
“08behounek”
2005/7/18
page 167

i

i

i

i

i

i

i

i

Logique & Analyse 185–188 (2004), 167–188

FUZZIFICATION OF GROENENDIJK-STOKHOF PROPOSITIONAL
EROTETIC LOGIC

LIBOR BĚHOUNEK∗

1. Introduction

Fuzzy logic is a branch of many-valued logics aimed at capturing com-
parative degrees of truth and reasoning under vagueness. For a long time,
fuzzy sets and fuzzy logic were rather an engineering tool than a well-
developed mathematical theory. The advances in metamathematics of fuzzy
logic achieved during past few years (esp. [Háj98]), however, set the theory
on a firm ground and made it possible to develop fuzzy generalizations of
various branches of classical mathematics in the axiomatic way.

One of the fields in which many-valued logics can fruitfully be applied
is the logic of questions. The importance of a many-valued approach to
questions follows, i.a., from the fact that many questionnaires employ scaled
answers rather than simple yes-no ones. In many cases, the scale of answers
directly corresponds to comparative degrees of truth, which is the domain
of fuzzy logic.1 Furthermore, many questions in natural language ask for
information about predicates which are not ‘black and white’ (i.e., ‘crisp’, in
fuzzy terminology), but show a natural scale of truth.2

This paper develops a fuzzy generalization FGS of Groenendijk-Stokhof’s
system of erotetic logic (as described in [GS90] and [GS97], further referred
to as GS). Since Groenendijk-Stokhof’s system (also known as the partition
semantics of questions) is based on intensional semantics of classical logic,

∗My work on this paper was partially supported by Grant No. A1030004 of the Grant
Agency of the Academy of Sciences of the Czech Republic. The larger part of the paper was
presented at the 8th Flemish-Polish Workshop on Adaptive and Erotetic Logics and Their
Application to the Philosophy of Science in Zielona Góra, November 20–22, 2003; my par-
ticipation at the workshop was sponsored by the Foundation for Polish Science.

1 E.g., the scale ‘yes, rather yes, rather no, no’. However, fuzzy logic is not applicable if
the set of answers contains options like ‘I don’t know’, since these are not truth degrees.

2 For instance, if John is middle-sized, then the answer to the question ‘Is John tall?’
should be neither ‘yes’ nor ‘no’, but something in-between.
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168 LIBOR BĚHOUNEK

fuzzy intensional semantics is developed first, within the framework of fuzzy
class theory [BC04b]. Our attention is restricted to propositional FGS, i.e.
fuzzy yes-no questions.3

2. Classical Groenendijk-Stokhof semantics

In this section we repeat the basic definitions of intensional semantics for
classical propositional logic and classical propositional Groenendijk-Stokhof
system. For details, see [GS90] and [GS97].

Definition 2.1 : (Intensional semantics) Let W be a non-empty set. By a
valuation in W we mean a function ‖·‖ taking formulae to subsets of W ,
such that ‖¬ϕ‖ = W−‖ϕ‖, ‖ϕ & ψ‖ = ‖ϕ‖ ∩ ‖ψ‖, ‖ϕ ∨ ψ‖ = ‖ϕ‖ ∪
‖ψ‖, ‖ϕ→ ψ‖ = (W−‖ϕ‖) ∪ ‖ψ‖. The pair W = 〈W, ‖·‖〉 is called a
logical space, the elements of W indices or possible worlds, the subsets of
W propositions.

The proposition ‖ϕ‖ is called the intension of ϕ (in W). The extension
of ϕ in w ∈ W is the truth value of the statement that w ∈ ‖ϕ‖; it will be
denoted by ‖ϕ‖w.4

A formula ϕ holds in a logical space W = 〈W, ‖·‖〉 (written W |= ϕ)
iff ‖ϕ‖ = W . A formula ϕ is a tautology (written |= ϕ) iff it holds in any
logical space. A formula ϕ entails a formula ψ in 〈W, ‖·‖〉 iff ‖ϕ‖ ⊆ ‖ψ‖. A
formula ϕ entails a formula ψ (written ϕ |= ψ) iff ϕ entails ψ in any logical
space.

Intensional semantics is adequate w.r.t. classical propositional calculus;
i.e., a formula is provable in classical propositional calculus iff it is a tau-
tology of intensional semantics. GS extends this semantics to interrogative
formulae ?ϕ (read whether ϕ), where ϕ is any propositional formula.

Definition 2.2 : (Semantics of interrogative formulae) Let W = 〈W, ‖·‖〉 be
a logical space. The extension ‖?ϕ‖w of ?ϕ in w ∈ W is the proposition
{w′ ∈W | ‖ϕ‖w′ = ‖ϕ‖w}.

The intension ‖?ϕ‖ of ?ϕ in W is the equivalence relation {〈w,w′〉 ∈
W 2 | ‖ϕ‖w = ‖ϕ‖w′}. The partition of W induced by this equivalence
relation will be denoted by W/‖?ϕ‖.

3 While classical propositional GS is trivial, its fuzzified version is less so.

4 Thus if w ∈ ‖ϕ‖, we say that the extension of ϕ in w is 1 (the truth value ‘true’); if
w /∈ ‖ϕ‖, we say that it is 0 (the truth value ‘false’). The intension of ϕ can be identified
with the function that assigns to each possible world w ∈W the extension of ϕ in w.
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Definition 2.3 : (Answerhood and entailment of interrogatives)
Let 〈W, ‖·‖〉 be a logical space.

We say that ψ is a direct answer to ?ϕ in W iff ‖ψ‖ ∈ W/‖?ϕ‖. We say
that ψ is an answer to ?ϕ in W (written ψ |=W ?ϕ) iff ψ entails a direct
answer to ?ϕ in W .

We say that ?ψ entails ?ϕ in W (written ?ψ |=W ?ϕ) iff every answer to
?ψ is an answer to ?ϕ in W . We say that ?ψ and ?ϕ are equivalent in W
(written ?ψ ≡W ?ϕ) iff ?ψ entails ?ϕ in W and vice versa.

We say that these relations hold generally iff they hold in any logical space.

It is easy to prove that ?ψ |=〈W,‖·‖〉 ?ϕ iff the partition W/‖?ψ‖ refines
the partition W/‖?ϕ‖, and that equivalence of interrogatives corresponds to
the identity of partitions.

3. T-norm based fuzzy logic

In this section, the main ideas of t-norm based fuzzy logic are outlined and
basic definitions are given. For details see [Háj98].

T-norm based fuzzy logic is founded upon a few natural assumptions re-
garding the semantics of fuzzy conjunction: truth-functionality, associativ-
ity, commutativity, monotonicity, continuity, and classical values on {0, 1}.
Such binary functions on [0, 1] had already been studied in probability theory
under the name continuous triangular norms (or continuous t-norms). Given
a continuous t-norm ∗, the semantics of other propositional connectives can
be defined in a natural way (e.g., the semantics of implication is the maximal
function such that the internalization of modus ponens is valid). Generaliz-
ing Tarski’s definitions in the obvious way, for each [0, 1]-valuation v of
propositional variables and any formula ϕ we get a unique semantic value
‖ϕ‖v ∈ [0, 1]. A formula is a tautology w.r.t. a continuous t-norm ∗ iff it
gets the value 1 under each valuation v. The set of all tautologies w.r.t. a
continuous t-norm ∗ is called the logic of ∗ and denoted by PC(∗).

