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A RICH PARACONSISTENT EXTENSION
OF FULL POSITIVE LOGIC∗

DIDERIK BATENS AND KRISTOF DE CLERCQ†

Abstract
In the present paper we devise and study the most natural predicative
extension of Schütte’s maximally paraconsistent logic. With some
of its large fragments, this logic, CLuNs, forms the most popular
family of paraconsistent logics. Devising the system involves some
entanglements, and the system itself raises several interesting ques-
tions. As the system and fragments were studied by other authors,
we restrict our attention to results that we have not seen in press.

1. Aim of this Paper

In [33], Schütte presents a propositional logic Φv. The logic is paraconsistent
(A,∼A 0Φv B) and displays all usual negation properties that ‘drive nega-
tions inwards’: ∼∼A ≡ A, ∼(A ∧ B) ≡ (∼A ∨ ∼B), etc. Schütte devised
Φv for a special purpose, a purpose for which he does not need a predicative
version of it. In the present paper we devise the most natural such exten-
sion, and call it CLuNs for reasons that become obvious later. Devising this
system involves several entanglements and raises some interesting questions.

Actually, CLuNs and some of its fragments obtained by dropping certain
logical symbols became the most popular paraconsistent logics. For some
examples see [5], [6], [19], [20], [21], [22], [23], [24], [25] and [30], [34]
— with thanks to João Marcos for some of these references. There are not
many references in the paraconsistent literature, though, even after Φv was
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228 DIDERIK BATENS AND KRISTOF DE CLERCQ

(explicitly ascribed to Schütte and) studied, together with other propositional
paraconsistent logics in [7].

Some paraconsistent logicians object to a detachable material implica-
tion, but like the other properties of the logic. For example, Priest’s pre-
ferred paraconsistent system, LP, is (at the propositional level) the ∼-∧-∨-
fragment of CLuNs.

Φv contains a constant, now usually written as “⊥”, that represents ‘The
Falsehood’ (or the ‘conjunction of all formulas’) and is characterized by ⊥ ⊃
A. In this system, classical negation may be defined by ¬A =df A ⊃ ⊥.
In [7], the ⊥-less (and ¬-less) fragment of Φv is studied (under the name
PIs) and is shown to be maximally paraconsistent — i.e. propositional CL
is the only non-trivial logic that extends Φv. In the present paper, we shall
distinguish CLuNs, in which classical negation and bottom are primitive or
definable, from pure paraconsistent CLuNs, in which classical negation is
not definable.

It is not our aim, in the present paper, to offer a complete study of CLuNs,
but rather to describe some properties that thus far went largely unnoticed.
Three main topics are dealt with. First, we devise CLuNs as a natural pred-
icative extension of Φv and present a variety of semantics for it — the system
turns out to be rather natural under a large class of very different descrip-
tions. Next we offer some comments on definability in CLuNs and consider
the (remarkable) relation between non-equivalent formulas containing a sin-
gle propositional letter — we refer to [19] for an interesting study of defin-
able propositional connectives in CLuNs. Finally we consider some further
properties of the system.

A separate motivation for devising CLuNs is that we want to study, in a
separate paper, the properties of the inconsistency-adaptive logics — see,
e.g., [10] or [13] — that are based upon it. Although our preferred inconsis-
tency-adaptive logics for studying inconsistencies in empirical (scientific and
everyday) theories have CLuN — see below — as their lower limit logic,
most inconsistencies in mathematical theories seems to require inconsistency-
adaptive logics that have CLuNs as their lower limit logic.

2. Syntax

Let L be the language of CL (with identity but without function symbols).
We shall take “∼” to be the standard negation of the language — the unqual-
ified word “negation” will always refer to it. For future reference we shall
say that L is defined (in the usual way) from 〈S, C,V,P1,P2, . . .〉, in which
S is the set of sentential letters, C the set of (letters for) individual constants,
V the set of variables, and Pr the set of predicates of rank r.
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A RICH PARACONSISTENT EXTENSION OF FULL POSITIVE LOGIC 229

In agreement with the presentation in [33], we shall take L to contain
bottom (⊥). It will have no meaning in pure paraconsistent CLuNs, but
is implicitly defined by the axiom schema ⊥ ⊃ A in full CLuNs.1 The
negation ¬, explicitly defined by ¬A =df A ⊃ ⊥, is coextensive with ∼ in
CL, but not in CLuNs. So CLuNs may be seen as weaker than CL, but also
as an extension of CL obtained by adding a (rich) paraconsistent negation ∼.

CLuNs is an extension of the basic paraconsistent logic CLuN,2 which
consists of the full positive fragment of CL together with A ∨ ∼A.3

It is worth pointing out that Replacement of Equivalents and Replacement
of Identicals are not generally valid in CLuN. If `CLuN A ≡ B and D
is obtained by replacing A by B in C, then `CLuN C ≡ D provided the
replacement did not take place within the scope of a “∼”. The origin of the
proviso is easily detected. The positive fragment of CL does not allow for
the replacements within the scope of ∼, and adding A ∨∼A does not repair
this. Similarly for Replacement of Identicals.

The propositional part of CLuN is axiomatized by:
MP From A and A ⊃ B to derive B
A⊃1 A ⊃ (B ⊃ A)
A⊃2 ((A ⊃ B) ⊃ A) ⊃ A
A⊃3 (A ⊃ (B ⊃ C)) ⊃ ((A ⊃ B) ⊃ (A ⊃ C))
A⊥ ⊥ ⊃ A
A∧1 (A ∧ B) ⊃ A
A∧2 (A ∧ B) ⊃ B
A∧3 A ⊃ (B ⊃ (A ∧ B))
A∨1 A ⊃ (A ∨ B)
A∨2 B ⊃ (A ∨ B)
A∨3 (A ⊃ C) ⊃ ((B ⊃ C) ⊃ ((A ∨ B) ⊃ C))
A≡1 (A ≡ B) ⊃ (A ⊃ B)
A≡2 (A ≡ B) ⊃ (B ⊃ A)
A≡3 (A ⊃ B) ⊃ ((B ⊃ A) ⊃ (A ≡ B))
A∼1 (A ⊃ ∼A) ⊃ ∼A

Full CLuN is obtained by adding:

1 This greatly simplifies metatheoretic proofs whereas the properties of pure paraconsis-
tent CLuNs are derivable by simple means.

2 CLuN is basic in the following sense. Where ¬ is considered as the standard negation
of CL, CLuN is the intersection of all ∼-complete extensions of CL. Without ¬, CLuN is
the intersection of all ∼-complete extensions of full positive CL. We refer to [26] for a proof
at the propositional level which is easily generalized to the full logic.

3 Where negation in CL is characterized by the consistency and the completeness presup-
position, CLuN just retains the latter, thus allowing for gluts with respect to negation.
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230 DIDERIK BATENS AND KRISTOF DE CLERCQ

R∀ To derive ` A ⊃ (∀α)B(α) from ` A ⊃ B(β), provided β does not
occur in either A or B(α).

A∀ (∀α)A(α) ⊃ A(β)
R∃ To derive ` (∃α)A(α) ⊃ B from ` A(β) ⊃ B, provided β does not

occur in either A(α) or B.
A∃ A(β) ⊃ (∃α)A(α)
A=1 α = α
A=2 α = β ⊃ (A ⊃ B) where B is obtained by replacing in A an

occurrence of α that occurs outside the scope of a negation by β

The propositional fragment of CLuNs, viz. Φv, is obtained by adding to
that for CLuN a set of axiom schemas that ‘drive negation inwards’ in the
expected way:
A∼∼ ∼∼A ≡ A
A∼⊃ ∼(A ⊃ B) ≡ (A ∧ ∼B)
A∼∧ ∼(A ∧ B) ≡ (∼A ∨ ∼B)
A∼∨ ∼(A ∨ B) ≡ (∼A ∧ ∼B)
A∼≡ ∼(A ≡ B) ≡ ((A ∨ B) ∧ (∼A ∨ ∼B))

To obtain CLuNs without identity, add the pertinent axiom schemas and
rules of CLuN together with:
A∼∀ ∼(∀α)A ≡ (∃α)∼A
A∼∃ ∼(∃α)A ≡ (∀α)∼A

It is worth pointing out two interesting facts at this point. First equiv-
alence is not in general contraposable. Next, the contraposed versions of
A∼∼, A∼∧, A∼∨, A∼∀, and A∼∃ are derivable, but those of A∼⊃ and
A∼≡ are not. (It follows at once that the rule of Replacement of (Provable)
Equivalents is not derivable, but it is possible to define another equivalence
that warrants replacement — see Section 6.)

