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SIEVING OUT RELEVANT AND EFFICIENT QUESTIONS

KRISTOF DE CLERCQ AND LIZA VERHOEVEN∗

Abstract
Wiśniewksi’s erotetic logic provides us with two slightly different
semantic explications of the intuitive concept of “a question arises
from a set of declarative premises”. Unfortunately, Wiśniewski’s
erotetic concepts suffer from the drawback that they allow for the
raising of irrelevant and inefficient questions. The aim of this paper
is to show that raising such questions can be avoided by chang-
ing the underlying logic. Several closely related logical approaches
which enable us to eliminate irrelevant and inefficient questions, are
presented.

1. Introduction

One of the most fascinating problems studied in erotetic logic is the way in
which questions arise from a set of statements or a set of statements together
with another question. A major contribution in this respect is Wiśniewski’s
logic of questions (see [10]). In this paper we only focus on the raising of a
question from a set of declarative sentences. Wiśniewski offers two slightly
different semantic explications of this concept: evocation of a question by a
set of declarative premises, and generation of a question by a set of declar-
ative premises. Although Wiśniewski’s general characterization of erotetic
concepts can be applied to any logic of questions that satisfies some mini-
mal conditions (see [10, pp. 226–230]), the standard of deduction in [10] is
always Classical Logic (henceforth CL).
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ish Community (project BIL/01/80) and the Polish State Committee for Scientific Research
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190 KRISTOF DE CLERCQ AND LIZA VERHOEVEN

In this paper we are looking for an explication of the raising of relevant
and efficient questions from a set of declarative premises Γ. We show that
Wiśniewski’s concept of evocation permits the raising of questions that are
irrelevant to the set of premises on hand. The stronger1 concept of gener-
ation prevents the raising of some irrelevant questions. However, (i) some
generated questions are still irrelevant to Γ, and (ii) some questions that are
intuitively relevant to Γ are not generated by Γ. Hence, both the concept of
evocation and the concept of generation are unsuitable – unless one changes
the underlying logic from CL to some non-standard logic – for explicating
the raising of relevant and efficient questions from a set of premises. Evoca-
tion is certainly too weak, whereas generation is too weak in some respects
and too strong in others.

In this paper we restrict ourselves to the propositional level (PC refers to
propositional Classical Logic). This has the advantage that we can leave out
the rather complex logical machinery needed for Wiśniewski’s general def-
initions. We show that the problems of relevance and efficiency are mainly
caused by the standard properties of the disjunction. We present several
logics in which the disjunction has nonstandard properties, and we show
that those logics are better suited for the derivation of relevant and efficient
questions than PC. It should be clear that the problems of relevance and
efficiency also occur at the predicative level, and even more so (because of
the additional source of irrelevance due to existentially quantified formulas).

When approaching the outlined problems, most logicians will look for
conditions that restrict the definition of question evocation. Inspired by the
Ghent tradition, we tackled the problem differently, viz. in terms of logics.
More precisely, we shall present the logics RAD, QP, QP* and QPp, that
are derived from PC – if the basic logic is different, so would be the derived
logics. These logics will determine which questions are evoked from a set of
premises in cases where PC is the standard of deduction.

In the next section we present Wiśniewski’s concepts of evocation and
generation of questions (for the underlying logic PC). In section 3 we point
to the problem of the raising of irrelevant and inefficient questions, both
for the concept of evocation and generation. We also argue that, if one is
convinced that pragmatic aspects (concerning the posing and answering of
questions) should better be neglected when developing or evaluating a logic
of questions, then one should also give up any attempt to develop a sensible
and somewhat sophisticated logic of questions. For in that case, a very basic
‘logic’ of questions will do. In section 4 we present the non-monotonic logic
RAD, in which the disjunction behaves in a nonstandard way. Relying on

1 We say that generation is a stronger concept than evocation because the set of questions
generated by Γ is a subset of the set of questions evoked by Γ.
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RAD, we develop the logic QP in Section 5. In the next section we define
the concept of questions QP-raised by Γ, and present a proof theory for the
logic of questions QPq. In section 7 we offer two different approaches for
the derivation of questions that are both maximally relevant and maximally
efficient.

2. Wiśniewski’s concepts of evocation and generation

As we already mentioned, Wiśniewski’s concepts of question evocation and
generation can be applied to any logic of questions that satisfies some mini-
mal requirements.2 In order to define evocation and generation in a way as
general as possible, Wiśniewki uses partitions and multiple-conclusion en-
tailment, two concepts borrowed from [6]. For our purposes, pointing out
the problem of the raising of irrelevant and inefficient questions, it suffices
to focus on a logic of questions that is based on PC. It will become clear,
though, that any logic of questions built on a declarative logic in which the
disjunction behaves classically3 , suffers from the problem of irrelevance and
inefficiency.

We first make some terminological and notational remarks. Let L be the
language of PC, containing the logical constants ¬, ⊃, ∧, ∨ and ≡. We use
the letters p, q, r, s, t, u, p1, . . . for propositional variables. The well-formed
formulas (henceforth, wffs) of L are defined as usual. The language Lq

of PCq is obtained by extending L with the symbols ?, {, } and “,”. By
declarative well-formed formulas (henceforth, d-wffs) of Lq we mean the
well-formed formulas of L. We always use A, B, C, . . . as metavariables for
d-wffs, and Γ, Γ′, . . . for sets of d-wffs. A question of Lq is an expression
of the form ?{A1, . . . , An}, where n ≥ 2 and A1, . . . , An are syntactically
different d-wffs. Questions are the erotetic wffs (e-wffs) of Lq. A question
?{A1, . . . , An} can be read as “Is it the case that A1, or . . . , or is it the case
that An?”.4 We use Q, Q1, . . . as metavariables for questions. The set of

2 An obvious requirement is that its language L consists of a declarative part and an
erotetic part (that allows for questions). The only further requirements are that the declarative
part of L is provided with a proper semantics, and that its erotetic part assigns to each question
an at least two-element set of direct answers.

3 This is manifested, for instance, in Addition being a valid inference rule.

4 In some cases a different reading seems to be more appropriate: for instance, ?{p,¬p}
can be read as “Is it the case that p?”.
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192 KRISTOF DE CLERCQ AND LIZA VERHOEVEN

wffs of PCq, Wq, is the union of the set of d-wffs and the set of e-wffs of
Lq.

If ?{A1, . . . , An} is a question, then each of the d-wffs A1, . . . , An is a
direct answer to this question. The set of direct answers to a question Q
is referred to as dQ. Note that dQ is a finite set, and contains at least two
elements. Any d-wff that is implied by each member of dQ is called a pre-
supposition of the question Q. Where {A1, . . . , An} is a non-empty finite set
of formulas,

∨{A1, . . . , An} abbreviates A1∨ . . .∨An;
∧{A1, . . . , An} ab-

breviates A1 ∧ . . .∧An. For every question Q =?{A1, . . . , An}, we choose
A1 ∨ . . .∨An to be the presupposition of Q, and we refer to it by Pres(Q).

Wiśniewski’s concept of evocation – for the underlying logic PC5 – can
be defined as follows:

Definition 1 : A question Q =?{A1, . . . , An} is evoked by a set of d-wffs Γ,
E(Γ, Q), iff
(i) Γ �PC A1 ∨ . . . ∨ An, and
(ii) for each Ai ∈ dQ: Γ 2PC Ai.

The first clause requires that Q is sound relative to Γ: intuitively, this re-
quirement is fulfilled iff Q is truly answerable in case all members of Γ are
true. The second clause requires that Q is informative relative to Γ: intu-
itively, this requirement is fulfilled iff Q cannot be answered on the basis of
Γ.

