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STRAWSONIAN PRESUPPOSITIONS AND LOGICAL
ENTAILMENT∗

JACEK MALINOWSKI

Abstract
We formalize and investigate by means of logical entailment two
of Strawson’s notions of presupposition: Strawsonian presupposi-
tion and presupposition via negation. We develop the theory of bi-
matrices - a formal tool to investigate Strawsonian presuppositions.
We prove that any class of presuppositional bi-matrices determines
the Strawsonian presupposition operator which has only tautolog-
ical presuppositions. We also prove that virtually all logical con-
sequences determine a notion of presupposition via negation which
admits only tautological presuppositions

Introduction

In 1892 [1952 p. 69] Frege systematically investigated the notion of presup-
position. According to Frege:

“If anything is asserted there is always an obvious presupposition that the
simple or compound proper names used have a reference. If one therefore as-
serts ‘Kepler died in misery’, there is presupposition that the name ‘Kepler’
designates something.”

Since Frege’s seminal paper a number of approaches dealing with the phe-
nomenon of presupposition have been proposed. It is not the aim of this pa-
per to analyze the phenomenon of presupposition. For review of approaches
to presupposition we refer the reader to Levinson [83]. A review of more
recent results in the subject can be found in Beaver [97]. The aim of the
present paper is to analyze from logical point of view just one approach to
the concept of presupposition – a concept known in the literature as Straw-
son’s notion of presupposition. According to the original proposal presented

∗This paper was prepared during the author’s stay at the Netherlands Institute for Ad-
vanced Study. The work on this paper was supported by the Flemish Ministry responsible for
Science and Technology (contract BIL98/37).
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124 JACEK MALINOWSKI

by Strawson in [49] (p. 175): “a statement S presupposes a statement S ′ if
and only if the truth of S ′ is a precondition of the truth-or-falsity of S”. The
Strawsonian presupposition is usually considered in the literature in the fol-
lowing form: P presupposes Q if and only if Q is true on condition that P
is true or P is false.

Under very weak additional assumptions the definition above is equivalent
to the following concept of presupposition via negation - P presupposes Q
if and only if P entails Q and ¬P entails Q.

David Beaver [97] (p. 948) formulates three-valued Strawsonian presup-
position by means of three-valued possible worlds semantics: P presupposes
Q if and only if for all possible worlds w if P is true or false in the world w
then Q is true in the world w. Any sentence P may take in a world w any of
the three semantic values: true, false and undefined.

Strawsonian presupposition is based on two other notions: a logical en-
tailment and logical value of falsity, while the presupposition via negation
depends on a logical entailment and the negation connective. In this paper
we formalize in a general way both of the definitions. In the first section
we develop the theory of bi-matrices and operations determined by them.
In the second section we use bi-matrices as a tool to formalize Strawsonian
presupposition. We prove that for broad classes K of bi-matrices the notion
of presupposition determined by this class has the unwanted property that
all the sentences have only tautological presuppositions (theorems 8 and 9).
The class K contains, among others, bi-matrices determining all the logics
expressed in the language of classical logic and contained in the classical
logic (theorem 6).

The rest of the second section concerns presupposition via negation. For a
given logical consequence operation C defined in a sentential language with
the negation ¬ we say that P C-presupposes Q if and only if Q ∈ C(P ) and
Q ∈ C(¬P ). We introduce the notion of a sub-classical logic. A logic is
sub-classical if and only if limiting its language to classical connectives we
obtain the logic weaker (as a consequence operation) than the classical logic.
For example, all the logics obtained from the classical logic by means of
adding new operators are sub-classical. We prove that for any sub-classical
consequence operation any sentence of classical logic has only tautological
presuppositions (theorem 13).

The notions of Strawsonian presupposition and that of presupposition via
negation have different but overlapping domains. It is easy to prove that
these notions are equivalent in the common part of their domains.
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1. Operations and bi-matrices

By a sentential language we shall mean an absolutely free algebra S =
(S, f1, ..., fn) freely generated by an infinite, countable set V ar(S) of sen-
tential variables. The operations f1, ..., fn of the algebra S will be called
connectives. We shall assume that the language has a finite number of con-
nectives. The elements of S will be called sentences or formulas. By a
substitution in S we mean any endomorphism e ∈ End(S), i.e. any homo-
morphism of the language S onto itself. We will say that a set X is closed
under substitutions if and only if for any substitution e, e(X) ⊆ X .

