
“05polos_hannan”
2005/7/18
page 85

i

i

i

i

i

i

i

i

Logique & Analyse 185–188 (2004), 85–121

A LOGIC FOR THEORIES IN FLUX

LÁSZLÓ PÓLOS AND MICHAEL T. HANNAN

Introduction

It is an elementary requirement for any symbolic logic that the inferential be-
havior of sentences, formulæ, depend on nothing but logical forms. Study-
ing theory building in the social sciences led us to the conclusion that the
inferential behavior of several kinds of natural-language sentences cannot be
accounted for in terms of the logical form that usual first-order formaliza-
tions attribute to them. In this paper we present our latest attempt to provide
adequate logical forms for all the relevant kinds of sentences. The language
we present is a modification and extension of one presented earlier (Pólos
and Hannan 2001, 2002). The modifications reflect our experience in using
the logic in formalizing sociological theories, especially theories of orga-
nizational ecology (Pólos, Hannan, and Carroll 2002; Hannan, Pólos, and
Carroll 2003a, 2003b, 2003c; Hannan, Carroll, and Pólos 2003a, 2003b).
We found that “rule like” statements, generic sentences that express rules
with exceptions, are broadly used, and that it is a mistake to interpret these
sentences as universally quantified formulæ.

Encouragingly, perhaps, these experiences led us to conclusions rather
similar to the ones Imre Lakatos arrived to in his seminal study of scien-
tific research programs. (Lakatos, I. 1978.) Lakatos argued extensively that
Popper’s demarcation between science and pseudo-science paints an unreal-
istic picture of the actual practice of scientific research. The falsification of
a scientific theory often does not persuade researchers to abandon it. This
behavior appears to be odd, as Popper thought is was, only if one assumes
that researchers think in terms of universal claims, for which falsification
should have been a lethal blow. If, on the other hand, they take their claims
as generic — rather than universal — it is sensible that they protect the core
insights of a theory by building a protective belt around the core that can
be used to explain away some of the challenges that, in the absence of this
protective belt, would be interpreted as successful falsifications of the (core)
theory. We found the task of building a logical model of this type of protec-
tive behavior challenging. If the conclusions that can be drawn from the core
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of the theory might be withdrawn in the presence of some auxiliary assump-
tions from the protective belt, then they are presumptions, expectations only:
they can not be used without further ado as premises of new arguments.

The logic of the argumentation appears to be nonmonotonic, and an ade-
quate formalization should assign different logical forms to the premises and
the conclusions derived from them. Further scrutiny revealed that premises
originating from the core and from the protective belt of the theory exhibit
still different inferential behavior, so in an adequate formal language their
logical form has to be different too. To formalize the protective belt we need
appropriate logical forms for the auxiliary assumptions. Such assumptions
are not persistent parts of a theory, and the core of the theory does not claim
whatever these assumptions express. The empirical validity of these assump-
tions is not scrutinized. We concluded that a third, intensional quantifier has
to be added to the ones we introduced in our earlier attempts, the “normally”
and “presumably" quantifiers.

In addition of the expansion of the logical constants we also extended the
applicability of some of the constructions. In the present version, the non-
monotonic intensional quantifiers are no longer restricted to be in the out-
most operator position of a formula. Embedded occurrences are allowed,
too, to enable us to formulate definitions (universally quantified sentences)
based on properties individuals normally have.

To accommodate these changes we redesigned the formal semantics. The
revision is a conservative extension of our earlier efforts: if it is restricted to
the language fragment of the earlier efforts (Pólos and Hannan 2001, 2002)
this semantics validates the same inferences. However, it is capable of han-
dling the considerable increase of complexity the new syntax required.

Logic and Theory Building

Empirical theories are rarely formalized in the strict sense. They are typi-
cally presented in a pseudo-formal language, i.e., an extension of a natural
language with some field-specific mathematical formalisms. The lack of
strict formalization allows for the nature of generality of these theories to
remain hidden. Most general considerations in fact appear in the form of
bare plural sentences such as those in a famous argument by Stinchcombe
(1965): “Routines in young organizations are less well developed than in
older organizations,” or “Organizations with better developed routines have
a lower hazard of mortality,” or (the claimed liability-of-newness theorem)
“Young organizations have a higher hazard of mortality than older organiza-
tions.” These indeed general statements — but are they universal? Would
these sentences be considered to be false if someone discovered a popula-
tion of organizations in which young organizations have a lower mortality
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rate than that the old organizations? No. These claims are general — but not
universal.

Linguists were puzzled by the formal grammar of this type of sentence
for a long time. Carlsson (1974), in his dissertation, first concluded that
these sentences are intensional in nature. Subsequent research by Kratzer
(1995) and Diesing (1995) concluded that there is a (hidden) generic quanti-
fier in the logical structure of these sentences. Schubert and Pelletier (1988)
showed that no context-independent extensional quantifier would assign the
appropriate truth-conditions to these sentences. It seems to be natural to con-
clude that, if there is any quantifier, then it should be intensional. Carlsson
(1995) argues that to account for the formal semantics of the generic sen-
tences the semantic universe need to contain entities that can be best called
as rules or regularities, since the truth conditions of generic sentences are
normally not expressible in term of sentences about the individual instances.

The meaning of such generically quantified sentences can be approximated
by saying that they express rules-with-exceptions. Such rules are not suffi-
cient to derive certain truth of objects, but they still might be useful to shape
what we expect of unknown individual instances (Veltman 1995). Such ex-
pectations might well be all that is available for arguments in the process of
construction of a theory. The partiality of available information means that
the truth-value assignments yield value gaps occasionally. Moreover, it also
creates the possibility that we have only rules-with exceptions — not strict
rules.

If the generality of empirical theories often appears in the form of gener-
ically quantified sentences, then, of course, the critical challenge of these
theories might not be a simple attempt of falsification by counter-example.
The possibility of exceptions, counter-examples, is already “priced in.” Ac-
cidental, non-reproducible exceptions might be ignored as “mistaken mea-
surements” or “historical accidents”. For example, a study of organizational
morality in a population of organizations that encounters a political revo-
lution might easily yield a counter-example to the Stinchcombe claim of a
liability of newness if the revolution suddenly wipes out all older organiza-
tions. Other kind of exceptions yields more serious theoretical implications.
They might be explained away with the help of premises from the protec-
tive belt. Alternatively they might lead to the extension of the core theory.
For example, one might find that populations to which only large or well-
endowed organizations can enter show low mortality even among the young
members. Repeated, systematic exceptions of this type sometimes lead to
extensions of the core theory.



“05polos_hannan”
2005/7/18
page 88

i

i

i

i

i

i

i

i

88 LÁSZLÓ PÓLOS AND MICHAEL T. HANNAN

Theory Building

We treat theories as intensional objects, with extended histories. Such histo-
ries can usefully be seen as sets of theory stages. A theory stage is composed
of a persistent part and an ephemeral one. The persistent part monotonically
expands as the theory develops. It forms the backbone, the identity of the
theory. The persistent part is still decomposable to an empirically testable,
i.e. falsifiable component, and a not falsifiable component. This later part
contains meta-considerations, definitions and, as will argue below, auxiliary
assumptions. Following Lakatos (1978), we refer to the persistent, and em-
pirically testable part of the theory as the core, but while the core for Lakatos
was a constant set of causal stories in our rendering of the theory under de-
velopment the core is not stabile, it grows occasionally. There is an implicit
component, the desiderata, concerning implications (desired theorems and
non-theorems). Desiderata linger around the persistent part of the theory,
and the theorems actually derived (derivable) form a stage of the theory are
regularly compared to it. If desirable theorems are not derivable or unde-
sirable theorems turn out to be derivable, the theory under construction is
challenged. On the other hand the (provisional) theorems need not belong to
the persistent part of the theory.

The meta-considerations are those extra-theoretical issues that are treated
as non-problematic. They include rules concerned with the structure of le-
gitimate inferences: the logic of the theory. Even though these considera-
tions are often implicit, the theory would be radically different if the logic
is changed. Typically the meta-considerations also include various parts of
mathematics, e.g., the calculus, set theory, and probability theory.

Definitions and causal stories, or explanatory principles, contain the sub-
stantive insights of the theory. These definitions and claims can be strict
rules (universally quantified sentences) but may include generic sentences
too. The latter typically take the form φs are normally ψs. Of course, if
the persistent part only contains strict empirical rules (universal statements,
that convey subject-specific insights), then any implications of such rules
(theorems) also sit in the persistent part.

