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AN ADAPTIVE LOGIC BASED ON JAŚKOWSKI’S LOGIC D2

MAREK NASIENIEWSKI∗

1. Introduction

1.1. Preliminaries

In the present paper we construct an adaptive logic built over the logic D2.
The whole project of adaptive logics has been developed by Diderik Batens
(see for example [3], [4], [6], and [8]). The idea is to use two consequence
relations: a weaker one (called the lower limit logic and a stronger one (the
upper limit logic). First two adaptive logics — today called ACLuN1 and
ACLuN2 — were designed with CLuN (which is the full positive classical
logic plus the law of excluded middle) as the lower limit logic1 and classical
logic (we use ‘CL’ as an abbreviation) as the upper limit logic. We recall here
the logic CLuN not only for historical reasons. Some results2 concerning the
logic CLuN are useful also for stronger logics such as the logic D2. Without
going into details, let us only mention that in the case of the syntactics of
adaptive logics, one can always use inferences valid for the lower limit logic
but the inferences of the upper limit logic can only be applied under certain
conditions. From a semantical point of view, the consequence relation of
adaptive logics is richer than the consequence relation of the lower limit
logic since only some CLuN-models of the set of premises are being selected.
A crucial role is played by minimally inconsistent CLuN-consequences of
the set of premises having the form (A1 ∧ ∼A1) ∨ · · · ∨ (An ∧ ∼An).

∗The research for this paper benefited from a bilateral scientific exchange project funded
by the Ministry of the Flemish Community (project BIL01/80) and the Polish State Commit-
tee for Scientific Research (KBN)..

I would like to express my gratitude to Joke Meheus who checked through the first
version of the paper. She made numerous useful suggestions which improved the final version
of the paper.

1 For the sake of simplicity we consider here only the propositional part of CLuN. Orig-
inally CLuN is meant as a first-order logic. Its propositional part appeared in [2] under the
name ‘PI’. The propositional adaptive logics were presented for the first time in [3].

2 See Theorem 1.16, Lemma 1.17, and Corollary 1.18.



“13nasieniewski”
2005/7/18
page 288

i

i

i

i

i

i

i

i

288 MAREK NASIENIEWSKI

That a formula of this form is minimally inconsistent means here that no
formula of the form (Ai1 ∧ ∼Ai1) ∨ · · · ∨ (Aim ∧ ∼Aim), where 1 ≤
m < n, is a CLuN-consequence of the set of premises. In the case of the
logic ACLuN1 only CLuN-models of a given set of premises are allowed
which validate only inconsistencies of the form (B ∧ ∼B) which appear as
disjuncts of some minimally inconsistent CLuN-consequences. In the case of
the logic ACLuN2 only CLuN-models of a given set of premises are allowed,
for which there is no CLuN-model of the given set of premises which, in a
set-theoretical sense, validates fewer inconsistencies.3

An adaptive logic built in Jaśkowski’s way has been already developed by
Joke Meheus [18]. In the present paper we will use the same idea. However,
we use the discussive interpretation of the connectives.

The main feature of the present adaptive logic is that it is formulated with
the help of a modal language. That is why we use some basic notions and
results from the field of modal logic4 . To express this adaptive logic we
use two consequence relations: the weaker one based on the logic S5 and
the stronger one based on the logic Triv. The use of the modal language is
connected with the fact that D2, which is the lower limit logic of the adap-
tive logic under consideration, was originally expressed with the help of the
modal logic S5 understood as a logic in the standard sense — i.e. as a cer-
tain set of formulas5 . We consider here the consequence relation for the logic
D2. We recall some results6 showing that while working with the so-called
M-counterpart of the logic S5 it is enough to use some weaker modal logic
called S5M

7 . Moreover Definition 1.8, case 1 together with Corollary 1.10
prove that in order to work with our consequence relation, which is defined
with the help of S5, it is enough to work with the above mentioned weaker
modal logic. Similar remarks concern the M-counterpart of the logic Triv8 .

3 For the exhaustive presentation of ACLuN1 and ACLuN2 see for example [6] or [8].

4 Some standard notions such as a normal logic, a frame, the logic S5, the logic Triv,
S5-frame, a valuation, truth in a given world, truth in a model, truth in a frame etc. can be
found in the Appendix of [19].

5 See [13].

6 See Theorems 1.6 and 1.7 case 1.

7 See Definition 1.5.

8 See Definition 1.8 case 2, Theorem 1.11, Lemma 1.14, and Corollary 1.15.
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Using Theorem 1.19 we can express meta-rules of inference for the adap-
tive logic based on D2. As it was said, for this purpose we will use the M-
counterpart of S5. We apply Perzanowski’s idea of treating inconsistencies
as contingent formulas9 . Let us consider a situation in which we have among
our premises some inconsistent formulas. Of course, using classical logic we
obtain the set of all formulas as a consequence of such an inconsistent set.
To avoid this effect we can treat classical formulas as modal formulas us-
ing Jaśkowski’s transformation: before each premise we will put ‘♦’, while
each of the functors →, ∧, and ↔ will be treated as a discussive one10 . In
our considerations transformations valid for S5 are generally allowed. The
procedure sketched above uses a kind of natural deduction for modal log-
ics. Of course, at the end we will have to come back to the language without
modalities. We will use — which is a standard property of adaptive logics —
some conditional rules. Only in a limited way we can use transformations
valid for the logic Triv. If, on the basis of the premises, some minimally
contingent formula of the form (♦A1 ∧ ♦∼A1) ∨ · · · ∨ (♦An ∧ ♦∼An)
(where A1 . . . An are propositional variables11 ) is S5-provable, then in the
proof one cannot use Triv transformations, which apply non-trivially the as-
sumption ♦Ai → �Ai for any 1 ≤ i ≤ n.