It turns out that some formulae are tautologies w.r.t. any continuous t-
norm; we call them t-tautologies. It can be proved that the set of all t-
tautologies is finitely axiomatizable. This gives rise to Basic Fuzzy Logic
BL:

Definition 3.1 : (BL) Propositional logic BL is determined by the follow-
ing axiom schemata and the deduction rule of modus ponens (the primitive
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connectives are →, &, and ⊥).

(BL1) (ϕ→ ψ) → ((ψ → χ) → (ϕ→ χ))

(BL2) (ϕ & ψ) → ϕ

(BL3) (ϕ & ψ) → (ψ & ϕ)

(BL4) (ϕ & (ϕ→ ψ)) → (ψ & (ψ → ϕ))

(BL5a) (ϕ→ (ψ → χ)) → ((ϕ & ψ) → χ)

(BL5b) ((ϕ & ψ) → χ) → (ϕ→ (ψ → χ))

(BL6) ((ϕ→ ψ) → χ) → (((ψ → ϕ) → χ) → χ)

(BL7) ⊥ → ϕ

Further connectives are defined as follows:

ϕ ∧ ψ ≡df ϕ & (ϕ→ ψ)

ϕ ∨ ψ ≡df ((ϕ→ ψ) → ψ) ∧ ((ψ → ϕ) → ϕ)

ϕ↔ ψ ≡df (ϕ→ ψ) & (ψ → ϕ)

¬ϕ ≡df ϕ→ ⊥

> ≡df ¬⊥

There are three salient continuous t-norms:5 the minimum, also known as
the Gödel t-norm x ∗ y = min(x, y), the product x ∗ y = x · y, and the
Łukasiewicz t-norm x ∗ y = max(0, x + y − 1). The sets of all tautologies
w.r.t. these t-norms are called Gödel, product, and Łukasiewicz fuzzy logic,
denoted G, Π and Ł, respectively.6 They are axiomatizable by the following
respective schematic extensions of BL:

(G) ϕ→ (ϕ & ϕ)

(Ł) ¬¬ϕ→ ϕ

(Π) (¬(ϕ & ϕ) → ¬ϕ)

& (¬¬ϕ→ (((ψ & ϕ) → (χ & ϕ)) → (ψ → χ)))

5 Not only are they most often used in applications, but it is proved that any continuous
t-norm is a special kind of ordinal sum of these three t-norms (Mostert-Shield’s characteriza-
tion theorem).

6 Ł and G coincide respectively with Łukasiewicz and Gödel infinite-valued logics. G
extends intuitionistic logic with Dummett’s prelinearity axiom (ϕ→ ψ) ∨ (ψ → ϕ).
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The [0, 1]-semantics of ∧, ∨, ⊥ and > in any logic PC(∗) is that of
minimum, maximum, 0, and 1, respectively. Furthermore, in any PC(∗),
‖ϕ→ ψ‖ = max{z | z ∗ ‖ϕ‖ ≤ ‖ψ‖}; in particular, ‖ϕ→ ψ‖v = 1
iff ‖ϕ‖v ≤ ‖ψ‖v. Consequently ‖ϕ↔ ψ‖v = 1 iff ‖ϕ‖v = ‖ψ‖v, and
‖¬ϕ‖v = 1 iff ‖ϕ‖v = 0.

Except for G, all PC(∗) lack contraction (i.e., ϕ & ϕ is generally stronger
than ϕ), which justifies the presence of min-conjunction ∧. If we add the law
of excluded middle (i.e., the schema ϕ ∨ ¬ϕ) to BL, we get classical logic.

A further unary propositional connective ∆ (Baaz’s delta) with the [0, 1]-
semantics ‖∆ϕ‖v = 1 iff ‖ϕ‖v = 1, otherwise ‖∆ϕ‖v = 0, is often intro-
duced. The resulting logics BL∆, G∆, Ł∆, and Π∆ are axiomatized by the
axioms of the respective fuzzy logic plus the following axioms for ∆:

(∆1) ∆ϕ ∨ ¬∆ϕ

(∆2) ∆(ϕ ∨ ψ) → (∆ϕ ∨ ∆ψ)

(∆3) ∆ϕ→ ϕ

(∆4) ∆ϕ→ ∆∆ϕ

(∆5) ∆(ϕ→ ψ) → (∆ϕ→ ∆ψ)

The deduction rules for logics with ∆ are modus ponens and ∆-necessitation
(from ϕ infer ∆ϕ).

In order to develop fuzzy mathematics, fuzzy predicate calculus is neces-
sary. The syntax of first-order fuzzy logic is classical (except for the differ-
ences in propositional connectives, i.e. the presence of two conjunctions and
possibly ∆). The quantifiers ∀ and ∃ are governed by the following axiom
schemata (which assume that the term t is substitutable for x in ϕ and that x
is not free in χ):

(∀1) (∀x)ϕ(x) → ϕ(t)

(∃1) ϕ(t) → (∃x)ϕ(x)

(∀2) (∀x)(χ→ ϕ) → (χ→ (∀x)ϕ)

(∃2) (∀x)(ϕ→ χ) → ((∃x)ϕ→ χ)

(∀3) (∀x)(χ ∨ ϕ) → (χ ∨ (∀x)ϕ)

The deduction rules are those of propositional logic plus generalization (from
ϕ infer (∀x)ϕ). Equality can be regarded as a logical symbol governed by
the axioms of reflexivity x = x and universal intersubstitutivity x = y →
∆(ϕ(x) ↔ ϕ(y)).

The standard semantics for fuzzy predicate calculi is a straightforward
generalization of Tarski’s semantics to [0, 1]. The interpretation of predicates
and functors of arity n in a model with the universe M are functions from
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Mn to [0, 1] (for predicates) or to M (for functors); equality is interpreted
as the identity on M . The semantics of ∀ and ∃ is that of infimum and
supremum, respectively. The first-order logics G and G∆ are complete w.r.t.
the standard [0, 1]-semantics; first-order BL, Ł and Π (with or without ∆),
however, are not.7

4. Fuzzy class theory

Within fuzzy predicate calculus, axiomatic theory of fuzzy sets can be de-
veloped. For most purposes, however, one does not need a full-fledged set
theory over fuzzy logic, since it is usually not necessary to consider the mem-
bership of sets in sets. The theory of membership of (atomic) individuals in
fuzzy sets—i.e., fuzzy class theory—is much simpler; it has been elaborated
in [BC04b] over a richer fuzzy logic ŁΠ, which contains all the connec-
tives of G∆, Ł∆, and Π∆. An easy inspection of proofs in [BC04b] shows
that the theorems of [BC04b] that do not mix connectives of different logics
remain valid in its fragments G∆, Ł∆, and Π∆. The adaptation of fuzzy
class theory FCT developed in [BC04b] for an extension F of BL∆ will be
denoted by FCT.