Auxiliary assumptions are claims that are introduced into an argument to
link the causal stories and meta-considerations on the one side, and theorems
on the other side, in cases where the argument would not go through without
additional specification. For instance, the classical population genetics of
R. A. Fisher and Sewell Wright required a specification of the assignment of
mates in the sexual transmission of genes between generations. That is, an
auxiliary assumption was needed. The chosen assumption was random mat-
ing. Because of their auxiliary nature, such assumptions are treated as sub-
ject to replacement by other such assumptions as needed. This suggests to us
that auxiliary assumptions ought to be considered as rules-with-exceptions.
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The ephemeral component is the set of predictions and explanations that
depend on rules-with-exceptions. These implications are either individual
sentences or generic sentences. They often take the form: φs are presumably
ψs. If the theory building succeeds, then these predictions and explanations
satisfy the desiderata. Even better, they might also yield some unexpected,
potentially interesting, results.

Theory building is a process that moves from one theory stage to another.
(We are going to define the notion of as theory stage formally below.) Moves
are fueled by critical challenges to the earlier phase/stage of the theory. The
already accepted explanatory principles remain intact, but new principles
might be adopted. (This appears to be part of normal scientific activity, the
conceptual framework remains intact but considerations are refined.) To fig-
ure out the appropriate response to a critical challenge requires that infer-
ences be made, and these inferences are sound. But sound according to what
logic?

Here we present two lines of arguments. First we consider some implica-
tions of Lakatos’s story, second we analyze the consequences of using rules
with exceptions as explanatory principles.

Lakatos (1978) investigated whether or not one can tell what is falsified
by a (hypothetically) successful falsification attempt. He concluded that the
Duhem-Quine thesis, at least in its weaker interpretation, is obviously cor-
rect, i.e., the falsification, the inconsistency between the predictions of the-
ory (stage) and a fact, is better seen as the inconsistency of two theories,
more precisely their respective theorems are inconsistent. To avoid inconsis-
tencies a protective belt offers additional (auxiliary) assumptions, to explain
the inconsistencies away. Now had the logic been monotonic, the auxiliary
assumptions would be of no help. If the inconsistency is derivable form the
more limited set of (core) assumptions it has to be derivable from any more
extended set of assumptions too. In other words, if Lakatos’s idea concern-
ing the functioning of scientific research programs is correct, and we believe
it is, then the logic of scientific argumentation is bound to be nonmonotonic.

If a nonmonotonic logic offers a successful method for dealing with the
falsification problem, it can, perhaps, be used to solve another notoriously
difficult issue in theory building: the unification problem. We claimed above
that theories are intensional objects with extended histories. Since there is
no reason to assume that theory development is always linear, these histories
may occasionally branch. A given theory stage might sometimes be ex-
tended simultaneously in two directions. Such parallel developments yield
several, potentially inconsistent theory stages, that we might call theory frag-
ments. A classical first-order rendering of such fragments often yields ob-
vious inconsistencies. A nonmonotonic rendering is a promising alternative.
It may remove the inconsistencies, and offer some substantively interesting
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insights as a bonus. Below will provide two instances of successful unifica-
tions that delivered both the removal of the inconsistency and the bonus.

If the core of the theory or the set of auxiliary assumptions contains rules-
with-exceptions, then the logic in use cannot be the best-understood logic:
classical first-order logic. This is because classical first-order logic is mono-
tonic; and the inferences used in theory building follow a nonmonotonic pat-
tern. When a theory gets expanded, new explanatory principles are adopted
and some of the old predictions might vanish. It becomes possible that:

Φ |= φ but Φ ∪ Ψ 6|= φ.

In the last quarter century, several nonmonotonic logics were proposed
mainly in computer-science and also in logic and formal linguistics. These
nonmonotonic logics were typically fine-tuned to their assigned jobs. To find
out if any of them is adequate for specifying the nonmonotonic reasoning in
theory building we first have to consider carefully what an adequate logic
would look like. Formalizing carefully the insights the argumentation in
theory building is based on into a model theory offers an unbiased way to
describe the specific reasoning patterns used. To provide an axiomatization
of this logic might be a step to be done in the future, but we believe at the
present it is an increasing number of applications should test first what does
this type of reasoning delivers. We offer some of these applications in the
present paper and a much larger body of formalizations will be available
soon in Hannan, Pólos and Carroll (in preparation).

Some of the key insights that we want to formalize are the following.
• The available information in the process of theory building is typi-

cally partial. It is rarely possible to identify which of the possible
worlds is the actual one. The best that can be done is to identify a
(small) set of possible worlds that contains the actual world. An ade-
quate formal semantics should allow for this type of partiality, which
in turn means that some sentences should have the truth value “true”
or “false” in a subset of possible worlds while the others have a third
value, “unknown”.

• Scientific rules are defaults, rules with exceptions.
• If arguments are formulated from rules with exceptions, then the

specificities of the arguments matter.
• More-specific arguments override less-specific ones.
• Specificity differences are persistent, and new information cannot

overrule established specificity orders. This is an important con-
straint because it indicates that extensional inclusion between the
antecedents might not be the right way to characterize specificity dif-
ferences of premises. As a theory develops, the partiality decreases,
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and new theory stages might yield different relationships among ex-
tensions. What is needed to establish a clear specificity difference is
the inclusion between extensions in all still-possible worlds. In other
words, we need an intensional definition of specificity differences.

• Whether one argument is more specific than another depends either
on factual information or on dependable empirical generalizations,
which we call causal stories.

• Only the first causal story in an argument chain defines the specificity
of the argument. (We offer motivation for this choice below when we
define specificity orderings of regularity chains)

• Equally specific arguments pointing in opposite directions eliminate
each other’s predictions.

• Arguments that point in opposite directions but whose specificities
are not comparable also eliminate each other’s predictions.

• Theory building follows the principle of informational monotonic-
ity, i.e. the core of the theory does not shrink, and it occasion-
ally expands. Therefore, explanatory principles, causal stories, are
not deleted, even when they are partially overruled. Definitions and
meta-considerations are persistent as well.

• Certain operations in first-order logic, which rely detailed factual
knowledge about the facts (such as modus tollens and contraposi-
tion), should not have a counterpart in the new logic.1

A Language for Theory Building

If a symbolic logic is to capture the argumentation in theory building ade-
quately, then the logical form of its sentences should carry all the necessary
information about their inferential behavior. This is the reason why the first
task is to define a language that assigns different logical forms to sentences
with different argumentative functions. For this reason we extend the lan-
guage of first-order logic with three intensional quantifiers. We offer these
three quantifiers with their respective formal semantics as candidates for the
intensional quantifiers Kratzer and Diesing identified in the logical structure
of generic sentences. We need to retain the language of first-order logic, be-
cause definitions, and meta-considerations are typically presented in terms
of classical first-order formulæ. We extend this classical language by adding

1 To prove that our approach delivers results in line with these insights goes beyond the
scope of the present paper, but the interested reader can find some detailed proofs of this
type in Pólos, Hannan and Kamps (1999). Even though both the language is more extended
here and the semantics is a bit more intricate the relevant part of the argument works here in
precisely the same way
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a new intensional quantifier N, which stands for the expression “normally.”
Universal quantification typically operates on a formula whose main logical
connective is the conditional (material implication). Similarly generic sen-
tences prefixed with the intensional quantifier N have the conditional as their
main operator. We find it useful to assume that all of the generic sentences
used in building a theory have such a conditional structure. In developing the
formal language, we require that N quantifies only conditional sentences.

We follow the lead of Veltman’s (1996) in arguing that the sentences pre-
fixed with the normally quantifiers do not tell us much about what the case
is. Instead, they tell us about what the case is expected to be. Furthermore,
these expectations are not defined in terms of mathematical expectations,
being often used in situations where the mathematical expectations are not
justified by the information available. The knowledge justifying rules-with-
exceptions is not strong enough to tell about the individual instances. Such
rules express regularities that shape our expectations. Expectations might
turn out to be factually correct or not. Nonetheless, it would be misleading
to express them just like facts.