A model of the logic CLuN has to fulfill — as far as the negation is con-
cerned — the principle which says that for any two formulas, such that one
is the negation of the other, at least one of them is true. Therefore, there are
CLuN-models in which the negation of each CL-tautology is true. Thus, if
among the premises there is a formula being the negation of some classical
tautology then using an adaptive logic, which of course is not weaker than the
lower limit logic, saves all premises as consequences and will not eliminate
this feature of the logic CLuN. On the other hand in the case of the logic D2,
at least in some cases, the situation in which the negation of a CL-tautology
is true, is not possible. If, for example, among the premises there is the nega-
tion of the law of excluded middle, then deductions from such premises lead
to ‘explosion’, exactly as it is in the case of classical logic. It seems that
this feature of D2 is acceptable: if someone treats the negation of the law of
excluded middle as a premise, then he should obtain triviality. Although it

9 See [22].

10 See Definition 1.9.

11 Following J. Meheus, we have to impose a restriction on minimally contingent conse-
quences since for example {A,∼A, B} `D2

(B∧∼B)∨
(

(∼A∨∼B)∧∼(∼A∨∼B)
)

,
but this means that any assumption in the presence of inconsistent premises forms an incon-
sistent disjunct ‘(B ∧ ∼B)’ of a minimally contingent consequence. We will use Meheus
idea to limit ourselves to primitive formulas.
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290 MAREK NASIENIEWSKI

is possible to indicate examples of inconsistent formulas from which follow,
on the basis of Jaśkowski’s logic, other inconsistent formulas12 , one can talk
about minimally inconsistent formulas being a consequence of a given set of
premises.

1.2. Some basic notions and results

Let us recall the notion of S5-consequence and S5-provability:

Definition 1.1 : X |=S5 A iff for each S5-model 〈W, R, v〉: if w |=v X , then
w |=v A.

Definition 1.2 : X `S5 A iff there is a finite sequence of formulas C1, . . . , Cn,
where Cn = A and for every 1 ≤ i ≤ n either Ci ∈ X , or Ci is a theorem
of the logic S5, or arises by the Modus Ponens rule (MP).

We have standard:

Theorem 1.3 : X |=S5 A iff X `S5 A.

We will use an analogous definition for Triv-provability:

Definition 1.4 : X `Triv A iff there is a finite sequence of formulas C1, . . . ,
Cn where Cn = A and for each 1 ≤ i ≤ n either Ci ∈ X , or Ci is a theorem
of the logic Triv, or arises by Gödel’s rule (GR)13 or (MP).

We will use the following modal logic:

Definition 1.5 : (Perzanowski, [21]) S5M is the smallest normal logic con-
taining:

�A → ♦A (D)

♦�(♦�A → �A) (M5)

♦�(�A → A) (MT)

12 The same is true for the logic CLuN: (p ∧ ∼ p) ∧ ∼(p ∧ ∼ p) `CLuN p ∧ ∼ p.

13 Of course the rule (GR) can be skipped here.
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closed under the following rule

♦♦A

♦A
(RT∗)

We will need the following axioms:

�♦♦A → ♦A (T∗)

�♦A → ♦A (D∗)

�♦A → ♦�A14 (K1)

For any modal logic P, and a set of modal formulas X , by P[X] we mean
the smallest normal logic containing the logic P and including all formulas
from X . If X = {A1, . . . , An} we will write P[A1 . . . An].

Let ForM denote the set of all modal propositional formulas and For de-
note the set of all classical propositional formulas. We have:

Theorem 1.6 : (Dziobiak, [9]) S5M = K[D∗T∗]

Let M(P) := {A ∈ ForM : ♦A ∈ P}. The set of formulas M(P) we call
the M-counterpart of the logic P.

In [21] it was shown that

Theorem 1.7 : (Perzanowski, [21]) (1) M(S5) = M(S5M).
(2) M(S4[K1]) = Triv.

As an analogue to the notion of M-counterpart of the logic S5 we can
define the following consequence relations:

Definition 1.8 : (1) X `♦S5 A iff {♦B : B ∈ X} `S5 ♦A.
(2) X `♦Triv A iff {♦B : B ∈ X} `Triv ♦A.

Let us recall

14 The McKinsey-Sobociński axiom is denoted in [15] as ‘M’. In [23], Sobociński by
K1 denotes a formula �(�♦p ∧ �♦q → ♦(p ∧ q)). He proves that this formula is equiv-
alent on the basis of S4, to the formula �(�♦p → ♦�p) giving another axiomatisation of
McKinsey’s system S4.1, which he himself calls K1.
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Definition 1.9 : By Jaśkowski’s transformation we mean the function
−d : For −→ ForM from the set of all propositional formulas into the set
of all modal propositional formulas, defined by induction for any A ∈ For:

(1) If A is a propositional variable, then Ad = A
(2) (a) if A is of the form B ∨ C, then Ad = Bd ∨ Cd

(b) if A is of the form B ∧ C, then Ad = Bd ∧ ♦Cd

(c) if A is of the form B → C, then Ad = ♦Bd → Cd

(d) if A is of the form B ↔ C, then Ad = (♦Bd → Cd) ∧
♦(♦Cd → Bd)

(e) if A is of the form ∼B, then Ad = ∼(Bd).

It is easy to see that:

Corollary 1.10 : `S5M
♦(. . . ((A1∧A2)∧A3)∧· · ·∧An) → A)d iff {Ad

1 , . . . ,

Ad
n} `♦S5 Ad.