The language of FCT has two sorts of variables: object variables x, y, . . .
and class variables X,Y, . . . (there are no universal variables). The only
primitive predicate is the membership predicate ∈ between objects and class-
es. FCT enjoys full class comprehension, i.e., for any formula ϕ(x) there
is a function symbol8 {x | ϕ(x)} and the comprehension axiom y ∈ {x |
ϕ(x)} ↔ ϕ(y). The classes are understood extensionally, therefore FCT
adopts the axiom of extensionality (∀x)∆(x ∈ X ↔ x ∈ Y ) → X = Y .

The intended models consist of a universe U , which is the range of object
variables, and the set U [0,1] of all functions from U to [0, 1], which is the
range of class variables. The truth value of the formula x ∈ X in a model
M under an evaluation e of class and object variables is defined as the value
of the function e(X) on e(x). The semantic value of the comprehension
term {x | ϕ(x)} in M under e is the function f : U → [0, 1] such that for
any a ∈ U , f(a) is the truth value of ϕ(x) in M under the evaluation ex:a,
where ex:a coincides with e except that ex:a(x) = a. It is easy to prove all

7 They are complete w.r.t. special classes of distributive residuated lattices. Since our
main motivation is the interval [0, 1], we shall not discuss this general semantics (it can be
found in [Háj98]). The results of [BC04b] reduce the relevant part of fuzzy class theory (see
Section 4) to fuzzy propositional calculus, for which the completeness w.r.t. [0, 1] holds.

8 For function symbols in fuzzy logics see [Háj00].
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comprehension axioms as well as extensionality in such models; for details
see [BC04b].

We repeat here several definitions and theorems of [BC04b] that will be
needed later on.

Definition 4.1 : (Fuzzy class operations and relations)
∅ =df {x | ⊥} empty class
V =df {x | >} universal class

−X =df {x | ¬(x ∈ X)} complement
X ∪ Y =df {x | x ∈ X ∨ x ∈ Y } union
X ∩ Y =df {x | x ∈ X & x ∈ Y } strong intersection
X ⊆ Y ≡df (∀x)(x ∈ X → x ∈ Y ) inclusion

Convention 4.2 : In what follows, let the notation ϕ(p1, . . . , pn) imply that
the formula ϕ contains no propositional variables other than p1, . . . , pn.
The formula ϕ & . . . & ϕ (n times) is abbreviated by ϕn. Furthermore,
we abbreviate (∀x)(x ∈ X → ϕ) as (∀x ∈ X)ϕ, (∃x)(x ∈ X & ϕ) as
(∃x ∈ X)ϕ, and {x | x ∈ X & ϕ} as {x ∈ X | ϕ}. If ϕ(p1, . . . , pn) is a
propositional formula and ψ1, . . . , ψn are any formulae, then ϕ(ψ1, . . . , ψn)
denotes the formula ϕ in which all occurrences of pi are replaced by ψi (for
all i ≤ n).

Definition 4.3 : (n-ary class operation) Let ϕ be a propositional formula. We
define the n-ary class operation induced by ϕ as

Opϕ(X1, . . . , Xn) =df {x | ϕ(x ∈ X1, . . . , x ∈ Xn)}.

The following lemmata are corollaries of more general theorems of
[BC04b]; their direct proofs are given in Appendix A.

Lemma 4.4 : Let ϕ(p1, . . . , pn) and ψ(p1, . . . , pn) be propositional formu-
lae. Then F ` ϕ→ ψ iff FCT ` Opϕ(X1, . . . , Xn) ⊆ Opψ(X1, . . . , Xn).

Lemma 4.5 : FCT ` (X ⊆ Y & Y ⊆ Z) → X ⊆ Z.

5. Fuzzy intensional semantics

We want to generalize classical intensional semantics to fuzzy intensional
semantics, i.e., to allow propositions to be fuzzy sets. Since we have a formal
theory of fuzzy sets, viz. the theory of fuzzy classes FCT, we want to define
the semantical notions in this theory (thus we shall be able to prove results on
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entailment within its framework). First we shall give an intuitive motivation
for our definitions.

Let us work in FCT. Given a (possibly fuzzy) class W (to be informally
interpreted as a logical space), certain class operations of FCT (union, in-
tersection, etc.) on (possibly fuzzy) subclasses of W correspond directly to
propositional connectives (disjunction, conjunction, etc., respectively). Sub-
classes A ⊆ W can therefore aptly be called propositions and taken for the
range of intensions of propositional formulae of fuzzy logic F . The exten-
sion of a proposition A in w ∈W is expressed by the formula ‘w ∈ A’.9

It is natural to say that the proposition A entails B iff for all w ∈ W , the
extension ofA inw implies that ofB inw.10 This condition can be expressed
as (∀w ∈W )(w ∈ A→ w ∈ B), i.e., according to the definitions of FCT,
W ∩ A ⊆ B. Similarly we can say that a proposition A holds in W iff it
holds in all indices w ∈W , formally (∀w ∈W )(w ∈ A), i.e. W ⊆ A.

In these considerations, propositionsA ⊆W represent intensions of propo-
sitional formulae of a fuzzy logic F . The assignment ‖·‖ of propositions
A ⊆ W to formulae obeying the rules of correspondence between propo-
sitional connectives and class operations (e.g., ‖ϕ ∨ ψ‖ = ‖ϕ‖ ∪ ‖ψ‖) can
therefore be construed as an intensional semantics for propositional formu-
lae in the logical space 〈W, ‖·‖〉.

We of course intend tautologicity to be defined as validity in all logical
spaces, i.e., for all couples 〈W, ‖·‖〉. However, the assignment ‖·‖ is not an
object of our theory;11 thus we cannot quantify over it, and another formal
solution is required.

It can be observed that in classical intensional semantics, the function ‖·‖
is in fact a translation of propositional formulae to the language of a the-
ory of subsets of some basic set. Similarly, we can define fuzzy intensional
semantics by giving a translation of propositional formulae to the language
of a theory of fuzzy subsets of some basic set (favourably, a part of fuzzy
class theory FCT).12 Interpreting propositional variables as class variables,

9 These definitions look the same as in the classical case, but notice that now the exten-
sions can have truth values between 0 and 1 and the propositions can be fuzzy classes.

10 This definition (of local entailment) allows the inference from A to B in w if A entails
B (by detachment). Note that the entailment itself is a fuzzy notion.

11 It could become an object of the theory after some strenghtening of FCT, which would
allow us to encode propositional formulae and classes of classes, but we shall not pursue this
line here.