Except for border cases, the set of questions evoked by a set of d-wffs
Γ is infinite. Unfortunately, the major part of these evoked questions are
completely uninteresting, comparable with the repetitive and pointless ap-
plication of Addition when deriving consequences from a set of d-wffs (the
comparison is no accident). Of course, some of the questions evoked by Γ
are highly relevant to Γ, but they risk to get lost in the crowd. We give a
simple example, which we will continue to use throughout the paper, to il-
lustrate our point. Let Γ = {p ∨ q, r}. The (infinite) set of questions evoked
by Γ contains the following questions:
(i) ?{p, q}, ?{p,¬p}, ?{q,¬q}, ?{¬p,¬q, p ∧ q}, ?{p ∧ q,¬(p ∧ q)}
(ii) ?{p ∧ q, p ∧ ¬q,¬p ∧ q,¬p ∧ ¬q}, ?{p, q,¬r}, ?{p, q, t ∧ ¬t}, . . .
(iii) ?{p, q, s}, ?{p, q ∨ s}, ?{p ∨ s,¬(¬q ∧ ¬s), t}, . . .
(iv) ?{p∧ q, p∧¬q,¬p∧ q}, ?{p∧ r, q∧ r}, ?{p∧ r,¬p∧ r}, ?{p∧ r,¬p∧

r, q ∧ r,¬q ∧ r}, ?{r ∧ t, r ∧¬t}, ?{r ∧ t, r ∧¬t, p∧ s, q ∧ s,¬s}, . . .
5 Note that PC is supposed to be characterized here in a way that allows for continuous

disjunctions and conjunctions. From now on, PC refers to such characterization.
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(v) ?{s,¬s}, ?{t,¬t}, ?{s∧t, s∧¬t,¬s∧t,¬s∧¬t}, ?{p, q∧s, q∧¬s}, . . .
(vi) ?{(p∧q)∧r,¬p∧¬q, t,¬p∧s,¬q∧r,¬s}, ?{p∧r, q, s}, ?{s∧r,¬s∧

r}, . . .
We think everyone would agree that all questions in (i) are intuitively rele-
vant to Γ. Moreover, they all are efficient (see below). We label all other
questions as irrelevant, inefficient, or both. We briefly and somewhat intu-
itively6 , try to explain the reasons for this labelling.

The questions in (ii) all have at least one direct answer that is self-contra-
dictory or that is incompatible with the d-wffs in Γ: for every question Q in
(ii), there is an Ai ∈ dQ such that Γ ∪ {Ai} �PC A ∧ ¬A. Clearly, each
such question is irrelevant: for each such irrelevant question Q, there is a
question Q′ which is also evoked by Γ, dQ′  dQ and dQ′ does not contain
any direct answer that is self-contradictory or incompatible with Γ.

The questions in (iii) all contain at least one direct answer that is irrelevant
to Γ: the direct answer contains a propositional letter that is not mentioned
in Γ, and the only reason why that propositional letter pops up in the evoked
question is because of the properties of the disjunction (and hence also im-
plication) in PC (think of Addition and Irrelevance). So, it could have been
any propositional letter, and indeed, all questions in (iii) in which the new
letter is replaced by another one, are also evoked by Γ.

These irrelevant questions in (ii) and (iii) are not evoked when the under-
lying logic is changed from PC to RAD, as we will do in section 4.

Some of the questions in (iv) could be considered as being relevant to Γ,
but all these questions are inefficient with respect to Γ: they all have at least
one direct answer that contains a superfluous part. To define the “superfluous
part” of a direct answer, we first define when a formula is in negation normal
form:

Definition 2 : A formula A is in negation normal form N(A) iff
(1) A does not contain the connectives ⊃ or ≡, and
(2) every occurrence of ¬ in A is immediately followed by a proposi-

tional letter.

Every formula A can be brought into negation normal form by replacing
equivalences A ≡ B and implications C ⊃ D by resp. (A ⊃ B)∧ (B ⊃ A)

6 The non-standard logics we present in the next sections offer an explication of these
intuitions.



“09declercq_verhoeven”
2005/7/18
page 194

i

i

i

i

i

i

i

i

194 KRISTOF DE CLERCQ AND LIZA VERHOEVEN

and ¬C ∨ D, using De Morgan’s laws to push negations inside, and elimi-
nating double negations. It is obvious that any PC-wff A is PC-equivalent
with its negation normal form N(A).

Definition 3 : A question Q evoked by Γ has a direct answer A containing a
superfluous part iff
(i) the negation normal form of A, N(A), contains a (sub)formula of the

form B1 ∧ . . . ∧ Bn(n ≥ 2), and
(ii) there is a Bi (1 ≤ i ≤ n) such that, if A′ is the result of replac-

ing in N(A) (an occurrence of) the (sub)formula B1 ∧ . . . ∧ Bn by∧
({B1, . . . , Bn} \ {Bi}), it holds that Γ ∪ {A′} `PC A.

A filter that sieves efficient questions from those containing superfluous
parts is imposed by changing the underlying logic in the definition of evo-
cation from PC to QP, as we will do in section 5. As QP is built on the
logic RAD, all questions in (i) are QP-evoked, and none of the questions in
(ii)-(iv) are QP-evoked by Γ.

It is obvious that all the questions in (v) are irrelevant to Γ, for the same
reasons as the questions in (iii). Some of these questions could be eliminated
by the concept of generation (see below), but to eliminate them all, we shall
take a completely different road in section 7.

The questions in (vi) are mixed cases, being both irrelevant and inefficient
with respect to Γ.

An alternative explication of the concept of the arising of a question from a
set of declarative sentences, is given by Wiśniewski’s concept of generation.
For the underlying logic PC, the concept of generation can be defined as
follows:

Definition 4 : A question Q is generated by a set of declarative premises Γ,
G(Γ, Q), iff
(i) E(Γ, Q), and
(ii) ∅ 2PC Pres(Q).

Hence, not all questions evoked by Γ are also generated by Γ, and in this
sense the concept of generation is a stronger one than that of evocation. This
can be stated more clearly by using Wiśniewksi’s concept of a safe question:

Definition 5 : A question Q is safe iff ∅ �PC Pres(Q). Otherwise, Q is a
risky question.
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Hence, a question Q is generated by Γ iff (i) Q is evoked by Γ and (ii) Q is
a risky question.

By imposing an extra condition, it seems plausible that the concept of gen-
eration provides a better explication of the raising of relevant and efficient
questions, but actually, it does not. A lot of questions we considered to be
irrelevant or inefficient are also generated by Γ: for instance, the second
and third question in (ii) and all questions in (iii) and (iv) are generated by
Γ = {p ∨ q, r}. Moreover, although neither the first question in (ii) nor
any question in (v) is generated by Γ (which is a good thing), the questions
?{p,¬p}, ?{q,¬q} and ?{p ∧ q,¬(p ∧ q)} are also not generated by Γ and
they are both relevant and efficient.

So the concept of generation is not suited for explicating the raising of
relevant and efficient questions by a set of premises Γ, because it is too weak
in some respects and too strong in others.

3. Pragmatic aspects of raising questions

Pursuing answers to questions that are irrelevant to one’s set of premises at
hand may be a pleasant way to kill time, but taking into account that most
of us do not dispose of unlimited resources and time, it is not a very rational
way to operate.

Once a question is raised by Γ, one can decide to actually pose the ques-
tion (addressing the question to someone, possibly oneself, or something).
In most cases one then expects the addressed party to come up with some
(preferably correct) answer to the question (which of course is not always
straightforward). An answer to a question can be reached by several means:
by observation, by consulting some knowledge source (an encyclopedia, a
textbook, an expert, a database, etc.), by performing tests or experiments,
or by reasoning. More often than not, a combination of these actions has
to be performed to come up with an answer to the question. Of course, all
these actions take time, effort, and hence – in most cases – money. Apart
from ‘real’ costs, every action comes also – in economic parlance – with
an opportunity cost: the cost of the most valuable forgone alternative. For
instance, instead of wasting resources on trying to come up with a correct
answer to a question irrelevant to one’s knowledge set, one could have used
these resources to obtain an answer to one or more highly relevant questions
(the information or problem one is really interested in).

