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THE BASIC INDUCTIVE SCHEMA, INDUCTIVE TRUISMS,
AND THE RESEARCH-GUIDING CAPACITIES

OF THE LOGIC OF INDUCTIVE GENERALIZATION∗

DIDERIK BATENS

Abstract
The aim of this paper is threefold. First, the sometimes slightly
messy application of the conditional rule RC of the logic of induc-
tive generalization is clarified by reducing this rule to a so-called
basic schema BS. Next, some common truisms about inductive gen-
eralization are shown to be mistaken, but are also shown to be valid
in special cases. Finally, and most importantly, it is shown that ap-
plications of the adaptive logic of inductive generalization to sets
of data, possibly in the presence of background knowledge, invokes
certain empirical tests and certain theoretically justified defeasible
conjectures, which in a sensible way increase one’s empirical and
theoretical knowledge about a given domain.

1. The Problem

Some adaptive logics for inductive generalization were presented in [7].
These are based on Classical Logic (henceforth: CL) and include ILr and
ILm , the basic logics of inductive generalization, as well as several logics
for handling background knowledge. The paper extends [4] and presents the
logics in the standard format from [2]. The programme behind [4] and [7],
as well as behind the present paper, is to elaborate a qualitative account of
inductive generalization. Such an account seems rather plausible, as humans
have been applying inductive generalization (or, pace Popperians, something
close to it) for many millennia and quite successfully so. Although several
successful (local) quantitative methods were developed for inductive predic-
tion, quantitative approaches to inductive generalization are tiresome as well

∗Research for this paper was supported by subventions from Ghent University and from
the Fund for Scientific Research – Flanders, and indirectly by the the Flemish Minister re-
sponsible for Science and Technology (contract BIL01/80). Lieven Haesaert’s comments on
a former draft enabled me to clarify several passages of the paper.
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54 DIDERIK BATENS

as problematic, especially when it comes to devising a general (and generally
justified) method.

The aim of the present paper is to solve a couple of open problems con-
nected to IL (I use this name to refer to both aforementioned logics where the
distinction does not matter) and to its relation with two traditional truisms on
inductive generalization. The first truism is that inductive generalizations are
conjectures. IL is puzzling in this respect, as it determines a unique conse-
quence set, Cn IL(Γ), and hence a unique set of generalizations that can be
derived from a set of data. The second is that a generalization can be upheld
until falsified. This is patently false from the viewpoint of IL because many
generalizations that are not falsified by the set of data Γ do nevertheless not
belong to Cn IL(Γ).

We shall see why the truisms are wrong, but also where they may come
from. A very important result of this study is that there are different kinds
of conjectures, which have a different status and are justified along different
roads. One kind of conjectures is justified by IL itself; these will be called
derivable generalizations. Another kind derives directly from (prioritized)
background knowledge and will not be discussed in this paper. A third kind
of conjectures are evoked by IL. Where certain inductive abnormalities (lack
of uniformity) are connected, this very fact will incite the researcher to rely
on theoretical insights or convictions to narrow down the connected abnor-
malities, and precisely this boils down to introducing hypothetical statements
that answer questions evoked by the connected abnormalities. I shall reserve
conjectures to refer to these. Finally, I shall discuss still another kind of
‘conjectures’, which will be called guesses (and may be somewhat wild).

A different matter, which is related to the invoked conjectures, is that ap-
plications of IL also evoke certain tests, which will augment the data that are
relevant to the generalizations of the domain under study.

I shall outline the general plot behind adaptive logics of induction and in-
troduce the logics ILr and ILm . In order to make the logic more transparent,
I shall introduce a so-called basic schema BS which is contextually equiva-
lent to the conditional rule RC of IL. Indeed, the application of RC may be
somewhat messy, even if the rule itself is quite simple. Next I shall discuss
the truisms. In my view, the most interesting part of these sections concerns
the way in which applications of the adaptive logics of inductive generaliza-
tion evoke tests as well as theoretical decisions, which will be expressed by
prioritized conjectures.

2. The Plot

Let us start with an outline of the approach — see Figure 1. The outline
is heavily simplified in several respects. A striking simplification concerns
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LOGIC OF INDUCTIVE GENERALIZATION 55

background knowledge. All background knowledge is obviously defeasible
in that the data may contradict it. However, one should distinguish between
several kinds of background theories and background generalizations. For
example, some background generalizations are simply rejected when falsi-
fied, whereas the consequences of other falsified background generalizations
(called pragmatic ones in [7]) will be retained whenever they are not them-
selves falsified — see [7] for details. As the interplay of IL with background
knowledge is not essential for the present paper, the outline lists all back-
ground knowledge as a single set.

BK

sel. BK

tests

data Cons1 Cons2 Cons3

conject. sel. conject. general.

- Pi?

?

�

6

?

- - -IP

?

Pi
-

6 ?IL 6

Figure 1. Inductive Cycles

Where no logic is indicated, the consequence relation is that of CL. Pi
refers to the suitable prioritized adaptive logic — there are several of them,
each connected with a specific kind of background knowledge. The back-
ground knowledge BK is filtered by prioritized adaptive logics in view of the
data. The thus selected background knowledge is added to the data; the joint
sets deliver a set of consequences Cons1. Let us disregard for a moment the
conjectures that interfere at this point and extend Cons1 into Cons2. Cons2

leads to inductive generalizations which deliver inductive predictions from
Cons2 — the generalizations and inductive predictions are joined to Cons2.

Certain members of Cons2 also evoke questions. Some of these lead to
tests, which deliver new data. Other questions lead to conjectures which,
filtered by the data, extend Cons1 into Cons2, and in this way deliver further
inductive generalizations. Some of the questions may be answered by (what
I shall call) guesses — see Section 10 — which have the same effect as
conjectures.
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56 DIDERIK BATENS

Finally, the logic IP leads from all this to ‘inductive predictions’ — these
are not consequences of a derivable generalization, but rely on a kind of
majority rule. The logic IP will play no role in the rest of this paper.

The paper will mainly concentrate on IL, which is the main work-horse
of the set-up, on the way in which conjectures and tests are suggested by
the IL-consequences, and on the effects of the conjectures and the outcomes
of tests. As IP will be out of the picture anyway, I shall use “inductive
prediction” to refer to CL-consequences of the data together with the derived
generalizations and the conjectures.

3. The Adaptive Logics ILr and ILm

An adaptive logic in the standard format from [2] is defined by three com-
ponents. These provide it with a dynamic proof theory and a semantics, and
warrant a set of properties, among which the soundness and completeness
of the proof theory with respect to the semantics. Where L is the standard
predicative language, let ∃A be the existential closure of A and let F ◦ be the
set of purely functional formulas of L, that is, formulas in which occur no
quantifiers and no individual constants. For IL the three components are:

(i) The (monotonic and compact) lower limit logic: CL.
(ii) The set of abnormalities, which is a set of formulas characterized by a

logical form: Ω = {∃A ∧ ∃∼A | A ∈ F◦}.
(iii) The adaptive strategy, which specifies what it means to interpret the

premises ‘as normally as possible’: the Reliability strategy for ILr ; the
Minimal Abnormality strategy for ILm .

As before, I shall write IL when referring to common properties of the two
adaptive logics of inductive generalization, ILr and ILm .

Remark that an abnormality, viz. a formula of the form ∃A ∧ ∃∼A, ex-
presses an absence of uniformity (in the sense of [10]). The upper limit
logic, which declares all abnormalities logically false, is UCL, obtained by
extending the lower limit logic CL with the axiom schema ∃A ⊃ ∀A.1

I first characterize the adaptive logics syntactically. An annotated line con-
sists of a line number, a formula, a justification and a condition. Where
∆ ⊂ Ω is a finite set, let Dab(∆) denote the disjunction of the members of
∆ (in some preferred order). Such a formula will be called a Dab-formula
because it is a disjunction of abnormalities. The rules of inference, listed be-
low, are determined by the standard format. Remember that CL is the lower
limit logic of IL. The rules should be interpreted as follows. The premise

1 The UCL-models are those CL-models in which the interpretation of any predicate of
adicity n is either the empty set or the set of all n-tuples of members of the domain.
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LOGIC OF INDUCTIVE GENERALIZATION 57

rule Prem allows one to introduce any premise with an empty condition at
any point in the proof. The unconditional rule RU states that, if A1, . . . , An

occur in the proof on the respective conditions ∆1, . . . , ∆n, and B is deriv-
able from A1, . . . , An by the lower limit logic CL, then one may add B on
the condition ∆1∪ . . .∪∆n. Analogously for the conditional rule RC, which
is the only one that introduces new elements to the condition.

PREM Where Γ is the premise set,
if A ∈ Γ: . . . . . .