12 We are thus giving an interpretation (a direct syntactic model) of fuzzy propositional
calculus in FCT. By means of this interpretation, any model of FCT together with a valua-
tion of free variables yields a fuzzy intensional model for the original propositional formulae.
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propositional connectives as the corresponding class operations, and choos-
ing a class variable W , we get the generality we need. The translation is
adequate in the sense that a propositional formula is provable in fuzzy logic
F iff the general validity of its translation is provable in FCT (and so holds
in every model of FCT).

Let us elaborate this idea formally:13

Definition 5.1 : (Fuzzy intensional semantics) The translation ‖·‖ of the for-
mulae of propositional fuzzy logic F to FCT is defined as follows:

The translation ‖pi‖ of an atomic formula pi is a class variable Ai. The
translation of a complex formula ϕ(p1, . . . , pn) is

‖ϕ(p1, . . . , pn)‖ =df Opϕ(‖p1‖, . . . , ‖pn‖).
14

Theorem 5.2 : (Adequacy of fuzzy intensional semantics)

F ` ϕ iff FCT `W ⊆ ‖ϕ‖

The proof is given in Appendix A. Similarly it is shown that F ` ϕ →
ψ iff FCT ` W ∩ ‖ϕ‖ ⊆ ‖ψ‖. This correspondence justifies writing |= ϕ
instead ofW ⊆ ‖ϕ‖, and ϕ |= ψ instead ofW ∩‖ϕ‖ ⊆ ‖ψ‖.15 The notation
can conveniently be generalized to any class terms of FCT, defining (|=
A) ≡df (W ⊆ A) and (A |= B) ≡df (W ∩ A ⊆ B).16 We further define
logical equivalence of propositions as their mutual entailment: (A ≡ B) ≡df

(A |= B) & (B |= A).

13 Since W can be construed as only a part of a larger logical space W ′ (whose subclass
W is the class of those worlds to which we currently restrict our attention), we shall not
further require that propositions be subclasses of W . The relativization of quantifiers in the
definitions guarantees that only the worlds in W are taken into account when evaluating
entailment of propositions.

14 It can be observed that the definition works naturally, i.e., ‖ϕ ∨ ψ‖ = ‖ϕ‖ ∪ ‖ψ‖, etc.

15 Formulae of F are translated by ‖·‖ to class terms of FCT (thus their semantical val-
ues in models of FCT are fuzzy propositions). The semantical notions of tautologicity and
entailment are expressed as certain formulae of FCT. They can combine to complex seman-
tical statements like (ϕ |= χ) & (ψ |= χ) → (ϕ & ψ |= χ), which again are formulae
of FCT (so in models they may have truth values between 0 and 1). If they are provable in
FCT, we take them for valid semantical laws (they are 1-true in all models.)

16 Thus we can also write A |= ‖ϕ‖, or shortly A |= ϕ, etc.
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Theorem 5.3 : (Properties of fuzzy entailment) It is provable in FCT that
∆(W ⊆W ∩W ) implies17

[(A |= B) & (B |= C)] → (A |= C) (1)
[(A ≡ B) & (B ≡ C)] → (A ≡ C) (2)

[(A ≡ A′) & (B ≡ B′)] → [(A |= B) ↔ (A′ |= B′)] (3)
(ϕ |= ψ) → (¬ψ |= ¬ϕ) (4)

Proof. See Appendix A. �

It should be stressed that the semantic notions defined here are graded,
and can have truth values between 0 and 1. Thus even though the theo-
rems on fuzzy answerhood derived here have syntactically the same form as
their classical counterparts, in FCT they express more general statements,
namely that the truth value of the consequent is not less than that of the an-
tecedent. Thus, e.g., the formula (4) should be interpreted as ‘¬ψ entails
¬ϕ at least in the degree in which ϕ entails ψ’, rather than a crisp statement
that ‘¬ϕ entails ¬ψ if ϕ entails ψ’. The same is true about the notions of
answerhood and entailment of questions defined in the next Section.

6. Fuzzy semantics for questions

Having defined intensional semantics in FCT for propositional formulae,
we want to extend this semantics to interrogative formulae ?ϕ. There are
two (classically equivalent) options as to how to understand the question ?ϕ:

(a) What is the truth value of ϕ?
(b) Is it the case that ϕ?

We shall discuss both cases separately. We first interpret ?ϕ as the question
about the truth value of ϕ.

Let us fix some crisp logical space W .18 Then ψ answers such a question
(which fact we shall symbolize ψ |=t ?ϕ) iff the truth value of ψ determines
the truth value of ϕ. This amounts to the condition that for any indices
w,w′ ∈ W , if ‖ψ‖w = ‖ψ‖w′ , then ‖ϕ‖w = ‖ϕ‖w′ . Since the identity
of truth values is expressed by the equivalence connective defuzzified by ∆

17 This condition is automatically satisfied in G, or if W is crisp. For each of the state-
ments it can be somewhat weakened: e.g., the condition W ⊆W ∩W ∩W is sufficient for
(1).

18 Fuzzy W is also meaningful, but the definitions would need much more careful
discussion.
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(see Section 3), and the extension of ϕ in w is expressed by w ∈ ‖ϕ‖ (see
Section 5), the defining condition for ψ |=t ?ϕ in FCT reads

(∀w,w′ ∈W )[∆(w ∈ ‖ψ‖ ↔ w′ ∈ ‖ψ‖)

→ ∆(w ∈ ‖ϕ‖ ↔ w′ ∈ ‖ϕ‖)]. (5)

Again we can extend the notation and write A |=t ?ϕ, ψ |=t ?B, and
A |=t ?B for arbitrary class terms A and B, not restricting our definition
to propositions definable by propositional formulae.

If we define the truth-equivalence relation RX induced by (a proposition)
X as19

RX =df {〈u, v〉 | ∆(u ∈ X ↔ v ∈ X)}

then the answerhood condition can be rewritten as

A |=t ?B ≡df W
2 ∩RA ⊆ RB.

Following GS, we can identify the intension of ?ϕ and the relation R‖ϕ‖.
The proposition {w′ ∈W | 〈w,w′〉 ∈ R‖ϕ‖} can be understood as the direct
true answer to ?ϕ in w, i.e., the extension of ?ϕ in w. Truth-value based
entailment and equivalence of ?B and ?C can be defined standardly as

?B |=t ?C ≡df (∀A)[(A |=t ?B) → (A |=t ?C)] (6)
?B ≡t ?C ≡df (?B |=t ?C) & (?C |=t ?B) (7)

It can be observed that these notions of answerhood and entailment are
crisp. In fact, they correspond to answerhood and entailment for ques-
tions ?α(‖ϕ‖w = α) of classical predicative GS in the intended models
of FCT.20 As such, they bring little new to the topic; there is, however,
a natural fuzzification of these semi-classical notions, obtained by omitting
one or both of the ∆’s in (5):

19 We need to extend the language of FCT by tuples of objects 〈x1, . . . , xn〉 here. This
can be done by adding functors for forming tuples and accessing their components, and axiom
schemata saying that tuples equal iff their respective components equal. We then define
W 2 =df {〈u, v〉 | u ∈W & v ∈W}. For details see [BC04b]

20 See Section 4 and [GS97].
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Definition 6.1 : (Fuzzy truth-value based answerhood)

A |=ft ?B ≡df (∀w,w′ ∈W )

[∆(w ∈ A↔ w′ ∈ A) → (w ∈ B ↔ w′ ∈ B)]

A |=fft ?B ≡df (∀w,w′ ∈W )

[(w ∈ A↔ w′ ∈ A) → (w ∈ B ↔ w′ ∈ B)]

The corresponding notions of entailment and equivalence of questions are
defined as in (6) and (7), respectively.