Let a language S be given. A function:

C : S ⊇ X 7−→ C(X) ⊆ S,

satisfying conditions: X ⊆ C(X), if X ⊆ Y , then C(X) ⊆ C(Y ),
CC(X) = C(X) will be called a consequence operation. If, in addition,
e(C(X)) ⊆ C(e(X)) for any substitution e in S and any set X ⊆ S, then
C will be called a structural consequence operation or a logic. A logic C ′

is called stronger or equally strong than a logic C (we write C ≤ C ′) if for
any set of sentences X ⊆ S, we have C(X) ⊆ C ′(X).

A logical matrix is a pair M = (A, D), where A is an abstract algebra and
D — a subset of the set A. The algebra A is called an algebra of a matrix
M , the set D will be called a set of designated elements.

Two matrices M = (A, D) and N = (B, E) are called similar if the
algebras A and B are of the same type. Let S be a sentential language. We
shall call a matrix M = (A, D) a matrix for the language S if the algebras
A and S are of the same type. Any class K of matrices for a language S we
shall call a matrix semantics for S. In the remaining part of this work by
a class of matrices we shall always mean a class of matrices that are of the
same type. If M = (A, D) is a matrix for S, then the elements of the set
Hom(S, A) of homomorphisms of the language S into the algebra A will
be called valuations of S into A.

Every semantics K for S determines a function CnK : P (S) → P (S)
in the following way: α ∈ CnK(X) if and only if for every matrix M =
(A, D) ∈ K and every valuation v ∈ Hom(S, A), if v(X) ⊆ D, then v(α) ∈
D. It is easy to prove that the function CnK is a structural consequence
operation on S.

We say that a logic C is strongly complete relative to a semantics K for
S, if C = CnK. A semantics K is strongly adequate for a logic C if C is
strongly complete relative to K.

Let C be a logic. For any X ⊆ S a matrix: LX = (S, C(X)) is called
a Lindenbaum matrix for C. The class of matrices LC = {LX : X ⊆ L}
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126 JACEK MALINOWSKI

will be called the Lindenbaum bundle for C. One can prove that every logic
is strongly complete relative to the Lindenbaum bundle LC (see Wójcicki
[87]).

Let C be a logic. We shall call a matrix M a C-matrix, if C ≤ CnM .
A class of all C-matrices will be denoted by Mod(C). Of course LC ⊆
Mod(C). Every logic C is strongly complete relative to a class Mod(C).
There exists a one–to–one correspondence between classes Mod(C) and
logics.

For the theory of logical matrices we refer the reader to R. Wójcicki [87],
J. Malinowski [89] and J. Czelakowski [01]. Some results and notions con-
cerning logical matrices will be generalized in the next section. In this sec-
tion we will present only some properties of sub-matrices and matrix con-
gruences which will be used in this paper.

By an operation we mean any function of the form:

F : S ⊇ X 7−→ F (X) ⊆ S,

An operation satisfying the condition X ⊆ F (X) will be called inclu-
sive. An operation satisfying the condition if X ⊆ Y, then F (X) ⊆
F (Y ) will be called monotonic. An operation will be called idempotent if
and only if it satisfies the condition FF (X) = F (X). An operation is
called structural if and only if it satisfies the condition: if P ∈ F (X) then
any substitution of P belongs to F (Y ), where Y is a set of all respective
substitutions of sentences from the set X .

By a bi-matrix we mean a triple M = (A, D, E) where A is an abstract
algebra, D and E are subsets of A – two sets of designated elements of M .
We will say that two bi-matrices are similar if and only if their underlying
algebras are of the same type (i.e. have the same operations). By a valuation
of S in a bi-matrix M we mean any homomorphism of the language S into
the algebra A of the matrix M .

G. Malinowski [90] introduced the notion of q-matrices. He considered
q-matrices as a formal tool for study of logics of acceptance and rejection.
The notion of bi-matrices is a generalization of the notion of q-matrices. One
can easily check that any q-matrix is equivalent to some bi-matrix (A, D, E)
such that E ⊆ D.

Every class of bi-matrices K determines a function FnK : P (S) → P (S)
defined in the following way: P ∈ FnK(X) if and only if for every bi-matrix
M = (A, D, E) ∈ K and every valuation v, if v(X) ⊆ D, then v(P ) ∈ E.
If a class K consist of single bi-matrix M, then we will write FnM instead of
Fn{M}.

