add
to the proof a line consisting of:

(i) the appropriate line number,
(ii) B,

(iii) the line numbers of the Ai or “−” if n = 0,
(iv) “RC”, and
(v) ∆ ∪ ∆1 ∪ . . . ∪ ∆n.

The following rules are obviously derivable and lead to proofs that are
more interesting from a heuristic point of view:
RD1 If A is derived in the proof on the condition {C1, . . . , Cn} and ¬A

is derived on the condition ∅, then one may add to the proof a line
consisting of

(i) the appropriate line number,
(ii)

∨
{C1, . . . , Cn},

(iii) the line numbers of A and ¬A,
(iv) “RD1”, and
(v) ∅.

RD2 If A is derived in the proof on the condition {C1, . . . , Cn} and ¬A
is derived on the condition {D1, . . . , Dm}, then one may add to the
proof a line consisting of

(i) the appropriate line number,
(ii)

∨
({C1, . . . , Cn} ∪ {D1, . . . , Dm}),

(iii) the line numbers of A and ¬A,
(iv) “RD2”, and
(v) ∅.

The marking definition for COMPAT is somewhat different from that for
COM and will be illustrated in the example below:

Definition 9 : Marking for COMPAT: Line i is marked at a stage of a proof
from Γ iff, where ∆ is the condition of line i,

∨
(∆) is unconditionally de-

rived at that stage of the proof.

As is the case for COM, a formula A is said to be derived at a stage s of
a COMPAT-proof from Γ iff A is the second element of a non-marked line
at stage s. Also the definitions of final derivability and of the consequence
relation are analogous to those for COM:

Definition 10 : A formula A is finally derived on line i of a COMPAT-proof
from Γ iff (i) A is the second element of line i, (ii) line i is not marked in the
proof, and (iii) line i will not be marked in any extension of the proof.
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Definition 11 : Γ `COMPAT A (A is finally derivable from Γ) iff A is finally
derived on a line in a COMPAT-proof from Γ.

Here is the direct proof for the example from the previous section:
1 (∀x)(Qx ⊃ ¬Sx) − PREM ∅
2 (∀x)(Px ⊃ Rx) − PREM ∅
3 Ra ∧ Sa − PREM ∅

4 (∀x)(Rx ⊃ Qx) − RC {¬(∀x)(Rx ⊃ Qx)} 8

5 (∀x)(Px ⊃ Qx) − RC {¬(∀x)(Px ⊃ Qx)}
6 (∀x)(Sx ⊃ Px) − RC {¬(∀x)(Sx ⊃ Px)}
7 ¬Qa 1, 3 RU ∅
8 ¬(∀x)(Rx ⊃ Qx) 3, 7 RU ∅

Unlike what was the case for COM, COMPAT allows one to ‘conjoin’
different compatibility hypotheses. For instance, from the formulas on lines
5 and 6, one may derive:
9 (∀x)(Sx ⊃ Qx) 5, 6 RU {¬(∀x)(Sx ⊃ Px),¬(∀x)(Px ⊃ Qx)}

Thus, the proof theory for COMPAT is, in a sense, richer than that for
COM. (In COM, it is not possible to derive ♦(∀x)(Sx ⊃ Qx) from ♦(∀x)
(Px ⊃ Qx) and ♦(∀x)(Sx ⊃ Px).) That it is not too rich is warranted by
the marking definition. Suppose, for instance, that we continue the proof as
follows:
10 Pa 3, 6 RU {¬(∀x)(Sx ⊃ Px)}
11 (∀x)(Px ⊃ ¬Sx) 1, 5 RU {¬(∀x)(Px ⊃ Qx)}
12 ¬Pa 3, 11 RU {¬(∀x)(Px ⊃ Qx)}
13 Pa ∧ ¬Pa 10, 12 RU {¬(∀x)(Sx ⊃ Px),¬(∀x)(Px ⊃ Qx)}

Although both Pa and ¬Pa are compatible with the premises, Pa∧¬Pa is
obviously not, and hence, should not be finally derivable from them. How-
ever, as soon as the following line is added to the proof, lines 9 and 13 are
marked:
14 ¬(∀x)(Sx ⊃ Px) ∨ ¬(∀x)(Px ⊃ Qx) 10,12 RD2 ∅

Note that, although both (∀x)(Sx ⊃ Px) and (∀x)(Px ⊃ Qx) are compati-
ble with the premises (the formulas on lines 5 and 6 are finally derived), they
are not jointly compatible with them. This is what the formula on line 14
teaches: in view of the premises, either (∀x)(Sx ⊃ Px) or (∀x)(Px ⊃ Qx)
must be false.