How should identity behave in CLuNs? We may associate it with “≡”, in
which case it will, as in CLuN, lead to the Replacement of Identicals that
do not occur within the scope of a negation. Alternatively, we may require
that identity behaves fully classical in sanctioning Replacement of Identicals
everywhere. There are three good reasons for the latter decision. The first
is that the Replacement of Identicals is of the same type as other ‘natural’
rules, such as de Morgan properties — compare section 1. The second rea-
son is this. As we shall see in Section 6, it is possible to define in CLuNs
an equivalence that warrants replacement of formulas that are equivalent (in
this sense). Given this, it would be odd not to have full Replacement of Iden-
ticals. The third reason is related to the relation between CLuNs and CL —
we postpone its discussion to Section 7. So, while there is no formal objec-
tion against keeping A=2, we shall take identity in CLuNs to be defined by
A=1 and A=2s:
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A=2s α = β ⊃ (A ⊃ B) where B is obtained by replacing in A an
occurrence of α by β

Of course one may consider the variant defined by A=2 — there is no
formal objection to this.

The pure paraconsistent versions of CLuN and CLuNs are obtained by
dropping the axiom A⊥. In pure paraconsistent CLuN no logical symbol can
be eliminated by defining it from the others. In pure paraconsistent CLuNs
some logical symbols can be eliminated by defining them from the others,
as we shall see in Section 6.

3. Semantics and Some Metatheory

We begin with a semantics for CLuNs that is arrived by modifying and ex-
tending the CLuN-semantics — see [10] and especially [17].

According to the CLuN-semantics the assignment function v assigns a
truth value to all closed formulas — henceforth wffs — of the form ∼A. In
view of the clause

vM (∼A) = 1 iff vM (A) = 0 or v(∼A) = 1,
CLuN-models are negation-complete but possibly inconsistent. In CLuNs
the value of the negation of a complex wff depends on the value of its
subformulas and/or their negations. Moreover, we have to make sure that
A=2s comes out valid; if v(a) = v(b), then, for example, it is required that
v(∼Pa) = v(∼Pb).

We shall meet this requirement by applying the (general) method sug-
gested at the end of Section 8 of [10]: v does not assign a truth value to
negations of wffs that contain constants, but rather assigns a set of n-tuples
of members of the domain to some (specified) meta-linguistic formula of the
same form. To simplify the notation, we write, where πr ∈ Pr, ∼πr instead
of ∼πrα1 . . . αr; similarly, we write ∼= instead of ∼ α = β.

Let O be a set of pseudo-constants; O should have at least the cardinality
of the domain of the largest models one wants to consider. Let the pseudo-
language L+ be defined from 〈S, C ∪ O,V,P1,P2, . . .〉 — see Section 2.
Let F+ and W+ denote respectively the set of formulas and the set of wffs
of L+. Formulas that do not contain any logical symbols, except possibly for
identity, will be called primitive formulas. Finally, let ∼S = {∼A | A ∈ S},
∼Pr = {∼πr | πr ∈ Pr} (r > 0), and extend ∼P2 with ∼=.

A CLuNs-model is a couple M = 〈D, v〉 in which D is a non-empty set
and v is an assignment function defined by:
C1.1 v : S 7→ {0, 1}
C1.2 v : C ∪ O 7→ D (where D = {v(α) | α ∈ C ∪ O})
C1.3 v : Pr 7→ ℘(Dr) (the power set of the r-th Cartesian product of D)
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232 DIDERIK BATENS AND KRISTOF DE CLERCQ

C1.4 v : ∼S 7→ {0, 1}
C1.5 v : ∼Pr 7→ ℘(Dr)

The valuation function vM determined by M is defined as follows:
C2.1 vM : W+ 7→ {0, 1}
C2.2 where A ∈ S , vM (A) = v(A); vM (⊥) = 0
C2.3 vM (πrα1 . . . αr) = 1 iff 〈v(α1), . . . , v(αr)〉 ∈ v(πr)
C2.4 vM (α = β) = 1 iff v(α) = v(β)
C2.5 vM (A ⊃ B) = 1 iff vM (A) = 0 or vM (B) = 1
C2.6 vM (A ∧ B) = 1 iff vM (A) = 1 and vM (B) = 1
C2.7 vM (A ∨ B) = 1 iff vM (A) = 1 or vM (B) = 1
C2.8 vM (A ≡ B) = 1 iff vM (A) = vM (B)
C2.9 vM ((∀α)A(α)) = 1 iff vM (A(β)) = 1 for all β ∈ C ∪ O
C2.10 vM ((∃α)A(α)) = 1 iff vM (A(β)) = 1 for at least one β ∈ C ∪ O
C2.11 where ∼A ∈ ∼S, vM (∼A) = 1 iff vM (A) = 0 or v(∼A) = 1
C2.12 where r > 0, vM (∼πrα1 . . . αr) = 1 iff vM (πrα1 . . . αr) = 0 or

〈v(α1), . . . , v(αr)〉 ∈ v(∼πr)
C2.13 vM (∼∼A) = vM (A)
C2.14 vM (∼(A ⊃ B)) = vM (A ∧ ∼B)
C2.15 vM (∼(A ∧ B)) = vM (∼A ∨ ∼B)
C2.16 vM (∼(A ∨ B)) = vM (∼A ∧ ∼B)
C2.17 vM (∼(A ≡ B)) = vM ((A ∨ B) ∧ (∼A ∨ ∼B))
C2.18 vM (∼(∀α)A(α)) = vM ((∃α)∼A(α))
C2.19 vM (∼(∃α)A(α)) = vM ((∀α)∼A(α))

Truth in a model, semantic consequence, and validity are defined as usual
— we sometimes shall write M |= A to express that M verifies A.

Any model is equivalent to (verifies the same wffs as) a N -minimal model,
viz. a model in which v(∼A) = 0 whenever vM (A) = 0. A model is
consistent and N -minimal if v(∼A) = 0 for all A; if the condition is not
fulfilled the model may still be consistent, in which case it is not N -minimal.

The Deduction Theorem is obviously provable. Similarly for Compactness
with respect to derivability, semantic consequence, satisfiability, triviality,
¬-consistency, and ∼-consistency.

Theorem 1 : CLuNs is sound with respect to the semantics.

Proof. The only non-trivial case concerns the truth of A ∨ ∼A in every
model. To show this, we prove, by an induction on the complexity of A, that
vM (∼A) = 1 if vM (A) = 0. The base case follows immediately from C2.11
and C2.12. For the induction step we consider one clause as an example. Let
A be of the form B ∧ C. Suppose vM (B ∧ C) = 0. By C2.6 vM (B) = 0
or vM (C) = 0. Hence, by the induction hypothesis, vM (∼B) = 1 or
vM (∼C) = 1. Consequently vM (∼(B ∧ C)) = vM (∼B ∨ ∼C) = 1. �
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For the following theorem, consider a denumerable O◦ ⊆ O and let L◦ be
the defined from 〈S, C ∪ O◦,V,P1,P2, . . .〉.

Theorem 2 : CLuNs is strongly complete with respect to the semantics.

Proof. Suppose that Γ 0CLuNs A. Consider, as for the proof in CL, a se-
quence B1, B2, . . . that contains all wffs (of L◦) and in which each wff of
the form (∃α)C is followed immediately by an instance with a constant that
does not occur in Γ, in A, or in any previous member of the sequence. We
then define

∆0 = CnCLuNs(Γ)

∆i+1 = CnCLuNs(∆i ∪ {Bi+1}) if A /∈ CnCLuNs(∆i ∪ {Bi+1}), and
∆i+1 = ∆i otherwise

∆ = ∆0 ∪ ∆1 ∪ . . .

Each of the following is provable:
(i) Γ ⊆ ∆ (by the construction).

(ii) A /∈ ∆ (by the construction).
(iii) ∆ is deductively closed (by the definition of ∆).
(iv) ∆ is maximally non-trivial. To see this, remark first that A ⊃ C ∈ ∆

for all C. Indeed, if A ⊃ C /∈ ∆, then there is a ∆i such that ∆i∪{A ⊃
C} ` A; hence ∆i ` (A ⊃ C) ⊃ A by the Deduction Theorem; hence,
in view of A⊃2, ∆i ` A, which is impossible. If E /∈ ∆, then there is
a ∆i such that ∆i ∪{E} ` A and hence ∆∪{E} ` A; as A ⊃ C ∈ ∆
for all C, ∆ ∪ {E} is trivial.

(v) ∆ is prime, i.e.: if C ∨ E ∈ ∆, then C ∈ ∆ or E ∈ ∆. Suppose
that C ∨ E ∈ ∆, C /∈ ∆ and E /∈ ∆; hence, as in the proof of
(iv), ∆ ∪ {C} ` A and ∆ ∪ {D} ` A, and also ∆ ` C ⊃ A and
∆ ` D ⊃ A by the Deduction Theorem; but then ∆ ` (C ∨ D) ⊃ A
and hence ∆ ` A, which is impossible.

(vi) ∆ is ω-complete with respect to L◦.4 As for CL, the order of the
sequence B1, B2, . . . and R∃ warrant that, if (∃α)C(α) ∈ ∆, then
C(β) ∈ ∆ for some β ∈ C ∪ O◦.