It is easy to check that FnK is a structural, monotonic operation.
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We say that an operation F is strongly complete relative to a class of bi-
matrices K for S, if F = FnK. A class K of bi-matrices is strongly adequate
for an operation F if F is strongly complete relative to K.

Let F be an operation. For any X ⊆ S a bi-matrix LX = (S, X, F (X))
will be called a Lindenbaum bi-matrix for F . The class of bi-matrices LF =
{LX : X ⊆ S} will be called the Lindenbaum bi-bundle for F .

Theorem 1 : Any structural monotonic operation F is strongly complete rel-
ative to the Lindenbaum bi-bundle LF .

Proof. Suppose that F is structural and monotonic. We will prove that F =
FnK for K = {M : M = (S, X, F (X)), X ⊆ S}.

Suppose that P ∈ F (X). Given any M = (S, Y, F (Y )) ∈ K and any
valuation v : S 7−→ S such, that v(X) ⊆ Y then by monotonicity and
structurality we have v(P ) ∈ v(F (X)) ⊆ F (v(X)) ⊆ F (Y ).

Now suppose that P 6∈ F (X). Let us consider the matrix (S, X, F (X))
and the identity function id as a valuation, then obviously id(X) ⊆ X but
id(P ) 6∈ F (X), and hence P 6∈ FnK(X). �

Theorem 2 : Given a bi-matrix M = (A, D, E).
a) If D ⊆ E then FnM is inclusive
b) If E ⊆ D then FnM is idempotent
c) If D = E then FnM is a structural consequence operation.

Proof. a) Let us assume that D ⊆ E, then for any valuation v : S 7−→ A
such that v(X) ⊆ D we have v(X) ⊆ E. Hence X ⊆ FnM (X).
b) Assume that E ⊆ D. Let us note that for any valuation v : S 7−→ A such
that v(X) ⊆ D we have v(FnM (X)) ⊆ E ⊆ D.

Suppose that P 6∈ FnM (X), then there exists a valuation v : S 7−→ A
such, that v(X) ⊆ D and v(P ) 6∈ E. From the remark above we have
v(FnM (X)) ⊆ D. Hence P 6∈ FnMFnM (X).
c) is an immediate consequence of a) and b). �

The notion of bi-matrix can serve as a tool not only for the description of
the notion of logical entailment but also for the investigation of other notions.
One of them is the operator of presupposition. In the next section we will
investigate it in detail. We shall consider it here just as an illustration of the
notion of bi-matrix.

The operation Pr of presupposition is defined by means of the bi-matrix
Bm(sk3) = (sk3, {0, 1}, {1}), where sk3 denotes the strong three-valued
Kleene algebra with operations of → ∧, ∨ and ¬ defined in the following
way:
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128 JACEK MALINOWSKI

sk3

∨ 0 1/2 1
0 0 1/2 1

1/2 1/2 1/2 1
1 1 1 1

∧ 0 1/2 1
0 0 0 0

1/2 0 1/2 1/2

1 0 1/2 1

→ 0 1/2 1 ¬
0 1 1 1 1

1/2 1/2 1/2 1 1/2

1 0 1/2 1 0

Thus P ∈ Pr(X) = FnBm(sk3)(X) if and only if for any bi-valuation v
such, that v(X) ⊆ {0, 1} we have v(P ) = 1.

One can interpret the operation Pr in the following way: P ∈ Pr(X)
means that P is true provided all the sentences from the set X have the
classical logical values (i.e. are true or are false). Such a meaning perfectly
mirrors Strawson’s [49] approach to presupposition. We leave the discussion
of presuppositions to the last section.

The notion of operation can be obviously considered as a generalization of
logical consequence operation and the notion of bi-matrix as a generalization
of logical matrix. Most of the notions introduced above for the consequence
operation can be generalized for operations.

Suppose that F is a structural and monotonic operation. We shall call a
bi-matrix M a F -bi-matrix, if for any set X F (X) ≤ FnM (X). The class
of all F -bi-matrices will be denoted by Bimod(F ).