Proof. Assume that `S5M
♦(. . . ((A1 ∧ A2) ∧ A3) ∧ · · · ∧ An) → A)d. By

Theorem 1.7 it is equivalent to the fact that `S5 ♦(. . . ((A1 ∧ A2) ∧ A3) ∧
· · ·∧An) → A)d. By the definition of the operation −d using the laws of S5

we see that the last statement holds iff `S5 (. . . ((♦Ad
1∧♦Ad

2)∧♦Ad
3)∧· · ·∧

♦Ad
n) → ♦Ad but by Definitions 1.2 and 1.8, and the Deduction Theorem

this holds iff {Ad
1 , . . . , A

d
n} `♦S5 Ad. �

The above remark shows that our considerations presented in section 2 can
be expressed with the help of logic S5M.

We also have:

Theorem 1.11 : The logic S5M[K1] is the smallest normal modal logic P, for
which Triv = M(P).

Proof. Consider a normal modal logic P, such that Triv = M(P). We easily
see that S5M[K1] ⊆ P. Indeed, let us notice that (T∗), (D∗) and (K1) are
theorems of P. On the basis of the logic K these formulas are equivalent
respectively to: ♦(♦♦A → A), ♦(♦A → A) and ♦(♦A → �A). Of course
♦♦A → A, ♦A → A, ♦A → �A ∈ Triv. Thus, since Triv = M(P),
we have that (T∗), (D∗) and (K1) are theorems of P, but this means that
S5M[K1] ⊆ P.

Now we prove that Triv = M(S5M[K1]). In this way the postulated mini-
mality will be proved.

First, we show that Triv ⊆ M(S5M[K1]). Let A ∈ Triv. Assume that
{♦Ai}1≤i≤n ∪ {�Bj}1≤j≤m is the set of all subformulas of the formula
A, whose main functors are respectively ‘♦’ and ‘�’. Let A′ be a formula
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arising by elimination of all modal functors from A. By a standard char-
acterization of the logic Triv we have that A′ ∈ CL. It is easy to see that
`S5M[K1] �B → ♦�B by (D∗). On the other hand via the monotonicity
rule and the axiom (D): `S5M[K1] �B → ♦B we see that `S5M[K1] ♦�B →
♦♦B, thus by transitivity of implication we have: `S5M[K1] �B → ♦♦B.
The last statement is equivalent to: `S5M[K1] ♦(B → ♦B). While by the
axiom (D∗): `S5M[K1] ♦(♦B → B), with the help of the following rule

(])
♦B1, . . . , ♦Bk

♦(B1 ∧ · · · ∧ Bk)

which is admissible for S5M[K1]15 we have: `S5M[K1] ♦(B ↔ ♦B). Anal-
ogously we prove that `S5M[K1] ♦(B ↔ �B). Applying the rule (]) for
formulas ♦(Ai ↔ ♦Ai), 1 ≤ i ≤ n; ♦(Bj ↔ �Bj), 1 ≤ j ≤ m and
♦A′ we obtain `S5M[K1] ♦

(

(A1 ↔ ♦A1) ∧ · · · ∧ (An ↔ ♦An) ∧ (B1 ↔

�B1) ∧ · · · ∧ (Bm ↔ �Bm) ∧ A′
)

. By extensionality we deduce that:
`S5M[K1] ♦A. This proves that Triv ⊆ M(S5M[K1]).

In [20] it was shown that S5M[K1]  K4M16 . Of course K4M ⊆ S4[K1].
Therefore M(S5M[K1]) ⊆ M(S4[K1]) and by Theorem 1.7 we have that
M(S4[K1]) = Triv. Thus, M(S5M[K1]) ⊆ Triv. �

Let for any set X of propositional formulas J(X) = K[{♦Ad : A ∈ X}].
We have

Theorem 1.12 : ([19]) S5M = J(CLuN).

Corollary 1.13 : ([20]) S5M[K1] = J(CL).

Corollary 1.13 expresses the fact that logic S5M[K1] is the minimal normal
modal logic which defines the classical logic in the discussive way:

Lemma 1.14 : The set K of all classical propositional formulas, arising from
modal formulas A by replacement in A of all appearances of subformulas of
the form ♦C → D, C ∧ ♦D, and

(

♦C → D
)

∧ ♦
(

♦D → C
)

by formulas
of the form C → D, C ∧ D, and C ↔ D respectively, such that ♦A ∈

15 This rule follows from Theorem (?): `S5M[K1] �(�♦B∧�♦C) → ♦(B∧C) proved
in the proof of the theorem 6 in [20].

16 K4M is the smallest normal logic containing axiom (4) and (K1).
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S5M[K1], forms the classical logic, i.e. for any B ∈ For: `S5M[K1] ♦Bd iff
`CL B.

Proof. By Corollary 1.13 we see that K includes every theorem of CL.
If a given B ∈ For is not a theorem of CL, then there is no modal formula

arising from B by addition of some ‘♦’, which would be a theorem of Triv,
so by Theorem 1.11 in particular Bd /∈ Triv i.e. ♦Bd /∈ S5M[K1]. �

The following corollary is an analogue of Corollary 1.10. We omit the
obvious proof.

Corollary 1.15 : `S5M[K1] ♦(. . . ((A1 ∧ A2) ∧ A3) ∧ · · · ∧ An) → A)d iff
{Ad

1 , . . . , A
d
n} `♦Triv Ad.

Let us recall

Theorem 1.16 : (Batens, [3]) If `CL A, then `CLuN (C1∧∼C1)∨· · ·∨(Cn∧
∼Cn) ∨ A, where {∼C1, . . . ,∼Cn} is the set of all negative subformulas
of formula A.