In light of the above considerations it seems rational to only pose ques-
tions (and pursue answers to them) that are relevant to the set of premises
at hand. Moreover, it is important to pose (maximally) efficient questions:
the person or source that is trying to answer the question posed, should not
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196 KRISTOF DE CLERCQ AND LIZA VERHOEVEN

waste its resources on coming up with a more informative answer, when a
less informative answer – together with the initial set of premises – would
have been sufficient to derive a direct answer to the question. Note that the
informativeness requirement in the definition of evocation and generation
(Γ 2 Ai, for any Ai ∈ dQ), is a (minimal) interpretation of the requirement
that a question raised by Γ should be efficient with respect to Γ. Roughly,
it comes down to the following maxim: you should not ask a question of
which you already know the answer. We will strengthen this maxim in the
following way: you should not ask a question of which you already know
some part(s) of the answer.

The reader may wonder whether these pragmatic aspects should be taken
into consideration when one is trying to build a decent logic of questions.
However, if pragmatic aspects are ignored, one hardly needs any logic of
questions of some sophistication at all, because one can just as well inves-
tigate by brute force. This method can be described – in a somewhat cari-
catural way – as follows: if one doesn’t know everything there is to know,
one should ask the question “What are all the true non-tautological proposi-
tions statable in at most n words from vocabulary V ?”, where n is a fixed,
very large number and V for instance the set of all English words tokens of
which have occurred in print at least once.7 A direct answer to this question
is finite. We make our point somewhat more accurately. Let us introduce the
following definition:

Definition 6 : A set of premises Γ PC-decides (the truth value of) a formula
A iff Γ �PC A or Γ �PC ¬A.

Suppose Γ is a non-empty, finite set of declarative formulas. Then Γ con-
tains at most n (n ≥ 1) propositional variables A1, . . . , An ∈ S . If Γ decides
all of them, i.e. for each Ai (1 ≤ i ≤ n) either Γ �PC Ai or Γ �PC ¬Ai, then
there is no need for asking a (relevant) question. But if for at least some Ai,
Γ 2PC Ai and Γ 2PC ¬Ai, then one could ask – remember the brute force –
the following question ?{A1∧. . .∧An, A1∧. . .∧¬An, . . . ,¬A1∧. . .∧¬An}.
But, if pragmatic aspects don’t matter anyway, one could just as well ask a
much wilder question. Let B1, . . . , Bm be a very long (but finite) list of
propositional variables not occurring in Γ. Then the following question is
evoked by Γ: ?{A1 ∧ . . . ∧ An ∧ B1 ∧ . . . ∧ Bm, . . . ,¬A1 ∧ . . . ∧ ¬An ∧
¬B1 ∧ . . .∧¬Bm}. We think nobody would seriously consider asking such
a question, unless one meets an angel, of course.

7 This question is one of the candidates for being the best question one can pose (to an
angel to whom you are allowed to pose exactly one question that will be truthfully answered).
See [7] for a survey of the (pragmatic) complications with respect to finding the best question
to ask, and some amusing reflections on this point.
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4. The logic RAD

In [8] the logic RAD is developed to solve the paradoxes of material impli-
cation. The logic RAD is a propositional logic based on PC. A good way to
get an intuitive grasp on it, is to consider it as PC on which a special filter is
imposed, screening for “superfluous” disjuncts within a formula. Only those
PC-consequences of Γ that do not contain superfluous disjuncts are RAD-
consequences of Γ. The meta-theoretic properties of RAD are extensively
studied in [8].8 The language and wffs of RAD are those of PC.

4.1. Semantics

The semantic characterization of RAD is rather unusual, because it is given
in terms of sets of classical propositional truth-value assignments (PC-models
for short). Let M range over the PC-models, and S over the sets of PC-
models. Let M � A mean that the PC-model M verifies A, and let S �PC A
mean that all PC-models in S verify A. We also need the following defini-
tions:

Definition 7 : SPC(Γ) = {M | M � Γ}.

Definition 8 : An n-tuple (S1, . . . , Sn) is an n-partition of S iff S1∪. . .∪Sn =
S and Si ∩ Sj = ∅ for 1 ≤ i, j ≤ n and i 6= j.

The logic RAD is semantically characterized by the following clauses:
(1) For A a propositional letter, S �RAD A iff for all M ∈ S, M � A.
(2) For A a propositional letter, S �RAD ¬A iff for all M ∈ S, M � ¬A.
(3) S �RAD A1 ∧ . . . ∧ An iff S �RAD A1 and . . . and S �RAD An.
(4) S �RAD A1 ∨ . . . ∨ An iff

(i) S �PC A1 ∨ . . . ∨ An, and
(ii) for all n-partitions (S1, . . . , Sn) of S for which S1 �PC A1 and

. . . and Sn �PC An, it holds that:
(a) S1 6= ∅ and . . . and Sn 6= ∅, and
(b) S1 �RAD A1 and . . . and Sn �RAD An.

(5) S �RAD ¬(A1 ∧ . . . ∧ An) iff S �RAD ¬A1 ∨ . . . ∨ ¬An.
(6) S �RAD ¬(A1 ∨ . . . ∨ An) iff S �RAD ¬A1 ∧ . . . ∧ ¬An.
(7) S �RAD ¬¬A iff S �RAD A.
(8) S �RAD A ⊃ B iff S �RAD ¬A ∨ B.
(9) S �RAD ¬(A ⊃ B) iff S �RAD A ∧ ¬B.

8 We give a characterization of RAD that is slightly different from the one given in [8]
and [9], allowing for the use of continuous conjunctions and disjunctions.
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(10) S �RAD A ≡ B iff S �RAD A ⊃ B and S �RAD B ⊃ A
(11) S �RAD ¬(A ≡ B) iff S �RAD (A ∧ ¬B) ∨ (¬A ∧ B)

Definition 9 : Γ �RAD A iff SPC(Γ) �RAD A.

As is shown in [8], a semantic characterization of PC in terms of sets of
PC-models can be easily obtained by (i) replacing clause (4) by the follow-
ing clause: S �PC A1 ∨ . . . ∨ An iff S has an n-partition (S1, . . . , Sn) such
that S1 �PC A1, and . . ., and Sn �PC An, (ii) replacing in all other clauses
the subscript RAD by the subscript PC, and (iii) adding the following defi-
nition:

Definition 10 : Γ �S
PC A iff SPC(Γ) �PC A.

It can be easily shown (see [8]) that this semantic characterization of PC
is equivalent with the standard characterization:

Theorem 1 : S �PC A iff M � A for all M ∈ S.

Corollary 1 : Γ �S
PC A iff Γ �PC A .

We will rely on Theorem 1 in the next section.
It should be obvious that the crucial and only difference between RAD

and PC is located in clause (4). In view of clauses (5), (6), (7), (8), (9), (10)
and (11) of RAD, we restrict our attention to formulas in negation normal
form. The first part (i) of clause (4) is exactly the clause for PC. Part (ii)
(a) prevents that any disjunct of A1 ∨ . . . ∨ An is superfluous. Part (ii)
(b) is needed for the suitable handling of nested disjunctions (disjunctions
occurring within a disjunct). We try to clarify this with two examples.
Suppose S �RAD p. From (i) it follows that S �PC p. The formula p ∨ q
contains the superfluous disjunct q in the context of p being verified by S.
For the partition (S1 = S, S2 = ∅) of S the following hold: S1 �PC p,
S2 �PC q, S1 6= ∅, S2 = ∅, S1 �RAD p and S2 �RAD q. Here part (ii) (a)
prevents p ∨ q from being RAD-verified by S.
Suppose S �RAD p ∨ (q ∧ r). From (i) S �PC p ∨ (q ∧ r) it follows there
is a partition (S1, S2) of S such that S1 �PC p and S2 �PC q ∧ r. The
formula p ∨ (q ∧ (r ∨ s)) is not RAD-verified by S. Indeed, S1 �PC p,
S2 �PC q ∧ (r ∨ s), S1 �RAD p but not S2 �RAD q ∧ (r ∨ s). The latter does
not hold because q∧(r∨s) contains the superfluous disjunct s in the context
of q ∧ r being verified by S2. Here part (ii) (b) prevents p ∨ (q ∧ (r ∨ s))
from being RAD-verified by S.
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4.2. A measure for disjunctions

In preparation for the presentation of the proof theory, we define ρ(A), which
provides us with a kind of measure for disjunctions.