We now define a CLuNs-model M from ∆. Let ~α�, the equivalence class
of α ∈ C ∪ O◦, be such that β ∈ ~α� iff α = β ∈ ∆.

(1) D = {~α� | α ∈ C ∪ O◦};
(2) for all C ∈ S , v(C) = 1 iff C ∈ ∆;
(3) for all α ∈ C ∪ O◦, v(α) = ~α�;

4 ∆ is ω-complete iff, if (∃α)A(α) ∈ ∆, then A(β) ∈ ∆ for some β ∈ C ∪ O◦.
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234 DIDERIK BATENS AND KRISTOF DE CLERCQ

(4) for all r, v(πr) = {〈~α1�, . . . , ~αr�〉 | πrα1 . . . αr ∈ ∆};
(5) for all ∼C ∈ ∼S , v(∼C) = 1 iff ∼C ∈ ∆;
(6) for all πr ∈ Pr, v(∼πr) = {〈~α1�, . . . , ~αr�〉 | ∼πrα1 . . . αr ∈

∆}.
We finally show, by an induction on the complexity of the wffs of L◦, that,

for every wff C, vM (C) = 1 iff C ∈ ∆.
In view of C2.2–4, 1–6 warrant that, where C is a primitive wff, vM (C) =

1 iff C ∈ ∆ — the proof is completely standard. Also, if C is a primitive
wff, then 5 and 6 warrant that vM (∼C) = 1 iff ∼C ∈ ∆.5

With primitive wffs and their negations as the base case, we proceed by the
usual induction. Let us consider one of the many cases, viz. C = ∼(D∧E):
∼(D ∧ E) ∈ ∆ iff ∼D ∨ ∼E ∈ ∆ (as ∆ is deductively closed)

iff ∼D ∈ ∆ or ∼E ∈ ∆ (as ∆ is prime)
iff vM (∼D) = 1 or vM (∼E) = 1 (by the induction

hypothesis)
iff vM (∼(D ∧ E)) = 1 (by C2.7 and C2.15)

As vM (C) = 1 iff C ∈ ∆, (i) and (ii) give us: vM (B) = 1 for all B ∈ Γ,
and vM (A) = 0. Hence Γ 2CLuNs A. �

The semantics for the pure paraconsistent version of CLuNs is obtained
by dropping the subclause on ⊥ from C2.2. The proof of all aforementioned
theorems for that version is easily derived from the above proofs. The situ-
ation is exactly the same for the semantic systems presented in subsequent
sections, whence we shall not repeat it there.

4. Three-Valued Semantics

Several brands of semantic styles allow for more elegant characterizations
of CLuNs. We shall mention four of them: a three-valued semantics (this
Section), a plus-minus semantics, a Priest-style semantics, and an ambiguity
semantics (next section). The elegance of the three-valued semantics resides
especially in the fact that all logical constants are truth-functions in it — this
was shown in [8] for the propositional version and is extended here for the
predicative version.

Consider the values T , I , and F , corresponding to “consistently true”,
“inconsistent” and “consistently false” respectively. Where M = 〈D, V 〉
(defined for the language L+) is a three-valued CLuNs-model, the valuation

5 This can still be proved by relying on C2.11 and C2.12 if one requires, in 5, that
C,∼C ∈ ∆, and, in 6, that πrα1 . . . αr,∼πrα1 . . . αr ∈ ∆. In this case M is N -minimal.
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function VM maps W+ on {T, I, F}. A is true in M iff VM (A) ∈ {T, I}.
Let us start with the propositional fragment. The behaviour of propositional
letters is characterized by:

V : S 7→ {T, I, F}
where A ∈ S , VM (A) = V (A); VM (⊥) = F

The meaning of three connectives is defined by the following matrices:
∼ ⊃ T I F ∧ T I F

T F T T I F T T I F
I I I T I F I I I F
F T F T T T F F F F

whereas the two further connectives may be defined explicitly — we list the
tables for the reader’s ease:6

A ∨ B =df ∼(∼A ∧ ∼B)
A ≡ B =df (A ⊃ B) ∧ (B ⊃
A)

∨ T I F ≡ T I F
T T T T T T I F
I T I I I I I F
F T I F F F F T

In order to extend this to the predicative level, we let V assign elements
of D to members of C ∪ O in such a way that D = {V (α) | α ∈ C ∪ O}.
Next, we let V assign a triple 〈Σ1, Σ2, Σ3〉 to members of Pr such that
Σ1, Σ2, Σ3 ∈ ℘(Dr), Σ1∩Σ2 = Σ1∩Σ3 = Σ2∩Σ3 = ∅, and Σ1∪Σ2∪Σ3 =
℘(Dr). To simplify the notation, we consider V as composed in this case
of the three functions V T , V I , and V F , with V T (πr) = Σ1, V I(πr) = Σ2,
and V F (πr) = Σ3. The three functions determine for which r-tuples the
predicate is true, inconsistent, and false respectively. The values of primitive
predicative expressions are obviously determined by:

VM (πrα1 . . . αr) = T iff 〈V (α1), . . . , V (αr)〉 ∈ V T (πr)
VM (πrα1 . . . αr) = I iff 〈V (α1), . . . , V (αr)〉 ∈ V I(πr)
VM (πrα1 . . . αr) = F iff 〈V (α1), . . . , V (αr)〉 ∈ V F (πr)

Identity is considered as a binary predicate with the special characteristic
that V T (=) ∪ V I(=) = {〈o, o〉 | o ∈ D}. This obviously warrants that
VM (α = α) ∈ {T, I} for all α and M .

Finally, the value of universally quantified wffs is determined by:
VM ((∀α)A(α)) = T iff VM (A(β)) = T for all β ∈ C ∪ O
VM ((∀α)A(α)) = F iff VM (A(β)) = F for at least one β ∈ C ∪ O
VM ((∀α)A(α)) = I iff VM (A(β)) ∈ {T, I} for all β ∈ C ∪ O and
VM (A(β)) = I for at least one β ∈ C ∪ O

whereas the existential quantifier can be explicitly defined by

6 It follows that the system RM3⊃ from [5] is identical to the propositional fragment of
pure paraconsistent CLuNs.
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(∃α)A(α) =df ∼(∀α)∼A(α)

Remark that the value of universally and existentially quantified formulas
corresponds respectively to that of the infinite conjunctions and disjunctions
of their instances in L+ — compare to the instructive table on p. 140 of [19].

We shall say that two semantic systems are equivalent iff their semantic
consequence relations coincide.

Theorem 3 : The two-valued CLuNs-semantics is equivalent to the three-
valued CLuNs-semantics.

Proof. It is obvious that any two-valued model M = 〈D, v〉 may be trans-
formed to a three-valued model M ′ = 〈D, V 〉, and that any three-valued
model M ′ = 〈D, V 〉 may be transformed to a two-valued model M =
〈D, v〉 such that

(i) Where α ∈ C ∪ O, V (α) = v(α).
(ii) where A ∈ S , V (A) = T iff v(A) = 1 and v(∼A) = 0, V (A) = I iff

v(A) = 1 and v(∼A) = 1, V (A) = F iff v(A) = 0 and v(∼A) = 1.
(iii) where πr ∈ Pr, V T (πr) = v(πr) − v(∼πr), V I(πr) = v(πr) ∩

v(∼πr), V F (πr) = v(∼πr) − v(πr).7

The method for obtaining the three-valued model from the two-valued one is
immediate and elementary transformations provide the method for the con-
verse.8

We leave it to the reader to check that, whenever A is an a primitive wff or
its negation, the following equivalences hold:9

(1) VM ′(A) = T iff vM (A) = 1 and vM (∼A) = 0
(2) VM ′(A) = I iff vM (A) = 1 and vM (∼A) = 1
(3) VM ′(A) = F iff vM (A) = 0 and vM (∼A) = 1

By the usual induction on the complexity of wffs, it is easily seen that
(1)–(3) hold for all wffs. It follows that M and M ′ verify exactly the same
wffs. �

7 Remember that this handles identity.

8 For example (iii) is equivalent to “where πr ∈ Pr , v(πr) = V T (πr) ∪ V I(πr) and
v(∼πr) = V F (πr) ∪ V I(πr)”.

9 (1)–(3) are obviously equivalent to (1′) vM (A) = 1 iff VM′(A) ∈ {T, I} and
(2′) vM (∼A) = 1 iff VM′(A) ∈ {F, I}.
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5. Some Further Semantic Characterizations

Rather elegant characterizations are obtained by a so-called plus-minus se-
mantics.10 One of the sources of paraconsistency is that, in some circum-
stances and for some A, one has good reasons to assert A and one also has
good reasons to deny A. The idea is naturally rendered by a valuation func-
tion that assigns to each wff an assertion value as well as a denial value.
Similarly, the assignment function will assign a couple of values to mem-
bers of S , P1, P2 (including identity), P3, . . . Negation is then analysed
by identifying the assertion value of ∼A with the denial value of A. Where
v is the assignment function, we shall refer to the elements of the couple
separately by v+ and v−; similarly for the valuation function vM .