A ∅

RU If A1, . . . , An `CL B: A1 ∆1

. . . . . .
An ∆n

B ∆1 ∪ . . . ∪ ∆n

RC If A1, . . . , An `CL B ∨ Dab(Θ) A1 ∆1

. . . . . .
An ∆n

B ∆1 ∪ . . . ∪ ∆n ∪ Θ

While the rules depend only on the lower limit logic and on the set of
abnormalities, the chosen strategy determines the marking definition. The
marking definition for the Reliability strategy and that for the Minimal ab-
normality strategy each require some technicalities.

At any stage of the proof, zero or more Dab-formulas will be derived on
the empty condition. Remark that these Dab-formulas are CL-consequences
of Γ. Dab(∆) is a minimal Dab-formula at a stage s of a proof if, at stage s,
Dab(∆) is derived on the empty condition and there is no ∆′ ⊂ ∆ for which
Dab(∆′) is derived on the empty condition. Let Dab(∆1), . . . ,Dab(∆n) be
the minimal Dab-formulas that are derived at stage s. The set of unreliable
abnormalities at stage s is then Us(Γ) = ∆1 ∪ . . . ∪ ∆n. Let Φ◦

s(Γ) be the
set of all sets that contain one disjunct out of each ∆i (1 ≤ i ≤ n). Let
Φ?

s(Γ) contain, for any ϕ ∈ Φ◦
s(Γ), the set CnCL(ϕ) ∩ Ω. Finally let Φs(Γ)

contain those members of Φ?
s(Γ) that are not proper supersets of a member

of Φ?
s(Γ).

Definition 1 : Marking for ILr : Line i is marked at stage s iff, where ∆ is its
condition, ∆ ∩ Us(Γ) 6= ∅.

Definition 2 : Marking for ILm : Line i is marked at stage s iff, where A is
the formula and ∆ the condition of line i, (i) there is no ϕ ∈ Φs(Γ) such that
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58 DIDERIK BATENS

ϕ ∩ ∆ = ∅, or (ii) for some ϕ ∈ Φs(Γ), there is no line k that has A as its
formula and has as its condition a Θ such that ϕ ∩ Θ = ∅.

Derivability is introduced by the three following definitions:

Definition 3 : A formula A is derived at stage s of a proof from Σ iff A is the
formula of a non-marked line at stage s.

Definition 4 : A is finally derived from Γ on line i of a proof at stage s iff
(i) A is the formula of line i, (ii) line i is not marked at stage s, and (iii) any
extension of the proof in which line i is marked may be further extended in
such a way that line i is unmarked.

Definition 5 : Γ ` A (A is finally derivable from Γ) iff A is finally derived on
a line of a proof from Γ.

It is often useful to refer to the condition on which a formula is derivable
at a stage. This is illustrated by the following lemma, which we shall need
in the sequel. The proof proceeds by an obvious induction on the length of
the proof.

Lemma 1 : Where AL is an adaptive logic in standard format and LLL is its
lower limit logic, A is derivable on the condition ∆ in a dynamic proof from
Γ iff Γ `LLL A ∨ Dab(∆).

The intended application context of IL concerns premise sets that con-
tain data (singular statements) only. Of course background knowledge plays
a role in nearly any inductive generalization, but background knowledge
should be handled by different (prioritized) adaptive logics as explained in
[7]. I also refer the reader to that paper for some examples of IL-proofs; the
only example in the present paper is in Section 9.

The semantics of ILr and ILm is given directly by the standard format and
soundness and completeness are provable along the standard road. For each
CL-model M , we define its abnormal part Ab(M) = {A ∈ Ω | M |= A}.
Where ∆1, ∆2, . . . are the subsets of Ω for which Dab(∆i) is a minimal
Dab-consequence of Γ,2 U(Γ) = ∆1 ∪ ∆2 ∪ . . ..

2 This simply means that all CL-models of Γ verify Dab(∆i) but that, for every Θ ⊂ ∆i,
some models falsify Dab(Θ).
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LOGIC OF INDUCTIVE GENERALIZATION 59

A CL-model M of Γ is an ILr -model of Γ iff Ab(M) ⊆ U(Γ); Γ �ILr A
iff A is verified by all ILr -models of Γ. A CL-model M of Γ is an ILm -
model of Γ iff there is no CL-model M ′ of Γ such that Ab(M ′) ⊂ Ab(M);
Γ �ILm A iff A is verified by all ILm -models of Γ.

4. The Basic Schema

In inconsistency-adaptive logics the lower limit logic is some paraconsistent
logic, for example CLuN as in [1], and the set of abnormalities comprises
the formulas of the form ∃(A ∧ ∼A).3 The conditional rule RC is just like
that for IL:

RC If A1, . . . , An `CLuN B ∨ Dab(Θ) A1 ∆1

. . . . . .
An ∆n

B ∆1 ∪ . . . ∪ ∆n ∪ Θ

The standard negation (here ∼) is paraconsistent in CLuN (A∧∼A is not
logically false). Adding classical negation (here ¬) to CLuN greatly simpli-
fies the metatheoretic proofs and also enables one to obtain more transparent
object-level proofs. For example, the rule RC can be replaced by the fol-
lowing rule, which I shall call the basic schema (for inconsistency-adaptive
logics):

BS ∃∼A ∨ B ∆
∃¬A ∨ B ∆ ∪ {∃(A ∧ ∼A)}

Remark that ¬A is a strengthening of ∼A, whereas A is (equivalent to) the
classical negation of ¬A.

It is useful to see what is behind BS. That ∃∼A ∨ B is derivable on the
condition ∆ from a premise set Γ (see the premise line of BS) corresponds,
as remarked before, to the fact that

Γ `CLuN (∃∼A ∨ B) ∨ Dab(∆) .

3 For some lower limit logics and strategies, the form is restricted, for example to atomic
A (A that do not contain any logical symbol except for identity).
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60 DIDERIK BATENS

This is equivalent to each of the following

Γ `CLuN (∃(¬A ∨ ∼A) ∨ B) ∨ Dab(∆)

Γ `CLuN (∃((¬A ∨ ∼A) ∧ (¬A ∨ A)) ∨ B) ∨ Dab(∆)

Γ `CLuN (∃(¬A ∨ (A ∧ ∼A)) ∨ B) ∨ Dab(∆)

and from the last follows:

Γ `CLuN ((∃¬A ∨ ∃(A ∧ ∼A)) ∨ B) ∨ Dab(∆) ,

which is equivalent to

Γ `CLuN (∃¬A ∨ B) ∨ Dab(∆ ∪ {∃(A ∧ ∼A)}) ,

which means that ∃¬A∨B is derivable from the premise set on the condition
∆ ∪ {∃(A ∧ ∼A)}, as the conclusion of BS states.

This basic schema is heuristically useful. The insight deriving from it
moreover clarifies what is going on in inconsistency-adaptive logics: the
paraconsistent negation of A is identified with the classical negation of A on
the condition that A ∧ ∼A is false on the premises.4

This suggests that it is worthwhile to consider the question whether it is
possible to formulate a basic schema for IL. The answer is positive, and here
it is:

BS where ∃A ∧ ∃∼A ∈ Ω: ∃A ∨ B ∆
∀A ∨ B ∆ ∪ {∃A ∧ ∃∼A)}

Remember that the standard negation ∼ is classical in IL. ∀A is a strength-
ening of ∃A, whereas ∃∼A is (equivalent to) the classical negation of ∀A.

The proofs of the following lemma and theorem are instructive to clarify
the status and function of BS in the logic IL.

Lemma 2 : BS is derivable from {PREM, RU, RC}.

Proof. Suppose that ∃A ∨ B is derivable on the condition ∆ in an IL-proof
from the premise set Γ. In view of Lemma 1, the first statement of the

4 The wording is slightly more complicated in the predicative case, but I do not mention
that one here as this is not a paper on inconsistency-adaptive logics.
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LOGIC OF INDUCTIVE GENERALIZATION 61

following list holds true. Moreover, all statements in the list are equivalent.

Γ `CL (∃A ∨ B) ∨ Dab(∆)

Γ `CL ((∀A ∨ ∃A) ∨ B) ∨ Dab(∆)

Γ `CL (((∀A ∨ ∃A) ∧ (∀A ∨ ∃∼A)) ∨ B) ∨ Dab(∆)

Γ `CL ((∀A ∨ (∃A ∧ ∃∼A)) ∨ B) ∨ Dab(∆)

Γ `CL (∀A ∨ B) ∨ Dab(∆ ∪ {∃A ∧ ∃∼A})

In view of Lemma 1 the last statement entails that ∀A ∨ B is derivable by
RC on the condition ∆ ∪ {∃A ∧ ∃∼A} in a proof from Γ. �

Theorem 1 : Γ `{PREM,RU,RC} A iff Γ `{PREM,RU,BS} A.