Definition 11 : For a formula A in negation normal form, A′ is a d-fragment
of A iff A′ is the result of replacing in A a disjunction B1∨ . . .∨Bn by

∨
Φ,

for a Φ such that ∅ ⊂ Φ ⊂ {B1, . . . , Bn}.

To give an example, p∨ (q ∧ r)∨¬t has the following d-fragments: p, q∧
r,¬t, p ∨ (q ∧ r), p ∨ ¬t, and (q ∧ r) ∨ ¬t.

The following theorem shows the relation between RAD and PC, and was
proven in [8]:

Theorem 2 : For any formula A: S �RAD A iff
(1) S �PC A,
(2) the negation normal form N(A) of A has no d-fragment A′ for which

S �PC A′.

In view of this theorem, the logic RAD can be considered to be the logic
PC on which a relevance filter is imposed. This will become clearer in the
(dynamic) proof theory below.

Definition 12 : ρ(A) = δ(N(A)) where δ(A) is constructed as follows:
(1) δ(A) = A for A a propositional letter.
(2) δ(¬A) = ¬A for A a propositional letter.
(3) δ(A1 ∧ . . . ∧ An) = {δ(A1), . . . , δ(An)} where {. . .} denotes a set.
(4) δ(A1 ∨ . . . ∨ An) = [δ(A1), . . . , δ(An)] where [. . .] denotes a

multiset.

We can define a partial order relation <d over all ρ(A), where A is an RAD-
wff:

Definition 13 : ρ(A) <d ρ(B) iff
• ρ(A) ∈ ρ(B) and ρ(B) is a multiset, or
• ρ(A) = [α1, . . . , αn, β1] and ρ(B) = [α1, . . . , αn, β2]

and β1 <d β2, or
• ρ(A) = {α1, . . . , αn, β1} and ρ(B) = {α1, . . . , αn, β2}

and β1 <d β2.

The partial order relation <d can be extended to the transitive order relation
< in the following way:
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Definition 14 : The order relation < is the transitive extension of the partial
order relation <d and is obtained in the following way:

• If ρ(A) <d ρ(B), then ρ(A) < ρ(B).
• If ρ(A) < ρ(B) and ρ(B) < ρ(C), then ρ(A) < ρ(C).

4.3. Proof Theory of RAD

As all adaptive9 logics, RAD has a dynamic proof theory: in the course of the
development of a proof, there may be, apart from an increase of conclusions,
a process of revising, viz. rejecting, previously drawn conclusions (because
of an increased insight in the premises).

As is usual for adaptive logics, a line in a dynamic RAD-proof consists of
five elements: (i) the line number, (ii) the formula derived on that line, (iii)
the numbers of the lines relied upon to derive the second element, (iv) the
rule that justifies the derivation of the formula in (ii), and (v) the condition
on which the second element is derived.

RAD-proofs are governed by a conditional premise rule, a generic condi-
tional derivation rule, and a marking definition. By the rules, lines can be
added to the proof. At each stage of the proof, a line is either marked or
unmarked, which is determined by the Marking Definition.

Prem If A ∈ Γ, one may write down a line containing the following ele-
ments: (i) an appropriate line number, (ii) A, (iii) - , (iv) ‘Prem’
and (v) ρ(A).

PC If A1, . . . , An `PC B and A1, . . . , An are the second elements of lines
i1, . . . , in (which may be marked or unmarked10 ), one may add a line
with the following elements: (i) the appropriate line number, (ii) B, (iii)
i1, . . . , in (iv) ‘PC ’ and (v) ρ(B).

The marking of lines in a proof is governed by the Marking Definition:11

Definition 15 : A line i with A as second element and ρ1 as fifth element, is
marked at stage s of the proof iff there is another line j in the proof, marked

9 For a general characterization of adaptive logics, see [1].

10 Of course, one could introduce – e.g. for heuristical purposes – the requirement that
each line should be unmarked. This would not alter the logic, though, as the marking defini-
tion blocks all irrelevant derivations anyway.

11 This is the proof-theoretical equivalent of the semantic requirement (see the second
clause of theorem 2) that the negation normal form N(A) of a wff A has no d-fragment A′

for which S �PC A′.
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or unmarked at that stage, with B as second element and ρ2 as fifth element
and ρ2 < ρ1.

At every stage of a proof, the marking definition determines which lines
are marked and unmarked at that stage. The marking of line i in view of
line j is indicated by putting the mark

√
j at the end of line i. Note that the

dynamics in an RAD-proof is much more limited than the dynamics occur-
ring in most other adaptive logics: once a line in an RAD-proof is marked,
it remains marked in any extension of the proof, and one can conclude that
the formula occurring on the marked line is not RAD-derivable from the
premises.

In view of the marking definition, two forms of derivability can be defined –
derivability at a stage and final derivability:

Definition 16 : A formula is derived at stage s of a proof from Γ iff it is the
second element of an unmarked line at stage s of the proof.

Definition 17 : A formula A is finally derived in an RAD-proof from Γ iff A
occurs as the second element of an unmarked line at stage s of a proof from
Γ, and this line is not marked in any further extension of the proof.

The proof-theoretical consequence relation of RAD is defined with respect
to final derivability:

Definition 18 : Γ `RAD A iff A is finally derived in an RAD-proof from Γ.

We now give an example of an RAD-proof from a simple set of premises
Γ = {p, p ⊃ (q ∨ r)}:

1 p - Prem p
2 p ⊃ (q ∨ r) - Prem [¬p, q, r]

√
3

3 q ∨ r 1,2 PC [q, r]
4 q ∨ r ∨ t 3 PC [q, r, t]

√
3

At stage 3 of the proof, line 2 is marked in view of line 3 because [q, r] <
[¬p, q, r]. This illustrates that RAD does not satisfy Reflexivity: it is possible
that a premise is not an RAD-consequence of the set of premises (this is only
because the premise in question is considered to be irrelevant or containing
superfluous disjuncts). At stage 4 of the proof, line 4 is immediately marked



“09declercq_verhoeven”
2005/7/18
page 202

i

i

i

i

i

i

i

i

202 KRISTOF DE CLERCQ AND LIZA VERHOEVEN

in view of line 3, as [q, r] < [q, r, t]. As remarked above, the set of RAD-
consequences of Γ is always a proper subset of the set of PC-consequences
of Γ.12

4.4. RAD-derivation of questions

We can now define the concept of evocation for the underlying logic RAD:

Definition 19 : A question Q is RAD-evoked by a set of declarative sentences
Γ, ERAD(Γ, Q), iff Γ �RAD

∨
dQ.

This definition contains only one explicit requirement, i.e. the soundness
requirement; the requirement that Q should be informative with respect to Γ
is now taken care of by the logic itself. For if Q =?{A1, . . . , An} and, say,
Γ `RAD An−1, then Q is not RAD-evoked by Γ because Γ 0RAD A1 ∨ . . . ∨
An.

It can easily be proven that the set of questions RAD-evoked by Γ is a
proper subset of the set of questions PC-evoked by Γ, for any Γ except for
border cases. Let us return to our example wherein Γ = {p ∨ q, r}. The
questions in (i) are all RAD-evoked by Γ. None of the questions in (ii) or
(iii) is RAD-evoked by Γ. Unfortunately, the questions in (iv) and (v) (and
some of the questions in (vi)) are RAD-evoked by Γ. Therefore, we will
impose a stronger filter in the next section.