A model is a couple M = 〈D, v〉 in which D is a set and v is an assignment
function defined by:
C1.1 v+ : S 7→ {0, 1}

v− : S 7→ {0, 1}
restriction: where A ∈ S , v+(A) + v−(A) ≥ 1

C1.2 v : C ∪ O 7→ D
C1.3 v+ : Pr 7→ ℘(Dr) (the power set of the r-th Cartesian product of

D)
v− : Pr 7→ ℘(Dr)
restriction: v+(πr) ∪ v−(πr) = Dr

C1.4 v+(=) = {〈o, o〉 | o ∈ D}
v−(=) ⊆ D2

restriction: v+(=) ∪ v−(=) = D2

The valuation function vM determined by the model M is defined by
C2.1 v+

M : W+ 7→ {0, 1}
v−M : W+ 7→ {0, 1}

C2.2 where A ∈ S , v+

M (A) = v+(A); v+

M (⊥) = 0

where A ∈ S , v−M (A) = v−(A); v−M (⊥) = 1

C2.3 v+

M (πrα1 . . . αr) = 1 iff 〈v(α1), . . . , v(αr)〉 ∈ v+(πr)

v
−
M (πrα1 . . . αr) = 1 iff 〈v(α1), . . . , v(αr)〉 ∈ v−(πr)

C2.4 v
+

M (α = β) = 1 iff 〈v(α), v(β)〉 ∈ v+(=)

v
−
M (α = β) = 1 iff 〈v(α), v(β)〉 ∈ v−(=)

C2.5 v
+

M (∼A) = v
−
M (A)

10 To the best of our knowledge, this type of semantics was derived from Asenjo’s se-
mantics for the logic of antinomies (see for example [4]) in which two n-place relations are
assigned to each predicate of rank n. It is not difficult to show that CLuNs coincides with
the antinomic predicate calculus (if it is described in the standard metalanguage and if one
disregards ⊥).
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v
−
M (∼A) = v

+

M (A)

C2.6 v
+

M (A ⊃ B) = 1 iff v
+

M (A) = 0 or v
+

M (B) = 1

v
−
M (A ⊃ B) = 1 iff v

+

M (A) = 1 and v
−
M (B) = 1

C2.7 v
+

M (A ∧ B) = 1 iff v
+

M (A) = 1 and v
+

M (B) = 1

v
−
M (A ∧ B) = 1 iff v

−
M (A) = 1 or v

−
M (B) = 1

C2.8 v
+

M ((∀α)A(α)) = 1 iff v
+

M (A(β)) = 1 for all β ∈ C ∪ O
v
−
M ((∀α)A(α)) = 1 iff v

−
M (A(β)) = 1 for at least one β ∈ C ∪ O

A∨B, A ≡ B, and (∃α)A are defined as in Section 4. A is true in a model
M iff v

+

M (A) = 1. Semantic consequence and validity are defined as usual.
The reader may easily check that the clauses are quite intuitive. For exam-

ple, one has a reason to deny A ∧ B iff one has a reason for denying at least
one of them; one has a reason to deny a universally quantified statement iff
one has a reason for denying at least one instance of it (supposing that we
had no trouble naming every object in the domain), etc.

Theorem 4 : The three-valued CLuNs-semantics is equivalent to the ‘plus-
minus’ CLuNs-semantics.

Proof. The proof is longwinded but obvious. A three-valued model M is
turned into a ‘plus-minus’ model M ′, and vice versa, in view of the following
equivalences:

(i) Where α ∈ C ∪ O, V (α) = v(α).
(ii) where A ∈ S , v+(A) = 1 iff V (A) ∈ {T, I}, v−(A) = 1 iff V (A) ∈

{I, F}.
(iii) where πr ∈ Pr, v+(πr) = V T (πr) ∪ V I(πr), v−(πr) = V I(πr) ∪

V F (πr).
Next one establishes that the following equivalences hold for all primi-

tive wffs of L+, and one applies an induction similar to that in the proof of
Theorem 3 to generalize this result to all wffs of L+:
(1) VM (A) = T iff v

+

M ′(A) = 1 and v
−
M ′(A) = 0

(2) VM (A) = I iff v
+

M ′(A) = 1 and v
−
M ′(A) = 1

(3) VM (A) = F iff v
+

M ′(A) = 0 and v
−
M ′(A) = 1

�

It seems worthwhile to look at some variants of the present semantics.
First, the requirements in the definition of the assignment may be dropped,
provided one ensures the validity of A∨∼A by the valuation functions. For
example, C2.2 then needs to be modified by (leaving ⊥ alone and) either
changing the first part to

where A ∈ S , v
+

M (A) = 1 iff v+(A) = 1 or v−(A) = 0
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or by changing the second part to
where A ∈ S , v

−
M (A) = 1 iff v−(A) = 1 or v+(A) = 0

In proceeding thus, the assignment itself is neutral with respect to prop-
erties of ∼-consistency and ∼-completeness, and the valuation determines
whether the models are interpreted classically, paraconsistently, paracom-
pletely, or both paraconsistently and paracompletely.

It may be more elegant to loosen C1.4 thus:
v+(=) ⊇ {〈o, o〉 | o ∈ D}
v−(=) ⊇ {〈o1, o2〉 | o1, o2 ∈ D and o1 6= o2}

Both identity and its negation then behave abnormally in a symmetric way.
Technically, a = b ` A(a) ≡ A(b) is warranted by defining equivalence
classes of members of D such that [o1] = [o2] iff 〈o1, o2〉 ∈ v+(=), and by
letting v assign such equivalence classes to members of C ∪ O and r-tuples
of such equivalence classes to members of P r.

The same idea may be realized in an even simpler way. Let S be a non-
empty set, R an equivalence relation over S, and D the set of the equivalence
classes obtained from R. v(a) ∈ D is then a set of members of S. Identity
may be handled directly by the valuation thus:

v
+

M (α = β) = 1 iff v(α) = v(β)

v
−
M (α = β) = 1 iff o1 6= o2 for some o1 ∈ v(α) and an o2 ∈ v(β)

The upshot is that v
+

M (α = β) = 1 and v
−
M (α = β) = 0 iff v(α) = v(β)

and v(α) is a singleton; v
+

M (α = β) = 1 = v
−
M (α = β) iff v(α) = v(β) and

v(α) is not a singleton; v
+

M (α = β) = 0 and v
−
M (α = β) = 1 iff v(α) 6=

v(β). In other words, inconsistencies with respect to identity arise just in
case two terms refer to the same equivalence class, but refer inconsistently,
viz. to a multiplicity of objects that are ‘erroneously’ identified. The idea is
related to collapsed models in the sense of [31]. We shall see below that it
may be generalized.

In Priest’s preferred semantic style, the truth-values are not members but
subsets of {0, 1}. This is combined with the plus-minus approach for pred-
icative letters. In view of Theorems 3 and 4, we can be very brief. First,
the three-valued values T , I , and F are translated as {1}, {1, 0}, and {0}
respectively. Next, primitive predicative expressions (including identities)
are evaluated by

VM (πrα1 . . . αr) = {1} iff 〈V(α1), . . . , V(αr)〉 ∈ V+(πr)−V−(πr)
VM (πrα1 . . . αr) = {0, 1} iff 〈V(α1), . . . , V(αr)〉 ∈ V+(πr) ∩
V−(πr)
VM (πrα1 . . . αr) = {0} iff 〈V(α1), . . . , V(αr)〉 ∈ V−(πr)−V+(πr)
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That the resulting CLuNs-semantics is equivalent to the semantic systems
listed before is immediate. It follows at once that Priest’s LP — see e.g.,
[30] — is the ∼-∨-∧-∀-∃-fragment of CLuNs.11

This semantic style is attractive for dialetheists like Priest. They want their
paraconsistent logic as the logic of the metalanguage, and want to say that
some A is both true and false, rather than saying that both A and ∼A are true.
Indeed, the three values {0}, {1}, {0, 1} may be interpreted as “false only”,
“true only”, and “both true and false”. Much of the attractiveness vanishes if
one realizes that the dialetheist seems unable to formulate this semantics in
his preferred metalanguage.12

The assignment functions of all semantic systems mentioned up to this
point seem to suggest that CLuNs presupposes that “the world” is in one
way or other inconsistent. This, however, is not the case as may be seen
from the semantics presented in the Appendix of [11]. We briefly outline
a (simplified and) two-valued counterpart to that semantics, and shall call
it here the ambiguity semantics for CLuNs to distinguish it from the two-
valued semantics from Section 3.