Proof. The right–left direction is Lemma 2. For the left–right direction, sup-
pose that B is derived on the condition {∃A1 ∧ ∃∼A1, . . . , ∃An ∧ ∃∼An}
in a proof in terms of {PREM, RU, RC}. By Lemma 1,

Γ ` B ∨ (∃A1 ∧ ∃∼A1) ∨ . . . ∨ (∃An ∧ ∃∼An) . (1)

Let Σ be the set of all formulas of the form ∀ ±A1 ∧ . . . ∧ ∀±An in which
each ± is either ∼ or nothing.5 Remark that (1) is equivalent to

Γ `
∨

(Σ) ⊃ B . (2)

Whence, in a proof in terms of {PREM, RU, BS}, one can obtain

i
∨

(Σ) ⊃ B RU ∅

And in such a proof one can always obtain

j1 ∃A1 ∨ ∀∼A1 RU ∅
j2 ∀A1 ∨ ∀∼A1 BS {∃A1 ∧ ∃∼A1}
...

...
...

...
j2n−1 ∃An ∨ ∀∼An RU ∅
j2n ∀An ∨ ∀∼An BS {∃An ∧ ∃∼An}
j2n+1

∨
(Σ) j2, j4, . . . j2n; RU {∃A1 ∧ ∃∼A1, . . . ,

∃An ∧ ∃∼An}

and hence also

5 The first ± may represent ∼ while the second represents an empty string, etc.
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62 DIDERIK BATENS

j2n+2 B i, j2n+1; RU {∃A1 ∧ ∃∼A1, . . . ,
∃An ∧ ∃∼An}

�

This seems the best point to warn against the misleading symmetry of
applications of BS. If Γ `CL ∃A, one can derive ∀A on the condition (∃A ∧
∃∼A) and if Γ `CL ∃∼A one can derive ∀∼A on the condition (∃A ∧
∃∼A). For complex A, however, at best one of these derivations is sensible.
Suppose indeed that A is ∀x(Px ⊃ Qx) and that ∃x∼(Px ⊃ Qx), or
equivalently ∃x(Px ∧ ∼Qx), was derived on the condition ∅. It is not very
sensible to derive from this the formula ∀x(Px ∧ ∼Qx) on the condition
∃(Px ∧ ∼Qx) ∧ ∃∼(Px ∧ ∼Qx). Indeed, it is then advisable to derive
∀xPx on the condition {∃xPx∧∃x∼Px}, to derive ∀∼Qx on the condition
{∃xQx ∧ ∃x∼Qx}, and next to derive ∀x(Px ∧ ∼Qx) on the condition
{∃Px∧∃∼Px, ∃Qx∧∃∼Qx}. As soon as new data lead to the derivation of,
for example, ∃xPx∧∃x∼Px, the lines in which ∀xPx and ∀x(Px∧∼Qx)
are derived will be marked, as is desirable.

A further warning is required. The reader might have the impression from
BS that ∀A is derivable on the condition ∃A∧∃∼A in a proof from Γ when-
ever ∀A is derivable on some condition in a proof from Γ. That this is not
the case is easily seen from the following premise set:

Γ = {Pa ∨ Qa, Pb ∨ ∼Qb} .

The generalization ∀xPx may be derived from this premise set6 on the con-
dition {∃xQx ∧ ∃x∼Qx, ∃xPx ∧ ∃x∼Px}, but it is impossible to derive it
on the condition {∃xPx ∧ ∃x∼Px}.

Incidentally, this example illustrates that, although BS neatly expresses the
idea behind the conditional rule RC of IL, the proofs in terms of {PREM, RU,
BS} are sometimes less transparent than the proofs in terms of {PREM, RU,
RC}.
1 Pa ∨ Qa PREM ∅
2 Pb ∨ ∼Qb PREM ∅
3 ∃xPx ∨ ∃xQx 1; RU ∅
4 ∃xPx ∨ ∃x∼Qx 2; RU ∅
5 ∀xPx ∨ ∃xQx 3; BS {∃xQx ∧ ∃x∼Qx}
6 ∃xPx 4, 5; RU {∃xQx ∧ ∃x∼Qx}
7 ∀xPx 6; BS {∃xQx ∧ ∃x∼Qx, ∃xPx ∧ ∃x∼Px}

6 Such premise sets are by no means anomalous or unusual. Often our observational
criteria warrant only complex empirical data.
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Compare 3–7 to:
3 ∃xPx ∨ ∃xQx 1; RU ∅
4 ∃xPx ∨ ∃x∼Qx 2; RU ∅
5 ∃xPx 3, 4; RC {∃xQx ∧ ∃x∼Qx}
6 ∀xPx 5; RC {∃xQx ∧ ∃x∼Qx, ∃xPx ∧ ∃x∼Px}

5. Falsification, Co-Compatibility, and Uniformity

By a generalization I shall mean the universal closure of a purely functional
formula — see [4, §3] for a justification of this restriction. A widespread
truism holds it that a generalization ∀A is sustainable in view of a data set Γ
iff (i) Γ entails an instance of ∀A and (ii) does not falsify ∀A.

The last example of the previous section illustrates that (i) is not necessary
for Γ `IL ∀A. However, (i) and (ii) are also insufficient for Γ `IL ∀A. This
is easily seen if one considers ‘connected’ abnormalities, which occur if a
minimal Dab-consequence of Γ has more than one disjunct. The matter is
illustrated by the following set of data

Γ = {Pa,∼Pb, Qb,∼Pc,∼Qc, Qd}

from which several instances of ∀x(Px ⊃ Qx) are derivable and that does
not falsify this generalization.

And yet ∀x(Px ⊃ Qx) is not an IL-consequence of Γ. Suppose that the
generalization is derived on the condition ∃x(Px ⊃ Qx)∧∃x∼(Px ⊃ Qx)
in line i. The formula

(∃x(Px ⊃ Qx) ∧ ∃x∼(Px ⊃ Qx))

∨ (∃x(Px ⊃ ∼Qx) ∧ ∃x∼(Px ⊃ ∼Qx))

is a minimal Dab-consequence of Γ and when it is derived, line i is marked.7

The situation may be repaired by adding (what philosophers of science
call) a positive instance of ∀x(Px ⊃ Qx). Indeed, it is easily seen that

Γ ∪ {Pe ∧ Qe} `CL ∃x(Px ⊃ ∼Qx) ∧ ∃x∼(Px ⊃ ∼Qx)

and that ∀x(Px ⊃ Qx) is IL-derivable from Γ ∪ {Pe ∧ Qe}.

7 The generalization may be derived on different (related) conditions, but some of their
members are disjuncts of a minimal Dab-consequence of Γ.
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However, the presence of a positive instance does not in general warrant
the derivability of a generalization. For example, Γ contains a positive in-
stance of ∀x(Qx ⊃ ∼Px), which is equivalent to ∀x(Px ⊃ ∼Qx). Nev-
ertheless ∀x(Qx ⊃ ∼Px) is not IL-derivable from Γ. So the conclusion
is that the presence of even a positive instance together with the absence of
falsification is insufficient to derive a generalization.

What is the criterion behind IL? One might be tempted to think that it
is co-compatibility, viz. that a generalization ∀A is IL-derivable from Γ iff
∆ ∪ {∀A} is compatible with Γ whenever the set of generalizations ∆ is
compatible with Γ. Co-compatibility seems a reasonable criterion, and quite
a few arguments connect it to final IL-derivability. Clearly all finally IL-
derivable generalizations are jointly compatible with Γ — they are all true
in the preferred CL-models of Γ. Next, if Γ contains an instance of each
member of the set of generalizations {∀A1, . . . , ∀An}, then this set is in-
compatible with Γ iff Γ `CL (∃A1 ∧ ∃∼A1) ∨ . . . ∨ (∃An ∧ ∃∼An). Also,
it is provable that ∀A is not co-compatible with Γ if (∃A ∧ ∃∼A) ∨ (∃B1 ∧
∃∼B1) ∨ . . . ∨ (∃Bn ∧ ∃∼Bn) is a minimal Dab-consequence of Γ.

And yet, while co-compatibility is obviously a necessary condition for
final IL-derivability, it is not a sufficient condition for it. This is again
illustrated by the last example from Section 4. Indeed, both ∀xPx and
∀x∼Px are compatible with the premise set Γ = {Pa ∨ Qa, Pb ∨ ∼Qb}
and {∀xPx, ∀x∼Px} is incompatible with Γ, whence ∀xPx is not co-
compatible with Γ. Nevertheless Γ `IL ∀xPx.

This brings us back to the original idea behind IL: the criterion for final IL-
derivability is uniformity, or rather absence of inductive abnormality. This
criterion is interpreted somewhat differently by the two strategies. Reliabil-
ity requires that finally derived formulas should be reliable with respect to
the minimal Dab-consequences of the premise set. Minimal Abnormality re-
quires that the premise set be interpreted minimal abnormally; semantically:
the selected models are the minimal abnormal CL-models of the premise set.