This theorem easily entails the following:

Lemma 1.17 : Let L be any propositional logic such that CLuN ⊆ L ⊆ CL.
We have: `CL A iff `L (A1 ∧∼A1) ∨ · · · ∨ (An ∧∼An) ∨A, where ∼A1,
. . . , ∼An (n ≥ 0) are all negative subformulas of the formula A.

Proof. (⇒). We assume that `CL A. By Theorem 1.16 we have `CLuN

(A1∧∼A1)∨· · ·∨(An∧∼An)∨A. By the assumption we have CLuN ⊆ L,
therefore `L (A1 ∧ ∼A1) ∨ · · · ∨ (An ∧ ∼An) ∨ A.

(⇐). By the assumption, each theorem of the logic L is a theorem of
classical logic, and therefore, since `L (A1∧∼A1)∨· · ·∨(An∧∼An)∨A,
so also `CL (A1 ∧ ∼A1) ∨ · · · ∨ (An ∧ ∼An) ∨ A. But for any classical
valuation inconsistent formulas are false, thus `CL A. �

By the above lemma, since CLuN ⊆ D2 ⊆ CL, we have the following:

Corollary 1.18 : `CL A iff `D2
(A1 ∧∼A1)∨ · · ·∨ (An ∧∼An)∨A, where

{∼Ai}1≤i≤n is the set of all negative subformulas of the formula A.

Theorem 1.19 : Let A ∈ For and {Ai}1≤i≤n be the set of all subformulas of
the formula A, having a form ∼Bi for some formula Bi. Then:
`S5

(

(♦Ad
1 → �Ad

1) ∧ · · · ∧ (♦Ad
n → �Ad

n)
)

→ ♦Ad iff `S5M[K1] ♦Ad.
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Proof. (⇒) We assume that `S5

(

(♦Ad
1 → �Ad

1)∧· · ·∧(♦Ad
n → �Ad

n)
)

→

♦Ad. Using the fact that for any 1 ≤ i ≤ n: `S5 (♦Ad
i → �Ad

i ) →
(♦Ad

i → �Ad
i ), and the usual reductions of modalities for S5 we have:

`S5 �♦(♦Ad
i → �Ad

i ) → (♦Ad
i → �Ad

i ); by multiplying these implica-
tions we obtain: `S5 �

(

♦(♦Ad
1 → �Ad

1) ∧ · · · ∧ ♦(♦Ad
n → �Ad

n)
)

→
(

(♦Ad
1 → �Ad

1) ∧ · · · ∧ (♦Ad
n → �Ad

n)
)

, while by the transitivity of the
implication using the assumption we see that: `S5 �

(

♦(♦Ad
1 → �Ad

1) ∧

· · · ∧ ♦(♦Ad
n → �Ad

n)
)

→ ♦Ad, so by Theorem 1.7: `S5M
�

(

♦(♦Ad
1 →

�Ad
1) ∧ · · · ∧ ♦(♦Ad

n → �Ad
n)

)

→ ♦Ad. Obviously we have: `S5M[K1]

♦(♦Ad
i → �Ad

i ), thus also `S5M[K1] ♦(♦Ad
1 → �Ad

1) ∧ · · · ∧ ♦(♦Ad
n →

�Ad
n). Therefore by the rule (GR) and (MP) we receive `S5M[K1] ♦Ad.

(⇐). Let’s assume that `S5M[K1] ♦Ad. By Lemma 1.14 we have that A
is a theorem of CL. Taking into account Lemma 1.18 let us consider the
set {Ai}1≤i≤n of all negative subformulas of the formula A. We see that
`D2

(A1 ∧∼A1)∨ · · · ∨ (An ∧∼An)∨A. On the basis of the definition of
the logic D2 it means that `S5 ♦

(

(Ad
1∧♦∼Ad

1)∨· · ·∨(Ad
n∧♦∼Ad

n)∨Ad
)

.
By the laws of distributivity of ‘♦’ with respect to ‘∨’ and ‘∧’ we have:
`S5

(

(♦Ad
1 ∧♦∼Ad

1)∨ · · · ∨ (♦Ad
n ∧♦∼Ad

n)
)

∨♦Ad, and by de Morgan’s
law using CL we have: `S5

(

(♦Ad
1 → �Ad

1) ∧ · · · ∧ (♦Ad
n → �Ad

n)
)

→

♦Ad. �

2. A formulation of an adaptive logic over D2

We introduce in a formal way an adaptive logic on the basis of Jaśkowski’s
logic. We will use the following definition by Joke Meheus [18]:

Definition 2.1 : Let {Ai}1≤i≤n be a set of propositional variables. A formula
(♦A1 ∧♦∼A1)∨ · · · ∨ (♦An ∧♦∼An) S5-provable on the basis of the set
of premises X is called a minimally contingent S5-consequence of the set
X17 iff no formula of the form (♦Ai1 ∧♦∼Ai1)∨ · · ·∨ (♦Aim ∧♦∼Aim),
for 1 ≤ i1, . . . , im ≤ n where m < n, is S5-provable on the basis of the set
X .

We prove an obvious, but useful lemma:

17 Analogously we can define a minimally contingent semantical S5-consequence of a
given set X . Of course both notions are equivalent.
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Lemma 2.2 : Let X be an S5-consistent set of formulas. For any n ≥ 1 and
any propositional variables Bi, where 1 ≤ i ≤ n, if the formula (♦B1 ∧
♦∼B1)∨ · · · ∨ (♦Bn ∧♦∼Bn) is a minimally contingent S5-consequence
of the set X , then for each 1 ≤ i ≤ n a variable Bi is a subformula of some
member of the set X .