One important difference between facts and rules-with-exceptions con-
cerns reusability. Sentences expressed in the language of first-order logic can
be re-used. That is, classical conclusions derived from first-order premises
can be used as assumptions for further derivations. This is not the case for
rules-with-exceptions. If an expectation is derived, at least in part, from
such rules, then it is not re-usable directly. The lack of reusability comes
from nonmonotonicity.

Provisional theorems (expectations derived from rules-with-exceptions)
will be expressed by formulæ with the intensional quantifier P. The non-
monotonicity in theory building shows up in connection with these derived
expectations. In particular, if a theory gets elaborated, then the derived ex-
pectations often change. What used to be expected in an earlier stage of the
theory is no warranted as an expectation.

Formulæ with the normally quantifier N provide a formal statement of
insightful causal stories, the substantive assumptions that form the core of
the theory.2 Formulæ prefixed with the P are conclusions that depend, in

2 Insightful causal stories are typically not expressed in terms of probability distribu-
tions. Insights capture patterned behavior of individual instances. One might feel tempted to
speculate that this has something to do with the fact that humans are masters of recognizing
patterns while notoriously bad in making judgments about probabilities. Scientific reasoning
is incomplete in the absence of insightful causal stories, because these causal stories are the
ultimate source the ah-ha feeling, understanding.
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part, on the causal stories.3 These conclusions are ephemeral, and they do
not belong to the core of theory.

To learn the implications of an argument built on rules-with-exceptions
— what is presumably the case, it is often not sufficient to know only the
causal stories. As Duhem (1906) pointed out, certain auxiliary assumptions
are generally needed. These assumptions might take the form of some sim-
plifying assumptions, descriptions of constraints, which make mathemat-
ical modeling possible, might carve out mathematical models, or provide
the interface between the causal stories and the models. Sometimes these
assumptions describe measurement instructions, operationalizations. Auxil-
iary assumptions sit halfway between the causal stories and the presumable
consequences. They are persistent in an evolving theory because the desired
theorems are not derivable in their absence. But the theory does not claim
that they provide causal insights; in fact, they might not be true at all. For
example population biologists who invoke random mating do not claim that
this assumptions is an insightful description of the real world, on the con-
trary they might be more or less suspicious about the empirical validity of
such and assumption.

In our previous efforts (Pólos and Hannan 2001, 2002) we focused on the
N, and the P quantifiers. We now think that it is essential to make clear the
argumentative role of the auxiliary assumptions (they belong to the persistent
part of a theory but not to the core, since they are not exposed to falsification
attempts) by defining a separate logical form. To display their intermediate
status we introduce a third intensional quantifier: A.

There is a further logical reason to claim a specific form for the auxiliary
assumptions involving the nonmonotonicity we face in theory building. In
classical FoL, we can deal with auxiliary assumptions by appending them to
the set of theoretical premises. In other words, we can condition the argu-
ment on these auxiliary assumptions, due to the deduction theorem:

Γ ∪ {φ} |= ψ ⇒ Γ |= (φ→ ψ).

However, this derivation does not hold generally for arguments that contain
rules-with-exceptions. Therefore, auxiliary assumptions cannot be treated
by conditionalization. We need some other way to treat auxiliary informa-
tion. We designed the quantifier A to play this role.

To summarize: causal stories, auxiliary assumptions, and presumptions
(or provisional theorems) have a shared responsibility for nonmonotonicity.

3 Veltman (1996) argued that expectations are tests that may succeed or fail in a given
information state but that they do not contribute to the information content of the information
state. Our present follows a somewhat similar intuition.
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However, causal stories (as we construe them) are informationally mono-
tonic, they remain intact as the theory expands, they keep contributing to the
theory even when they are partially, or even completely overridden by more
specific causal stories. These considerations set a methodological agenda.
Only those generalizations should be added as causal stories to a theory for
which the theorist is prepared to accept that they will remain assumptions
of the theory. If there are doubts that they will be acceptable in the future
stages of a theory, then they are not good enough for the status of empirical
generalization.

Now we are going to define a language, starting with the language of clas-
sical FoL. Some of these definitions just recapitulate standard constructions,
and we provide them only to avoid misunderstanding. To distinguish them
from the definitions that introduce novel constructions we use the label “def-
inition” only for the second ones. We add the three intensional quantifiers to
express causal stories, auxiliary assumptions, and presumptions. We define
two semantics for this language. First we give a possible-world semantics.
Then we use this semantics to build models for theory stages, and we define
the second semantics in terms of theory stages. Once this second semantics
is given, we can define the logical consequence relation for this language,
which completes the task of defining the nonmonotonic logic that we be-
lieve is suitable to formalize inferencing in theory construction.

Syntax

The language we define, which we call the language of theory building, is
an extension of the language of classical FoL. We add three operators to the
language, for Normally, Presumably, and Assumedly.

The language of theory building

LTB is a five-tuple:

LTB = 〈lc, con, var, term, form〉,

where lc stands for the set of logical constants:

lc = {(, ), [, ],¬,→, ∀,=,N,P,A},

con represents the set of non-logical constants, falling into the two usual
categories: predicates and individual constants, con = pred ∪ ind. The set
of predicates is partitioned into (potentially) infinitely many subcategories
according to the number of argument slots: pred = ∪n∈ωPn, where Pn is
the set of n-argument predicates and ω is the set of natural numbers. var
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is the (infinite) set of variables. term, which stands for the set of terms, is
defined as the union of ind and var. We assume that all of these sets are
pair-wise disjoint.

Well-formed formulæ

The set of well-formed formulæ, form, is defined in the usual recursive man-
ner. It is the smallest set that satisfies the following properties.

(1) A predicate filled up with the appropriate number of terms gives a
formula. In formal terms:

if a1, . . . , an ∈ term and P ∈ Pn, then P (a1, . . . , an) ∈ form.
(2) The negation of a formula is a formula as well:

if φ ∈ form then ¬φ ∈ form.
(3) The conditional between of two formulæ is a formula:

if φ ∈ form and ψ ∈ form, then (φ→ ψ) ∈ form.
(4) A formula prefixed with a universal quantifier is a formula:

if x ∈ var and φ ∈ form, then ∀x[φ] ∈ form.
(5) A conditional formula prefixed with any of the intensional quantifiers

is a formula:
if x̄ ⊂ var and φ, ψ ∈ form, then Nx̄[φ→ ψ] ∈ form.
if x̄ ⊂ var and φ, ψ ∈ form, then Px̄[φ→ ψ] ∈ form.
if x̄ ⊂ var and φ, ψ ∈ form, then Ax̄[φ→ ψ] ∈ form.

(6) The identity of two terms is a formula: if a1, a2 ∈ term, then
pa1 = a2q ∈ form.

Semantics

We develop the semantics for our language in several steps. First we define
a declarative semantics for the classical first-order fragment and the causal
stories. The semantics of the causal stories is what Carlsson (1995) sug-
gested: the causal stories are true if and only if the corresponding regularity
is present in the model. (What we need to add is a construction that mod-
els the regularities.) Then we partialize this semantics to give a somewhat
more realistic account on the information available in the context of theory
building. We assume that some (classical) sentences are known to be true,
some known to be false, and other sentences do not belong to either group
yet. Similarly some of the causal stories are known, but it is unrealistic to as-
sume that all relevant causal stories are known. These considerations lead to
a construction where all of the classical sentences, causal stories, presump-
tions and auxiliary assumptions are valuated in sets of possible worlds, ac-
cording to a set of causal stories. Such pairs made of sets of possible worlds
and regularities capture what is known (in a given situation). These objects,
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which we call scenarios, resemble the information states that play such a
central role in the tradition of dynamic semantics developed by Kamp, Heim,
Groenendijk, Stokhof, Veltman, and others. In this setup, classical sentences
may have any of the classical truth-values or the value “unknown,” while all
non-classical sentences are either true or false.

Next we describe how theory stages define scenarios. This description
resembles to the definition of update conditions for different types of sen-
tences, except that our description is order-invariant. The dynamic semantics
of the Amsterdam school was designed to represent sentences in a discourse;
and the order of the sentences in a discourse obviously affects their meaning.
So the order in which premises enter information states matters in these dy-
namic logics. However, we do not think that the order of the premises matter
in our rendering of theory building. So our scenarios differ from information
states in that they do not attend to the order of entry of premises.

Notation Let U 6= ∅ denote the universe of discourse, w denote the set of
possible worlds, v denote the set of all valuation functions, and P denote the
powerset operation.

The most convenient way to characterize an interpretation is to give the
interpretation function.