Of course any Lindenbaum bi-matrix for F is F -bi-matrix: LF ⊆ Bimod
(F ). So, from theorem 1 we can conclude that:

Corollary 3 : Every structural and monotonic operation F is strongly com-
plete relative to the class Bimod(F ). Moreover, given two monotonic struc-
tural operations F1 and F2, for F1 = F2 it is necessary and sufficient that
Bimod(F1) = Bimod(F2). �

According to Corollary 3 there exists one-to-one correspondence between
classes Bimod(C) and structural monotonic operations. This result is closely
parallel to the respective characterization of structural consequences by means
of logical matrices. One can develop the theory of bi-matrices parallel to the
respective results on logical consequence. We leave this task for another pa-
per and concentrate on the properties of bi-matrices which are important for
investigating presuppositions.

The bi-matrix M = (A1, D1, E1) will be called a sub-bi-matrix of the bi-
matrix N = (A2, D2, E2), in symbols M ⊆ N , if A1 is a subalgebra of the
algebra A2 and also D1 = A1 ∩ D2, E1 = A1 ∩ E2.

The following theorem generalizes well know property of logical matrices.

Theorem 4 : Let M, N be bi-matrices for a language S. If M is a sub-bi-
matrix of a bi-matrix N , then FnN ≤ FnM .
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Proof. Let M = (A1, D1, E1) be a sub-bi-matrix of N = (A2, D2, E2).
Suppose that α ∈ FnN (X). Then for any valuation v of S into A2 such that
v(X) ⊆ D2 we have v(α) ∈ E2. We have to prove that for any valuation
v of S into A1 such that v(X) ⊆ D1 we have v(α) ∈ E1. Let id denote
the identical embedding of A1 into A2. Given any valuation v of S into
A1 such that v(X) ⊆ D1, then id ◦ v (a composition of id and v) is a
valuation of S into A2 such that id ◦ v(X) ⊆ D2 ∩ A1 = D1: Hence
v(α) ⊆ E2 ∩ A1 = E1. �

2. Presuppositions

Let us consider the following definition of presupposition which mirrors the
idea presented by Strawson ([49] pp. 175–176):

(1) P presupposes Q if and only if the truth of Q is a precondition of the
truth-or-falsity of P .

According to (1) Q has to be true in order for P be true or false. Assuming
also the bivalence principle (5) we obtain that Q has to be true independently
of the logical value of P , hence Q is a tautology. Below we will present
this argument in a formal way. That fact is well known. Levinson [83]
pp. 175–176 presented it in detail and then states that: “It has been shown
that perfectly well-behaved logic with three values can be constructed and
it could be claimed that such a logical systems are (by virtue of their ability
to handle presupposition) a notable advance in models of natural language
semantics.” We are going to show that Levinson is mistaken, at least in the
case of sentential logic. Introducing a third logical value does not save the
Strawson definition. Surprisingly, it appears that also without assuming (5)
the only presuppositions admitted by (1) are classical tautologies.

Strawson’s definition formulated in (1) makes the notion of presupposition
depend on the notion of logical entailment. We will investigate the relation
between logical entailment and presupposition defined by it. Suppose that C
is a logic (structural consequence operation). Then the part of (1) consisting
of ”if P is true then Q is true” can be obviously formulated by means of Q ∈
C(P ). The remaining part "if P is false then Q is true" is more complicated.
Any inference with a false premise is valid. For this reason, in order to use
here the notion of entailment, we have to use the notion of negation. Suppose
then, that the language of C contains a negation connective ¬ then (1) might
be expressed as:

(2) P C-presupposes Q if and only if Q ∈ C(P ) and Q ∈ C(¬P ).
The minimal assumption on the negation operator ¬ is that it is an unary

operator in a given language satisfying the condition (3) below. (3) is weaker
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than the condition (4) satisfied by the classical negation, as well as, among
others, by the negation connectives in many-valued logics.

(3) If P is false then ¬P is true.
(4) ¬P is true if and only if P is false.
(5) Any sentence P is either true or false.

The notion of presupposition defined by means of (2) will be called pre-
supposition via negation. It depends strictly on the logical consequence op-
eration and can be applied only for logical consequences with a negation
connective satisfying (3). In general it does not yield a method to find out
the presupposition of many sentences.