Of course, there are other useful criteria for deciding that a generalization
is not finally IL-derivable from a premise set. A first and obvious criterion
is that the generalization is falsified by the premises. A second criterion is
connected abnormalities (which may be seen as a form of connected fal-
sification), which was discussed in the present section. A special case of
this criterion is lack of information. Consider any data set Γ in which the
(unary) predicate S does not occur. As ∃xSx ∨ ∃x∼Sx is derivable from
Γ, ∀xSx ∨ ∀x∼Sx can be derived on the condition {∃xSx ∧ ∃x∼Sx} in a
proof from Γ, and as this line cannot possibly be marked, ∀xSx∨∀x∼Sx is
finally derivable from Γ. This is very reasonable. As Γ provides no informa-
tion about S, we suppose S to display no abnormalities. However, neither
∀xSx nor ∀x∼Sx is finally derivable from this Γ, as desired.
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6. Evoked Tests

We have seen that neither ∀x(Px ⊃ Qx) nor ∀x(Px ⊃ ∼Qx) are finally
IL-derivable from the premise set

Γ = {Pa,∼Pb, Qb,∼Pc,∼Qc, Qd} .

because

(∃x(Px ⊃ Qx) ∧ ∃x∼(Px ⊃ Qx))

∨ (∃x(Px ⊃ ∼Qx) ∧ ∃x∼(Px ⊃ ∼Qx)) (3)

is a minimal Dab-consequence of Γ. This disjunction evokes the question:8

Which of the two abnormalities is the case? And this question implies:
?{Qa,∼Qa} (is Qa the case or is ∼Qa the case?).

If empirical (observational or experimental) means are available to answer
this question, the question may be called a test. Depending on its outcome,
the main question (whether the first or the second disjunct of (3) is the case)
is at once settled. Whichever the outcome, the effect on the IL-consequences
of the thus extended premise set is dramatic. If the answer is Qa, the answer
to the main question is

∃x(Px ⊃ ∼Qx) ∧ ∃x∼(Px ⊃ ∼Qx) . (4)

When Qa is added as a new premise and (4) is derived, (3) is not any
more a minimal Dab-formula. Hence ∀x(Px ⊃ ∼Qx) is falsified and
∀x(Px ⊃ Qx) is finally derivable from the premises. If the answer is ∼Qa,
the first disjunct of (3) is derivable (and is the answer to the main question),
∀x(Px ⊃ Qx) is falsified and ∀x(Px ⊃ ∼Qx) is finally derivable from the
premises.

The two generalizations considered in the previous example are closely
connected: the implicantia are identical and the implicata are contradicto-
ries. There is no need for such connection between the disjuncts of Dab-
formulas, as appears from the following example.

Γ = {Pa, Qa,∼Ra,∼Pb,∼Qb, Rb, Pc, Rc, Qd,∼Pe}

Both ∀x(Px ⊃ Qx) and ∀x(Rx ⊃ ∼Qx) are compatible with Γ, but neither
of them is IL-derivable because

8 I use question evocation in the technical sense of [13] and [14]. Similarly for implied
questions — see later in the text.
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(∃x(Px ⊃ Qx) ∧ ∃x∼(Px ⊃ Qx))

∨ (∃x(Rx ⊃ ∼Qx) ∧ ∃x∼(Rx ⊃ ∼Qx))

is a minimal Dab-consequence of Γ.
By the same reasoning as in the previous example, Γ evokes the question

which of the two disjuncts of the Dab-formula is true, and this question
implies ?{Qc,∼Qc} in view of the premises Pc and Rc. If the latter is a
test (can be answered by empirical means), each of its direct answers will
falsify one of the generalizations and will make the other generalization IL-
derivable.

The effect of the considered tests is the following. There is a minimal Dab-
consequence of the premises that prevents the derivation of two generaliza-
tions. As a result of the outcome of the test, one disjunct of the Dab-formula
becomes CL-derivable. The effect of this is that one of the considered gen-
eralizations is falsified, and that the other generalization becomes finally IL-
derivable from the extended premise set. If the minimal Dab-formula counts
more disjuncts, several tests may be needed, but the effect is the same. So
the tests are directed towards increasing the derivable generalizations; they
are generative (in a weak sense, however: as discussed here, they do not lead
to the development of new concepts).

Obviously, the generalization that becomes finally derivable as an effect of
a test may later be falsified by new data. And nothing prevents one from ‘try-
ing to falsify’ the generalization by performing further tests. However, it is
important to realize that the function of such tests is different from the func-
tion of the considered test ?{Qc,∼Qc}. Suppose that, in the last example,
the test led to the final derivability (from the extended Γ) of ∀x(Px ⊃ Qx).
Attempts to falsify this generalization may establish its falsehood, but need
not have a generative effect.

Two further comments seem useful in connection with the last example.
The first concerns the derivability of a weakening of a falsified generaliza-
tion. Suppose again that the test ?{Qc,∼Qc} was performed and led to the
answer Qc. As we have seen ∀x(Rx ⊃ ∼Qx) is then falsified. However,
∀x((Rx ∧ ∼Px) ⊃ ∼Qx) is still IL-derivable from the extended premise
set. The idea was of course already present in [11]: if a generalization9 is

9 Popper would of course have preferred that this statement be phrased about theories,
but the application of IL with respect to theories cannot be discussed in the present paper. By
present lights, two main issues are involved: (i) a theory should organize a domain of knowl-
edge in a concise and coherent way, and, more importantly, (ii) every derivable generalization
evokes an explanation question. The answer to the explanation question will nearly always
require the development of new concepts, and it is this point which cannot be discussed here.
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falsified, one moves to a next most interesting (most falsifiable) generaliza-
tion.

The second comment is intended to avoid a possible misunderstanding.
The tests that were discussed before are directed at deciding which disjunct
of a minimal Dab-formula holds true, and thus at generating new general-
izations (in making them derivable). This may lead some readers to the im-
pression that the tests evoked by IL are directed at keeping the gathering of
new empirical evidence minimal; a poor data set, they might think, warrants
that many generalizations are derivable. This impression is mistaken. First
of all, the IL-consequences of a premise set evoke other tests as well — see
below. Next, if no data about certain predicates or about the connection be-
tween certain predicates are available, no generalization will be IL-derivable
about those predicates or about their connection. The first example of this
section illustrates that very well. Thus IL evokes questions, and hopefully
tests, about undocumented predicates and undocumented connections be-
tween predicates. It is correct that, in doing so, IL follows a certain policy,
viz. to locate abnormalities and thus to eliminate other suspected abnormal-
ities. But this is by no means a bad policy, even from a Popperian point of
view. The policy comes down to an attempt to reduce known problems: one
knows that either ∀x(Px ⊃ Qx) or ∀x(Rx ⊃ ∼Qx) is problematic, and it is
possible to perform a test that identifies one of them as problematic. In other
words, the evoked tests are bound to successfully falsify certain generaliza-
tions. Even for those who consider falsification to be the path of science, it is
sensible to perform first those tests that are bound to be successful falsifiers.

Let us now consider another kind of test that is evoked by IL. Consider the
premise set (from Section 4)

Γ = {Pa ∨ Qa, Pb ∨ ∼Qb}

from which follows

∃xPx ∨ (∃xQx ∧ ∃x∼Qx)

and hence also

∀xPx ∨ ((∃xQx ∧ ∃x∼Qx) ∨ (∃xPx ∧ ∃x∼Px)) , (5)

whence ∀xPx is derivable on the condition (∃xQx ∧ ∃x∼Qx) ∨ (∃xPx ∧
∃x∼Px) in a proof from Γ.

Incidentally, allow me to stress that such premise sets are by no means
anomalous or unusual. Often our observational criteria warrant only com-
plex empirical data.
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Remark that (5) evokes the following question

?{∀xPx, ∃xQx ∧ ∃x∼Qx, ∃xPx ∧ ∃x∼Px}

and that this (main) question entails each of ?{∀xPx,∼∀xPx}, ?{∃xQx ∧
∃x∼Qx,∼(∃xQx∧∃x∼Qx)} and ?{∃xPx∧∃x∼Px,∼(∃xPx∧∃x∼Px)}.
This means, for example, that questions about the P -hood of arbitrary ob-
jects are derivable.

Most often, (5) will not occur in the proof. What will occur is the formula
∀xPx derived on the condition (∃xQx ∧ ∃x∼Qx) ∨ (∃xPx ∧ ∃x∼Px).
However, this is an implicit disjunction, as the formula is derivable on the
condition just in case (5) is derivable from the premise set (see Lemma 1).

In view of the data, the main question will lead (in one or more steps) to
such questions as ?{Pa, Qa}, ?{Pb,∼Qb}, ?{Pa,∼Pa}, etc. If the ques-
tions can be answered by empirical means, it will depend on the outcomes
of the tests which further questions are evoked.