Interpretation function

The interpretation function ρ, defined on the set of non-logical constants
(con), satisfies the following conditions:

(1) for all a ∈ ind, it is the case that ρ(a) ∈ U ;
(2) for all P ∈ Pn, ρ(P ) : w → P(Un).

It is clear that we need a formal representation of a regularity (or causal
story). We argue that regularities should be represented as pairs of (open)
formula intensions. We define the set of potential regularities, r, in two steps
as follows.

First we deal with bare regularities, that is with regularities that do not
embed other regularities.

Definition 1 : (Set of bare regularities) The set of bare regularities (br) is the
set of ordered pairs of open formula intensions, i.e., pairs of mappings of
possible worlds to variable valuations. The intuition behind this definition
is that (1) regularities have a (sometimes implicit) if–then structure and both
the “if” and the “then” parts are expressible with open formulæ, and (2) it
is sufficient to know of these open formulæ which valuations of the variables
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make them true in which possible worlds. So let br defined as follows:

br = {f |f : w → P(v)}2.

If we want a general definition of the set of regularities, we have to al-
low that regularities may embed other regularities. This possibility, in turn,
means that the antecedent and the consequent parts of these complex regu-
larities have somewhat more intricate notion of intensions. Possible worlds
and variable valuations are not sufficient to tell whether the antecedent or
the consequent is true or false. One must take into account the set of more
primitive regularities too. To capture this intuition we offer an inductive def-
inition of the set of regularities, where the induction operates on the levels
of embedding. (r1, the first level of regularities is basically the set of bare
regularities, in a disguise.) To get all the regularities we take the union of all
different levels of regularities.

Definition 2 : (Set of regularities)

• r0 = ∅;
• rn = {f |f : w × P(rn−1) → P(v)}2 ;
• r = ∪n∈ωrn.

If interpretation is given, then we can assign truth-values to all first-order
formulæ according to one valuation or another. To work out the details of
truth-value assignment in the case of regularities, we proceed it two steps.
First we consider possible scenarios, which we defined above as pairs con-
sisting of a possible world and a set of regularities.

We want to make clear that the truth-value assignments in scenarios do not
provide the intended semantics for our purposes. Once we know for which
possible world we should evaluate our formulæ, i.e., we know what exactly
is the case, we should not bother with rules-with-exceptions. In other words,
if all of the facts were known, then we would not need to look at regularities.
But, we assume that it is never the case that all the facts are known in the
case of real theories in flux.

The second semantics applies to theory stages, defined as pairs of sets of
possible worlds and sets of regularities. A multiplicity of possible worlds
represents the gaps in our knowledge. Our knowledge is generally partial.
If we are working from a dependable body of knowledge, then we might
be able to exclude certain possible worlds. But, if several worlds are still
possible on the basis of our knowledge, then it makes sense to make use
of weaker knowledge about regularities. If we do not know whether φ or
¬φ is the case in the real world, then we might sensibly base our scientific
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predictions on default considerations, on regularities telling whether φ or ¬φ
is normally the case.

A possible scenario is given by σ = 〈w, r′〉, where w is a possible world
i.e., w ∈ w and r′ is a set of regularities, r′ ⊆ r. The truth-value of the
formula φ → ψ in this scenario according to the valuation v is denoted by
||φ→ ψ||σv .

The definition of truth-values in scenarios (according to valuations) fol-
lows the recursive definition of formulæ. We define truth-values and open-
formula intensions in parallel.

Truth definitions in scenarios

Let σ be a scenario and v a valuation.
(1) ||a||σv = (ρ∪v)(a) (If a is an individual constant, then it is interpreted

by ρ; if it is a variable, then it is valuated by v.) It is easy to see that
the intensions of terms are independent of the possible worlds and
the set of regularities.

(2) ||P ||σv = ρ(P )(w) (If P is a predicate, then it is interpreted by ρ; this
is its intension. However, the extension of the predicate might differ
among possible worlds. No dependence on the set of regularities or
on valuations.

(3) ||a = b||σv = 1 if ||a||σv = ||b||σv , and ||a = b||σv = 0 otherwise. Iden-
tity statements depend only on the denotation of the terms; they are
independent of possible worlds and sets of regularities.

(4) ||P (a1, . . . , an)||σv = 1 if 〈||a1||
σ
v , . . . , ||an||

σ
v 〉 ∈ ||P ||σv , and

||P (a1, . . . , an)||σv = 0 otherwise.
(5) ||¬φ||σv = 1 iff ||φ||σv = 0.
(6) ||φ → ψ||σv = 0 if ||φ||σv = 1 and ||ψ||σv = 0; and ||φ → ψ||σv = 1

otherwise.
(7) ||∀x[φ]||σv = 0 if there is an a ∈ U , such that ||φ||σ

v[x:a] = 0; and
||φ||σ

v[x:a] = 1 otherwise.
(8) ||φ|| : w × P(r) → P(v) such that v ∈ ||φ||(w, r′) if and only if

||φ||
〈w,r′〉
v = 1.

(9) ||Nx̄[φ → ψ]||
〈w,r′〉
v = 1 if 〈||φ||

〈w,r′〉
v|x̄

, ||ψ||
〈w,r′〉
v|x̄

〉 ∈ r′; and

||Nx̄[φ→ ψ]||
〈w,r′〉
v = 0 otherwise.

We do not define the truth-values of formulæ prefixed with the P or A
quantifiers in scenarios. It only makes sense to define them in theory stages.
In scenarios, where the truth-value of any (first-order) formulæ is “known,”
presumptions are useless, and at best, misleading, as we noted above.

Now we move on to define theory stages and a semantics for all our for-
mulae in theory stages.
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Preparation for the Theory-Stage Semantics. A theory stage is a formal ren-
dering of the incomplete information provided by a theory in flux. There
are two sources of partiality. The first involves gaps in factual knowledge.
It might be the case that some facts, expressible as first-order formulæ, are
known to hold, that other formulæ are known not to hold, and some are nei-
ther known to hold nor to not hold. This being the case, a theory stage has to
provide a partial semantics, a semantics that makes some classical first-order
formulæ true, some others false, and allows a truth-value gap for the rest.

In terms of a possible worlds, knowing the truth-values of all classical for-
mulæ means knowing exactly which of the possible worlds is the actual one.
Knowing only some of the truth-values of the non-tautological sentences
means knowing only that a subset of the set of possible worlds includes the
actual world, but not knowing exactly which of the candidates is the actual
world.

Due to this motivation, it appears to be natural that one component of a
theory stage is a set of worlds that are still possible (possible given the state
of knowledge at the stage of the theory). An expansion of a theory (devel-
opment of a new stage) might eliminate some of the worlds that were still
possible in the previous state. No theory expansion will bring back any of the
already-eliminated possible worlds. But, there can be theory extensions that
leave the set of still-possible worlds intact. These are the ones that operate
on the second source of partiality.

The second source of partiality is related to the first. Although an empiri-
cal theory cannot provide complete information about the facts, it might still
be capable of providing regularities, which can be used to fill some of the
gaps in knowledge. But, as it happens, the set of regularities that a stage
of a theory can provide might also be incomplete. In case of theories in
flux, this information is indeed incomplete. Observations and thought exper-
iments typically bring some regularities in sight but fail to provide all that
are needed. Therefore a theory stage will be equipped a subset of regularities
and will support a set of causal stories. Theory extensions sometimes take
the form of incorporating some new regularity. Here again theory extensions
do not eliminate established regularities, but they occasionally add new ones.

This picture suggests that the process of theory building is monotonic: in-
formation is added but never withdrawn. Whatever belongs to a theory stage
is persistent, it belong to all extensions of that stage. Instead of being with-
drawn, regularities might be partially — or even completely — overridden
by some more-specific regularity.

We conclude these considerations with definitions of a theory in flux and
of a theory stage.
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Definition 3 : (Theory in flux) Let πf be a set of facts (premises expressed
as sentences of LoFoL), and πn be a set of formulae expressing rules-with-
exceptions, i.e., formulæ prefixed by the N intensional quantifiers. We refer
to the 〈πf ,πn〉 pair as a theory in flux.