In the rest of this section, we prove that the direct proof theory for COMPAT

is equivalent to the indirect one from Definition 8. For the sake of generality,
A ∨

∨
(∅) will denote A.6

6 The logic COMPAT is not the first adaptive logic for which a direct proof theory is
designed. In [2], for instance, it is shown that the so-called Rescher-Manor consequence
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Lemma 1 : If, in a COMPAT-proof from Γ, A occurs as the second element
of line i and ∆ as its fifth element, then Γ `CL A ∨

∨
(∆).

Proof. The proof proceeds by induction on the number of the line at which
A occurs. The lemma obviously holds if i = 1, for then, in view of the
generic rules, A ∈ Γ or `CL A ∨

∨
(∆). Suppose that the lemma holds for

all lines that precede i.
Case 1: The third element of line i is “−”. Analogous to the case where

i = 1.
Case 2: The third element of line i is not “−”. Suppose that the third ele-

ment of i is j1, . . . , jn (n ≥ 1) and that B1, . . . , Bn are the second elements
of lines j1, . . . , jn. Both RU and RC warrant that B1, . . . , Bn `CL A∨

∨
(∆),

and hence, that `CL ((B1 ∧ . . . ∧ Bn) ⊃ A) ∨
∨

(∆). As the fifth el-
ements of lines j1, . . . , jn are subsets of ∆, the supposition warrants that
Γ `CL Bi∨

∨
(∆) for every Bi, and hence, that Γ `CL (B1∧. . .∧Bn)∨

∨
(∆).

But then, Γ `CL A ∨
∨

(∆). �

Theorem 3 : Γ `COMPAT A iff Γ `CL A or there is a non-empty set ∆ such
that Γ `CL A ∨

∨
(∆) and Γ 0CL

∨
(∆).

Proof. The right-left direction immediately follows by inspection of the proof
theory: if Γ `CL A, then Γ `COMPAT A in view of RU; if, for some non-
empty set ∆, Γ `CL A ∨

∨
(∆) and Γ 0CL

∨
(∆), then Γ `COMPAT A in

view of RC and the marking definition.
For the left-right direction, suppose that Γ `COMPAT A. In that case, A is

finally derived at some line j of a COMPAT-proof from Γ. Hence, where ∆
is the fifth element of line j, Γ `CL A ∨

∨
(∆) in view of Lemma 1.

It only remains to be shown that, if ∆ is non-empty, then Γ 0CL

∨
(∆).

Suppose that ∆ is non-empty and that Γ `CL

∨
(∆). As CL is compact,

there is an extension of the proof in which
∨

(∆) occurs unconditionally.
But then, line j is marked in that extension, and will remain marked in any
further extension. This contradicts that A is finally derived at line j. �

Theorem 4 : Γ `COMPAT A iff Γ 0CL ¬A or Γ `CL ⊥.

relations (the Free, Strong, Argued, C-based and Weak consequence relations) can be char-
acterized by means of specific inconsistency-adaptive logics (which incorporate a paracon-
sistent negation as well as the classical one). The direct proof theories, that proceed entirely
in the language of CL, can be found in [8]. An important difference with the present case is
that the equivalence proof for COMPAT does not require that a correspondence is established
between the indirect proofs and the direct ones.
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Proof. For the left-right direction, suppose that Γ `COMPAT A. Suppose
further that Γ `CL ¬A and that Γ 0CL ⊥. It follows, in view of Theorem 3,
that (i) Γ `CL A or (ii) that, for some non-empty set ∆, Γ `CL A ∨

∨
(∆)

and Γ 0CL

∨
(∆). However, both (i) and (ii) are impossible in view of the

supposition.
For the right-left direction, suppose first that Γ 0CL ¬A. It follows, in view

of `CL A ∨ ¬A, RC and the marking definition, that A is finally derived at
some line in a COMPAT-proof from Γ, and hence, that Γ `COMPAT A. The
case where Γ `CL ⊥ is obvious in view of RU. �

Theorem 5 : Γ `COMPAT A iff Γ� `COM ♦A.

Proof. Immediate in view of Theorem 1, Theorem 2, the Completeness of
CL and Theorem 4. �

4. In Conclusion

In this paper, we presented a direct proof theory for classical compatibil-
ity and showed that it is equivalent to the indirect one from [7]. Important
open problems concern the design of a direct proof theory for paraconsistent
compatibility (as studied in [9]) and the formulation of proof theories for
other forms of ampliative reasoning. Given the central role that compatibil-
ity plays in ampliative reasoning, the results from the present paper should
constitute a good point of departure for this.
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