Where, in the earlier examples, the main questions are evoked directly
by the presence of a disjunction of abnormalities in the proof, the present
main question is evoked by a disjunction that is implicitly present, viz. in
the form of a formula with a non-empty condition. Where, in the earlier
examples a test led necessarily to a falsification of one of the generalizations
involved, this is not the case for the tests that are possibly derived from the
main question of the last example.

There is a further important distinction between the previous examples
and the present one. In order to establish that ∀xPx is finally ILr -derived
from the premise set Γ (on the line in which it is derived on the aforemen-
tioned condition), it is sufficient to establish that neither ∃xQx ∧ ∃x∼Qx
nor ∃xPx ∧ ∃x∼Px is a disjunct of a minimal Dab-consequence of Γ.10

Remark that we are here dealing with a different question than before and
that the question is evoked by a different disjunction, viz. the metalinguistic
disjunction: either at least one of {∃xQx ∧ ∃x∼Qx, ∃xPx ∧ ∃x∼Px} is
unreliable (is a member of U(Γ)) or ∀A is finally derivable from Γ.

To show that both abnormalities are reliable with respect to Γ is possible
by the computational approach to adaptive logics presented in [3] and [5].11

I cannot discuss the matter in the present paper, but the idea is that, in order
to establish that a consequence derived on a non-empty condition ∆ has been
finally derived, one has to show that Dab(∆) is not CL-derivable from the
premises. This is warranted if the procedure stops without the Dab(∆) being

10 The situation is slightly more complicated but similar for ILm .

11 In those papers, the approach is discussed for inconsistency-adaptive logics, but it can
easily be transferred to IL.
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derived, or if the disjunction is derived on a Θ and the procedure leads to a
derivation of Dab(Θ) on the empty condition.

Before closing this section, a further point requires attention. It is one
thing that tests are evoked, it is a different thing which tests are actually
performed. The latter will partly depend on economic considerations, but I
have a different point in mind. Independently of the premises, a researcher
may have certain reasons to consider some generalization as plausible or
implausible — such reasons are considered in the next section. If, in the
last example, the researcher considers ∀xPx implausible, this will provide a
good reason to perform those tests that are likely to falsify the generalization.

7. Evoked Conjectures – the Idea

Not all questions can be answered by empirical means. The matter is related
to the fact that the conclusion drawn from tests depends partly on certain
theoretical assumptions. This problem strikingly surfaces when ‘theoretical
predicates’ occur in the generalizations, or, more generally, when certain
questions cannot be answered by empirical means.

Suppose that a Dab-formula

(∃A1 ∧ ∃∼A1) ∨ . . . ∨ (∃An ∧ ∃∼An)

was derived and that it cannot be (further) reduced by tests, or that the tests to
reduce the Dab-formula are judged too expensive. The premises still evoke
the question ?{(∃A1 ∧ ∃∼A1), . . . , (∃An ∧ ∃∼An)}.

At this point a researcher may have reasons to consider one of the abnor-
malities as true, thus freeing the other abnormalities from suspicion. Al-
ternatively, the researcher may have a reason to conjecture that one of the
generalizations ∀Ai is true. Such a conjecture obviously contradicts the cor-
responding abnormality, in that ∀Ai `CL ∼(∃Ai∧∃∼Ai), and hence reduces
the Dab-formula to a shorter one.

The reasons mentioned in the previous paragraph may be of different
kinds. It may happen that some information is originally not seen as relevant
for solving a certain problem, but turns out relevant later. The researcher
may be interested in a certain set of generalizations, say delineated in terms
of a set of predicates, but as the derivation proceeds, find out that knowledge
in terms of other predicates is indeed relevant. In such cases, new premises
may be brought in. This boils down to the fact that the premise set Γ is
replaced by a superset Γ′.

Two other kinds of reasons are more interesting at this point. First of all,
the researcher may rely on personal constraints to blame a certain abnormal-
ity rather than the others, or to consider one of the connected generalizations,
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∀A1, . . . , ∀An, as the most plausible conjecture. Also, a careful study of the
data and the Dab-formula in relation with theories from other domains, may
provide a reason to make a choice between the abnormalities or between the
connected generalizations. For example, even if the data do not falsify that
a person’s character is dependent on his or her blood group, such a depen-
dency seems implausible because one’s character is apparently a result of
one’s previous experiences and social interactions and not of some physio-
logical properties.

What is going on here is that one stumbles upon a problem — Which dis-
junct or disjuncts of the Dab-formula are likely to be true or false? — and
that this problem may be solved, or partially solved, outside the context in
which one is deriving generalizations and ensuing predictions. The prob-
lem may be solvable by available knowledge that was originally not seen as
relevant, or by a certain conjecture that relies on the researcher’s views or
that is arrived at by considering the involved abnormalities and generaliza-
tions in relation to other knowledge. The kind of moves we are considering
can be seen as ways to narrow down suspicion in premise sets that display
abnormalities (in that Dab-formulas are derivable from them).

Inductive generalizations that are derived by IL are conjectures in the sense
that new evidence may falsify them. The abnormalities or generalizations
introduced in order to narrow down suspicion are conjectures of a different
kind. The data in themselves do not provide reasons to accept them; they
are introduced for different reasons, which are related to the researcher’s
theoretical insights and world view. Henceforth I shall reserve “conjecture”
for the latter kind (as I implicitly did in some previous passages as well).

We have seen that conjectures are introduced in order to narrow down
the suspicion that is revealed by a minimal Dab-formula and pertains to
all disjuncts of the formula. Given the specific form of the question, viz.
?{(∃A1 ∧∃∼A1), . . . , (∃An ∧∃∼An)}, there seem to be two candidates for
conjectures: ∃Ai ∧ ∃∼Ai and ∼(∃Ai ∧ ∃∼Ai). A little reflection reveals
that the second form is the right one. Suppose indeed that one introduces
the conjecture ∃A1 ∧ ∃∼A1, but that new data become available and that
∃A2∧∃∼A2 is derived from them. If the conjecture had not been introduced,
the new data would free all ∃Ai ∧ ∃∼Ai (1 ≤ i ≤ n; i 6= 2) from suspicion,
including ∃A1 ∧ ∃∼A1. But if the conjecture ∃A1 ∧ ∃∼A1 was introduced,
no new data can possibly free it from being suspect. So if conjectures have
the form ∃Ai ∧ ∃∼Ai, they introduce a problem rather than solving one.

Unlike the premises, including those that were not originally seen as rele-
vant, conjectures have to be introduced in a defeasible way. Suppose indeed
that one simply adds to the premises the conjecture ∼(∃x(Px ⊃ Qx) ∧
∃x∼(Px ⊃ Qx)), which is equivalent to ∀x(Px ⊃ Qx) ∨ ∀x(Px ∧∼Qx).
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New data (or even the old ones) may falsify both generalizations,12 and the
result would be a trivial premise set. So conjectures will be introduced in a
defeasible way, that is, with a certain plausibility which does not make them
immune for new data.13 Remark that the difficulty cannot arise in connec-
tion with generalizations that are derived by IL from the data. If the premise
set is extended and a derived generalization is falsified, the generalization is
simply not derivable any more from that point on — the line at which it is
derived will be marked from that stage on as an effect of the marking defini-
tion. The technicalities concerning the defeasible introduction of conjectures
will be discussed in the next section.

Having provided a researcher with the possibility to introduce defeasi-
ble conjectures, a further point still has to be brought up. A conjecture is
clearly introduced because it is plausible (for reasons that do not depend on
the data). Plausibility clearly comes in degrees; some conjectures may be
considered as more plausible than others. In the subsequent section, I shall
write ♦∼(∃A∧∃∼A) for a very plausible conjecture, ♦♦∼(∃A∧∃∼A) for
a somewhat less plausible one, and so on. For the sake of generality, I shall
abbreviate ∼(∃A∧∃∼A) preceded by i diamonds as ♦i∼(∃A∧∃∼A), and
this will express a higher plausibility (or priority or what have you) as i is
smaller.

8. Evoked Conjectures – the Logic

I shall handle conjectures by combining the adaptive logics ILr and ILm

with the adaptive logics Tsr and Tsm from [9]. In the present paper, the
latter will handle prioritized premises of the form ♦i∼(∃A ∧ ∃∼A). Each
of Tsr and Tsm may be seen as an infinite sequence of adaptive logics that
all have the same structure — the first member suitably handles premises of
the form ♦A, the second premises of the form ♦2A, etc. This is why the
prioritized adaptive logic, if phrased as a single system, has a sequence of
sets of abnormalities.

The lower limit logic will be called T — it is a particular predicative exten-
sion of the propositional modal logic T. Let LM be the result of extending L
with the modalities in the standard way. Let S be the set of sentential letters,

12 If the premises consist of data only, it is decidable whether the old data falsify a gen-
eralization. The matter becomes more difficult, however, in the presence of background
knowledge (see [7]) or conjectures.