Proof. We assume that a formula (♦B1 ∧ ♦∼B1) ∨ · · · ∨ (♦Bn ∧ ♦∼Bn)
is a minimally contingent S5-consequence of the set X . We also assume for
contradiction that, for example, a propositional variable B1 does not appear
in any of formulas from the set X18 . Using the completeness theorem and
the minimality condition we see that X 6|=S5 (♦B2∧♦∼B2)∨· · ·∨(♦Bn∧
♦∼Bn). Thus, there is an S5-model 〈W, R, v〉 and a world w ∈ W such the
set X is true in w, while a formula (♦B2 ∧♦∼B2)∨ · · · ∨ (♦Bn ∧♦∼Bn)
is false in w. We define a model 〈W, R, v′〉, where v′(B1) = W and for any
other propositional variable C: v′(C) = v(C). By the standard inductive
argument we can show that for any formula B in which B1 does not appear
and for any w1 ∈ W we have: w1 |=v B iff w1 |=v′ B. Thus w |=v′ X
and w 6|=v′ (♦B2 ∧♦∼B2)∨ · · · ∨ (♦Bn ∧♦∼Bn). We also have that for
any w1 ∈ W : w1 6|=v′ (♦B1 ∧ ♦∼B1). But in particular for the world w it
means that w 6|=v′ (♦B1 ∧♦∼B1)∨ · · · ∨ (♦Bn ∧♦∼Bn). But this means
that X 6|=S5 (♦B1 ∧♦∼B1)∨ · · · ∨ (♦Bn ∧♦∼Bn). By the completeness
theorem we obtain a contradiction. �

Definition 2.3 : X `D2
A iff Xd = {Bd : B ∈ X} `♦S5 Ad.

Definition 2.4 : We say that a formula A is AD2-provable on the basis of the
set X (notation X `AD2

A) iff either
(1) A ∈ X or19

(2) X `D2
A or

(3) there is a CL-proof of the formula A on the basis of X , where for n ≥
1, m ≥ 1, some set {A1, . . . , An} ⊆ X , and a set {B1, . . . , Bm} of
propositional variables, the following holds: `D2

(

(B1∧∼B1)∨· · ·∨

(Bm ∧ ∼Bm)
)

∨
(

(A1 ∧ · · · ∧ An) → A
)

and for each 1 ≤ i ≤ m
no formula of the form ♦Bi ∧ ♦∼Bi is a disjunct of any minimally
contingent S5-consequence of ♦Xd.

The above formulation is an analogue of the logic ACLuN1 and uses an
equivalent formulation of its syntactic consequence relation.

18 The proof for other Bi is exactly the same.

19 Of course, this case can be skipped.



“13nasieniewski”
2005/7/18
page 297

i

i

i

i

i

i

i

i

AN ADAPTIVE LOGIC BASED ON JAŚKOWSKI’S LOGIC D2 297

Using Definition 1.1 of semantical S5-consequence we can introduce the
following notion:

Definition 2.5 : An S5-model M = 〈W, R, v〉 is an AD2-model with respect
to the set of premises X iff for any world w ∈ W and for any propositional
variable A if w |=v ♦(A ∧ ∼A)d, then there are n ≥ 0 and propositional
variables A1, . . . , An, such that ♦

(

(A ∧∼A) ∨ (A1 ∧∼A1) ∨ · · · ∨ (An ∧

∼An)
)d is a minimally contingent semantical S5-consequence of the set

♦Xd.

Definition 2.6 : We say that a formula A is an AD2-consequence of the set
X iff for any AD2-model M = 〈W, R, v〉 with respect to the set X and any
w ∈ W , if all formulas of the set ♦Xd are true in w, then ♦Ad is true in w,
(notation X |=AD2

A).

Theorem 2.7 : (Soundness of AD2) If X `AD2
A, then X |=AD2

A.

Proof. Assume that X `AD2
A. We show that for any AD2-model M with

respect to the set X , and any world w from the set of possible worlds of M :
if all formulas of the set ♦Xd are true in w, then the formula ♦Ad is also
true in w. Assume that all formulas of the set ♦Xd are true in a given world
w. We consider the following cases:

(1) A ∈ X , then obviously w |=v ♦Ad.
(2) ♦Ad is S5-provable on the basis of the set ♦Xd; since the given

model is in particular an S5-model of the set ♦Xd, thus by Theorem
1.3 we have w |=v ♦Ad.

(3) there is a CL-proof of a formula A on the basis of the set X , such that
there are propositional variables Bi, 1 ≤ i ≤ m and Cj ∈ X , 1 ≤
j ≤ k for which `D2

(

(B1∧∼B1)∨· · ·∨(Bm∧∼Bm)
)

∨(C1∧· · ·∧

Ck → A), where for 1 ≤ i ≤ m none of ♦(B1 ∧∼Bi)
d is a disjunct

of any minimally contingent S5-consequence of the set ♦Xd. By the
definition of the logic D2 we have that `S5 ♦

[(

(B1∧♦∼B1)∨· · ·∨

(Bm∧♦∼Bm)
)

∨
(

♦(Cd
1 ∧♦Cd

1 ∧· · ·∧♦Cd
k ) → Ad

)]

, we have also
`S5

(

(♦B1∧♦∼B1)∨· · ·∨(♦Bm∧♦∼Bm)
)

∨(♦Cd
1∧· · ·∧♦Cd

k →

♦Ad). By the definition 2.5 of an AD2-model none of the formulas
♦Bi∧♦∼Bi is true in the world w — if it were, ♦Bi∧♦∼Bi would
be a disjunct of a minimally contingent semantical S5-consequence
of the set ♦Xd, contrary to the choice of Bi, by Theorem 1.3. It
means that the formula (♦Cd

1 ∧ · · · ∧ ♦Cd
k → ♦Ad) is true in the

world w. Since all formulas of the set ♦Xd are true in the world
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w, therefore in particular all formulas ♦Cd
1 , . . . , ♦Cd

k are true in w.
Thus ♦Ad is true in w as well.