Definition 4 : (Theory stage) The pair 〈w′, r′〉 is a theory stage if
(1) w′ ⊆ w, r′ ⊆ r, and
(2) if 〈a, b〉 ∈ r′ and 〈c, b〉 ∈ r′, then 〈d, b〉 ∈ r′, where

d : w×P(r) → P(v), and v ∈ d(w, r′) ↔ v ∈ a(w, r′)∨v ∈ c(w, r′).

Because causal stories lack rich, “fully compositional” semantics, we leave
it to the semantics of the formulæ prefixed with P and A to characterize the
basic intuitions about how we make inferences from rules with exceptions.
Intuitively P[φ→ ψ] is true in a theory stage if one can construct a tentative,
but convincing, argument based on the established facts and the available set
of regularities, and at least one of such tentative arguments is more specific
than all the (tentative) counter-arguments. Tentative arguments are going
to be represented by chains of regularities. Regularities in these chains are
semantic representations of rules (strict rules, rules-with-exceptions, defini-
tions, and meta-considerations). The semantic rendering of a theory in flux
represents rules in the form of pairs of formula intensions, the first compo-
nent of which is the intension of the antecedent, and the second component
is the consequent.

We have to define the proper construction of the chain: which regularity
can follow which other regularity in the chain. As a preparatory step, we
need a transitive and reflexive relation on the set of formula intensions that
captures the notion of degree of specificity. The specificity ordering of a pair
of regularities can be characterized as follows. In all still-possible worlds
(given a theory stage) the intension of the antecedent of one regularity is
smaller than or equal to the intension of the antecedent of the other regularity.

Definition 5 : (The specificity relation for formula intensions) Let w′ ⊆ w,
r′ ⊆ r, and let a and b each be elements of {x|x : w × P(r) → v}. a is
more specific than b, (a vw′,r′ b)), iff for all w ∈ w′ it holds that a(w, r′) ⊆
b(w, r′).

With this relation in hand, we can define regularity chains. Each compo-
nent in the chain is a regularity; hence it is given by a pair of open-formula
intensions. We use the following notation in referring to the subcomponents
of an element in a chain. Let ρ1

i denote the first element (antecedent) in the
pair of intensions that compose the regularity that sits in the ith position in
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the chain, ρ2
i denote the second element in that regularity (the consequent)

in the link.

Definition 6 : (Regularity chain) Let 〈w′, r′〉 be a theory stage. (w′ ⊆ w and
r′ ⊆ r.) A sequence 〈ρ0, ρ1, . . . , ρk〉 is a k-step φ → ψ positive regularity
chain (or alternatively a k-step φ → ¬ψ negative regularity chain) 〈w′, r′〉
if:

(1) ρ1
0 v〈w′,r′〉 ρ

2
0

(2) ρ1
0 = ||φ|| and ρ2

k = ||ψ|| ;
(3) ∀i[1 ≤ i ≤ k → ρi ∈ r′] ;
(4) ∀i[1 < i ≤ k → ρ2

i−1 v〈w′,r′〉 ρ
1
i ]

4 .

We call ρ1 = 〈ρ1
1, ρ

2
1〉 the initial link in the regularity chain.

Definition 7 : (Specificity ordering of the regularity chains) Let 〈w′, r′〉 be a
theory stage. The regularity chain 〈ρ1, . . . , ρk〉 (in 〈w′, r′〉) is more specific
than the regularity chain 〈ρ′1, . . . , ρ

′
l〉 (also in 〈w′, r′〉) if ρ1

i v〈w′,r′〉 ρ
′1
j and

ρ
′1
j 6@〈w′,r′〉 ρ

1
i , or if 〈ρ0, ρ1, . . . , ρk〉 has no initial element.

According to this definition only the antecedent of the initial step in the
chain determines the specificity of the chain. Figure 1 shows the motivation
for this choice. (The ellipses in Figure 1 indicate the relationships between
formula intensions.) It illustrates that, even when we deliberately try to con-
struct a case where the specificity order on the first link of the rule chains
works opposite to that the second link, the first of these picks out the more
specific argument.

Now we can give the semantics for the formulae prefixed with the inten-
sional quantifiers P, and A.

Definition 8 : (Semantics of presumptions and auxiliary assumptions)

• ||Px̄[φ→ ψ]||
〈w′,r′〉
v = 1 if:

(1) there exists a positive, one element φ → ψ regularity chain in
〈w′, r′〉 or

(2) there exist positive φ → ψ regularity chains (of length two or
longer) in 〈w′, r′〉 and if there also exist negative φ → ψ regu-
larity chains (of length two or longer) in 〈w′, r′〉, then at least
one positive regularity chain is more specific than any negative
regularity chain.

4 The intension of an open formula, depends on the order of free variables. Therefore,
we would actually require that 〈ρ1

i ), π(ρ2

i 〉 ∈ r′ for some permutation π. We will ignore this
technicality in the rest of the paper.
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Adults

Students

At least part

time employed

Full time
employed

Worried about 
pension

Not worried about 
pension

Students are normally at least part time employed
Adults are normally full time employed
Those who are at least part time employed are normally not worried about pension
Those who are full time employed are normally worried about pension
John Smith is a student

John Smith is presumably not worried about pension

The specificity of the argument depends on its first premise only

Figure 1. The specificity of the argument depends on its
first premise only

||Px̄[φ]||
〈w′,r′〉
v = 0 otherwise.

• ||Ax̄[φ]||
〈w′,r′〉
v = ||Px̄[φ]||

〈w′,r′〉
v .

Inferencing within Theories in Flux. The inferencing we are interested in
starts with premises expressed in first-order logic and in terms of rules-with-
exceptions and auxiliary assumptions; and conclusions that are expressed as
presumptions. Now we define the semantic consequence relation as follows:

Definition 9 : (Stages of a theory in flux) The stage of the theory that cor-
respond to 〈πf ,πn, 〉 is the pair of a set of possible worlds and a set of
regularities, 〈w′, r′〉, if it is a theory stage and the following conditions are
met:

(1) w′ = {w ∈ w|∀π[π ∈ πf → ||π||
〈w,r′〉
v = 1]}.

(2) ∀π[π ∈ πn → ||π||
〈w,r′〉
v = 1]};

(3) If r′′ satisfies 1, and 2, then r′ ⊆ r′′.
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The final condition guarantees that the regularity set is the smallest that the
theory in flux requires. (We do not want to assume more regularities than the
theory in flux requires.)

Definition 10 : (Theory stage with auxiliary augmentations) Let πa be a
set of auxiliary assumptions. The stage of the theory that corresponds to
〈πf ,πn,πa〉 is 〈w′, r′, r′′〉 if the following conditions are met:

(1) 〈w′, r′〉 is the theory stage for 〈πf ,πn〉
(2) if 〈w′, r′〉 is the theory stage.
(3) r′ ⊆ r′′, and the following conditions are met

• if Ax̄[φ → ψ] ∈ πa and φ′ is such that φ′ v〈w′,r′〉 φ, and

||Px̄[φ′ → ψ]||
〈w′,r′〉
v = 1 but in case φ′ v〈w′,r′〉 φ

′′ v〈w′,r′〉 φ

it follows that ||Px̄[φ′′ → ψ]||
〈w′,r′〉
v = 0 then ||Nx̄[φ ∧ ¬φ′ →

ψ]|| ∈ r〈w
′,r′′〉

v = 1
• r′′ is the smallest set that satisfies the conditions above.

Definition 11 : (Implications of theories in flux) Let φ be a formula. πf ∪
πn ∪ πa logically implies φ iff the corresponding stage of the augmented
theory πf ∪ πn ∪ πa makes φ true too.

As it obvious from Figure 2, the augmentation with very same auxiliary as-
sumption has a different impact in different theory stages. Is makes the most
specific change necessary to guarantee the truth of the auxiliary statement.
These assumptions remain true with theory expansions, but their impact is
not at all constant. We believe that the lack of constant impact on the model
is a formal confirmation that these assumptions do not belong to the core of
the theory. We offer an additional characteristic of these assumptions below
that point in the same direction.

Falsifiability

So far we only claimed informally that the auxiliary assumptions are not
claims of the theory and therefore it does not make sense to take them as
part of the core. Now we are in the position to bring this issue one step
further and offer a formal characterization of empirical testability.