13 This highlights in a different way the problem that would arise if conjectures of the
form ∃A ∧ ∃∼A were allowed even with a certain plausibility: no possible extension of the
data set could possibly falsify them, and hence we would be stuck with them forever.
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C the set of individual constants, and Pr (r > 0) the set of predicative letters
of rank r. The pseudo-language LM+ is obtained by extending LM with a
set of pseudo-constants O, which has at least the cardinality of the largest
model one wants to consider. The function of O is to simplify the clauses
for the quantifiers; it is not specific for modal logic — see, for example, the
semantics for the non-modal P in [8].

A T-model M is a quintuple 〈W, w0, R, D, v〉 in which W is a set of
worlds, w0 ∈ W the real world, R a binary relation on W , D a non-empty
set and v an assignment function. The accessability relation R is reflexive.
The assignment function v is defined by:
C1.1 v : S × W 7→ {0, 1}
C1.2 v : (C ∪ O) × W 7→ D
C1.3 v : Pr × W 7→ ℘(Dr) (the power set of the r-th Cartesian product

of D)
The valuation function vM : WM+×W 7→ {0, 1}, determined by the model
M is defined by:
C2.1 where A ∈ S , vM (A, w) = v(A, w)
C2.2 vM (πrα1 . . . αr, w) = 1 iff 〈v(α1, w), . . . , v(αr, w)〉 ∈ v(πr, w)
C2.3 vM (α = β, w) = 1 iff v(α, w) = v(β, w)
C2.4 vM (∼A, w) = 1 iff vM (A, w) = 0
C2.5 vM (A ∨ B, w) = 1 iff vM (A, w) = 1 or vM (B, w) = 1
C2.6 vM (∃αA(α), w) = 1 iff vM (A(β), w) = 1 for at least one β ∈ C∪O
C2.7 vM (♦A, w) = 1 iff vM (A, w′) = 1 for at least one w′ such that

Rww′.
The other logical symbols are defined in the usual way. A T-model M ver-
ifies A ∈ WM iff vM (A, w0) = 1. A is T-valid iff it is verified by all
T-models.

It may be helpful to mention that the semantics may be rephrased in terms
of a function d that assigns to each w ∈ W its domain d(w) = {v(α, w) |
α ∈ C ∪ O}. If this is done, C1.3 is equivalent to “v : P r × W 7→
℘((d(w))r)”. Remark also that the value of modal predicative expressions
depends on the values of the pseudo-constants and constants, and not on the
objects of the domain. Thus the value of vM (♦Pa, w) is determined by the
values of v(a, w′) and v(P, w′) for those w′ for which Rww′. As a result,
the Barcan formula is T-valid. See [9] for the possibility to rephrase the
semantics as a counterpart semantics.

Consider an adaptive logic defined by lower limit logic T, the set of ab-
normalities Ω1 = {(∃A ∧ ∃∼A) ∧ ♦∼(∃A ∧ ∃∼A) | A ∈ F◦} and either
the Reliability strategy or the Minimal Abnormality strategy. This logic in-
terprets a set of premises as normal as possible with respect to the specific
abnormalities. Consider, for example, a premise set comprising non-modal
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premises together with a single modal premise ♦∼(∃A ∧ ∃∼A). The adap-
tive models of the premise set will be those that verify ∼(∃A ∧ ∃∼A) pro-
vided there are such models. Indeed, all other models verify the abnormality
(∃A ∧ ∃∼A) ∧ ♦∼(∃A ∧ ∃∼A).

Next consider a sequence of adaptive logics, 〈A1, A2, . . .〉 each of which
is defined by the lower limit logic T, a same strategy, Reliability or Minimal
Abnormality, and the following sets of abnormalities: Ω1 = {(∃A∧∃∼A)∧
♦∼(∃A ∧ ∃∼A) | A ∈ F◦} for the first logic, A1, Ω2 = {(∃A ∧ ∃∼A) ∧
♦♦∼(∃A ∧ ∃∼A) | A ∈ F◦} for the second logic, A2, etc. In the previous
section I introduced the convention that ♦A is seen as expressing a stronger
priority than ♦♦B, etc.14 So, where the most complex modality occurring
in the premise set is ♦n,15 we want to interpret the premise set as follows:

CnAn
(CnAn−1

(. . . (CnA1
(Γ)) . . .)) (6)

This looks somewhat frightening from a computational point of view, but
actually it is not. It is possible to combine the sequence of adaptive logics
〈A1, A2, . . .〉 into a single combined adaptive logic (see [2, §3]) in such a
way that the conditional rules16 of all Ai can be applied at any point in the
proof. The only effect of the combination is on the marking definition: one
first marks in view of abnormalities of A1, next in view of abnormalities of
A2, etc.

I shall now describe the prioritized adaptive logics Tsr and Tsm . The lower
limit logic is T, the sets of abnormalities are Ωi = {(∃A∧∃∼A)∧♦i∼(∃A∧
∃∼A) | A ∈ F◦} (i ≥ 1), and the strategy is Reliability for Tsr and Minimal
Abnormality for Tsm . Incidentally, the upper limit logic is Triv (CL with
modalities devoid of meaning).

Let Dab
i(∆) abbreviate the disjunction (in some preferred order) of the

members of ∆ ∈ Ωi — Dab
i(∆) is a meaningless expression if ∆ /∈ Ωi; so,

wherever I write Dab
i(∆), I mean a ∆ ∈ Ωi.

Dab
i(∆) is a minimal Dab

i-formula at a stage s of a proof iff, at stage
s, (i) there is an unmarked line that has Dab

i(∆) as its formula and a Θ ⊆
Ω1 ∪ . . . ∪ Ωi−1 as its condition, and (ii) there is no ∆′ ⊂ ∆ such that

14 This agrees with the modal logic as ♦A `T ♦♦A but ♦♦A 0T ♦A.

15 The case where the premise set contains some ♦
iA for all i ∈ N is obviously unrealistic

with respect to the intended applications. This case is commented upon at the end of Section
3 of [6].

16 The premise rule and the unconditional rule are identical for all the adaptive logics in
the sequence.
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Dab
i(∆′) is the formula of an unmarked line that has a Θ ⊆ Ω1∪ . . .∪Ωi−1

as its condition. The inference rules are exactly as in Section 3 except that
CL is replaced by T and that Dab(Θ) has to be replaced by Dab

i(Θ). Here
they are:

PREM Where Γ is the premise set,
if A ∈ Γ: . . . . . .

A ∅

RU If A1, . . . , An `T B: A1 ∆1

. . . . . .
An ∆n

B ∆1 ∪ . . . ∪ ∆n

RC If A1, . . . , An `T B ∨ Dab
i(Θ) A1 ∆1

. . . . . .
An ∆n

B ∆1 ∪ . . . ∪ ∆n ∪ Θ

Let U i
s(Γ) be defined as Us(Γ), but in terms of minimal Dab

i-formulas at
stage s of a proof. Let Φi

s(Γ) be defined as Φs(Γ), but in terms of minimal
Dab

i-formulas at stage s of a proof.
The Marking definitions are as in Section 3 except that they should be

applied starting from level 1 abnormalities. To avoid confusion, I spell them
out:

Definition 6 : Marking for Reliability (Tsr ) starting from i = 1: A line is
marked at stage s iff, where ∆ is its condition, ∆ ∩ U i

s(Γ) 6= ∅.

Definition 7 : Marking for Minimal Abnormality (Tsm ) starting from i = 1:
A line is marked at stage s iff, where A is the second element and ∆ the fifth
element of the line, (i) there is no ϕ ∈ Φi

s(Γ) such that ϕ∩∆ = ∅, or (ii) for
some ϕ ∈ Φi

s(Γ), there is no line at which A is derived on a condition Θ for
which ϕ ∩ Θ = ∅.

Final derivability is defined by Definition 5 (which relies on Definitions 3
and 4).

Turning to the semantics, I first recall that n is the largest i for which ♦i

occurs in the premises. Let M vary over T-models of Γ. We define:
- Σ0 = {M | M |= Γ}.
- Where 0 < i ≤ n, a minimal Dab

i-consequence of Γ is a (set-theoretically)
shortest Dab

i-formula that is true in all M ∈ Σi−1.
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- Where 0 < i ≤ n, and Dab
i(∆1), Dab

i(∆2), . . . are the minimal Dab
i-

consequences of Γ, U i(Γ) = ∆1 ∪ ∆2 ∪ . . ..
- Ab

i(M) = {A ∈ Ωi | M |= A}
- Where 0 < i ≤ n, Σi = {M ∈ Σi−1 | Ab

i(M) ⊆ U i(Γ)}.
- The Reliable models (Tsr -models) of Γ are the members of Σn.