We can also define the concept of RAD-generation:

Definition 20 : A question Q is RAD-generated by a set of d-wffs Γ,
GRAD (Γ, Q), iff
(i) Γ �RAD

∨
dQ, and

(ii) ∅ 2RAD
∨

dQ.

None of the questions in (ii) or (iii) is RAD-generated by Γ = {p ∨ q, r}.
All questions in (iv), and some in (vi) and (v) are RAD-generated by Γ. But
of course, the questions in (i) that are not PC-generated by Γ, are also not
RAD-generated by Γ: ?{p,¬p}, ?{q,¬q}, ?{¬p,¬q, p ∧ q}, ?{p ∧ q,¬(p ∧
q)}. As was the case for PC, we think that the concept of generation is not

12 Take any RAD-proof from a set of wffs Γ. If one ignores or erases the mark (if any) at
the end of each line in the proof (and thus considers all lines as belonging to the proof), and
if one ignores or erases the fifth element of each line, one ends up with a PC-proof from Γ.
Marked lines in an RAD-proof from Γ just contain formulas that are PC-consequences of Γ,
but not RAD-consequences from Γ.
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suited for explicating the raising of relevant and efficient questions.

We now show how easy it is to upgrade the logic RAD to the logic of
questions RADq. The dynamic proof theory of RADq provides a proof-
theoretic counterpart of the abstract semantic definition of RAD-evocation.

The language and wffs of RADq are those of PCq (as defined in section
2). RADq-proofs are governed by the Prem-rule and PC-rule of RAD, and
the following rule:13

Q If A1 ∨ . . . ∨ An (where n ≥ 2) occurs as the second element of an un-
marked line i which has ρ as fifth element, one may add a line containing
the following elements: (i) an appropriate line number, (ii) ?{A1, . . . ,
An}, (iii) i (iv) ‘Q ’ and (v) ρ.

The marking definition is that of RAD, slightly modified to allow for the
marking of lines with a question as second element:

Definition 21 : A line i with X ∈ Wq as second element and ρ1 as fifth
element, is marked at stage s of the proof iff there is another line j in the
proof, marked or unmarked at that stage, with B as second element and ρ2

as fifth element and ρ2 < ρ1.

The marking of line i in view of line j is indicated by putting the mark
√

j

at the end of line i.

In this way we obtain a dynamic proof theory for RAD-evocation of ques-
tions. It is obvious that ERAD(Γ, Q) iff Γ `RADq Q. In the next sections we
will present some more logics of questions.

5. The Logic QP

In this section we present the logic QP, which will allow us to define when
a question is (in)efficient with respect to Γ. First we present the semantics
and a theorem that connects the semantic consequence relation of QP with
the semantic consequence relation of RAD. Next we give the dynamic proof
theory of QP, and discuss the properties of material implication in QP.

13 Note that the condition that A1∨ . . .∨An occurs as the second element of an unmarked
line in an RAD-proof, automatically implies that A1, . . . , An are syntactically different wffs.
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5.1. Semantics

To obtain the logic QP we first introduce a kind of modal operator ♦. To
keep things as simple as possible, we choose ♦ to be an operator belonging
to the meta-language only. The operator is defined for internal use, and
should be seen as a mere abbreviation for a property holding between a set
of PC-models, a logic (in this case RAD), and a wff:14

Definition 22 : S �RAD ♦A iff there is a non-empty S ′ ⊆ S such that
S′ �RAD A.

Intuitively, ♦ captures some notion of possibility: ♦A can be read as “It
is possible that A”, where “possible” should be interpreted in the sense of
RAD-verification.

We now list the semantic clauses for QP:
(1) For A a propositional letter, S �QP A iff for all M ∈ S, M � A.
(2) For A a propositional letter, S �QP ¬A iff for all M ∈ S, M � ¬A.
(3) S �QP A1 ∧ . . . ∧ An iff S �QP A1 and . . . and S �QP An.
(4) S �QP A1 ∨ . . . ∨ An iff

(I) S �RAD A1 ∨ . . . ∨ An, and
(II) 1. S �RAD ♦¬A1, and

. . .
n. S �RAD ♦¬An.

(5) S �QP ¬(A1 ∧ . . . ∧ An) iff S �QP ¬A1 ∨ . . . ∨ ¬An.
(6) S �QP ¬(A1 ∨ . . . ∨ An) iff S �QP ¬A1 ∧ . . . ∧ ¬An.
(7) S �QP ¬¬A iff S �QP A.
(8) S �QP A ⊃ B iff S �QP ¬A ∨ B.
(9) S �QP ¬(A ⊃ B) iff S �QP A ∧ ¬B.

(10) S �QP A ≡ B iff S �QP A ⊃ B and S �QP B ⊃ A
(11) S �QP ¬(A ≡ B) iff S �QP (A ∧ ¬B) ∨ (¬A ∧ B)

Relying on definition 7 (SPC(Γ) = {M | M � Γ}), we define the semantic
QP-consequence relation as follows:

Definition 23 : Γ �QP A iff SPC(Γ) �QP A.

14 Of course, the operator can also be defined in the object language (and it has some nice
connections with the non-standard properties of material implication in RAD en QP), but we
cannot go into that in this paper.
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The only difference between QP and RAD is located in clause (4). Again,
we can restrict our attention to wffs in negation normal form. Part (II) pre-
vents that any disjunct Ai(1 ≤ i ≤ n) from the disjunction A1 ∨ . . . ∨ An

contains a superfluous conjunct. We illustrate this with a simple example,
in which we rely on Theorem 1, the semantics of RAD, Theorem 2 and the
semantics of QP.

Let Γ = {p ∨ q}. With respect to p and q, there are three sorts of models
in SPC(Γ): S1 = {M | M � p ∧ ¬q}, S2 = {M | M � ¬p ∧ q} and
S3 = {M | M � p ∧ q}. Note that S1 6= ∅, S2 6= ∅ and S3 6= ∅. It
is clear that SPC(Γ) �PC p ∨ q. Any 2-partition (S1, S2) of SPC(Γ) for
which S1 �PC p and S2 �PC q, will be of the form (S1 ∪ X, S2 ∪ Y )
such that X ∪ Y = S3 and X ∩ Y = ∅. It follows that S1 6= ∅, S2 6= ∅,
S1 �RAD p, S2 �RAD q and hence S �RAD p ∨ q.15 In view of S2 �RAD ¬p
and S1 �RAD ¬q, it follows that SPC(Γ) �RAD ♦¬p and SPC(Γ) �RAD ♦¬q.
Hence it holds that Γ �QP p ∨ q.

We also have that Γ �RAD (p ∧ ¬q) ∨ (¬p ∧ q) ∨ (p ∧ q) (for analo-
gous reasons). Let us have a closer look at this RAD-consequence. The first
disjunct contains the superfluous conjunct p (as Γ ∪ {¬q} �PC p), and the
second disjunct contains the superfluous conjunct q (as Γ ∪ {¬p} �PC q).
So (p∧¬q)∨ (¬p∧ q)∨ (p∧ q) should not be a semantic QP-consequence
of Γ. It is precisely the second condition of clause (4) that does the job: it is
not the case that SPC(Γ) �RAD ♦¬(p ∧ ¬q) and SPC(Γ) �RAD ♦¬(¬p ∧ q)
and SPC(Γ) �RAD ♦¬(p∧ q). For suppose SPC(Γ) �RAD ♦¬(p∧¬q). Then
there is an S ′ ⊆ SPC(Γ), such that S ′ �RAD ¬p∨q and hence S ′ �PC ¬p∨q.
As all M in S1 falsify ¬p ∨ q, it follows that S ′ ⊆ (S2 ∪ S3). But as all M

in S2 ∪ S3 verify q, S ′ �PC q and hence S ′ 2RAD ¬p ∨ q, a contradiction.
Hence, Γ 2QP (p ∧ ¬q) ∨ (¬p ∧ q) ∨ (p ∧ q).