�

Theorem 2.8 : (Completeness theorem) If X |=AD2
A, then X `AD2

A.

Proof. Assume that X 6`AD2
A. By Definition 2.4 neither of its three cases

holds. In particular this means that also X 6`D2
A. But by Definition 2.3

and the completeness theorem for S5 we obtain ♦Xd 6|=S5 ♦Ad. So, there
is an S5-model M = 〈W, R, v〉 and a world w ∈ W such that w |=v ♦Xd

while w 6|=v ♦Ad. We consider a set {∼(♦B∧♦∼B) : B is a propositional
variable and (♦B∧♦∼B) is not a disjunct of any minimally contingent S5-
consequence of the set ♦Xd}. If this set is empty, then for any propositional
variable B, a formula (♦B ∧ ♦∼B) is a disjunct of some minimally con-
tingent S5-consequence of the set ♦Xd. But by the completeness theorem
for S5 this means that for any S5-model, the condition of Definition 2.5 is
fulfilled, thus M is an AD2-model, so X 6|=AD2

A.
Therefore we can assume that the set {∼(♦B ∧ ♦∼B) : B is a propo-

sitional variable and (♦B ∧ ♦∼B) is not a disjunct of any minimally con-
tingent S5-consequence of the set ♦Xd} is not empty. We construct AD2-
model M with respect to the set X , such that the set ♦Xd is validated in
some world of M , in which the formula ♦Ad is falsified. Let’s notice that

(?) The set ♦Xd∪{∼(♦B∧♦∼B) : B is a propositional vari-
able and (♦B ∧ ♦∼B) is not a disjunct of any minimally
contingent S5-consequence of the set ♦Xd} ∪ {∼♦Ad} is
S5-consistent.

Indeed, assume for contradiction that there are formulas A1, . . . , An ∈ X
and propositional variables B1, . . . , Bm, such that none of (♦Bi ∧ ♦∼Bi)
for 1 ≤ i ≤ m is a disjunct of any minimally contingent S5-consequence
of the set ♦Xd and `S5 ∼

(

♦Ad
1 ∧ · · · ∧ ♦Ad

n ∧ ∼(♦B1 ∧ ♦∼B1) ∧ · · · ∧

∼(♦Bm ∧ ♦∼Bm) ∧ ∼♦Ad
)

. Via classical logic we have `S5 ♦Ad
1 ∧

· · · ∧ ♦Ad
n → (♦B1 ∧ ♦∼B1) ∨ · · · ∨ (♦Bm ∧ ♦∼Bm) ∨ ♦Ad and `S5

(♦B1 ∧ ♦∼B1) ∨ · · · ∨ (♦Bm ∧ ♦∼Bm) ∨ (♦Ad
1 ∧ · · · ∧ ♦Ad

n → ♦Ad),
but by Definition 2.4 of the logic AD2 it would mean that X `AD2

A, and
this would contradict the assumption. By the Lindenbaum’s lemma each
consistent set with respect to a given logic is included in some maximally
consistent set. Let us consider the set W of all maximally S5-consistent
sets containing the set {∼(♦B ∧ ♦∼B) : B is a propositional variable and
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(♦B∧♦∼B) is not a disjunct of any minimally contingent S5-consequence
of the set ♦Xd}.

We define a model M , putting W as the set of possible worlds, the ac-
cessibility relation R is defined as the accessibility relation of the canonical
frame i.e. for each w, w′ ∈ W : wRw′ iff for any A ∈ ForM if �A ∈ w,
then A ∈ w′.

Of course the accessibility relation R is reflexive, symmetric, and transi-
tive (the proof is standard), so 〈W, R〉 is an S5-frame.

A valuation function is defined, as usual, as the valuation in a canonical
model i.e. for any propositional variable B and any w ∈ W : w |=v B iff
B ∈ w. By the standard inductive argument we prove that:

(†) for any formula C and any w ∈ W : w |=v C iff C ∈ w.

Let us mention only the following case: w |=v �C implies �C ∈ w. The
other cases can be proved in the standard way. We assume that w |=v �C
and �C 6∈ w. We prove that the set W = {D : �D ∈ w} ∪ {∼C} ∪
{∼(♦B ∧ ♦∼B) : B is a propositional variable and (♦B ∧ ♦∼B) is not
a disjunct of any minimally contingent S5-consequence of the set ♦Xd} is
S5-consistent. If it were not consistent we would have that `S5 ∼

(

D1 ∧

· · · ∧Dn ∧∼(♦B1 ∧♦∼B1)∧ · · · ∧∼(♦Bm ∧♦∼Bm)∧∼C
)

, for some
�D1, . . . , �Dn ∈ w and propositional variables B1, . . . , Bm, such that
none of (♦Bi ∧ ♦∼Bi) for 1 ≤ i ≤ m is a disjunct of any minimally
contingent S5-consequence of the set ♦Xd. By the classical logic we have
that `S5

(

D1∧· · ·∧Dn∧∼(♦B1∧♦∼B1)∧· · ·∧∼(♦Bm∧♦∼Bm)
)

→
C. By monotonicity and the usual reductions of modalities for S5 we have
`S5

(

�D1∧· · ·∧�Dn∧∼(♦B1∧♦∼B1)∧· · ·∧∼(♦Bm∧♦∼Bm)
)

→
�C. But by the definition of W and the maximality of w, we have that
�D1 ∧ · · · ∧ �Dn ∧ ∼(♦B1 ∧ ♦∼B1) ∧ · · · ∧ ∼(♦Bm ∧ ♦∼Bm) ∈ w
and also �C ∈ w. We have a contradiction. Thus, W is S5-consistent and
there is w1 ∈ W such, that W ⊆ w1 and wRw1. Of course w1 |=v C, since
w |=v �C. By the induction hypothesis for w1, we have that C ∈ w1, but
∼C ∈ W ⊆ w1, which is a contradiction since w1 is consistent.