Where the assignment function of the standard CL-model assigns an ele-
ment of a set S to some non-logical symbol, the assignment function of an
ambiguity model assigns to the symbol a non-empty subset of S. Intuitively,
the symbol may have different meanings rather than one.13

A model is a couple M = 〈D, v〉 in which D is a set and v is an assignment
function defined by:
C1.1 v : C∪O 7→ (℘(D)−∅) (where ℘(D)−∅ = {v(α) | α ∈ C∪O})
C1.2 v : S 7→ (℘({0, 1}) − ∅)
C1.3 v : Pr 7→ (℘(℘(Dr) − ∅))

Identity is not handled as a predicate of rank 2, but will be handled directly
by the valuation function.

We shall use R, R1, etc. as variables for relations over D (sets of r-tuples
of members of D). Where π is a predicate of rank r, v(π) is a set of relations
of adicity r. This explains phrases as the following: 〈o1, . . . , or〉 ∈ R for
some R ∈ v(π). Remark that, where A ∈ S , v(A) ∈ {{0}, {1}, {0, 1}}.

11 Where we use a classical metalanguage, Priest uses a metalanguage that has LP as its
underlying logic. However, as was shown in [9], the statement in the text holds true under
both metalinguistic descriptions. See, however, the following paragraph in the text.

12 Some arguments to this effect are presented in [9]. A more extensive and updated
discussion, including arguments from for example [2, pp. 496–497] and [32], is presented in
[14].

13 The symbol has an unambiguous meaning iff it is assigned a singleton.



“11batens_declercq”
2005/7/18
page 241

i

i

i

i

i

i

i

i

A RICH PARACONSISTENT EXTENSION OF FULL POSITIVE LOGIC 241

The valuation function vM : W 7→ {0, 1} is defined as follows for primi-
tive wffs and their negations:
C2.1 where A ∈ S ,

vM (A) = 1 iff 1 ∈ v(A)
vM (∼A) = 1 iff 0 ∈ v(A)
vM (⊥) = 0
vM (∼⊥) = 1

C2.2 where π ∈ Pr and α1, . . . , αr ∈ C ∪ O,
vM (πα1 . . . αr) = 1 iff 〈o1, . . . , or〉 ∈ R for some o1 ∈ v(α1), . . .,
for some or ∈ v(αr) and for some R ∈ v(π),
vM (∼πα1 . . . αr) = 1 iff 〈o1, . . . , or〉 /∈ R for some o1 ∈ v(α1),
. . ., for some or ∈ v(αr) and for some R ∈ v(π)

C2.3 where α, β ∈ C ∪ O,
vM (α = β) = 1 iff v(α) = v(β)
vM (∼α = β) = 1 iff o1 6= o2 for some o1 ∈ v(α) and o2 ∈ v(β)

All other wffs are handled by clauses C2.5–10 and C2.13–19 of the two-
valued semantics from the Section 3 (replacing vM by vM ).

In order to clarify the second half of the proof of the following theorem,
we mention that a CLuNs-model verifies a = b ∧ ∼a = b iff it verifies both
a = b and a = a∧∼a = a and the latter holds just in case, in the two-valued
semantics, v(∼a = a) = 1.

Theorem 5 : The ambiguity semantics is equivalent to the two-valued seman-
tics.

Proof. We outline the proof that, from each ambiguity model M , an equiv-
alent two-valued model M ′ may be defined, and vice versa. To simplify the
notation, D will be the domain of the ambiguity model M and o, o′, o1 etc.
will refer to members of D; D′ will be the domain of the two-valued model
M ′ and x, x′, x1 etc. will refer to members of D′.

From an ambiguity model M = 〈D, v〉 we define a two-valued model
M ′ = 〈D′, v〉 as follows.
(1) D′ = ℘(D) − ∅.
(2) Where A ∈ S , v(A) = 1 iff 1 ∈ v(A), and v(∼A) = 1 iff 0 ∈ v(∼A).
(3) Where α ∈ C ∪ O, v(α) = v(α)— remark that v(α) ∈ D′ as required.
(4) Where π ∈ Pr, v(π) is the set of 〈x1, . . . , xr〉 such that 〈o1, . . . , or〉 ∈

R for some o1 ∈ x1, . . ., for some or ∈ xr and for some R ∈ v(π).
(5) v(∼=) is the set of 〈x1, x2〉 such that o1 6= o2 for some o1 ∈ x1 and

o2 ∈ x2.
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(6) Where π ∈ Pr is different from =, v(∼π) is the set of 〈x1, . . . , xr〉 such
that 〈o1, . . . , or〉 /∈ R for some o1 ∈ x1, . . ., for some or ∈ xr and for
some R ∈ v(π).

We leave to the reader the (by now obvious) task to show that vM ′(A) =
vM (A), first for all primitive wffs A, and next, by the standard induction on
the complexity of wffs, for all wffs A.

From a two-valued model M ′ = 〈D′, v〉 we define an ambiguity model
M = 〈D, v〉 as follows. Let f be a function such that, for all x ∈ D′,
f(x) = {x} if 〈x, x〉 /∈ v(∼=), and f(x) = {x, {x}} if 〈x, x〉 ∈ v(∼=).
(1) D =

⋃
{f(x) | x ∈ D′}

(2) Where A ∈ S ,
· 1 ∈ v(A) iff v(A) = 1 and
· 0 ∈ v(A) iff v(A) = 0 or v(∼A) = 1.

(3) Where α ∈ C ∪ O, v(α) = f(v(α)).
(4) Where π ∈ Pr, v(π) = {Rπ, R′

π} in which
· Rπ = {〈o1, . . . , or〉 | o1 ∈ f(x1), . . . , or ∈ f(xr),

for some 〈x1, . . . , xr〉 ∈ v(π) − v(∼π)} and
· R′

π = {〈o1, . . . , or〉 | o1 ∈ f(x1), . . . , or ∈ f(xr),
for some 〈x1, . . . , xr〉 ∈ v(π)}.

We now show that vM (A) = vM ′(A) for all primitive formulas A.
Consider some A ∈ S . We have (with some notational abuse):

(i) vM ′(A) = 1 iff v(A) = 1 iff 1 ∈ v(A) iff vM (A) = 1, and
(ii) vM ′(∼A) = 1 iff (v(A) = 0 or v(∼A) = 1) iff 0 ∈ v(A) iff

vM (∼A) = 1.
Where α, β ∈ C ∪ O, we have for identity:

(i) vM ′(α = β) = 1 iff v(α) = v(β) iff v(α) = f(v(α)) = f(v(β)) =
v(β) iff vM (α = β) = 1,

(ii) vM ′(∼α = β) = 1 iff (v(α) 6= v(β), or 〈v(α), v(β)〉 ∈ v(∼=)) iff
(v(α) 6= v(β), or v(α) = v(β) = {v(α), {v(α)}}) iff o1 6= o2 for
some o1 ∈ v(α) and o2 ∈ v(β) iff vM ′(∼α = β) = 1.

Consider some π ∈ Pr that is different from identity.
(i) Suppose that vM ′(πα1 . . . αr) = 1. It follows that 〈v(α1), . . . , v(αr)〉

∈ v(π) and hence 〈v(α1), . . . , v(αr)〉 ∈ R′
π. Hence 〈o1, . . . , or〉 ∈ R′

π

for some o1 ∈ v(α1), . . ., for some or ∈ v(αr). Hence vM (πα1 . . . αr)
= 1.

(ii) Suppose that vM (πα1 . . . αr) = 1. Hence 〈o1, . . . , or〉 ∈ Rπ ∪ R′
π =

R′
π for some o1 ∈ v(α1) = f(v(α1)), . . ., for some or ∈ v(αr) =

f(v(αr)). By the definitions of v(αi) and R′
π, if 〈o1, . . . , {v(αi)}, . . . ,

or〉 ∈ R′
π then 〈o1, . . . , v(αi), . . . , or〉 ∈ R′

π (1 ≤ i ≤ r). But then,
〈v(α1), . . . , v(αr)〉 ∈ v(π), and hence vM ′(πα1 . . . αr) = 1.
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(iii) Suppose that vM ′(∼πα1 . . . αr) = 1. Hence vM ′(πα1 . . . αr) = 0 or
〈v(α1), . . . , v(αr)〉 ∈ v(π) ∩ v(∼π). If vM ′(πα1 . . . αr) = 0, then
vM (πα1 . . . αr) = 0 in view of (ii). If 〈v(α1), . . . , v(αr)〉 ∈ v(π) ∩
v(∼π), then 〈v(α1), . . . , v(αr)〉 /∈ Rπ. In both cases vM (∼πα1 . . . αr)
= 1.

(iv) Suppose that vM ′(∼πα1 . . . αr) = 0. It follows that vM ′(πα1 . . . αr) =
1 and 〈v(α1), . . . , v(αr)〉 /∈ v(∼π). As vM ′(πα1 . . . αr) = 1, vM (πα1

. . . αr) = 1 in view of (i) and 〈v(α1), . . . , v(αr)〉 ∈ v(π). But then,
in view of the definition of M , 〈o1, . . . , or〉 ∈ Rπ ∩ R′

π for all o1 ∈
v(α1) = f(v(α1)), . . . , and or ∈ v(αr) = f(v(αr)). Hence vM (∼πα1

. . . αr) = 0.
We leave to the reader the obvious task to show, by the standard induction

on the complexity of wffs, that vM ′(A) = vM (A) for all wffs A. �

It follows immediately from the proof that any ambiguity model is equiva-
lent to an ambiguity model in which v(. . .) comprises at most two members.