Note that the logic QP allows for a rather subtle use of disjunctive formu-
las (and hence questions, see below). We give some simple examples:

• Let Γ = {p}. Then Γ �QP (q∧ r)∨ (q∧¬r)∨ (¬q∧ r)∨ (¬q∧¬r),
but Γ 2QP ((q ∧ r) ∨ (q ∧ ¬r)) ∨ ((¬q ∧ r) ∨ (¬q ∧ ¬r)) and
Γ 2QP ((q ∧ r) ∨ (¬q ∧ r)) ∨ ((q ∧ ¬r) ∨ (¬q ∧ ¬r)).

• Let Γ = {p∨ (q∧ r)∨ s, (¬p∧ q) ⊃ r}. Then Γ �QP p∨ (q∧ r)∨ s,
but Γ 2QP (p ∨ (q ∧ r)) ∨ s (because there is no S ′ ⊆ SPC(Γ) such
that S′ �RAD ¬p∧ (¬q∨¬r)). However, both Γ �QP (p∨ q)∨ s and
Γ �QP p ∨ q ∨ s hold.

In preparation of the dynamic proof theory of QP, we first prove some
properties of QP.

15 It might be easier to see that Γ `RAD p ∨ q.
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Lemma 1 : If S �RAD A, S ⊆ S′ and S′ �PC A, then S ′ �RAD A.

Proof. Suppose S �RAD A, S ⊆ S′, S′ �PC A and S′ 2RAD A. In view
of Theorem 2, the negation normal form N(A) of A has a d-fragment A′

for which S ′ �PC A′. From Theorem 1 it follows that for all M ∈ S ′,
M � A′. As S ⊆ S ′, also for all M ∈ S, M � A′. In view of Theorem 1
and 2, it follows that S �PC A′ and that S 2RAD A, which contradicts our
assumption. �

Theorem 3 : For n ≥ 2, S �QP A1 ∨ . . . ∨ An iff
(α) S �RAD A1 ∨ . . . ∨ An,
(β) 1. S �RAD A1 ∨ ¬A1,

. . .
n. S �RAD An ∨ ¬An.

Proof. We first prove the left-right direction. From clause (4) of the seman-
tics of QP, S �QP A1 ∨ . . . ∨ An iff

(I) S �RAD A1 ∨ . . . ∨ An, and
(II) S �RAD ♦¬A1, and . . . , and S �RAD ♦¬An.

From (I) it follows that
(i) S �PC A1 ∨ . . . ∨ An, and

(ii) for all n-partitions (S1, . . . , Sn) of S for which S1 �PC A1, and . . .
and Sn �PC An, it holds that:
(a) S1 6= ∅ and . . . and Sn 6= ∅,
(b) S1 �RAD A1 and . . . and Sn �RAD An.

In view of Theorem 1, for any such S1, S1 ⊆ {M ∈ S | M � A1}.
S1 6= ∅ implies that {M ∈ S | M � A1} 6= ∅. As S1 �RAD A1 and
{M ∈ S | M � A1} �PC A1 (Theorem 1), it follows from Lemma 1 that
{M ∈ S | M � A1} �RAD A1.

From (II) it follows that there is a non-empty S ′ ⊆ S such that S ′ �RAD ¬A1.
In view of Theorem 2, S ′ �PC ¬A1 and in view of Theorem 1, S ′ ⊆ {M ∈
S | M � ¬A1}. S′ 6= ∅ implies that {M ∈ S | M � ¬A1} 6= ∅. As
{M ∈ S | M � ¬A1} �PC ¬A1 (Theorem 1), it follows from Lemma 1 that
{M ∈ S | M � ¬A1} �RAD ¬A1.

S has only one 2-partition (S1, S2) for which it holds that both S1 �PC A1

and S2 �PC ¬A1, namely S1 = {M ∈ S | M � A1} and S2 = {M ∈ S |
M � ¬A1}. As {M ∈ S | M � A1} 6= ∅, {M ∈ S | M � A1} �RAD A1,
{M ∈ S | M � ¬A1} 6= ∅ and {M ∈ S | M � ¬A1} �RAD ¬A1,
S �RAD A1 ∨ ¬A1.
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All other cases are completely analogous.

The other direction follows immediately from clause (4) of the RAD-seman-
tics. �

We will rely on this theorem to construct a measure for disjunctions and
conjunctions within disjunctions that will be used in the proof theory of QP.

5.2. Proof Theory of QP

We now introduce σ(A), which plays a role similar to that of ρ(A) in RAD,
and provides us with a measure for (superfluous) disjunctions and (superflu-
ous) conjunctions within disjunctions.

Definition 24 : σ(A) = τ(N(A)) where τ(A) is constructed as follows:
(1) τ(A) = {ρ(A)} = {A} for A a propositional letter.
(2) τ(¬A) = {ρ(¬A)} = {¬A} for A a propositional letter.
(3) τ(A1 ∧ . . . ∧ An) = τ(A1) ∪ . . . ∪ τ(An).
(4) τ(A1 ∨ . . . ∨ An) = {ρ(A1 ∨ . . . ∨ An), ρ(A1 ∨ ¬A1), . . . , ρ(An ∨

¬An)}.

The premise rule Prem and the derivation rule PC of QP only differ from
the rules of RAD with respect to the condition. The fifth element of a line
in a QP-proof with second element A is the set σ(A), constructed as above.
The marking definition of QP is as follows:16

Definition 25 : A line i with A as second element and σ(A) as fifth element,
is marked (noted

√
j) at stage s of the proof iff there is a line j in the proof,

marked or unmarked at that stage, with B as second element and σ(B) as
fifth element such that there is a Φ ∈ σ(A) and a Ψ ∈ σ(B) such that
Ψ < Φ.

We use the same example again to illustrate the proof theory of QP. Let
Γ = {p ∨ q, r}.

1 p ∨ q - Prem {[p, q], [p,¬p], [q,¬q]}
2 r - Prem {r}
3 (p ∧ r) ∨ (q ∧ r) 1,2 PC {[{p, r}, {q, r}], [{p, r}, [¬p,¬r]],

[{q, r}, [¬q,¬r]]} √
5

4 (p ∧ r) ∨ q 1,2 PC {[{p, r}, q], [{p, r}, [¬p,¬r]],

16 The relation < was defined in section 4.2.
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[q,¬q]} √
5

5 (p ∧ r) ∨ ¬p 2 PC {[{p, r},¬p], [{p, r}, [¬p,¬r]],
[p,¬p]} √

5

Lines 3 and 4 are marked in view of line 5 because [{p, r},¬p] < [{p, r},
[¬p,¬r]]. For the same reason, line 5 marks itself. This is one of the pecu-
liarities of the proof theory of QP (in its present form): a line in a QP-proof
from Γ that causes the marking of another line in the proof because of QP-
specific17 reasons, will also cause the marking of the line itself.
Let DC1 abbreviate ((s ∧ t) ∨ (s ∧ ¬t)) ∨ (¬s ∧ t) ∨ (¬s ∧ ¬t), DC2

abbreviate (s ∧ t) ∨ (s ∧ ¬t) ∨ (¬s ∧ t) ∨ (¬s ∧ ¬t), and DC3 abbreviate
((s ∧ t) ∨ (s ∧ ¬t)) ∨ (¬s ∧ (¬s ∨ t)). We now continue the proof in the
following way:

6 DC1 - PC {[[{s, t}, {s,¬t}], {¬s, t}, {¬s,¬t}], [[{s, t}, {s,¬t}],
{[¬s,¬t], [¬s, t]}], [{¬s, t}, [s,¬t]], [{¬s,¬t}, [s, t]]} √

8

7 DC2 - PC {[{s, t}, {s,¬t}, {¬s, t}, {¬s,¬t}], [{s, t}, [¬s,¬t]],
[{s,¬t}, [¬s, t]], [{¬s, t}, [s,¬t]], [{¬s,¬t}, [s, t]]

8 DC3 - PC {[[{s, t}, {s,¬t}], {¬s, [¬s, t]}], [[{s, t}, {s,¬t}],
{[¬s,¬t], [¬s, t]}], [{¬s, [¬s, t]}, [s, {s,¬t}]]} √

8

9 p ∨ q ∨ s
1 PC {[p, q, s], [p,¬p], [q,¬q], [s,¬s]} √

1

Line 6 is marked in view of line 8 because [[{s, t}, {s,¬t}], {¬s, [¬s, t]}] <
[[{s, t}, {s,¬t}], {[¬s,¬t], [¬s, t]}]. For the same reason, line 8 marks it-
self. Note that line 7 is unmarked, and will remain so in any extension of the
proof. Hence, (s∧ t)∨ (s∧¬t)∨ (¬s∧ t)∨ (¬s∧¬t) is a QP-consequence
of Γ. The marking of line 9 – because of [p, q] < [p, q, s] – illustrates the
fact that every line that would be RAD-marked (in the RAD-analogue of this
proof), is also QP-marked. Hence, QP can be seen as RAD on which an
additional filter is imposed.