We proceed analogously for Minimal Abnormality, but here the matter is
simpler. We define:
- Σ0 = {M | M |= Γ}.
- Ab

i(M) = {A ∈ Ωi | M |= A}
- Where 0 < i ≤ n, Σi = {M ∈ Σi−1 | for no M ′ ∈ Σi−1, Ab

i(M ′) ⊂
Ab

i(M)}.
- The Minimal Abnormal models (Tsm -models) of Γ are the members of

Σn.
Γ �Tsr A iff A is verified by all reliable models of Γ. Γ �Tsm A iff A

is verified by all minimally abnormal models of Γ. It is provable that both
logics are sound and complete with respect to their semantics.

I still have to combine the adaptive logics of inductive generalization from
Section 3 with the prioritized adaptive logics from the present section. As
few applications will justify that one combines Reliability for one logic with
Minimal Abnormality for the other, two combinations seem most attractive.

As before, the set of (original and new) premises Γ will consist solely of
non-modal formulas and of formulas of the form ♦i∼(∃A ∧ ∃∼A), and I
suppose that all i ≤ n for some n. The logic we are after is obtained by
combining flat adaptive logics. Let the combination for Reliability be called
ILpr . What we want is17

Cn ILpr (Γ) = Cn IL(CnTsr (Γ)). (7)

This may be spelled out as follows:

Cn ILpr (Γ) = Cn IL(CnTsr

n
(CnTsr

n−1
(. . . (CnTsr

1
(Γ)) . . .))) (8)

which makes it transparent that first all premises of the form ♦i(A∧∼A) are
taken into account, starting with i = 1, and next the result is interpreted as
normal as possible with respect to IL-abnormalities. The situation is similar
for the Minimal Abnormality combination, ILpm . We want

Cn ILm (Γ) = Cn IL(CnTsm (Γ)). (9)

17 There is some notational abuse as Cn IL(Γ) is not defined for LM , but the idea is clear
and ILpr is correctly defined below.
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In order to avoid confusion, let us rename the Ω from Section 3 to Ωω —
so Ωω = {∃A ∧ ∃∼A | A ∈ F◦}.

The combined adaptive logics ILr and ILm are defined by the lower limit
logic T, the sets of abnormalities Ω1, Ω2, . . . , Ωω, and the Reliability strategy
and the Minimal Abnormality Strategy respectively. Incidentally, the upper
limit logic is UCL extended with Triv.

Let us move to the dynamic proofs. Let Dab(Θ) refer to the disjunction
of a Θ ⊂ Ω1 ∪Ω2 ∪ . . .∪Ωω. The inference rules for the combined adaptive
logic are exactly like those of IL, except that CL should be replaced by T.

The marking definitions too are easily obtained in view of (8). Where
i ≥ 1, let Dab

i(∆) be as before in this section — Dab
ω(∆) denotes the

disjunction of the members of ∆ ⊆ Ωω. Dab
ω(∆) is a minimal Dab

ω-
formula at stage s of a proof iff, at stage s, Dab

ω(∆) is the second element
of an unmarked line that has some Θ ⊆ Ω1 ∪Ω2 ∪ . . . as its fifth element —
again, the order in which lines are marked will be essential. Uω

s (Γ) is defined
from the minimal Dab

ω-formulas at stage s just as Us(Γ) was defined in
Section 3 from (what was there called) the minimal Dab-formulas at stage s.
Φω

s (Γ) is defined from the minimal Dab
ω-formulas at stage s just as Φs(Γ)

is defined in Section 3 from (what is there called) the minimal Dab-formulas
at stage s.

Given a proof at a stage, the Definitions 6 and 7 are adjusted in such a
way that the lines are first marked in view of level 1, next in view of level 2,
and so on up to the highest level n — I supposed that there was one — and
finally in view of level ω.

The semantics is completely standard and is left to the reader. All one has
to remember is that the selection of the T-models of Γ is defined from, first,
a selection in view of Ω1, next a selection in view of Ω2, and so on up to Ωn,
and finally a selection in view of Ωω.

9. An Example

Let us consider an example of a premise set. My main aim here is to illustrate
IL as well as the way in which applying it provides insights in the general-
izations that are compatible with the data, and evokes certain questions that
may be answered by tests or by defeasible conjectures.

Let the premise set be

Γ = {Pa ∧ ∼Qa ∧ ∼Ra,∼Pb ∧ Qb ∧ Rb,

Pc ∧ Rc, Qd ∧ ∼Pe, Sf ∧ ∼Sg} .
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For typographical reasons I abbreviate an abnormality ∃A∧∃∼A as A in the
condition as well as in Dab-formulas. I also write continuous conjunctions
where there is no ambiguity. As far as the lines derived in the example are
concerned, it does not make any difference whether the proof proceeds in
terms of ILr or ILm ; the same lines will be marked or unmarked at the same
stage — of course it is easiest to read the proof in terms of ILr . For the sake
of transparency, I add to each mark the number of the stage at which it is
introduced.
1 Pa ∧ ∼Qa ∧ ∼Ra PREM ∅
2 ∼Pb ∧ Qb ∧ Rb PREM ∅
3 Pc ∧ Rc PREM ∅
4 Qd ∧ ∼Pe PREM ∅
5 Sf ∧ ∼Sg PREM ∅
6 ∀x(Qx ⊃ Rx) 2; RC {Qx ⊃ Rx}
7 Rd 4, 6; RU {Qx ⊃ Rx}
8 ∀x(∼Px ⊃ Qx) 2; RC {∼Px ⊃ Qx}
9 Qe 4, 8; RU {∼Px ⊃ Qx}
10 Re 6, 9; RU {Qx ⊃ Rx,∼Px ⊃ Qx}
11 ∀x(∼Px ⊃ Rx) 6, 8; RU {Qx ⊃ Rx,∼Px ⊃ Qx}

It is also possible to derive the formula of line 11 in a direct way by the
conditional rule:
12 ∀x(∼Px ⊃ Rx) 2; RC {∼Px ⊃ Rx}

If line 6 or line 8 is marked, line 11 is also marked, but line 12 may
still be unmarked. This nicely illustrates that a generalization that is a CL-
consequence of other derived generalizations need not be rejected if one of
those from which it is a CL-consequence are rejected. IL warrants, however,
that if ∀A is a CL-consequence of other generalizations, and ∀A is rejected,
then one of the generalizations from which it is CL-derived is also rejected.
The inductive prediction Re, here derived in line 10, may also be derived
from lines 4 and 11 (with the same condition as line 11, which is the condi-
tion of line 10) or from lines 4 and 12 (with the same condition as line 12). It
is easily seen that no line so far in this proof will be marked in any extension
of the proof provided no new premises are added.
13

√
14 ∀x(Px ⊃ ∼Rx) 1; RC {Px ⊃ ∼Rx}

14 Dab(Px ⊃ ∼Rx) 1, 3; RU ∅

The generalization ∀x(Px ⊃ ∼Rx) is falsified by the premise of line 3.
As also an instance of ∀x(Px ⊃ ∼Rx) occurs in the premises, for example
in line 1, line 14 is derivable and line 13 is marked.18 Obviously line 13

18 If no instance of ∀x(Px ⊃ ∼Rx) occurred in the premises, ∀x(Px ⊃ ∼Rx) would
not be derivable in the first place. All one could derive on the condition {Px ⊃ ∼Rx} would
be ∀x(Px ⊃ ∼Rx) ∨ ∀x∼(Px ⊃ ∼Rx).
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will remain marked in any extension of the proof. No new data and no
conjectures can possibly remove the mark.

Here is an interesting further extension of the proof:
15

√
21 ∀x(Px ⊃ ∼Qx) 1; RC {Px ⊃ ∼Qx}

16
√

21 ∼Qc 3, 15; RU {Px ⊃ ∼Qx}
17

√
21 ∀x(Rx ⊃ Qx) 2; RC {Rx ⊃ Qx}

18
√

21 Qc 3, 17; RU {Rx ⊃ Qx}
19 ∃x∼(Px ⊃ ∼Qx) ∨ ∃x∼(Rx ⊃ Qx) 3; RU ∅
20 ∃x(Px ⊃ ∼Qx) ∧ ∃x(Rx ⊃ Qx) 1, 2; RU ∅
21 Dab{Px ⊃ ∼Qx, Rx ⊃ Qx} 19, 20; RU ∅
22

√
26 ∀x(Px ⊃ Sx) 4; RC {Px ⊃ Sx}

23
√

26 Sa 1, 22; RU {Px ⊃ Sx}
24 ∃x∼(Px ⊃ Sx) ∨ ∃x∼(Px ⊃ ∼Sx) 3; RU ∅
25 ∃x(Px ⊃ Sx) ∧ ∃x(Px ⊃ ∼Sx) 4; RU ∅
26 Dab{Px ⊃ Sx, Px ⊃ ∼Sx} 24, 25; RU ∅

Remark that ∀x(Rx ⊃ Qx) and ∀x(Px ⊃ ∼Qx) are both compatible
with the data, but that there is no reason to prefer the one over the other
in view of the data. Similarly for ∀x(Px ⊃ Sx) and ∀x(Px ⊃ ∼Sx) —
the latter is not derived in the proof, but it can be derived on the condition
{Px ⊃ ∼Sx}, from line 4 (and both generalizations can also be derived on
their respective conditions from line 5).