Strawson’s definition (1) can be approached also in other, more general
and perhaps more direct way by means of bi-matrices. Let’s consider the
operator Fn of presupposition in the following intuitive sense: For a given
set X of sentences the set Fn(X) consists of all the sentences Q which are
presuppositions of all the sentences from the set X . The formalization of (1)
in terms of the operator Fn employs three notions: logical entailment and
two classical logical values. The same notions are employed in the opera-
tion determined by the definition of bi-matrix: Let Bm(2) denotes bi-matrix
(2, {0, 1}, {1}), where 2 is a two-element Boolean algebra. We will call
bi-matrix Bm(2) the classical presuppositional bi-matrix. The operation
FnBm(2)(X) determined by Bm(2) formalizes intuitions expressed by (1)
with the assumption of (5). Thus P ∈ FnBm(2)(X) if and only if P is true
provided all the sentences from X are true or false. Unfortunately this op-
eration contradicts the usual sense of the notion of presupposing, since we
have:

Theorem 5 : For any set of sentences X the set FnBm(2)(X) is equal to the
set of all classical tautologies.

Proof. Suppose that P ∈ FnBm(2)(X), then for any valuation v such, that
v(X) ⊆ {0, 1} we have v(P ) = 1. But obviously any valuation satisfies the
condition v(X) ⊆ {0, 1}. As a consequence for any valuation v, v(P ) = 1,
and hence P is a classical tautology.

Given any classical tautology P , obviously for any valuation v v(P ) = 1,
of course any valuation satisfies the condition v(X) ⊆ {0, 1}, then P ∈
FnBm(2)(X). �

Theorem 5 proves that in classical logic there are no contingent presuppo-
sitions. Obviously it contradicts elementary intuitions concerning presuppo-
sitions and proves that Strawson’s notion of presupposition makes no sense
in classical sentential logic. A similar statement formulated in a slightly dif-
ferent formal setting has been proved in Kracht [93]. It is then necessary to
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reject the bivalence principle (5) and admit that besides of being true or false
a given sentence can have some other logical value.

Let us note that (1) uses the notions of truth and falisty but does not exclude
that there are some other logical values. It allows us to generalize the notion
of classical presuppositional bi-matrix.

A bi-matrix Bm = (A, D, E) will be called a presuppositional bi-matrix
if and only if the classical presuppositional bi-matrix Bm(2) is a sub-bi-
matrix of Bm and moreover D = {1, 0} and E = {1}, where 1 and 0
denote respectively unit and zero element of two element Boolean algebra 2.
We suppose a class of presuppositional bi-matrices K. By the presupposition
operator we will mean the operator FnK .

By a Strawsonian presupposition we mean any presupposition operator.
We will not discuss here what the status of other logical values is and

in what extent it is justified to use the name “logical value” for the third
element of the algebra sk3 or to other elements of given bi-matrix. By the
classical logical value we mean just 1 and 0 — the truth and the false, while
by logical value we mean any element of a given bi-matrix. Then classical
logical values are logical values but there exist many non-classical logical
values.

The original Strawsonian definition of presupposition (Strawson [49] pp.
174–176) explicitly introduces a kind of third logical value into the tri-
chotomy: true, false, meaningless. The idea of interpretation of Strawson’s
definition in many-valued logics has been extensively elaborated. We re-
fer the reader to Beaver [97] for a review of three and four-valued logical
systems interpreting Strawson’s presupposition.

We will now introduce two algebras determining well known three-valued
logics. Let lu3 denote the three valued Łukasiewicz algebra which differs
from sk3 only by the value of 1/2 → 1/2 = 1. By wk3 we mean the
following weak Kleene three-valued algebra. Precisely:

wk3

∨ 0 1/2 1
0 0 1/2 1

1/2 1/2 1/2 1/2

1 1 1/2 1

∧ 0 1/2 1
0 0 1/2 0

1/2 1/2 1/2 1/2

1 0 1/2 1

→ 0 1/2 1 ¬
0 1 1/2 1 1

1/2 1/2 1/2 1/2 1/2

1 0 1/2 1 0

lu3

∨ 0 1/2 1
0 0 1/2 1

1/2 1/2 1/2 1
1 1 1 1

∧ 0 1/2 1
0 0 0 0

1/2 0 1/2 1/2

1 0 1/2 1

→ 0 1/2 1 ¬
0 1 1 1 1

1/2 1/2 1 1 1/2

1 0 1/2 1 0
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The algebras sk3, wk3, lu3 determine three different three valued logic in
the same language. Let S denote the set of all sentences of that language. For
A ∈ {sk3, wk3, lu3} by Bm(A) we mean the bi-matrix (A, {1, 0}, {1}),
where 1 and 0 denote respectively the unit and zero elements of two element
Boolean algebra 2.