Definition 12 : Let 〈πf ,πn,πa〉 be an augmented theory in flux, i.e 〈πf ,πn〉
is a theory in flux and boldsymbolπa is the set of auxiliary assumptions
we augment it with. Let furthermore Q be one of the following quanti-
fiers. ∀,N,A. A formula of the form Qx[φ(x) → ψ(x)] is falsifiable in
〈πf ,πn,πa〉 Qx[φ(x) → ψ(x)] is true in the corresponding theory stage
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ψ ¬ψ

Φ

Φʼ Φʼ̓

ψ ¬ψ

ΦΦʼ Φʼ̓

The changing impact 

of the auxiliary 

assumption 

A x [φ(x)−>ψ(x)]

Figure 2. The shadowed part indicates where the auxiliary
assumption has an impact.

〈w′, r′, r′′〉 but there is a 〈w′
1, r

′
1, r

′′
1〉 theory stage corresponding to some ex-

tensions of 〈πf ,πn,πa〉 which makes Px[φ(x) → ¬ψ(x)] true.

It is easy to see that neither the universally quantified formulæ nor the aux-
iliary assumptions are falsifiable in a theory fragment augmented with auxil-
iary assumptions according to this definition. For the auxiliary assumptions
it is obvious because the corresponding theory stage with augmentations in-
clude the regularity that is just specific enough to make Px[φ(x) → ψ(x)]
true. All strict (classical first-order) arguments reduce to 0-step regularity
chains in all stages of a theory. If the argument is sound in classical first-
order logic, then there is a vw′,r′ relation between the first and the last el-
ement of the chain for any w′, r′ theory stage. Such arguments are by def-
inition more specific than any argument that appeals to regularities. As a
result, first-order arguments overrule arguments based on regularities. Due
to this feature of sound classical first-order arguments definitions and meta-
considerations of a theory are never falsifiable.
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Once the notion of the logical consequence relation is defined, our task of
defining a logic is completed — in a way. Judging how well the logic fits our
motivations requires more than establishing that all of the initial considera-
tions are honestly implemented. It is also important that some properties of
classical first-order logic that yield damagingly counter-intuitive results can
no longer be reproduced in this logic. In particular, it is important to note
that two classical inference rules do not hold: modus tollens and contraposi-
tion. We wanted to rule these operations out for the logic of theory building
because we think that they require more dependable knowledge (about in-
dividual cases) than can be delivered by rules-with-exceptions. Insightful
causal stories often expressed in a ceteris paribus form. Even when they
are not expressed in this way, to interpret them as comparative statements
made on the all-other-things-being-equal basis is the most defendable inter-
pretation. Consider two sentences from a theory we developed with Glenn
Carroll (Hannan, Pólos, and Carroll 2003b): “A more intricate organization
has higher inertia” and “A more opaque organization has higher inertia.”

If these sentences are formalized in the language of classical first-order
logic, the pair of formal counterparts implies the conclusion “A more in-
tricate is an organization has higher opacity.” This last sentence might or
might not be the case. But it appears that the implication relation does not
hold among the informal (generic) sentences.

If we try to formalize these sentences in the logic of theory building, the
translations look like these:

“Normally a more intricate organization has higher inertia” and “Normally
a more opaque organization has higher inertia.” But now the first two sen-
tences do not imply: “ More intricate organizations presumably have higher
opacity” simply because we ruled out the contraposition operation in the new
logic on the grounds that there is nothing in the set of regularities that would
support such a conclusion.

Appendix: Theory unification

In what follows we show how the logic for theory building helps theory uni-
fication. We start with three theory fragments that belong to the same scien-
tific research program, organization ecology, and we address the very same
research question: What is the relationship between the age of organizations
and their hazards of mortality. Historically these theory fragments have been
developed to explain the empirical findings of studies carried out in different
populations of organizations. These findings were contradictory: in some
populations the mortality hazard appeared to be decreasing with age (liabil-
ity of newness), in other populations the mortality hazard increased with age
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(liability of obsolescence), and there were populations where the relation-
ship was nonmonotonic, first the mortality hazard increased to a maximum
but decreased after that (liability of adolescence). The need for theory uni-
fication was imminent. Without the unification the research program was
unable to provide suggestions how the age dependence of the hazard of mor-
tality might look like in a not yet studied population of organizations. Han-
nan (1999) showed that a formalization of these theory fragments in classical
first-order logic can be used to unify the liability of newness and the liability
of adolescence, but he concluded that all three of theory fragments could not
be unified. Now we show briefly that the unification is both possible and in-
sightful if the theory fragments are formalized in the nonmonotonic logic for
theory building. A more detailed unification of these and few other theory
fragments can be found in Pólos and Hannan (2000, 2002).

We start with some notation. Let O(o, p) be a predicate that tells that o
is member of organizational population p. Many of the assumptions and
theorems in these theory fragments involve monotonicity statements. We
simplify presentation of formulæ stating such relations by adopting nota-
tional shorthand. Suppose f is a function defined for organizations at time
points. We usually denote such functions in the following format: f(o, s),
where o refers to an organization and s is a time point. We will often want
to compare the values of these functions for different organizations (in the
same population) and time points. We use the expression f ↑ g to indicate
a monotonic positive relationship between the two functions, and f ↓ g to
indicate a monotonic negative relationship5 .

Fragment 1: Liability of newness

We formalize the argument about age-related capabilities using the non-
negative function, cap(o, s), that records o’s level of capability at the time
s. We continue to represent organization o’s age at time s with the non-
negative function a(o, s). Since the all the “normally” and the “presum-
ably” quantifiers uniformly range over the same five variables o, o′, p, s, s′
and these variables remain implicit in the above introduced notation for
monotonicity statements we use the shorthand N for No, o′, p, s, s′ and P
for Po, o′, p, s, s′ respectively.

Postulate 1 : An organization’s expected level of capability increases with its
age.

N[ a ↑ E{cap}]6 .

5 A more precise definition of f ↓ g can be found in Pólos and Hannan (2002).
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Postulate 2 : Higher capability lowers the mortality hazard.

N[ cap ↓ µ].

Now we want to connect these two postulates, which form a chain —
except that the consequent in the first postulate is a comparison of expected
levels of capability and the antecedent in the second postulate contains a
comparison of the actual levels of capability. Hannan, Pólos and Carroll
(2005) argue for a metarule that allows such formula to be chained. Using
this metarule, we have the strong-form version of the liability of newness:

Theorem 1 : Mortality hazards decline monotonically with age.

P[a ↓ µ].

The ellipses in Figure 3 again feature the open-formula intensions while
the shapes between them are representations of the explanatory principles
that connect them.

We treat this first stage as the default theory. Its postulates will be in-
cluded in every subsequent stage. Notice that, because this (provisional)
theorem applies to any age interval, its scope of applicability is extremely
non-specific. It will turn out that more specific postulates in the more devel-
oped theory fragments usually override it over at least part of the age range.

Fragment 2: Endowments

The next development introduced endowments. An organization is founded
with a given level of endowment if it possesses immunity after founding, at
least for a time. Endowment lasts as long as this initial immunity does. Fur-
thermore, there is a monotonic relation between the level of endowments and
the strength of immunity. The higher the level of endowment the stronger the
immunity. Let ed(o, s) tell the level of endowment of organization o at age
s and let im(o, s) give the level of immunity.

6 This formula reads as follows: It is normally the case for all pairs of organizations (in
a population) at all pairs of ages that the expected level of capability at an older age exceeds
that at a younger age.
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Figure 3. The graphic representation of Theorem 1 and its derivation

Auxiliary assumption 1 : The expected age at the ending of initial endowment
is constant within an organizational population.

Ap[P(p) → ∃ζp∀o, o
′, s, s′[O(o, p) ∧ O(o′, p) →

sup{t | (ao(s) = t) ∧ E{edo(s)} > 0} = ζp

= sup{t′ | (ao′(s′) = u′) ∧ E{edo′(s′)} > 0].

Note that this auxiliary assumption instantiates the premise that the expected
age of ending of endowment is the same for all members of a population and
also labels this expectation as ζp. Henceforth, we let ζp denote the expected
ending time of endowment for population p.
The standard argument holds that organizations normally spend down their
initial endowments.
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Postulate 3 : Expected levels of endowments decline monotonically within
endowment periods.

N[O(o, p) ∧ O(o′, p) ∧ (a(o, s) < a(o′, s′) < ζp) →

E{ed(o, s)} > E{ed(o′, s′)}].

Moreover, endowments provide immunity and immunity brings a reduction
in mortality chances. These postulates hold both for comparisons of an or-
ganization at different ages (say before and after the ending of endowment)
and for pairs of organizations (say, with different levels of immunity).