We prove that the defined model is an AD2-model with respect to the set
of premises ♦Xd. Let’s assume that for some propositional variable B,
the formula ♦(B ∧ ♦∼B) is true in some world w of the considered S5-
model. If ♦(B ∧ ♦∼B) were not a disjunct of any minimally contingent
S5-consequence of the set ♦Xd, then according to the construction of M the
formula ∼♦(B∧♦∼B) would be true in the world w, which is impossible.
Thus, for each world w and for every propositional variable B, the formula
♦(B ∧ ♦B), which is true in w, is a disjunct of some minimally contingent
S5-consequence of the set ♦Xd.
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Therefore by conditions (?) and (†), and the definition of model M , there
is a world w ∈ W such that w |=S5 ♦Xd and w 6|=S5 ♦Ad. It means that
X 6|=AD2

A. �

It seems that for different adaptive logics the following holds: the more
mutually consistent consequences in the sense of the lower limit logic of a
given adaptive logic, the bigger set of consequences in the sense of the adap-
tive logic. However, on the basis of Definition 2.4 and Proposition 5 of [19]
we have that there are a set X and a formula A, such that X 6`ACLuN1 A and
X 6`ACLuN2 A while X `D2

A, and therefore also X `AD2
A, i.e. treat-

ing consequences relations ‘`’ as consequences operators ‘Cn’ we can say
that there are X , such that CnAD2

(X) 6⊆ CnACLuN1(X) and CnAD2
(X) 6⊆

CnACLuN2(X). Unfortunately the reverse inclusions — which at first sight
seems to be more natural — do not hold. Let’s consider the set X =
{∼(p ∨ q),∼ q → p,∼ p, p ∨ q}. A formula (p ∨ q) ∧ ∼(p ∨ q) is the
minimally consistent CLuN-consequence of the set X , therefore valuations
for which the formula (p∨q)∧∼(p∨q) is the only inconsistent and valid for-
mula are the only ACLuN1 and ACLuN2-models. So q ∈ CnACLuN1(X) and
q ∈ CnACLuN2(X). On the other hand p ∧ ∼ p ∈ CnD2

(X). A model from
Figure 1 is an AD2-model with respect to the set X , such that w1 |=v ♦Xd.
As one can see that ♦q is false in the world w1 of the considered model.
Therefore q 6∈ CnAD2

(X). I.e. CnACLuN1, CnACLuN2 6⊆ CnAD2
.

R
Y

	
* jj

w1 w2

v(q) = 0
v(p) = 1

v(♦p) = 1
v(♦∼ p) = 1

v(♦q) = 0
v(♦(p ∨ q)) = 1

v(♦∼(p ∨ q)) = 1
v(♦(∼ p → q)) = 1

v(q) = 0
v(p) = 0

v(♦p) = 1
v(♦∼ p) = 1

v(♦q) = 0
v(♦(p ∨ q)) = 1

v(♦∼(p ∨ q)) = 1
v(♦(∼ p → q)) = 1 v(♦(∼ p → q)) = 1

Figure 1. An AD2-model with respect to the set X . For any
other propositional variable B: v(B) = ∅.

2.1. Examples of proofs over AD2

Example 2.9 : (1) {∼(p ∧ q), p} `AD2
∼ q.

(2) {(p ∧ ∼ p) → (q ∧ ∼ q),∼(p ∨ q), p ∨ q, p ∨ r} `AD2
r.
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Below, we use S5-proofs. The reasoning presented here is adequate since
if {A1, . . . , An} `S5 B ∨ C and {A1 . . . An} ∪ {C} `S5 D, then `S5 B ∨
(

A1 ∧ · · · ∧ An → D
)

.
Ad 1. Let X = {∼(p ∧ q), p}.

1. ♦∼(p ∧ ♦q) assumption
2. ♦p assumption
3. ♦(p → ∼♦q) 1., extensionality, and the negation of ‘→’
4. �p → ∼♦q 3. and distributivity of ‘♦’ with respect to ‘→’
5. (♦p → �p) → ((�p → ∼♦q) → (♦p → ∼♦q)) the transitivity of ‘→’
6. (♦p ∧ ♦∼ p) ∨ ((�p → ∼♦q) → (♦p → ∼♦q))

5., the disjunctive syllogism, the negation of ‘→’, and de Morgan’s law
7. (�p → ∼♦q) → (♦p → ∼♦q) 6. and the fact that ‘(♦p ∧ ♦∼ p)’

is not a disjunct of any minimally contingent
S5-consequence of the set ♦Xd

8. ♦p → ∼♦q MP, 7., and 4.
9. ∼♦q MP, 2., and 8.
10. �∼ q 9. and de Morgan’s law
11. ♦∼ q MP, 10., and a substitution of (D)

To finish this proof one has to prove the correctness of step 7. To achieve
this, it is enough to show that (♦p ∧ ♦∼ p) ∨ (♦q ∧ ♦∼ q) does not follow
from the set {♦∼(p ∧ ♦q), ♦p} over S5.