The following theorem shows that the third logical value does not improve
the Strawson’s definition.

Theorem 6 : Let Bm ∈ {Bm(sk3), Bm(wk3), Bm(lu3)} then:
a) FnBm is a presupposition operator.
b) For any set of sentences X the set FnBm(X) consists of classical tau-
tologies).

Proof. a) Obviously, both lu3 and wk3 contain two-element Boolean algebra
2 as a subalgebra. Hence Bm(2) is a sub-bi-matrix of Bm(lu3) as well as
of Bm(wk3) and of FnBm(lu3)(∅).

We will prove b) for Bm(sk3). The proof for the remaining two algebras
is similar.

It is easy to check that Bm(2) is a sub-bi-matrix of Bm(sk3). Hence
from theorem 4 we deduce that for any sentence P and any set of sentences
X , if P ∈ FnBm(sk3)(X), then P ∈ FnBm(2)(X). Then from theorem 5
we deduce that P is a classical tautology. �

Let us note that FnBm(X) usually does not contain all classical tautolo-
gies. The following theorem describes some properties of FnBm(X). Its
easy proof is left to the reader.

Theorem 7 : Let Bm ∈ {Bm(sk3), Bm(wk3), Bm(lu3)}. Then:
a) FnBm(sk3)(∅) = FnBm(sw3)(∅) = ∅.
b) FnBm(lu3)(∅) consist of all tautologies of three valued Łukasiewicz logic.
c) If T is the set of all classical tautologies then for X ⊆ T FnBm(X) = T .
d) For any set X FnBm(X) ∈ {∅, S, T}. �

The sets of tautologies of the strong Kleene three-valued logic and the
weak Kleene three-valued logic are empty. As a consequence theorem 7
shows that the set FnBm(X) varies between the set of respective three-
valued tautologies and the set of classical tautologies.

Theorems 6 and 7 show that three-valued logics do not work better for
the formalization of presupposition than classical logic does on the contrary,
in a sense, it work even worse than classical logic. Classical logic does
not give us a good tool for formalization of presupposition not because any
tautology is a presupposition of any sentence – this is in principle acceptable
– but because no contingent sentence can be a presupposition. It appears
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that other three-valued logics lead us to narrower class of presuppositions of
a given sentence than classical logic does.

The following theorem generalizes Theorem 6.

Theorem 8 : Let K be a class of bi-matrices such that Bm(2) is a sub-bi-
matrix of some bi-matrix from the class K. Then for any set of sentences X
any element of FnK(X) is a classical tautology.

Proof. As Bm(2) is a sub-bi-matrix of some bi-matrix from K, then from
theorem 4 we deduce that for any sentence P and any set of sentences X ,
if P ∈ FnK(X), then P ∈ FnBm(2)(X). Then from theorem 5 we deduce
that P is a classical tautology. �

Corollary 9 : For any presupposition operation Fn and any set of sentences
X each element of FnK(X) is a classical tautology.

Theorem 8 allows us to exclude a number of large classes of elaborated
logical consequences from the set of acceptable candidates for formalization
of presupposition by means of Strawson’s idea . All the many-valued as well
as fuzzy logics satisfy the assumptions of Theorem 8 and hence have to be
excluded. Also all the logical systems based on lattice semantics, for ex-
ample intuitionistic and intermediate logic, orthologics, are excluded for the
same reason. Many kinds of relevant logics also possess a matrix semantics
based on lattices (see Czelakowski [01] pp. 328–342). In fact it is hard to
imagine a logical system formulated in the language with the connectives →,
∧, ∨ and ¬ which does not satisfy the assumption of theorem 8. The only
such logic is trivial inconsistent logic, which, of course, for other reasons
cannot serve as a tool for the formalization of the notion of presupposition.

The rest of this section will be devoted to an investigation of presupposi-
tion via negation.

A natural question arises. Perhaps the language of classical sentential logic
is too poor to formalize the phenomenon of presupposition. What, if we
extend it by adding new operators? We are going to show that also this way
does not lead us to proper solution. It appears that the results similar to
theorem 8 and corollary 9 can be proved for any sentential language which
is an extension of the classical one.