6. On Defining in CLuNs

In CLuNs, ⊃ cannot be defined in terms of ∼ and ∧ or in terms of ∼ and
∨. Similarly, ∨ (and ∧) cannot be defined in terms of ∼ and ⊃.14 So pure
paraconsistent CLuNs is not functionally complete — for example, classical
negation cannot be defined in it.

The following definition is well-known from the literature:
DA A A B =df ∼A ∨ B

This ‘implication’ is not detachable, but it is transposable: A A B and
∼B A ∼A are true in the same models (similarly for A A ∼B and B A ∼A,
etc.). Many relevant (and some other paraconsistent) logicians — see e.g.,
[1] and [30] — have argued or claimed that “A” is material implication, but
‘they are mistaken’.15

Material implication, “⊃”, is detachable but not transposable in CLuNs. It
is, however, not difficult to define a strong implication that is both detachable
and transposable:

14 This was checked (indirectly) in terms the three-valued semantics by a computer pro-
gram (82 different binary truth-functions may be defined in terms of “∼” and “∧”; 896 dif-
ferent binary truth-functions may be defined in terms of “∼” and “⊃”). Obviously proofs
may be given (and are standard).

15 Remark also that the CLuNs-material implication (⊃) is a truth-functional connective
in the strict sense of the term (in all semantic systems presented above).
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D→ A → B =df (A ⊃ B) ∧ (∼B ⊃ ∼A)

This implication has many relevant properties, such as: A 0CLuNs B → A;
∼A 0CLuNs A → B; . . . Obviously, “→” is not a relevant implication
because it is a truth-function in the three-valued semantics, because `CLuNs
(A → B) ∨ (B → A) (and A ∧ B `CLuNs ∼A → B), and because `CLuNs
A → B does not warrant that A and B share a letter (e.g., `CLuNs ∼(p ∨
∼p) → (q ∨ ∼q)).

The Rule of Replacement of Equivalents is not derivable in CLuNs. In-
deed, `CLuNs (p∨∼p) ≡ (q ∨∼q), but 0CLuNs ∼(p∨∼p) ≡ ∼(q ∨∼q) —
the latter is false in a model in which V (p) = I and V (q) = T . However,
the Rule of Replacement of Equivalents holds if the replacement takes place
outside the scope of a negation sign — the proof proceeds by properties of
positive logic and is standard. Moreover, it is possible to define a strong
equivalence for which the Rule of Replacement of Strong Equivalents holds
generally:
D↔ A ↔ B =df (A ≡ B) ∧ (∼A ≡ ∼B)

The same connective is defined by (A → B) ∧ (B → A).16 In terms of
the three-valued semantics: A and B have the same value in a model that
verifies A ↔ B, and hence have the same value in all models iff A ↔ B is
valid; whence A and B can be replaced by each other, salva veritate, even
within the scope of a negation (∼).

There is a different definable equivalence that warrants replacement of
equivalents. One of its possible definitions is:
D⇔ A ⇔ B =df (¬¬A ≡ ¬¬B) ∧ (¬¬∼A ≡ ¬¬∼B)

We shall stick to ↔ in the sequel. As appears from the following matrices,
`CLuNs A ↔ B iff `CLuNs A ⇔ B.

↔ T I F ⇔ T I F
T T F F T T F F
I F I F I F T F
F F F T F F F T

This equivalence enables us to clarify the behaviour of negation in front of
complex formulas in CLuNs. All of the following are valid:

∼∼A ↔ A
∼(A ∧ B) ↔ (∼A ∨ ∼B)
∼(A ∨ B) ↔ (∼A ∧ ∼B)
∼(∀α)A ↔ (∃α)∼A
∼(∃α)A ↔ (∀α)∼A

16 This connective is called “≡◦” in [4].
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In general, `CLuNs A ≡ B is sufficient to warrant `CLuNs A ↔ B, pro-
vided neither A nor B contains ⊃ or ≡, and neither A nor B are CLuNs-
theorems.17

Also principles as the following hold:
A ↔ ((B ∨ ∼B) ⊃ A) .

The reason is that VM (B ∨ ∼B) ∈ {T, I} for all M , and that VM (C ⊃
D) = VM (D) whenever VM (C) ∈ {T, I}.

However, neither of the following is valid:
∼(A ⊃ B) ↔ (A ∧ ∼B)
∼(A ≡ B) ↔ ((A ∨ B) ∧ (∼A ∨ ∼B)) .

The corresponding material equivalences (≡) are valid. The failure of the
strong equivalences derives from the difference between the values T and
I .18

This seems the right place to warn the reader for a possible confusion. The
classical negation of a formula that has a designated value has the value false,
the classical negation of a formula that has a non-designated value has the
value true.19 If no paraconsistent or paracomplete negation is present in the
system, this results in a two-valued semantics in which all logical constants
are truth-values — thus the ∼-less fragment of CLuNs is simply CL. There
is a single designated value in this semantics, and a single non-designated
value. If A has the one, then ¬A has the other, and hence ¬¬A has the same
value as A.

The presence of a paraconsistent negation (or a paracomplete negation or
both) changes the picture drastically. CLuNs clearly illustrates this. The
negation ∼ is not a truth-function in the two-valued semantics (and is not
a truth-function in any two-valued semantics), which comes to saying that
consistent truth is distinguished from inconsistent truth. Given that three
values have to be distinguished in a semantics in which all connectives are
truth functions — the quantifiers being border cases — material equivalence
(≡) fails to warrant replacement of equivalents. Only strong equivalence

17 Given that `CLuNs A ≡ B, A is a CLuNs-theorem iff B is. That CLuNs-theorems have
to be ruled out is easily seen from the following example (out of many): `CLuNs (p ∨ ∼p) ≡
(q ∨ ∼q) whereas 0CLuNs (p ∨ ∼p) ↔ (q ∨ ∼q).

18 If VM (A) = I and VM (B) = F , then VM (∼¬A) = VM (¬¬A) = T , VM (∼¬A ∧
∼B) = T and VM (A ∧ ∼B) = I . Hence, ∼(A ⊃ B) is only materially equivalent to
A ∧ ∼B. Remark, however, that `CLuNs ∼(A ⊃ B) ↔ (∼¬A ∧ ∼B).

19 The latter holds also if, e.g., a fourth value is introduced to label negation-
incompleteness, viz. that neither A nor ∼A is true. Relevant logicians use to call this value
N(either).
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(↔) warrants this. As a result,

`CLuNs ∼∼A ↔ A

but

0CLuNs ¬¬A ↔ A ,

precisely because, in the presence of three distinct values, ¬ conflates them
to two whereas ∼ does not:

A ∼A ∼∼A ¬A ¬¬A
T F T F T
I I I F T
F T F T F

The formula ¬¬A ↔ A is not CLuNs-valid because ¬¬A and A have a
different truth value in the three-valued semantics, in which ↔ is a truth-
function. In the two-valued semantics ¬¬A and A have the same truth value,
but ↔ is not a truth-function; the value of ¬¬A ↔ A also depends on the
values of ∼A and ∼¬¬A — the latter has the same value as ¬A — and these
need not be identical.

It is instructive to consider the expressions that may be built from some
wff A by the logical constants of CLuNs. Twelve distinct truth-functions
are distinguished in CLuNs. They are represented by A, ∼A, ¬A, ¬∼A,
¬¬A, ¬¬∼A, A ∧ ∼A, ¬¬A ∧ ¬¬∼A, ¬∼A ∨ ¬A, A ∨ ∼A, ¬∼A ∧ ¬A
(which is strictly equivalent to ⊥), and ¬¬A ∨ ¬¬∼A (which is strongly
equivalent to ¬⊥). In Figure 1, we show the relations between these wffs: a
line going up indicates derivability. The wffs not named in the Figure may
be easily completed in terms of conjunctions and disjunctions. The two top
nodes (on the middle row) are CLuNs-valid. Only the bottom node has no
CLuNs-models.

The figure may be seen as composed of three superposed ‘squares’. Each
of these may be related to a notion of truth. The middle square is related to
truth simpliciter, characterized by a predicate that is definable as follows:

T (A) =df A

If a notion of falsehood is connected to it, as is done in [30] and in [1], viz.
by F (A) =df ∼A, T (A) and F (A) do not exclude each other but one of
them is bound to obtain. A is true simpliciter iff ∼A is false simpliciter, and
vice versa.
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Figure 1. Not strongly equivalent expressions built from A.
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The lower square is related to strong or consistent truth, which may be
defined by

T s(A) =df ¬∼A

The corresponding strong or consistent falsehood is defined by F s(A) =df

¬A. Strong truth and strong falsehood exclude each other (have no common
model), but both may fail to obtain (because both A and ∼A may obtain). A
is strongly true iff ∼A is strongly false, and vice versa.