In view of the soundness and completeness of RAD and theorem 3, prov-
ing that QP is sound and complete is straightforward.

17 What we mean, is that if one would consider the proof developed so far to be an RAD-
proof from Γ (by replacing all σ-conditions by the appropriate ρ-conditions), the line in
question would not cause the marking of the other line.
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5.3. Material Implication in QP

As A ⊃ B is defined by ¬A ∨ B in RAD and QP, material implication
exhibits some remarkable properties in those systems. We concisely point
to some properties contributing to the assertability of material implication as
indicative conditional, and to the well-known paradoxes of material implica-
tion in PC.

5.3.1. Assertability

Material implication in RAD is more adequate for the logical representa-
tion of assertable indicative conditionals than material implication in PC for
at least three reasons. The two main paradoxes of material implication are
eliminated, a variant of Mackie’s inus conditions is fulfilled and no disjunc-
tions in the consequent are irrelevant.

As Γ �QP A implies that Γ �RAD A, the properties shown (in [8]) to hold
for material implication in RAD, also hold for material implication in QP:

• the Von Wright–Geach–Smiley criterion:
Γ �QP A ⊃ B implies that Γ 2PC ¬A and that Γ 2PC B,

• a variant of Mackie’s inus conditions in the antecedent:
Γ �QP (A ∧ B) ⊃ C implies that Γ 2PC A ⊃ C and that Γ 2PC
B ⊃ C,

• the requirement of relevantly assertable disjunctions in the conse-
quent:
Γ �QP A ⊃ (B∨C) implies that Γ 2PC A ⊃ B and that Γ 2PC A ⊃
C.

There are some additional properties that hold for material implication in
QP, but not in RAD:

• the ‘possibility’ of the disjuncts in the antecedent:
Γ �QP (A ∨ B) ⊃ C implies that Γ �RAD ♦A and that Γ �RAD ♦B,

• the ‘independence’ of the disjuncts in the antecedent:
Γ �QP (A ∨ B) ⊃ C implies that Γ 2PC A ⊃ B and that Γ 2PC
B ⊃ A,

• the ‘non-necessity’ of the conjuncts in the consequent:
Γ �QP A ⊃ (B ∧ C) implies that Γ �RAD ♦¬B and that Γ �RAD
♦¬C,

• the ‘independence’ of the conjuncts in the consequent:
Γ �QP A ⊃ (B ∧ C) implies that Γ 2PC B ⊃ C and that Γ 2PC
C ⊃ B.

Concerning the assertability of the material implication as indicative con-
ditional, the additional properties in QP contribute to a notion of assertability
that is too strict for everyday use of indicative conditionals. They require a
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compactness (in the non-logical sense) of the implication that is not standard
for the use of indicative conditionals in natural language. Nevertheless, as
compact information is more economic to convey or to store, there might be
contexts in which such requirements are useful, for example computational
contexts.

5.3.2. Paradoxes

In [8] it is shown that in RAD most paradoxes of material implication disap-
pear: for instance, ¬p 0RAD p ⊃ q, q 0RAD p ⊃ q, 0RAD ¬p ⊃ (p ⊃ q), and
0RAD q ⊃ (p ⊃ q). The only paradoxes that are not resolved in RAD are
those in which a material implication occurs as a negative part of a formula.18

These remaining paradoxes could perhaps be resolved in an intuitively ap-
pealing way by using the quasi-modal operator ♦ (as defined in section 5.1).
The idea is to treat a material implication occurring in a ‘negative context’
as a ‘strict’ implication (with respect to ♦). For instance, suppose that a set
of premises Γ contains a premise of the form ¬(A ⊃ B). Hence, A ⊃ B
occurs in a ‘negative context’. Furthermore, suppose that ¬(A ⊃ B) does
not contain any other material implications occurring in ‘negative contexts’.
Then ¬(A ⊃ B) should express that there is a non-empty S ′ ⊆ SPC(Γ) such
that S′ � A ∧ ¬B, which could be abbreviated as SPC(Γ) � ♦(A ∧ ¬B). It
goes without saying that this proposal has to be further elaborated.

6. QP-derivable questions and the logic of questions QPq

We now define when a question Q is QP-derivable from a set of declarative
sentences Γ:

Definition 26 : A question Q is QP-derivable from a set of declarative premis-
es Γ iff Γ �QP

∨
dQ.

As is illustrated by the QP-proof from Γ = {p ∨ q, r} given above, we
have the following situation: all questions in (i) are QP-derivable, and no
question from (ii), (iii) or (iv) is QP-derivable from Γ. Most questions from
(v) are QP-derivable from Γ though.19 Concerning the mixed cases in (vi),

18 This concerns the following paradoxes: ¬(p ⊃ q) `RAD p ∧ ¬q and (p ⊃ q) ⊃ p `RAD
p.

19 It should be clear from the proof above that some questions from (v), e.g. ?{(s ∧ t) ∨
(s ∧ ¬t),¬s ∧ t,¬s ∧ ¬t}, are not QP-derivable from Γ.



“09declercq_verhoeven”
2005/7/18
page 211

i

i

i

i

i

i

i

i

SIEVING OUT RELEVANT AND EFFICIENT QUESTIONS 211

none of them is QP-derivable from Γ.

We give the proof theory for the logic of questions QPq. Its language and
wffs are those of RADq. QPq-proofs are governed by the Prem-rule and
PC-rule of RADq, and the following question-rule:
Q If Pres(Q) occurs as the second element of an unmarked line i which

has σ(Pres(Q)) as fifth element, one may add a line containing the
following elements: (i) an appropriate line number, (ii) Q, (iii) i (iv)
‘Q ’ and (v) σ(Pres(Q)).

QPq has the following marking definition:

Definition 27 : A line i with X ∈ Wq as second element and σ1 as fifth
element, is marked at stage s of the proof iff there is a line j in the proof,
marked or unmarked at that stage, with B as second element and σ2 as fifth
element such that there is a Φ ∈ σ1 and a Ψ ∈ σ2 such that Ψ < Φ.

The marking of line i in view of line j is indicated by putting the mark
√

j

at the end of line i.
Those questions from (v) that are QPq-derivable from Γ all have the prop-

erty of not having any propositional letter in common with Γ. We can easily
eliminate those questions by imposing an additional relevance filter, as we
will do in the next section.

7. On introducing new topics

The last type of questions we want to eliminate are questions that contain
propositional letters which do not occur in Γ. But sometimes we might want
to ask a question about something of which we do not know anything yet.
How can we distinguish such cases? How can we express logically that some
things are at issue while others are not, when we do not know anything about
them?