It can be observed that the third option, viz. discarding only the first ∆ in (5),
would lead to a counter-intuitive notion of answerhood, since it would admit
cases when ϕ itself does not answer ?ϕ (this follows from the fact that χ→
∆χ is not a theorem of BL∆).

All A |=t ?B, A |=ft ?B, and A |=fft ?B are 1-true in a model if the
partition ofW by the truth-levels ofA refines the partition by the truth-levels
of B.21 Unlike crisp |=t, which otherwise is absolutely false, its graded
variants |=ft and |=fft partially tolerate the flaws in the match of truth-levels.
The truth value of A |=ft ?B is high iff the truth value of B does not change
too much within the truth-levels of A.22 In other words, a proposition more-
or-less answers ?B if its truth value more-or-less determines the truth value
of B. Different t-norm logics provide different measures of tolerance for
imperfection in satisfying the answerhood condition.

The answerhood notion |=fft strengthens the condition and requires fur-
ther that the closeness of the truth values of the answer imply the closeness
of those being asked for. In Ł,A |=fft ?B is 1-true iff for anyw,w′ ∈W , the
difference of the truth values ofA inw andw′ does not exceed the difference
of the truth values of B in w and w′. For Π and G, replace the word ‘differ-
ence’ in the previous sentence respectively by ‘ratio’ and ’smaller’ (where
‘the smaller of the truth values’ means 1 if they are equal).

Obviously |=ft is the weakest of the three notions:

21 We slightly abuse the language here for brevity’s sake. It would be more accurate to
speak about the partition of the evaluation of W and the truth-levels of the evaluations of A
and B in the model. We use a similar license in the following paragraphs.

22 The exact meaning of ‘does not change too much’ is given by the semantics of the
equivalence connective, which in t-norm logics expresses the closeness of truth values. In
particular, in Ł and Π it respectively expresses the difference and ratio of truth values, while
in G it yields the smaller of the truth values (unless they are equal, in which case it is 1-true).
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Theorem 6.2 : FCT proves

(A |=fft ?B) → (A |=ft ?B) (8)
(A |=t ?B) → (A |=ft ?B) (9)

For the proof see Appendix A; counter-examples to the remaining implica-
tions are easy to find.23

Theorem 6.3 : Let ◦ be ft or fft. Then FCT proves

(A ≡ B) → (A |=◦ ?B) (10)
(A ≡ B) → (?A ≡◦ ?B) (11)
(A ≡ B) → [(A |=fft ?C) ↔ (B |=fft ?C)] (12)

(?A |=◦ ?B) → [(?B |=◦ ?C) → (?A |=◦ ?C)] (13)
(?A ≡◦ ?B) → [(?B ≡◦ ?C) → (?A ≡◦ ?C)] (14)

For the proofs see Appendix A. Two-element counter-examples show that
(10) and (11) are not valid for t in place of ◦, and that fft in (12) cannot be
replaced by t or ft.

Because of their motivation, the notions of answerhood defined above are
sensitive with respect to operations that can change the (exact or approx-
imate) match of truth values. Therefore, answerhood is not preserved by
usual logical operations (except for equivalence).24 An example of preser-
vation properties that can be proved is the following theorem:

Theorem 6.4 : Let � be a (primitive or defined) connective congruent w.r.t.
↔, i.e., such that F ` [(ϕ ↔ ψ) & (ϕ′ ↔ ψ′)] → [(ϕ � ϕ′) ↔ (ψ � ψ′)].
Then FCT proves

[(ϕ |=ft ?ψ) & (ϕ |=ft ?ψ′)] → [ϕ |=ft ?(ψ � ψ′)]

For the proof, see Appendix A. In particular, the statement holds for &, ∧,
∨, or ↔ substituted for �, and can easily be generalized to any arity of �. A

23 E.g., to disprove (A |=ft ?B) → (A |=fft ?B), use a two-element intended model with
the universe {a, b} and assign the function {〈a, 0.5〉 , 〈b, 0.6〉} to A, {〈a, 0.5〉 , 〈b, 0.7〉} to
B, and {〈a, 1〉 , 〈b, 1〉} to W . Then the truth value of A |=ft ?B in Ł is 1, while A |=fft ?B
evaluates only to 0.9.

24 Again, the two-element counter-examples to [(ϕ |=◦ ?χ) & (ψ |=◦ ?χ)] → (ϕ�ψ |=◦

?χ) for � replaced by &, ∧, or ∨ are easy to find.
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further discussion of the truth-value based notion of answerhood, entailment,
and equivalence of questions is given in Section 7.

Let us now investigate the other interpretation of ?ϕ. We again work in
FCT and now allow W to be fuzzy. The yes-no question ‘Is it the case
that ϕ?’ is answered by a proposition A iff A either entails ϕ (then it is an
affirmative answer) or entails ¬ϕ (a negative answer):

Definition 6.5 : A proposition A is an affirmative answer to ?ϕ iff A |= ϕ.
It is a negative answer to ?ϕ iff A |= ¬ϕ. It is a yes-no answer (in symbols
A |= ?ϕ) iff it is an affirmative answer or a negative answer:

A |= ?ϕ ≡df (A |= ϕ) ∨ (A |= ¬ϕ)

Since entailment of fuzzy propositions is generally a fuzzy notion, so is
yes-no answerhood: answers can be, not only fully affirmative or negative,
but also partially affirmative or partially negative (or neither).