Finally, weak truth may be defined by

Tw(A) =df ¬¬A

and the corresponding weak falsehood by F w(A) =df ¬¬∼A. Tw(A) and
Fw(A) do not exclude each other but one of them is bound to obtain. A is
weakly true iff ∼A is weakly false, and vice versa.

The difference between the three notions of truth is obviously related to
the value I , which represents inconsistent truth. In the following table, we
use B(A) (both) to abbreviate T (A)∧F (A), and E(A) (either) to abbreviate
T (A) ∨ F (A); similarly for Bs(A), etc. To save space, we write T instead
of T (A), etc. The table lists the twelve wffs mentioned in Figure 1, in an
order that we think to reveal the differences most clearly.20

20 We do not pursue the study of the properties of the structure in Figure 1. The interested
reader might start by considering the behaviour of the functions ¬ and ∼.
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A Bs T s F s Es B T F E Bw Tw Fw Ew

T F T F T F T F T F T F T
I F F F F I I I I T T T T
F F F T T F F T T F F T T

Neither of these three notions of truth corresponds to the classical one (or to
the notion of truth in a model, which actually is the classical one). Classical
logicians collapse the three squares (by recognizing only ¬A as the negation
of A). Relevant logicians introduce four truth values (identifying I with the
designated “Both” and introducing the undesignated “Neither” as well). Re-
jecting the CLuNs-connective “⊃” as a sensible logical connective, they end
up with just the middle square of which the top node is valid but the bottom
node (which is the ∼-negation of the top node) is not trivial. Dialetheists
like Graham Priest stick to the three values of CLuNs, reject the CLuNs-
connective “⊃” as a sensible logical constant, but recognize bottom (⊥) as
a sensible non-logical constant. As a result, they end up with the middle
diamond extended by the top and bottom node of Figure 1.21

Let us return to strong equivalence in CLuNs. (A∨A) ↔ A, (A∧∼A) ↔
(A ≡ ∼A), (A ⊃ A) ↔ (∼A ∨ A) and A ↔ ((A ⊃ A) ⊃ A) are all valid;
but (A ⊃ B) ↔ (∼A ∨ B) and A ↔ ((B ⊃ B) ⊃ A) are not.

Neither the disjunction defined by ∼A ⊃ B nor that defined by (A ⊃
B) ⊃ B are commutative in the strong sense (that is, with respect to ↔). The
disjunction defined by ∼A → B is commutative in this sense, but Addition
does not hold for it. And yet, the latter disjunction is an important one.

Relevant logicians have capitalized on the distinction between extensional
connectives, such as disjunction and conjunction, and intensional connec-
tives such as relevant implication, to define fusion and fission — a kind of
‘strong’ conjunction and ‘strong’ disjunction. In CLuNs, there is a some-
what similar distinction between disjunction and conjunction on the one
hand, and implication on the other hand. However, as mentioned in the
previous paragraph, the ‘strong’ disjunction defined from this implication
is not commutative. This is circumvented by defining fusion and fission
from A → B, rather than from A ⊃ B. The resulting definitions are
A⊕B =df ∼A → B, and A⊗B =df ∼(∼A⊕∼B). This line of approach
was followed, as was shown afterwards in [12], by Joke Meheus in [27] and
[28], where the logic AN∅ is defined by the ∼–→–⊗–⊕–∀–∃–fragment of

21 Bottom does not occur in Priest’s original LP. In [30], however, Priest introduces a
modal implication, and next combines it with bottom.
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CLuNs.22 It is instructive to list the matrices for the propositional connec-
tives:

∼ → T I F ⊕ T I F ⊗ T I F
T F T T F F T T T T T T T F
I I I T I F I T I F I T I F
F T F T T T F T F F F F F F

These define a paraconsistent logic that validates Modus Ponens, Modus Tol-
lens, Disjunctive Syllogism, and similar ‘analysing’ rules, but not Addition,
Irrelevance, and similar ‘constructive’ rules.

7. Some Further Metatheory

For the Interpolation Theorem and a set of Embedding Theorems, we refer
to [16] and [15]. From the proofs of the Embedding theorems, it follows
that the fragments that are known to be decidable in CL are decidable in
CLuNs. Hence, all effective proof-search procedures for fragments of CL
are effective for the corresponding fragments of CLuNs.

Theorem 6 : CLuNs and CL have the same valid wffs in the ∼-∨-∧-∀-∃-
fragment of L.

Proof. As CL extends CLuNs, A is CL-valid if it is CLuNs-valid. For
the converse, remark first that any wff A of the intended fragment is CL-
equivalent to a wff B that is in prenex conjunctive normal form. As all the
required equivalences are valid strong equivalences in CLuNs, `CLuNs A ↔
B. If B is CL-valid, each of its conjuncts has the form . . .∨C∨. . .∨∼C∨. . .
(in which each occurrence of “. . . ” may be empty). But then B, and hence
A, is also CLuNs-valid. �

Let us now turn to an interesting property of models.

Theorem 7 : If M is a non-trivial CLuNs-model, then {A | A ∈ W; M |=
A} is deductively closed and maximally non-trivial.

Proof. The set is obviously deductively closed. That it is maximally non-
trivial is immediate from the semantics: if M 6|= A, then M |= (A ⊃ B) for
all B. �

22 Meheus writes ⊃ where we write →, etc. The logic AN is obtained by reducing formu-
las to a specific prenex conjunctive normal form, and next by evaluating the latter in terms of
AN∅.
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The theorem also holds for the pure paraconsistent fragment of CLuNs.
The theorem does not hold for Priest’s LP, viz. the ∼-∧-∨-fragment of
CLuNs — no set of formulas verified by the model warrants that A is false
in the model.

The proof of Theorem 2 is easily transformed into a proof of each of the
following:

(1) Every deductively closed, maximally non-trivial set Γ ⊆ W has a
N -minimal CLuNs-model.

(2) All CLuNs-models of a deductively closed, maximally non-trivial
set Γ ⊆ W are equivalent.

Clearly CLuNs is not Post complete: some CL-theorems are not CLuNs-
theorems and CL is not trivial. A logic L is said to be Lindenbaum complete
if the following holds in it: if no substitution instance of A is a theorem of
L, then ∼A is a theorem of L.

Theorem 8 : CLuNs is not Lindenbaum complete.

Proof. ∼∼((p ⊃ (q ∧ ∼q)) ⊃ ∼p) is not a CLuNs-theorem. Indeed, it
is invalid, viz. false in a model that verifies p, q, and ∼q and falsifies ∼p.
However, no wff of the form ∼((A ⊃ (B ∧ ∼B)) ⊃ ∼A) is a CLuNs-
theorem, which is easily seen from the fact that all CLuNs-theorems are
CL-theorems (because all CL-models are CLuNs-models). �

In [1, p. 121], Anderson and Belnap write: “We offer [Lindenbaum com-
pleteness] as a plausible syntactical condition which ought to be satisfied by
a semantically complete system.” This statement is clearly confusing. In
many senses of the term, CLuNs is as semantically complete as any system
could be. Needless to say, CLuNs is Lindenbaum complete with respect to
the defined classical negation ¬.

A logic L is strictly paraconsistent iff A, †A `L A is not a valid schema
for any unary connective † and for any metalinguistic formula A in which the
metavariable A does not occur. That the propositional fragment of the pure
paraconsistent CLuNs is strictly paraconsistent was shown in [7] (and is a
corollary of Theorem 9). The propositional fragment of CLuNs is obviously
not strictly paraconsistent. Yet, it is possible to show a related property of
this logic.

We shall say that a unary connective “†” is strictly paraconsistent in a
logic L iff A, †A 0L A whenever A is a metatheoretic formula that does not
contain ⊥ and A does not occur in A.23

23 We mean that A does not contain ⊥ and does not contain a logical symbol from which
⊥ can be defined. The sense of the definition is that, for some paraconsistent negations, for
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Theorem 9 : In CLuNs, ∼ is strictly paraconsistent.

Proof. Consider a B ∈ W and a sentential letter A that does not occur in
B. It is easily seen that there is a model M of the three-valued CLuNs-
semantics such that V (A) = F whereas VM (C) = I for all primitive for-
mulas that occur in B. It follows that VM (B) = VM (∼B) = I and that
VM (A) = F . By Theorems 2 and 3, B,∼B 0CLuNs A. �

A propositional logic L is maximally paraconsistent iff it has no ‘exten-
sion’ that is paraconsistent — we mean only extensions that are Compact
and Monotonic, and the set of theorems of which is closed under Uniform
Substitution. It was shown in [7] that the propositional fragment of pure
paraconsistent CLuNs is maximally paraconsistent. A related property may
be proved for the propositional fragment of CLuNs (including ⊥ and ¬),
viz. that this fragment is maximally ∼-paraconsistent. Where L is restricted
to its propositional part, a logic is maximally ∼-paraconsistent iff (i) it is
∼-paraconsistent (for some A, A,∼A 0 B and (ii) its only ‘extensions’ are
not ∼-paraconsistent (viz. either (propositional) CL or the trivial logic). To
interpret this claim, recall that ∼ is taken to be the standard negation of both
CL and CLuNs, whereas ¬ is a defined negation (that is co-extensive with
∼ in CL). The set of extensions should obviously be restricted as above.