Postulate 4 : During a period of endowment, a larger endowment yields a
higher expected level of immunity.

N[ ed ↑ E{im}].

Postulate 5 : Mortality hazards fall with increasing immunity.

N[ im ↓ µ].

Theorem 2 : Mortality hazards increase with age within endowment periods.

P[O(o, p) ∧ O(o′, p) ∧ (ao(s) < ao′(s′) < ζp) → µo(s) < µo′(s′)].

Theorem 3 : Mortality hazards are lower within endowment periods than
afterwards.

P[O(o, p) ∧ O(o′, p) ∧ (ao(s) < ζp ≤ ao′(s′)) → µo(s) < µo′(s′)].

The First Unification Attempt

A key step in developing a modeling procedure involves translating the ver-
bal argument into a formal language that enables nonmonotonic testing. It is
easy to realize that the claim “Endowment considerations apply only before
the end of the endowment period” is not specific enough. Even though it
makes clear that the considerations are not applicable to intervals beginning
after the endowment is exhausted they might or might not be applicable to
intervals that begin before and finish after the end of the endowed period.
Both possible translations (that the considerations apply and that they do
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Age of the organization

Hazard of
mortality

The end of endowment

a(o1,s1)<a(o2,s2) µ(o1,s1)<µ(o2,s2)

ed(o1,s1)>ed(o2,s2)

N[a ↓E{ed}]
N[ed↓µ]

Figure 4. Age dependence of mortality hazard during the
endowed period, and the regularity chain that supports it.

not apply to this type of intervals) are consistent with the nonmonotonic ap-
proach; and in both cases we see a penguin scenario. Still, one of them might
be more in line with the concept of the mortality hazard than the other.

Let us consider first the option: endowment considerations do not apply to
intervals that stretch over the end of the endowment. Under this restriction,
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only one line of argument applies: the default theory of a liability of new-
ness. According to this theory, the hazard at the beginning of the interval
exceeds the hazard at the end of the interval. Due to the immunity consid-
erations, the hazard at the very beginning of an (endowed) organization’s
life is zero, according to the first translation of the key claim. Now take an
interval that begins immediately after the founding of the organization and
ends some time after the end of the endowment period. At the end of such a
period, the hazard must be negative. Although this scenario is a logical pos-
sibility, it violates the definition of a hazard.7 It is tempting to look at this
conclusion as a case for a non-theorem in the desiderate of the research pro-
gram. Therefore, this approach does not meet the most basic requirement for
a modeling procedure for mortality processes. The second translation holds
that endowment considerations do apply to this type of intervals. This trans-
lation does not generate the undesirable result of implying negative hazards.
Moreover, we will show that it yields interesting results.

The first unification attempt uses all four postulates in the two fragments
(according to the strategy we outlined) to yield:

Theorem 4 : Mortality hazards increase with age over intervals that begin
within expected endowment periods, that is, before ζp.

P[O(o, p) ∧ O(o′, p) ∧ (ao(s) < ao′(s′) < ζp) → µo(s) < µo′(s′)].

Proof. Figure 5 depicts the relevant regularity chains. One begins with the
intension defined for any pair of ages (drawn as the large ellipse at the top
of the figure.) This rule chain leads to the conclusion of negative age de-
pendence. The regularity chain drawn on the left emanates from the smaller
(more specific) intension that applies only to those age intervals that begin
before the expected ending of endowment. This regularity chain leads to
a conclusion of positive age dependence. According to the nonmonotonic
inference rule, the more specific argument holds.8 �

7 The hazard is defined as the ratio of two non-negative functions, the density of the
ending durations and the survivor function. Therefore, a negative value of a hazard entails a
contradiction.

8 It might seem from this example that the less specific regularity chain should dominate
because it is shorter. However, this is not the case. Length of chains matters for testing only
when the chains being compared have the same specificity.
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Age of the organization

Hazard of
mortality

a(o1,s1)<a(o2,s2)
cap(o1,s1)<cap(o2.s2)

µ(o1,s1)>µ(o2,s2)

N[a ↑E{cap}] N[cap↓µ]

The end of endowment ζ

N[a ↓E{ed}]

N
[a ↓E{ed}]

N[ed↓µ]

ed(o1,s1)>ed(o2,s2) µ(o1,s1)<µ(o2,s2)

a(
o1

,s
1)

<
a(

o2
,s

2)
<

ζ

Figure 5. The more specific argument dominates. Picture
of the first unification attempt and its derivation

Theorem 5 : Mortality hazards decrease with age after endowments are ex-
hausted.

P[O(o, p) ∧ O(o′, p) ∧ (ζp ≤ ao(s) < ao′(s′)) → µo(s) > µo′(s′)].

Proof. Examine the most-specific regularity chains that connect the inten-
sion of ζp < ao(s) < ao′(s′) with the intension of µo(s) > µo′(s′). The
only rule chain that applies is the less specific one (on the right of the figure)
that leads to the conclusion of negative age dependence. �

A corollary also follows from these two theorems: an overall tendency to-
ward positive age dependence, as sketched in Figure 5. We regard this result
as somewhat surprising in the sense that organizational theorists, in focusing
on the different fragments, did not notice this implication. We shared this
limited vision when we set out to construct a model, and we were pleasantly
surprised to learn that the postulates as formulated in nonmonotonic logic
delivered more than we had expected. The effort to unify fragments in a
consistent manner (at the same level of analysis) makes clear the importance
of these subtle differences in assumptions.
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Theorem 6 : An organization’s mortality hazard jumps to its maximum when
its endowment ends.

Fragment 3: Obsolescence

Now we turn to the other main branch of the theory, which concerns positive
age dependence. We concentrate on the version that relies on assumptions
about obsolescence. We assume that the quality of the alignment between
organizations and their environments affects mortality chances. We also as-
sume, that organizations are relatively inert and, in the long run, their struc-
tures cannot follow environmental drift. The drift is such that, within a pe-
riod of length ωp, the quality of alignment for organization o does not change
so much from the founding conditions that it affects the hazard. However,
beyond ωp, the environment has normally drifted far enough as to drive the
quality of alignment below a threshold that affects the hazard. Further drift,
beyond ωp, continually degrades alignment.

We introduce the non-negative function al(o, s) that gives the level of
alignment of organization o with its environment at s.

Environmental change drives the obsolescence process. Suppose that the
environment can occupy different states at different times, in the sense that
it imposes different adaptive demands at different times. Two states of an
environment impose dissimilar adaptive demands if an organization cannot
be aligned with both. Organization-builders can use state-of-the art designs
and adapt to prevailing cultural understandings. This motivates the following
auxiliary assumption

Auxiliary assumption 2 : Organizations have nonzero (expected) alignment
with their environments at founding.

Ao, p, s[O(o, p) ∧ (a(o, s) = 0) → E{alo(s)} > 0].

Definition 13 : Drifting environment for an organizational population

DRIFT(p) ↔ No, s[O(o, p) ∧ (ao(s) > ωp) → E{alo(s)} = 0].

Auxiliary assumption 3 : The expected age of obsolescence (ending of align-
ment) in an organizational population in a drifting environment is a constant.

Ap[P(p) → ∃ωp∀o, o
′, s, s′[DRIFT(p) ∧ O(o, p) ∧ O(o′, p) →

sup{s | E{alo(s)} > 0} = ωp = sup{s′ | E{alo′(s′)} > 0}]].
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Once organizations lose alignment with their environments, they start to
become devalued by relevant evaluators as “obsolete.” The longer an or-
ganization has been obsolete, the stronger is this devaluation process. Let
ob(o, s) be a function that tells the degree to which organization o’s relevant
audiences regard it as obsolete at age s.

Postulate 6 : After the onset of obsolescence, organizations are normally
judged to be increasingly obsolete with further aging in drifting environ-
ments.

N[DRIFT(p) ∧ O(o, p) ∧ O(o′, p) ∧ (ωp ≤ ao(s) < ao′(s′)) →

E{obo(s)} < E{obo′(s′)}].

Postulate 7 : Higher perceived obsolescence yields higher mortality hazards.

N[ ob ↑ µ].

These premises imply a pair of theorems.

Theorem 7 : Mortality hazards are higher after the expected age of onset of
obsolescence than before.