Theorem 6.6 : FCT proves that ∆(W ⊆W ∩W ) implies25

(A |= B) → [(B |= ?ϕ) → (A |= ?ϕ)] (15)
(A ≡ B) → [(B |= ?ϕ) ↔ (A |= ?ϕ)] (16)
(ϕ ≡ ψ) → [(A |= ?ϕ) → (A |= ?ψ)] (17)

Proof. See Appendix A. �

Theorem 6.7 : FCT proves that if ∆(W ⊆ W ∩W ), then affirmative and
negative answers exclude each other, i.e.,

[(ψ+ |= ϕ) & (ψ− |= ¬ϕ)] → (|= ¬(ψ+ & ψ−))

Proof. See Appendix A. �

It can be noticed that the consequent in Theorem 6.7 cannot be strength-
ened to |= ¬(ψ+ ∧ ψ−). In Ł, e.g., an answer ψ can be both partially affir-
mative and partially negative (only ψ & ¬ψ must be false).26

25 See footnote 17 on page 176.

26 An example from natural language for such a situation is, e.g., an answer to the ques-
tion ‘Is he old?’ giving some middle age, which both partially affirms and partially denies
seniority. (Yet, since old and not old are mutually exclusive, the truth degrees of affirmation
and denial must be low enough for their strong conjunction to be false.)
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Following GS, we can define yes-no entailment and equivalence of ques-
tions in the standard way:

Definition 6.8 : (Yes-no entailment and equivalence of questions)

?ϕ |= ?ψ ≡df (∀A)[(A |= ?ϕ) → (A |= ?ψ)]

?ϕ ≡ ?ψ ≡df (?ϕ |= ?ψ) & (?ψ |= ?ϕ)

Theorem 6.9 : It is provable in FCT that ∆(W ⊆W ∩W ) implies

(?ϕ |= ?ψ) → [(?ψ |= ?χ) → (?ϕ |= ?χ)] (18)
(?ϕ ≡ ?ψ) → [(?ψ ≡ ?χ) → (?ϕ ≡ ?χ)] (19)

(ϕ ≡ ϕ′) → [(?ϕ |= ?ψ) → (?ϕ′ |= ?ψ)] (20)
(ψ ≡ ψ′) → [(?ϕ |= ?ψ) → (?ϕ |= ?ψ′)] (21)
(ϕ ≡ ψ) → (?ϕ |= ?ψ) (22)

(?ϕ |= ?ψ) → (?ϕ |= ?¬ψ) (23)

Proof. See Appendix A. �

Since obviously ϕ |= ϕ, from (22) and (23) it follows that ?ϕ |= ?ϕ
and ?ϕ |= ?¬ϕ. The converse, ?¬ϕ |= ?ϕ, does not hold generally, since
¬¬ϕ→ ϕ is not a theorem of BL. There are examples from natural language
that this result does not contradict intuition: if negation behaves in some
context as the bivalent negation of G or Π (there are such contexts—e.g., not
guilty can be regarded as bivalent, even though there are degrees of guilt),
then a negative answer to ?¬ϕ need not be affirmative enough to ?ϕ. The
equivalence of ?ϕ and ?¬ϕ does, however, hold in Ł or for crisp ϕ.

7. Conclusions

We have seen that the two interpretations of the question ?ϕ in fuzzy logic
give rise to two different kinds of fuzzy answerhood notions. Although these
notions coincide in classical logic, their properties in fuzzy logic are consid-
erably different. It appears that the number of interesting theorems that can
be derived in FCT is larger with yes-no answerhood than with truth-value
based answerhood. The following observations can shed some light upon
this fact.

The definition of yes-no answerhood |= conforms better to the method-
ology of [BC04a], according to which the truth-value semantics of fuzzy
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logic is only secondary to the rules of inference that hold for fuzzy propo-
sitions. Since there is little sense in asserting that some fuzzy proposition
(e.g., ‘John loves Mary’) is true exactly in the degree (say) 0.7845, fuzzy
truth values must only be regarded as a model underlying the rules of in-
ference valid for fuzzy propositions (even though these rules may originally
have been descried by means of this model). The doctrine of not speaking
explicitly about the truth degrees, but rather hiding them in the semantical
meta-level of a formal theory, is one of the design principles of FCT, which
has been used here as the framework for fuzzy intensional semantics and
erotetic logic.

Although formulated formally in FCT (ergo, without an explicit reference
to truth values), the definitions of |=t, |=ft, and |=fft capture in fact the an-
swerhood conditions for the question about the truth value of ϕ, rather than
about the fuzzy proposition ϕ itself.27 Therefore these notions, though use-
ful when working with particular models, are not particularly well-suited for
investigation in FCT, which only captures general laws valid in all models,
rather than particular truth values. Nevertheless, the theorems of Section 6
show that at least some properties of truth-value answerhood are universally
valid and can be proved in FCT.

Fuzzy intensional semantics developed here for the purposes of fuzzy
erotetic logic is general enough to serve as the basis for a similar fuzzi-
fication of other kinds of modal (epistemic, deontic, etc.) logic. Since our
semantic notions of entailment and answerhood are defined as certain formu-
lae of FCT, they are compatible with the formalism proposed in [BC04a]
and [BC04b] as a unified framework for a large part of fuzzy mathematics,
and directly applicable in other formal theories within the framework.

Appendix A. Formal proofs

In this Appendix, we give the formal proofs of the theorems of the preceding
sections. In the proofs we shall freely use the transitivity of implication,
(i.e., the axiom (BL1) plus twice modus ponens), (BL3), (BL5a), and (BL5b)
without explicit notices. All statements of the form BL ` ϕ or BL∆ ` ϕ
refer to [Háj98] where they are proved.

27 This can be seen from the fact that propositions stronger than A need not answer ?ϕ,
even if A itself does. This would be counter-intuitive for answerhood of the question about
ϕ, but is quite natural for querying about truth values, since the truth values of stronger
propositions may be much different from those of A and the distinctions may become lost.
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Lemma A.1 : The following formulae are theorems of BL∆:

(∀w)(ϕ→ ψ) → [(∀w)ϕ→ (∀w)ψ] (24)
(ϕ→ ψ) → [(χ→ ϕ) → (χ→ ψ)] (25)
(ϕ→ ψ) → [ν → (ϕ→ ψ)] (26)
[(ϕ→ ψ) & (ϕ′ → ψ′)] → [(ϕ & ϕ′) → (ψ & ψ′)] (27)

[(ϕ→ ψ) & (ϕ′ → ψ′)] → [(ϕ ∨ ϕ′) → (ψ ∨ ψ′)] (28)

[(ϕ→ ψ) & (ϕ′ → ψ′)] → [(ϕ ∧ ϕ′) → (ψ ∧ ψ′)] (29)

[ϕ→ (ψ → χ)] → [(ϕ→ ψ) → (ϕ2 → χ)] (30)
(ϕ→ ψ) → (∆ϕ→ ψ) (31)
(∆ϕ→ ∆ψ) → (∆ϕ→ ψ) (32)
[(ν → ν3) & ((ν & ϕ) → ψ) & ((ν & ψ) → χ)] → ((ν & ϕ) → χ) (33)

[(ν → ν2) & ((ν & ϕ) → ψ)] → ((ν & ¬ψ) → ¬ϕ) (34)

∆(ν → ν2) → (ν → ν3) (35)

Proof. (24) and (27) are proved in [Háj98].
(26) is an instance of BL ` ϕ→ (ψ → ϕ).
(25) follows from (BL1) by (BL5a), (BL3), and (BL5b).
(28) From (ϕ → ψ) → [(ψ → (ψ ∨ ψ′)) → (ϕ → (ψ ∨ ψ′))], which is

an instance of (BL1), and BL ` ψ → (ψ ∨ ψ′) we get (ϕ → ψ) → (ϕ →
(ψ ∨ ψ′)). Similarly, using in addition BL ` (ψ′ ∨ ψ) → (ψ ∨ ψ′), we get
(ϕ′ → ψ′) → (ϕ′ → (ψ ∨ ψ′)). Thus by (27) we get [(ϕ → ψ) & (ϕ′ →
ψ′)] → [(ϕ → (ψ ∨ ψ′)) & (ϕ′ → (ψ ∨ ψ′))], whence (28) follows from
BL ` [(ϕ→ χ) & (ϕ′ → χ)] → [(ϕ ∨ ϕ′) → χ].