Let S0 denote the language of classical logic, i.e. the language with two
binary and one unary connective corresponding respectively to conjunction,
disjunction and negation. A sentential language S will be called an extension
of S0 if and only if among connectives of S there exists two binary and one
unary operators.

According to this definition the modal language with connectives necessi-
tation, conjunction, disjunction and negation is an extension of the classical
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language S0. More general, any language obtained by adding new connec-
tives to S0 is an extension of S0.

Let a sentential language S be given together with a consequence operation
C. Suppose that S is an extension of S0. It is easy to observe that any
sentence of S0 is also a sentence of S. By a reduct of C to S0 we mean the
consequence operation C0 defined on S0 in the following way: P ∈ C0(X)
if and only if P ∈ S0 and P ∈ C(X).

The following notion is crucial for the remaining part of this section. A
consequence operation C in the language S will be called sub-classical if
and only if the following conditions are satisfied:
a) S is an extension of S0.
b) For any P ∈ S0 and X ⊆ S0 if P ∈ C(X), then P ∈ CnM(2)(X), where
M(2) denotes the matrix consisting of two-element Boolean algebra 2 with
its unit element as the only designated element.

The notion of sub-classical logic is very broad. It is hard to find a logic
which is not sub-classical. We will show this in the following example and
theorems:

Example 10 : a) By the classical sentential logic we mean the consequence
operation Cl determined by the class of matrices of the form (A, {1}), where
A is a Boolean Algebra and 1 is its unit. It is well known that in particular
Cl = CnM(2), hence Cl is sub-classical.

b) By the trivial (inconsistent) logic Tr we mean the consequence opera-
tion in the language S defined in the following way: Tr(X) = S for any set
of sentence X . Obviously Tr is not sub-classical.

c) If a logic C in the language S0 is weaker than the classical logic Cl,
then C is sub-classical.

We will show a broad class of modal logical consequences satisfying the
condition of sub-classicality. However, we have to start by introducing some
preliminary notions.

Let S� denote a modal sentential language i.e. the language S� = (S,
∨,∧,¬, �). Obviously S� is an extension of the classical language S0 by
adding to it a necessitation connective �. By a modal system we mean any
set of sentences of the language S� containing all classical tautologies and
closed under substitution and modus ponens. A modal system L is called
classical (see Segerberg [1971]), if L is closed under the rule of extension-
ality: P ↔ Q ` �P ↔ �Q. It is easy to observe that any normal modal
system is classical, but also many of non-normal modal system are classical.
For details we refer to the monograph G. E. Hughes, M. J. Cresswell [96].
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The notion of a modal system, in principle, does not equip us with the
notion of entailment. We will define two types of modal consequence oper-
ations formalizing modal logical entailment.

Suppose that a modal system L is given. By L→ we mean the consequence
operation in the language S� defined in the following way: for any set X ⊆
S� L→(X) ⊆ S� is the least set of sentences containing L and X and closed
with respect to modus ponens. Thus L→(∅) = L is closed under substitution
while, in general L→(X) does not need to be closed under substitution.

In the literature one can also find another notion of modal entailment.
Thus, by L→

�
we mean the consequence operation in the language S� de-

fined in the following way: for any set X ⊆ S� L→
�

(X) ⊆ S� is the least
set of sentences containing L and X and closed with respect to modus po-
nens and the rule of necessitation P ` �P .

An algebra A = (A,∧,∨,¬, �) is called a minimal modal algebra if
(A,∧,∨,¬) is a Boolean algebra. Let L be a modal system. We say that
a minimal modal algebra A is appropriate for the system L, if (A,∧,∨,¬)
is a Boolean algebra and A satisfies the equations PA = 1 (where PA is a
term over A corresponding to the sentence P ) for all P ∈ L.

For example a minimal modal algebra appropriate for the modal system
S4 satisfies the conditions: �(x ∧ y) = �x ∧ �y, �1 = 1, �x ≤ x,
x = �¬�¬x, �x = ��x.