First we define the Conjunctive Normal Form, CNF, for CLuNs-formulas.
Where A is a sentential letter, A, ∼A, ¬A, ¬∼A, ¬¬A, and ¬¬∼A will
be atoms.24 Moreover, ⊥ and ¬⊥ (to which ∼⊥ is strongly equivalent) will
also be called atoms.

Definition 1 : A wff A is in CNF iff it has the form (B1 ∧ . . . ∧ Bn) (n ≥ 1),
each of these Bi is a disjunction of (one or more) atoms, no Bi is strongly
implied by another Bj , and no atom that occurs in a Bi is strongly implied
by another atom that occurs in the same Bi.25

Remark that ⊥ and ¬⊥ cannot both occur in the same Bi, and that, if one
of them occurs in it, then it forms the only conjunct of the wff. We leave it
to the reader to show, by nearly standard means, that any wff A is strongly
equivalent to some wff B that is in CNF.

example the one from [3], the Ex Falso Quodlibet does not hold generally, but A∧B,∼(A∧
B) ` C does.

24 Compare Figure 1 and the subsequent table.

25 See Figure 1 for strong implication between atoms.
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Theorem 10 : If A is a propositional formula and 0CLuNs A, then any exten-
sion of CLuNs in which A is a theorem is not ∼-paraconsistent.

Proof. Where 0CLuNs A, let CLuNs+ be an extension of CLuNs in which
A is a theorem. Let B be strongly equivalent to A and in CNF. At least one
conjunct of B is a theorem of CLuNs+ and not a theorem of CLuNs. Let
the following wff be such a conjunct

¬∼C1 ∨ . . . ∨ ¬∼Cn1
∨ D1 ∨ . . . ∨ Dn2

∨ ¬¬E1 ∨ . . . ∨ ¬¬En3
∨

¬F1 ∨ . . . ∨ ¬Fn4
∨ ∼G1 ∨ . . . ∨ ∼Gn5

∨

¬¬∼H1 ∨ . . . ∨ ¬¬∼Hn6
(1)

with n1 ≥ 0, . . . , n6 ≥ 0 and n1 + . . . + n6 > 0.
In view of the definition of CNF and the fact that (1) is not a CLuNs-

theorem:

Fact 1. All Ci, Ei , Fi , Gi, and Hi are propositional letters and all Di are
propositional letters or some Di is ⊥, in which case it is the only disjunct of
(1).

Fact 2. At most some Ci are identical to some Fi.

Indeed, by the definition of CNF, all Ci, Di and Ei are different from one
another, and all Fi, Gi and Hi are different from one another. As (1) is not a
CLuNs-theorem, all Ci, Di and Ei are different from all Gi and Hi, and all
Fi are different from all Di and Ei.

Case 1. n1 > 0 and n4 > 0. Let I be a propositional letter that does not
occur in (1). In view of Facts 1 and 2, one obtains a theorem of CLuNs+ if
one substitutes I for all Ci and Fi, ∼∼⊥ for all Di and Ei, and ∼⊥ for all
Gi and Hi. Deleting disjuncts that occur twice, we obtain the formula:

¬∼I ∨ ¬I ∨ ∼∼⊥ ∨ ¬¬∼∼⊥

in which the last or next to last disjunct (or both) may be empty. This is
CLuNs-equivalent to

(I ∧ ∼I) ⊃ ⊥ (2)

As I is a propositional letter, CLuNs+ is not paraconsistent (and is identical
to CL).

Case 2. n1 = 0. In view of Facts 1 and 2, one obtains a theorem of
CLuNs+ if one substitutes ∼∼⊥ for all Di and Ei, and substitutes ∼⊥ for
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all Fi, Gi and Hi. Deleting disjuncts that occur twice, we obtain:

∼∼⊥ ∨ ¬∼⊥ ∨ ¬¬∼∼⊥

or one or two disjuncts of this formula. As this is CLuNs-equivalent to ⊥,
CLuNs+ is the trivial system.

Case 3. n4 = 0. In view of Facts 1 and 2, one obtains a theorem of
CLuNs+ if one substitutes ∼∼⊥ for all Ci, Di and Ei, and substitutes ∼⊥
for all Gi and Hi. Deleting disjuncts that occur twice, we obtain:

¬∼∼∼⊥ ∨∼∼⊥ ∨ ¬¬∼∼⊥

or one or two disjuncts of this formula. As this is CLuNs-equivalent to ⊥,
CLuNs+ is the trivial system. �

Corollary 1 : The propositional fragment of CLuNs is maximally ∼-paracon-
sistent.

What about maximal paraconsistency in the predicative case? All we can
offer here is, apart from complications, an open problem with a tentative
answer.

First there is the complication related to a suitable substitution rule, stud-
ied very carefully in [29]. Next, a central difference with the propositional
case is that there are many logics between (predicative) CL and the trivial
logic. For example, one might add to CL an axiom schema that restricts
the cardinality of the domain, (∃α)(∃β)∼α = β, or an axiom schema that
requires all binary relations to be transitive, even (∀α)(∀β)(∀γ)(A(αβ) ⊃
(A(βγ) ⊃ A(αγ))), and so on. Third, it is quite obvious that CLuNs can be
extended with axiom schemas that introduce Ex Falso Quodlibet for some
logical form without introducing it for all of them. Thus adding the schema
(α = β ∧ ∼α = β) ⊃ A to CLuNs does not make A,∼A ` B hold in
general.

The semantics suggests that ∼ is not strictly paraconsistent in any logic
between CLuNs and CL, more precisely that the negation ∼ is not strictly
paraconsistent in any logic CLuNs+ obtained by extending CLuNs with an
axioma schema that holds in CL.

This impression is further confirmed by attempts to falsify it. Extensions
of CLuNs seem all to introduce Ex Falso Quodlibet for at least a specific
form and under some condition, whence they all seem to be equivalent to an
axiom schema of the form C ⊃ (Q(A ∧ ∼A) ⊃ B). If some metalinguistic
formula has a more specific form (but also the above one) in which C is a
CLuNs-theorem, Q(A ∧ ∼A) ⊃ B is derivable, and the CLuNs-extension
is not strictly paraconsistent. So let us consider an extension of CLuNs
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obtained by adding the following axiom schema, of which the antecedent
cannot be turned into a CLuNs-theorem:

(∃α)(∀β)α = β ⊃ (∃α)(∼α = α ⊃ B) , (3)

which expresses that x = x behaves consistently for at least one x in models
with a singleton domain.

As (3) is a theorem of the extension, so is

(∃α)(∀β)α = β ⊃ (∀α)(∼α = α ⊃ B) (4)

and as (∀α)(∀β)(α = β ⊃ (∼α = β ⊃ ∼α = α)) holds, it follows that

(∃α)(∀β)α = β ⊃ (∀α)(∀β)(α = β ⊃ (∼α = β ⊃ B)) (5)

and from this easily follows

(∃α)(∀β)α = β ⊃ (∼(∃α)(∀β)α = β ⊃ B) , (6)

whence the extension is not paraconsistent. There is nothing puzzling here
obviously. If identity behaves consistently in models with singleton do-
mains, no model verifies both implicantia of (6).

Not finding a proof that ∼ is not strictly paraconsistent in any logic be-
tween CLuNs and CL, we tried a host of possible counterexamples, but
without success. So we have to leave this an open problem (both for CLuNs
and for pure paraconsistent CLuNs).

8. In Conclusion

The main interest of CLuNs seems to reside in the fact that it combines the
theorems and rules of the full positive fragment of CL and the usual rules for
driving negations inwards. As a side-effect, it also contains all theorems of
the ∼-∨-∧-∀-∃-=-fragment of CL. It follows that CLuNs contains all theo-
rems of CL in that the aforementioned fragment is functionally complete.

Among the possible applications, both inconsistent empirical theories and
inconsistent arithmetic seem attractive domains, except of course if there are
reasons to prefer an inconsistency-adaptive logic. Remark that inconsistent
arithmetic is often studied in terms of the ∼-∨-∧-∀-∃-=-fragment of CL.
The presence, in CLuNs, of a detachable implication for which the deduc-
tion theorem holds, makes it attractive for the aforementioned application
contexts. Indeed, the presence of the implication warrants that the models
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are maximally non-trivial (see Theorem 7), and, combined with bottom, en-
ables one to express falsehood (in the sense of the two-valued semantics)
within the object language.
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