(29) is proved similarly as (28), only using ∧ instead of ∨ and antecedents
instead of consequents of implications.

(30) follows from the instance [(ϕ → (ψ → χ)) & (ϕ → ψ)] → [(ϕ &
ϕ) → (ψ & (ψ → χ))] of (27) and BL ` [ψ & (ψ → χ)] → χ.

(31) follows from (∆3) and the instance (∆ϕ → ϕ) → [(ϕ → ψ) →
(∆ϕ→ ψ)] of (BL1).

(32) follows from (∆3) and the instance (∆ψ → ψ) → [(∆ϕ → ∆ψ) →
(∆ϕ→ ψ)] of (25).

(33) Take the instance of (BL1)
((ν & ϕ) → ψ) → [(ψ → χ) → ((ν & ϕ) → χ)]; thence by (26) we get
((ν & ϕ) → ψ) → [ν → [(ψ → χ) → ((ν & ϕ) → χ)]]; applying (30) we
get
((ν & ϕ) → ψ) → [[ν → (ψ → χ)] → [((ν3 & ϕ) → χ)]],
whence (33) readily follows.
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(34) From BL ` (ϕ→ ψ) → (¬ψ → ¬ϕ) by (26) we get
ν → [(ϕ→ ψ) → (¬ψ → ¬ϕ)]; then by (30) we have
[(ν & ϕ) → ψ] → [(ν2 & ¬ψ) → ¬ϕ], whence (34).

(35) The instance [∆(ν → ν2) & ν] → ν2 of (∆3) used twice in (27)
and BL∆ ` (∆ϕ & ∆ϕ) ↔ ∆ϕ yield [∆(ν → ν2) & ν2] → ν4, i.e.,
∆(ν → ν2) → (ν2 → ν4). Since ∆(ν → ν2) → (ν → ν2) by (∆3), we get
also ∆(ν → ν2) → (ν → ν4), whence by (BL2) we obtain (35). �

Proof of Lemma 4.4. The substitution of x ∈ Xi for pi (for all i ≤ n) every-
where in the proof of ϕ→ ψ in F transforms it into the proof of

ϕ(x ∈ X1, . . . , x ∈ Xn) → ψ(x ∈ X1, . . . , x ∈ Xn)

in first-order F . Generalization on x then yields

(∀x)(ϕ(x ∈ X1, . . . , x ∈ Xn) → ψ(x ∈ X1, . . . , x ∈ Xn))

which is exactly Opϕ(X1, . . . , Xn) ⊆ Opψ(X1, . . . , Xn) by the definitions
and axioms of FCT.

Conversely, let e be an evaluation that refutes ϕ → ψ (we use the Com-
pleteness Theorem for propositional fuzzy logics here, see [Háj98]). We
construct a model M of FCT that refutes Opϕ(X1, . . . , Xn) ⊆ Opψ(X1,
. . . , Xn) as follows. Let the universe of M contain a single element a, and
let the class variables Xi be represented by the functions that assign e(pi) to
a. It is trivial to check that M models FCT and refutes Opϕ(X1, . . . , Xn) ⊆
Opψ(X1, . . . , Xn). By the Soundness Theorem of the first-order logic F
(see [Háj98]) the proof is done. �

Proof of Lemma 4.5: From the instance (x ∈ X → x ∈ Y ) → [(x ∈
Y → x ∈ Z) → (x ∈ X → x ∈ Z)] of (BL1), generalization on x and
distribution of the quantifier by (24) yields the required formula [(∀x)(x ∈
X → x ∈ Y ) & (∀x)(x ∈ Y → x ∈ Z)] → (∀x)(x ∈ X → x ∈ Z). �

Proof of Theorem 5.2. In BL it is provable that ϕ is equivalent to > → ϕ.
Since further Op> = V, we get from Lemma 4.4:

F ` ϕ(p1, . . . , pn) iff

iff F ` > → ϕ(p1, . . . , pn)

iff FCT ` Op>(‖p1‖, . . . , ‖pn‖) ⊆ Opϕ(‖p1‖, . . . , ‖pn‖)

iff FCT ` V ⊆ ‖ϕ(p1, . . . , pn)‖

iff FCT `W ⊆ ‖ϕ(p1, . . . , pn)‖
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The last equivalence follows in one direction from the monotonicity of ⊆
(Lemma 4.5); the other direction is obtained by generalization on W and
specification to V. �

Proof of Theorem 5.3: (1) follows from (33) and a general theorem of
[BC04b], but it is not difficult to derive it from (33) directly. Substitute
w ∈ W , w ∈ A, w ∈ B, and w ∈ C into (33) for ν, ϕ, ψ, and χ, respec-
tively. Then generalizing on w and distributing the quantifier by (24) (using
(BL5)), we get (1) expanded according to the definitions of FCT. (Use (35)
to get the stated precondition of the theorem.)

(2) follows from (27) and the instances of (1)
[(A |= B) & (B |= C)] → (A |= C) and [(C |= B) & (B |= A)] →
(C |= A).

(3) It follows from (1) that
[(A′ |= A) & (B |= B′)] → [(A |= B) → (A′ |= B′)] and
[(A |= A′) & (B′ |= B)] → [(A′ |= B′) → (A |= B)]. Now use (27).

(4) follows from (34) in the same way as (1) from (33). (Note that the
converse of (4) does not hold.) �

Proof of Theorem 6.2: (8) is proved by generalization on w ∈ W and w′ ∈
W of the instance [(w ∈ A↔ w′ ∈ A) → (w ∈ B ↔ w′ ∈ B)] → [∆(w ∈
A ↔ w′ ∈ A) → (w ∈ B ↔ w′ ∈ B)] of (31), and distribution of both
quantifiers over the principal implication by (24). (The rule of bounded gen-
eralization follows from (26); the analogue of (24) for quantifiers relativized
to a crisp domain follows easily from (30).)

(9) is proved in the same way as (8) from the instance [∆(w ∈ A↔ w′ ∈
A) → ∆(w ∈ B ↔ w′ ∈ B)] → [∆(w ∈ A ↔ w′ ∈ A) → (w ∈ B ↔
w′ ∈ B)] of (32). �

Proof of Theorem 6.3. In the proof, the restriction of all quantifiers to W is
omitted for simplicity’s sake. It is an easy, but tedious exercise to verify that
the proof works in the same way with all quantifiers restricted to crisp W .
We shall use Xww′ as shorthand for w ∈ X ↔ w′ ∈ X .