Theorem 11 : (J.Malinowski [89]) For any classical modal system L, the
consequence operations L→

�
and L→ are determined respectively by the fol-

lowing classes ML and NL, where
ML is the class of all matrices of the form (A, {1}), where A is appropriate
for L and 1 is unit element of A.
NL is the class of all matrices of the form (A, D), where A is appropriate
for L and D ⊆ A satisfies the following conditions:

a) for any a, b ∈ D and c ∈ A a ∧ b, a ∨ c ∈ D;
b) for any set E ⊆ D if all elements of E satisfy the condition, if a ↔ b ∈

E then �a ↔ �b ∈ E, then E = {1}.�

Theorem 12 : For any classical modal system L the consequence operations
L→

�
and L→ are sub-classical.

Proof. Let 2� denotes two-element minimal modal algebra. Two-element
Boolean algebra 2 is a reduct of 2� to Boolean operations. It is easy to
check that for any P ∈ S0 and X ⊆ S0 if P ∈ Cn(2�,{1})(X), then P ∈
Cn(2,{1})(X). Observe that the matrix consisting of 2� and its unit element
as a set of designated elements belong to ML as well as to NL.
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Suppose a classical modal system L, and suppose that P ∈ S0 and X ⊆ S0

and P ∈ L→
�

(X). By 3.6P ∈ CnML
(X)⊆ Cn(2�,{1})(X)⊆ Cn(2,{1})(X).

As a consequence L→
�

(X) is sub-classical. �

All the classical tense logic, classical deontic logics and their combinations
defined in the way similar to the definition above are sub-classical. More
general, any extension of classical logic is sub-classical. It would be a very
interesting problem to find a reasonable logic which is not sub-classical.

The main result concerning presupposition via negation is:

Theorem 13 : Given a sub-classical logic C and the sentence P, Q ∈ S0.
Then, if P C-presupposes Q then Q is a classical tautology.

Proof. Suppose that P C-presupposes Q, then by the definition (2) we have
Q ∈ C(P ) and Q ∈ C(¬P ). By the definition of sub-classical logic we
have that Q ∈ CnM(2)(P ) and Q ∈ CnM(2)(¬P ) then for any valuation v
such, that v(P ) = 0 we have v(Q) = 1 as well as for any valuation w such,
that w(P ) = 1 we have v(Q) = 1. As a consequence v(Q) = 1 for any
valuation v. �

There is a clear interconnection between Strawsonian presupposition and
the presupposition via negation. Given a Strawsonian presupposition oper-
ator Pres defined by means of the class of presuppositional bi-matrices K.
Then the class of logical matrices K ′ = {(A, E) : (A, D, E) ∈ K} deter-
mines some consequence operation C, and hence by means of (2) it defines
presupposition via negation. It is easy to check that both the operators deter-
mine the same presuppositions for those sets of sentences for which both of
them are defined.

In the same sense the Strawsonian presupposition Pres generalizes the
presupposition via negation. (2) make sense only for considering presuppo-
sitions of a single sentence. In general, there is no clear method of general-
izing (2) for presuppositions of sets of sentences. This results from the use
of negation operation. If we do not indicate the concrete logical entailment,
we are unable to determine what is the negation of the set of sentences X
even if X is finite. The case of an infinite set X causes even more problems.
If the logical consequence in (2) satisfies de Morgan laws, then we could
identify the negation of (finite) set X with the disjunction of the negations of
its elements. However this identification depends strictly on the underlying
consequence operation.

The results presented in this paper can be extended for Kartunnen’s ap-
proach to presupposition (Karttunen [71] (see also Levinson [83] p. 202,
J. Martin [77] and [70]). According to it P presupposes Q if and only if
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possibility of P entails Q and the possibility of ¬P entails Q. We leave the
presentation of these result to other paper.

Conclusion

The theorems proved in this paper shows that the literal formalization of
Strawson’s notion of presupposition, based on the sentential logical entail-
ment, does not lead us to any reasonable formal operator of presupposition.
However it does not mean that Strawson’s idea of presupposition makes no
sense. It seems that the problem consists in the misuse of the notion of
logical entailment. Let us note that even in the classical Fregean example,
the sentence “Kepler died in misery” does not logically entail the sentence
“Kepler existed”. In the examples presented by Strawson, sentences also do
not logically entail their presupposition. It seems that a link between sen-
tences and their presuppositions cannot be determined via a logic. Strawson
seems to be aware of it in the following comment on historical approaches
to presupposition (Strawson [50]):

“Neither Aristotelian nor Russelian rules give the exact logic of any
expressions in ordinary langauge, for ordinary language has no ex-
act logic”.
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