Let us have a closer look at tautologies. Is there, logically speaking, any
difference between Γ1 = {p} and Γ2 = {p, q ∨ ¬q}? In terms of PC, for
instance, there seems to be no difference, as CnPC(Γ1) = CnPC(Γ2), and
moreover q∨¬q is a tautology. By adopting another, say Gricean, perspective
there seems to be a (subtle) difference between the two sets. One could say
that, by adopting or making the statement q∨¬q, one has introduced the fact
that one lacks knowledge on the truth value of q – provided that neither q
nor ¬q is derivable from one’s knowledge – and that one may be interested
in filling that gap. We present two ways to approach this issue.
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7.1. QP*

One way to exclude this kind of questions, is by interpreting the premises
in a Gricean way such that only the ‘gaps’ indicated by the premises are
taken into account. This requires that the premises are in a form that does
not allow to indicate ‘gaps’ which are ‘filled’ by the premises themselves.
Starting from QP, we call this the QP-satisfiable form:

Definition 28 : S �QP Γ iff S �QP A for all A ∈ Γ.

Definition 29 : A premise set Γ is QP-satisfiable iff there is a set of PC-
models S, such that S �QP Γ.

The consequence relation that interprets the premises in the Gricean way
described above comes down to quantifying over the sets of PC-models that
QP-verify all of the premises:

Definition 30 : For a QP-satisfiable premise set Γ, Γ �QP* A iff S �QP A
for all sets of PC-models S for which S �QP Γ.

Definition 31 : A question Q is QP*-evoked by a set of declarative sentences
Γ iff Γ �QP*

∨
dQ.

A side effect of QP*, is that disjunctions (questions) cannot be combined,
for example:

{p ∨ q, r ∨ s} 2QP* (p ∧ r) ∨ (p ∧ s) ∨ (q ∧ r) ∨ (q ∧ s).

The consequence relation QP* can be extended for arbitrary premise sets
by defining a procedure that puts arbitrary premise sets in QP-satisfiable
form. Note that this can be done in at least two different ways. The premise
set {p∨ q, p} for example may result in {p} or in {p, q ∨¬q}, depending on
how the irrelevant disjunct q is treated.

7.2. QPp and QPpq

Another way to exclude this kind of questions is by literally not allowing new
propositional letters. We first define the set of propositional letters occurring
in a wff and in a set of wffs:

Definition 32 : The set of propositional letters occurring in a wff A, SPL(A),
is defined as follows:
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• SPL(A) = {A}, for A a propositional letter;
• SPL(¬A) = SPL(A);
• SPL(A1?. . .?An) = SPL(A1)∪ . . .∪SPL(An), where ? is either
∨ or ∧;

• SPL(A ? B) = SPL(A) ∪ SPL(B), where ? is either ⊃ or ≡.

Definition 33 : The set of propositional letters occurring in Γ, SPL(Γ), is
defined by: SPL(Γ) = {A | A ∈ SPL(B) and B ∈ Γ}.

The proof theory of the logic QPp is obtained by extending the rules and
marking definition of QP with the following additional marking definition:

Definition 34 : (MARK-2) A line i with A as second element and σ(A) as
fifth element, is Γ-marked (noted

√
Γ

) at stage s of the proof iff SPL(A) \
SPL(Γ) 6= ∅.

We can now define when a question Q is QPp-derivable from Γ:

Definition 35 : A question Q is QPp-derivable from a set of declarative
premises Γ iff Γ `QPp

∨
dQ.

The reader can easily verify that all questions in (i) are QPp-derivable
from Γ = {p ∨ q, r}, and that none of the questions from (ii)-(vi) is.

The logic of questions QPpq is obtained by taking the rules Prem, PC and
Q, the marking definition from QPq, and the marking definition from QPp.
Moreover, the following rule is added:
New Let A be either (i) a wff B (compatible with Γ) that was obtained as

an answer to a question posed, or (ii) a topic C ∨¬C that is new with
respect to Γ. Then one may write down a line containing the following
elements: (i) an appropriate line number, (ii) A, (iii) - , (iv) ‘New’
and (v) σ(A).

This rule allows for the introduction of an answer to a posed question. As
in realistic applications not all answers one obtains will be direct answers to
questions posed, we do not impose restrictions on B, except for being com-
patible with Γ.20 As QPpq is a non-monotonic logic, introducing an obtained
answer or a new topic will have some effects: some lines may be marked,
and some previously marked lines may become unmarked. This will become

20 Of course, in realistic applications, one will sometimes obtain an answer incompatible
with Γ, but handling this requires some mechanism of belief revision or update mechanism,
which falls outside the scope of this paper.
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clear by the following example:

Let Γ = {p ∨ q}. Hence, SPL(Γ) = {p, q}.

1 p ∨ q - Prem {[p, q], [p,¬p], [q,¬q]}
2 r ∨ ¬r - CL {[r,¬r]} √

Γ

3 ?{p, q} 1 Q {[p, q], [p,¬p], [q,¬q]}
4 r ⊃ p - New {[¬r, p], [r,¬r], [p,¬p]}

The question ?{p, q} is derived at stage 3 of the proof (and finally derivable
from Γ), and asked to some source. The partial answer r ⊃ p is received and
added to the proof on line 4. This means that the set of premises is extended
to Γ′ = Γ ∪ {r ⊃ p}. As SPL(Γ′) = {p, q, r}, line 2 has to be unmarked.
We can now proceed as follows:

5 ?{r,¬r} 2 Q {[r,¬r]} √
6

6 r - New {r}
7 p 4,6 PC {p}
8 t ∨ ¬t - New {[t,¬t]}
9 ?{t,¬t} 8 Q {[t,¬t]}

The question ?{r,¬r} derived on line 5 (and finally derivable from Γ′) is
posed to some source, and the obtained answer is added to the proof on line
6. In this way, the set of premises is extended to Γ′′ = Γ′ ∪ {r}. This
causes the marking of line 5 (?{r,¬r} is not finally derivable from Γ′′),
which makes perfect sense: once a question is fully answered, it vanishes.
On line 7, p is derived, in view of which both line 1 and 3 are marked (note
that the partial answer r ⊃ p did not cause the marking of line 3). On line 8,
a new topic in introduced, and hence Γ′′ is extended to Γ′′′ = Γ′′ ∪ {t∨¬t}.
The question ?{t,¬t} is (finally) derived from Γ′′′ on line 9 (it was not deriv-
able from any subset of Γ′′′).

We only presented the proof theory of QPq and QPpq. We will not give
the semantics in this paper, but it can be obtained by working with sets of
partial PC-models instead of working with sets of complete PC-models. In
a partial PC-model truth-values are assigned to a subset of S . Only those
partial PC-models M for which {A | M � A and A ∈ S} = SPL(Γ) will
be QPq-models of Γ. This gives the general outline for the semantics QPq,
but we will not elaborate on this any further.
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8. Conclusions and Open Problems

We have pointed out that Wiśniewksi’s concepts of evocation and generation
allow for the raising of questions that are irrelevant and/or inefficient with
respect to the evoking set Γ. We have argued that the problems are due to the
underlying logic PC (and by extension, any standard logic in which disjunc-
tion behaves classically). We have defined several (non-monotonic) logics
that can be used as the underlying logic for a logic of questions. Each of
them solves some aspects of the problems of irrelevance and/or inefficiency.
Moreover, the logics of questions defined from them have a (dynamic) proof
theory.

Of course, many open problems remain. First, an alternative characteriza-
tion of QP – with conditions and a marking definition that are not directly
based on RAD – would possibly yield a more intuitive (and certainly more
direct) proof theory. This might be realised by introducing the modal oper-
ator into the object language. Also, QPp should be provided with a decent
semantics, and the relations with the QP*-approach should be spelled out.
Second, all logics presented in this paper are only defined at the propositional
level, and should be worked out at the predicative level. Third, Wiśniewski’s
interesting concept of erotetic implication, i.e. the derivation of a question
on the basis of another question and/or a set of d-wffs, should be studied
from the perspective of the logics presented in this paper. In [2]and [3], and
in [4], two different roads are taken to eliminate the derivation of irrelevant
and/or inefficient questions from a main question and a set of d-wffs Γ. The
results that will obtain by defining the concept of erotetic implication for the
logics presented in this paper should be compared with those approaches.
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