In particular, this means that also ♦p ∧ ♦∼ p is not an S5-consequence
of the set of premises. Let’s consider a model 〈{w}, {〈w, w〉}, v〉, where
v(q) = ∅ and for any other propositional variable B: v(B) = {w}. Of
course in the world w the set {♦∼(p ∧ ♦q), ♦p} is true but neither ♦∼ p
nor ♦q is true in w. Notice that the application of our adaptive logic was
essential, since {∼(p ∧ q), p} 6`D2

∼ q. To prove this observation let us
consider a model 〈{w1, w2}, {w1, w2} × {w1, w2}, v〉, where v(p) = {w1}
and v(q) = {w1, w2}. In both worlds the set {♦∼(p ∧ ♦q), ♦p} is true,
while the formula ♦∼ q is not true anywhere.

Ad 2. Let X = {(p ∧ ∼ p) → (q ∧ ∼ q),∼(p ∨ q), p ∨ q, p ∨ r}.
1. ♦∼(p ∨ q) assumption
2. ♦(∼ p ∧ ∼ q) extensionality and classical version of de Morgan’s law
3. ♦∼ p ∧ ♦∼ q the distributivity of ‘♦’ with respect to ‘∧’
4. ♦∼ p 3. and the law of absorption
5. ♦p ∨ ♦r assumption
6. �∼ p → ♦r 5., de Morgan’s law, and the disjunctive syllogism
7. (♦∼ p → �∼ p) → ((�∼ p → ♦r) → (♦∼ p → ♦r))

the transitivity of ‘→’
8. (♦p ∧ ♦∼ p) ∨ ((�∼ p → ♦r) → (♦∼ p → ♦r))
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the disjunctive syllogism, the negation of ‘→’, and de Morgan’s law
9. (�∼ p → ♦r) → (♦∼ p → ♦r) 8. and the fact, that (♦p ∧ ♦∼ p)

is not a disjunct of any minimally contingent
S5-consequence of the set ♦Xd

10. ♦r MP, 6., 4., and 9.

To finalize the proof we have to prove that (♦p ∧ ♦∼ p) is not a disjunct of
any minimally contingent S5-consequence of the set ♦Xd. By Lemma 2.2
the only contingent formulas that potentially could be ‘dangerous’ as dis-
juncts of some minimally contingent S5-consequence of the set ♦Xd are
♦p∧♦∼ p, ♦q∧♦∼ q and ♦r∧∼ r. By the laws ♦∼(p∨q) → ♦∼ p∧♦∼ q
and (♦∼ p ∧ ♦∼ q ∧ (♦p ∨ ♦q)) → (♦p ∧ ♦∼ p) ∨ (♦q ∧ ♦∼ q) valid for
all normal logics we have directly that (♦p ∧ ♦∼ p) ∨ (♦q ∧ ♦∼ q) is an
S5-consequence of the set ♦Xd, while by the assumption (♦p ∧ ♦∼ p) →
(♦q ∧ ♦∼ q) we have that a formula ♦q ∧ ♦∼ q is a minimally contingent
S5-consequence of the set ♦Xd. To finish our reasoning we will show that
(♦p ∧ ♦∼ p) ∨ (♦r ∧ ♦∼ r) is not a consequence of the set ♦Xd. Let’s
consider a model 〈{w1, w2}, {w1, w2} × {w1, w2}, v〉, where v(p) = ∅,
v(q) = {w1}, and v(r) = {w1, w2}.The formulas p and ♦p are true in
neither of the worlds. Thus, the formulas ∼ p and ♦∼ p are true in both
worlds. Notice, that in both worlds w1 and w2 the formulas ♦q and ♦∼ q
are true. One can easily see that {(♦p ∧ ♦∼ p) → (♦q ∧ ♦∼ q), ♦∼(p ∨
q), ♦p ∨ ♦q, ♦p ∨ ♦r} 6`S5 (♦p ∧ ♦∼ p) ∨ (♦r ∧ ♦∼ r). Let us mention
that neither {(p ∧ ∼ p) → (q ∧ ∼ q),∼(p ∨ q), p ∨ q, p ∨ r} `ACLuN1 r,
nor {(p ∧ ∼ p) → (q ∧ ∼ q),∼(p ∨ q), p ∨ q, p ∨ r} `ACLuN2 r. A for-
mula (p ∨ q) ∧ ∼(p ∨ q) is the only minimally CLuN-consequence of the
set X . One can also easily indicate CLuN-models of the set X , in which
(p ∨ q) ∧∼(p ∨ q) is the only inconsistent valid formula, where a formula r
at the same time is falsified.

2.2. A comparison with the logic D2r

Joke Meheus has written a very interesting paper in this area ([18]). The
main difference, besides other minor differences, is that we use a discussive
understanding of ‘∧’, ‘→’ and ‘↔’.

We will use the logic D2
r presented in [18]. We have the following:

Observation 2.10 : (1) `AD2
6⊆`D2

r

(2) `D2
r 6⊆`AD2
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Proof. 1. Indeed, for example {♦p, ♦∼ p, ♦q, ♦∼ q} `S5 ♦p ∧ ♦q and so
{p,∼ p, q,∼ q} `AD2

p ∧ q, while {♦p, ♦∼ p, ♦q, ♦∼ q} 6`S5 ♦(p ∧ q) and
one can easily see that {p,∼ p, q,∼ q} 6`D2

r p ∧ q.
2. {♦q, ♦∼ q, ♦(∼ p ∨∼ q)} `S5 ♦∼(p ∧ q) so {q,∼ q,∼ p ∨∼ q} `D2

r

∼(p ∧ q), while {♦q, ♦∼ q, ♦(∼ p ∨ ∼ q)} 6`S5 ♦∼ p ∨ �∼ q and one can
see that {q,∼ q,∼ p ∨ ∼ q} 6`AD2

∼(p ∧ q). �
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