(10) A ≡ B amounts to A ⊆ B & B ⊆ A here, whence by specification
we get (A ≡ B) → [(w′ ∈ A → w′ ∈ B) & (w ∈ B → w ∈ A)]. The
transitivity of implication entails [(w′ ∈ A → w′ ∈ B) & (w ∈ B →
w ∈ A) & (w ∈ A ↔ w′ ∈ A)] → (w ∈ B → w′ ∈ B); thus we get
[(A ≡ B) & (w ∈ A ↔ w′ ∈ A)] → (w ∈ B → w′ ∈ B). Similarly
[(A ≡ B) & (w′ ∈ A ↔ w ∈ A)] → (w′ ∈ B → w ∈ B). Since
BL ` [(χ → ϕ) & (χ → ψ)] → [(χ → (ϕ ∧ ψ))] and BL ` [(ϕ →
ψ) ∧ (ψ → ϕ)] → (ϕ ↔ ψ), we get (A ≡ B) → [(w ∈ A ↔ w′ ∈ A) →
(w ∈ B ↔ w′ ∈ B)]. Generalization on w and w′ plus the axiom (∀2)
conclude the proof. (10) for |=ft follows a fortiori (see Theorem 6.2).
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(11) In the proof of (10) we have proved (A ≡ B) → (Aww′ → Bww′).
By (25) with χ instantiated to Cww′ we get (A ≡ B) → [(Cww′ →
Aww′) → (Cww′ → Bww′)]. Generalization on w, w′ plus (∀2) and (24),
and generalization on C plus (∀2) conclude the proof. (11) for |=ft is proved
in the same way, only using ∆Cww′ when instantiating χ in (25).

(12) As in the proof of (10) we prove (A ≡ B) → (Bww′ → Aww′).
Since further BL ` [Aww′ & (Aww′ → Cww′)] → Cww′, we get [(A ≡
B) & Bww′ & (Aww′ → Cww′)] → Cww′, i.e., (A ≡ B) → [(Aww′ →
Cww′) → (Bww′ → Cww′)]. Generalization on w and w′ plus the axiom
(∀2) conclude the proof.

(13) From the instance ((D |= ?A) → (D |= ?B)) → [((D |= ?B) →
(D |= ?C)) → ((D |= ?A) → (D |= ?C))] of (BL1), by generalization on
D and distribution of the quantifier by (24) we get (13).

(14) follows from (13) by (27). �

Proof of Theorem 6.4. Let us denote ‖ϕ‖, ‖ψ‖, ‖ψ ′‖, and ‖ψ � ψ′‖ by A,
B, B′, and C respectively, and adopt the conventions of the Proof of Theo-
rem 6.3.

The precondition of the present theorem gives (Bww′ & B′ww′) →
Cww′, whence [∆Aww′ → (Bww′ & B′ww′)] → (∆Aww′ → Cww′) by
(25). Thence by (27) and BL∆ ` ∆χ → (∆χ & ∆χ) we get [(∆Aww′ →
Bww′) & (∆Aww′ → B′ww′)] → (∆Aww′ → Cww′). By generalization
on w and w′ and distribution of the quantifiers by (24) we get the required
formula.

That &, ∧, ∨, and ↔ substituted for � satisfy the precondition of the theo-
rem follows from (27), (29), (28), and transitivity of ↔, respectively. �

Proof of Theorem 6.6: (15) From (1) we have
[(A |= B) & (B |= ϕ)] → (A |= ϕ) and [(A |= B) & (B |= ¬ϕ)] → (A |=
¬ϕ).
Thence by (28) it follows that
[((A |= B) & (B |= ϕ))∨ ((A |= B) & (B |= ¬ϕ))] → ((A |= ϕ)∨ (A |=
¬ϕ));
now by BL ` [(χ & ψ) ∨ (χ & ψ′)] ↔ [χ & (ψ ∨ ψ′)] we get
[((A |= B) & ((B |= ϕ)∨ (B |= ¬ϕ)))] → ((A |= ϕ)∨ (A |= ¬ϕ)), which
is (15).

(16) From (15) we get
(A |= B) → [(B |= ?ϕ) → (A |= ?ϕ)] and (B |= A) → [(A |= ?ϕ) →
(B |= ?ϕ)],
whence by (27) we get (16).

(17) From (1) it follows that
(ϕ |= ψ) → [(A |= ϕ) → (A |= ψ)] and, using (4),
(ψ |= ϕ) → [(A |= ¬ϕ) → (A |= ¬ψ)]. Then



“08behounek”
2005/7/18
page 187

i

i

i

i

i

i

i

i

FUZZIFICATION OF GROENENDIJK-STOKHOF PROPOSITIONAL EROTETIC LOGIC 187

[(ϕ ≡ ψ) & ((A |= ϕ) ∨ (A |= ¬ϕ))] → ((A |= ψ) ∨ (A |= ¬ψ)) as in
(15). �

Proof of Theorem 6.7: By (27) we get
[(ψ+ → ϕ) & (ψ− → ¬ϕ)] → [(ψ+ & ψ−) → (ϕ & ¬ϕ)].
Since BL ` (χ→ (ϕ & ¬ϕ)) → ¬χ, we have
[(ψ+ → ϕ) & (ψ− → ¬ϕ)] → ¬(ψ+ & ψ−).
Then proceed as in the proof of (34) and (1). �

Proof of Theorem 6.9: (18) and (19) are proved exactly as (13) and (14).
(20) From (17) we have (ϕ ≡ ϕ′) → [(A |= ?ϕ′) → (A |= ?ϕ)]. Thus

from ((A |= ?ϕ′) → (A |= ?ϕ)) →
→ [((A |= ?ϕ) → (A |= ?ψ)) → ((A |= ?ϕ′) → (A |= ?ψ))],

which is an instance of (BL1), we get
(ϕ ≡ ϕ′) → [((A |= ?ϕ) → (A |= ?ψ)) → ((A |= ?ϕ′) → (A |= ?ψ))].
Then generalize onA and distribute the quantifier according to (∀2) and (24).

(21) From (17) we have (ψ ≡ ψ′) → [(A |= ?ψ) → (A |= ?ψ′)].
As in the proof of (20) we derive
(ψ ≡ ψ′) → [((A |= ?ϕ) → (A |= ?ψ)) → ((A |= ?ϕ) → (A |= ?ψ′))]
and proceed as in the previous case.

(22) From (17) we have (ϕ ≡ ψ) → [(A |= ?ϕ) → (A |= ?ψ)].
Then generalize on A and use (∀2).

(23) From BL ` ψ → ¬¬ψ we can infer ψ |= ¬¬ψ and by (1) get
(A |= ψ) → (A |= ¬¬ψ), whence
[(A |= ?ϕ) → (A |= ?ψ)] → [(A |= ?ϕ) → (A |= ?¬ψ)].
To finish the proof we generalize on A and apply (24). �
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