P[DRIFT(p) ∧ O(o, p) ∧ O(o′, p) ∧ (ao(s) < ωp ≤ ao′(s′)) →

µo(s) < µo′(s′)].

Theorem 8 : Mortality hazards increase with age after the expected age of
onset of obsolescence.

P[DRIFT(p) ∧ O(o, p) ∧ O(o′, p) ∧ (ωp ≤ ao(s) < ao′(s′)) →

µo(s) < µo′(s′)].

The Second Unification Attempt

The second unification uses all of the definitions and postulates in the three
theory fragments. Again we confront the issue of what to do with intervals
for which a specific rule applies to part but not all (and, by definition, the
default applies to the whole interval). Again, to avoid having the specific
rule made irrelevant, we posit that whenever the more specific obsolescence
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Age of the organization

Hazard of
mortality

Beginning of obsolescence ω

ω<a(o1,s1)<a(o2,s2)

al(o1,s1)>al(o2.s2)

µ(o1,s1)>µ(o2,s2)

N[a ↓E{al}] N[al↓E{ob}]

ob(o1,s1)<ob(o2.s2)

N[ob↑µ]

Figure 6. Liability of obsolescence.

rule applies to the end point of an age interval, the hazard increases over the
interval.

In this third stage of the theory, the first theorem from the first unification
remains valid. Nonetheless, the substantive reasoning behind the theorem
has gotten more complex, because we have introduced an obsolescence pro-
cess. We can illustrate the proof of this theorem in this unified context with
a graphical representation of the argument.
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Theorem 9 : Mortality hazards increase with age over intervals that begin
within expected endowment periods.

Po, o′, p, s, s′[O(o, p)∧O(o′, p)∧(ao(s) < ζp)∧(ao(s) < ao′(s′)) →

µo(s) < µo′(s′)].

Age of the organization

Hazard of
mortality

a(
o1

,s
1)

<
a(

o2
,s
2
)

cap(o1,s1)<cap(o2.s2)

N[a ↑E{cap}]
N[cap↓µ]

The end of endowment ζ

N
[a ↓E{ed}]

N[ed↓µ]

ed(o1,s1)>ed(o2,s2) µ(o1,s1)<µ(o2,s2)

a(
o1

,s
1)

<
a(

o2
,s

2)
<

ζ

Beginning of obsolescence ω

ω<a(o
1,s

1)<
a(o

2,s
2)

al(o1,s1)>al(o2.s2)

ob(o1,s1)<ob(o2.s2)

N[ob↑µ]

µ(o1,s1)>µ(o2,s2)

N[al↓E{ob}]

N[a
 ↓

E{
al}

]

Figure 7. The second unification attempt

Theorem 10 : Mortality hazards decrease over intervals that begin on or
after the expected end of the endowment and terminate before the expected



“05polos_hannan”
2005/7/18
page 117

i

i

i

i

i

i

i

i

A LOGIC FOR THEORIES IN FLUX 117

onset of obsolescence.

Po, o′, p, s, s′[O(o, p) ∧ O(o′, p) ∧ (ζp ≤ ao(s) < ao′(s′) < ωp) →

µo(s) < µo′(s′)].

Only the liability of newness theory is relevant to the intervals that fit the
antecedent in this theorem.

Theorem 11 : Mortality hazards increase over intervals that end at or after
the expected onset of obsolescence.

Po, o′, p, s, s′[O(o, p) ∧ O(o′, p) ∧ (ao(s) < ωp ≤ ao′(s′)) →

µo(s) < µo′(s′)].

Again we can derive implications about jumps and maxima in the process —
but only when obsolescence follows the end of endowment.

Theorem 12 : When the expected onset of obsolescence does not occur af-
ter the expected end of endowment (ωp ≤ ζp), an organization’s mortality
hazard presumably jumps at the end of endowment and at the onset of obso-
lescence.

Our model of the local behavior of the process yields an unexpected pat-
tern: global positive age dependence. Two cases need to be considered. In
the simpler case, when obsolescence strikes before endowments end at the
same time (ζp ≤ ω), then mortality hazards increase with age at all ages.

The second, more complex case, involves a delay between the ending of
endowment and the onset of obsolescence (ζp < ωp). Inspection of Figure 7
reveals an age range in which the default does not get overridden. So there is
a period in which the hazard falls with increasing aging. But the hazard over
this range must always exceed the maximum hazard during endowment. The
overall pattern for this case has the general form shown in Figure 7.

Under specific conditions, the general picture reproduces the patterns of
age-dependence found in empirical research, as can be seen by consulting
Figure 7.

i. If the organizations in a population lack endowments and occupy en-
vironments that change so gradually that obsolescence never strikes,
then the default never gets overridden: age dependence is presumably
uniformly negative.
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ii. If the exhaustion of endowments does not occur within an observa-
tion period or obsolescence strikes before exhaustion of endowments,
then age dependence is presumably uniformly positive.

iii. If the organizations in a population are endowed and do not face ob-
solescence, then the mortality hazard presumably peaks in adoles-
cence.

iv. If the organizations in a population are endowed and do face obsoles-
cence at a time later than the ending of endowment, then the mortality
hazard presumably has the age profile illustrated in Figure 7

Conclusion: Critical Challenges to Empirical Theories

In this paper we offered a formal semantic account on the argumentation in
theory building. In the appendix we briefly summarized some formalizations
that are based on this logic, and showed that a nonmonotonic rendering of the
argumentation not only allows for otherwise impossible theory unification,
but yield relevant substantive insights too. Encouraged by the positive results
of these application attempts we try to sketch what does it mean for some
problems in the philosophy of science if accepts that our rendering of the
argumentation in theory building is correct.

Although rules-with-exceptions might be true or false, their truth and fal-
sity is not expressible in terms of truth and falsity of the corresponding sen-
tences about individual instances. The rules are false if the regularity they
express is not present in world. If one can show that indeed this is the case,
then the theory is falsified, and it should be discarded as Popper argued.
However the falsifiability, according to our rendering still helps to solve the
demarcation problem, it appears to be the criterion that discriminates be-
tween the substantive core of a theory and the protective belt around it. On
the other hand the end of a scientific research program, a theory in our ter-
minology, is not as sharp as Popper envisaged it. Think, for example of the
generalization that “In the case of burning, phlogiston leaves the burning
material.” This statement happens to be false; but the proof of its falsity did
(and could) not happen by finding counter examples, cases of burning where
phlogiston did not leave the burning material. However, proving the absence
of a regularity is not any easier than proving its presence.

Lakatos argued that the prolonged agony of failing research programs is
due to the protective belt which generates problem shifts and this process
does not stop even when the problem shifts are frequently negative. We ar-
gued that the protective belt is not the only responsible party in this situation.

Predictions are built from generic rules, and they might turn out to be
false. Since predictions can be about individual instances, proving the falsity
of such predictions might be, perhaps, an easier task. But even when such
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a move succeeds, the theory is not discarded, and it should not be. False
predictions indicate that there are exceptions to the regularities, but that is
not unexpected. Yet, finding the actual exceptions can have an impact on
the theory. The discovery of exceptions indicates that the set of explanatory
principles the theory provided so far is incomplete, or alternatively further
auxiliary assumptions are needed to eliminate the inconsistency. The core
of the theory has to be extended with causal considerations that help to con-
struct more specific arguments concerning the individual instance in ques-
tion, or alternatively the protective belt should expand. It is easy to see that
neither of these changes does come cheap. Both increases the intricacy of
the theory.

Due to the nonmonotonic nature of the argumentation, one has to consider
all the assumptions, postulates in every proof, and it becomes increasingly
harder to develop a vision of what might be true (what might be provable) in
a theory in flux. If the positive problem shifts are the rewards the researchers
get for their efforts to cultivate a theory, the intricacy of the theory might
be seen as the cost to cultivate. Of course, there is no reason to believe that
decisions about what research program should an individual researcher fol-
low are typically rational. Often they are not. However, those who pay high
costs for low returns might not become successful researchers, might even
leave the field. Theories and research programs might close for the reason
that there is not sufficient concentration of brain power left to protect the
core successfully. If this description of potential failure of scientific research
programs is correct, it explains why theories normally do not vanish before
a viable alternative appears on the scene, one that is able to recruit new, and
capable defenders. And it might be easier to recruit new defenders if the core
of the theory is less intricate.

László Pólos
University of Durham

Michael T. Hannan
Stanford University
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