Lines 21 and 26 suggest the questions that, if suitably answered, may still
lead to the derivability of one of the competing generalizations — of course,
certain answers may reveal both generalizations to be false (in each of the
two cases). As explained in previous sections, tests may be available to
answer the questions. In view of the data, the question evoked by line 21
implies ?{Qc,∼Qc} and, if this can be settled by empirical means, it con-
stitutes the most obvious test to settle the matter. Indeed, one of the general-
izations will at once be falsified by any answer to the question.

The most obvious tests, if they are tests, derivable from the question evoked
by line 26 are obviously ?{Sa,∼Sa} and ?{Sc,∼Sc}. Of course, one might
also try ?{Pf,∼Pf} and ?{Pg,∼Pg}, but if one obtains the answer ∼Pf
(respectively ∼Pg) to these, nothing is decided.19

Suppose that ?{Qc,∼Qc} is a test, that it is performed and that the ob-
tained answer is ∼Qc. The proof then continues as follows (I repeat some
lines because their marks change):
15 ∀x(Px ⊃ ∼Qx) 1; RC {Px ⊃ ∼Qx}

19 According to [14] and [13], the questions ?{Pf,∼Pf} and ?{Pg,∼Pg} are not
erotetically implied by the main question, precisely because some direct answers to them
do not narrow down the direct answers to the main question.
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16 ∼Qc 3, 15; RU {Px ⊃ ∼Qx}
17

√
21 ∀x(Rx ⊃ Qx) 2; RC {Rx ⊃ Qx}

18
√

21 Qc 3, 17; RU {Rx ⊃ Qx}
19 ∃x∼(Px ⊃ ∼Qx) ∨ ∃x∼(Rx ⊃ Qx) 3; RU ∅
20 ∃x(Px ⊃ ∼Qx) ∧ ∃x(Rx ⊃ Qx) 1, 2; RU ∅
21 Dab{Px ⊃ ∼Qx, Rx ⊃ Qx} 19, 20; RU ∅
...
27 ∼Qc New Prem ∅
28 ∃x(Px ⊃ ∼Qx) ∧ ∃x∼(Px ⊃ ∼Qx) 2, 3, 27; RU ∅

In view of the presence of line 28, which may be abbreviated as Dab{Px ⊃
∼Qx}, the formula of line 21 is not a minimal Dab-formula from stage 28
on, and hence lines 17 and 18 are unmarked from that stage on.

If no test enables one to answer the question evoked by line 21, the re-
searcher may introduce a conjecture, say ♦♦∼(∃x(Px ⊃ ∼Qx)∧∃x∼(Px ⊃
∼Qx)), which I shall have to abbreviate as ♦♦∼(Dab

ω(Px ⊃ ∼Qx)) for
typographical reasons. Let !2!ω(Px ⊃ ∼Qx) abbreviate

(∃x(Px ⊃ ∼Qx) ∧ ∃x∼(Px ⊃ ∼Qx))

∧ ♦♦∼(∃x(Px ⊃ ∼Qx) ∧ ∃x∼(Px ⊃ ∼Qx))

The proof may then be continued as follows:
15 ∀x(Px ⊃ ∼Qx) 1; RC {Px ⊃ ∼Qx}
16 ∼Qc 3, 15; RU {Px ⊃ ∼Qx}
17

√
21 ∀x(Rx ⊃ Qx) 2; RC {Rx ⊃ Qx}

18
√

21 Qc 3, 17; RU {Rx ⊃ Qx}
19 ∃x∼(Px ⊃ ∼Qx) ∨ ∃x∼(Rx ⊃ Qx) 3; RU ∅
20 ∃x(Px ⊃ ∼Qx) ∧ ∃x(Rx ⊃ Qx) 1, 2; RU ∅
21 Dab{Px ⊃ ∼Qx, Rx ⊃ Qx} 19, 20; RU ∅
...
27′ ♦♦∼(Dab

ω(Px ⊃ ∼Qx)) Conj ∅
28′ ∼(Dab

ω(Px ⊃ ∼Qx)) 27′; RC
{!2!ω(Px ⊃ ∼Qx)}

29′ ∃x(Rx ⊃ Qx) ∧ ∃x∼(Rx ⊃ Qx) 21, 28′; RU
{!2!ω(Px ⊃ ∼Qx)}

The effect of a conjecture should not be the same as the effect of a test and,
unlike what the two extensions of the proof 1–26 suggest, it is not. This is
easily seen by considering the case where new data falsify ∀x(Px ⊃ ∼Qx).
Suppose that, for whatever reason, one obtains the further information Pf ∧
Qf . Let us add this new premise to both extensions considered, and see what
happens. First consider the extension that resulted from the test:
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15
√

30 ∀x(Px ⊃ ∼Qx) 1; RC {Px ⊃ ∼Qx}
16

√
30 ∼Qc 3, 15; RU {Px ⊃ ∼Qx}

17
√

21 ∀x(Rx ⊃ Qx) 2; RC {Rx ⊃ Qx}
18

√
21 Qc 3, 17; RU {Rx ⊃ Qx}

19 ∃x∼(Px ⊃ ∼Qx) ∨ ∃x∼(Rx ⊃ Qx) 3; RU ∅
20 ∃x(Px ⊃ ∼Qx) ∧ ∃x(Rx ⊃ Qx) 1, 2; RU ∅
21 Dab{Px ⊃ ∼Qx, Rx ⊃ Qx} 19, 20; RU ∅
...
27 ∼Qc New Prem ∅
28 ∃x(Px ⊃ ∼Qx) ∧ ∃x∼(Px ⊃ ∼Qx) 2, 3, 27; RU ∅
29 Pf ∧ Qf New Prem ∅
30 ∃x(Px ⊃ ∼Qx) ∧ ∃x∼(Px ⊃ ∼Qx) 1, 29; RU ∅

In this case, both generalizations are rejected in view of new evidence, and
so are the inductive predictions on lines 16 and 18. Of course the inductive
prediction of line 16 is true, as appears from line 27, but it still was not a
correct inductive prediction because the generalization required for deriving
it from Pc is false.

Let us now add the new information Pf ∧ Qf to the extension of 1–26
that was obtained by the conjecture:
15

√
31′ ∀x(Px ⊃ ∼Qx) 1; RC {Px ⊃ ∼Qx}

16
√

31′ ∼Qc 3, 15; RU {Px ⊃ ∼Qx}
17 ∀x(Rx ⊃ Qx) 2; RC {Rx ⊃ Qx}
18 Qc 3, 17; RU {Rx ⊃ Qx}
19 ∃x∼(Px ⊃ ∼Qx) ∨ ∃x∼(Rx ⊃ Qx) 3; RU ∅
20 ∃x(Px ⊃ ∼Qx) ∧ ∃x(Rx ⊃ Qx) 1, 2; RU ∅
21 Dab{Px ⊃ ∼Qx, Rx ⊃ Qx} 19, 20; RU ∅
...
27′ ♦♦∼(Dab

ω(Px ⊃ ∼Qx)) Conj ∅
28′

√
32′∼(Dab

ω(Px ⊃ ∼Qx)) 27′; RC
{!2!ω(Px ⊃ ∼Qx)}

29′
√

32′∃x(Rx ⊃ Qx) ∧ ∃x∼(Rx ⊃ Qx) 21, 28′; RU
{!2!ω(Px ⊃ ∼Qx)}

30′ Pf ∧ Qf New Prem ∅
31′ ∃x(Px ⊃ ∼Qx) ∧ ∃x∼(Px ⊃ ∼Qx) 1, 30′; RU ∅
32′ !2!ω(Px ⊃ ∼Qx) 27′, 31′; RU ∅

In this case, ∀x(Px ⊃ ∼Qx) has to be rejected, but, as there are no em-
pirical reasons to reject ∀x(Rx ⊃ Qx), this generalization becomes finally
IL-derivable (with respect to the present data). Remark that here the formula
of line 21 is not a minimal Dab-formula in view of line 31′. But unlike
what was the case in the previous extension (the one leading up to line 30),
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∃x(Px ⊃ ∼Qx)∧∃x∼(Px ⊃ ∼Qx) is not CL-derivable from the premises
and hence lines 17 and 18 are unmarked.

10. Guesses

A different kind of ‘conjectures’, I shall call them guesses, are not evoked
by minimal Dab-formulas, but express, with more or less priority, certain
convictions that a researcher may have. These may derive from his or her
world-view or from some other theoretical positions, in general from per-
sonal constraints.

In actual science, guesses clearly play a role. They are responsible for
the fact that one research group tries out one road, whereas another research
group tries out a very different one. So it should be possible to give them a
role in the present framework. This is easily done, provided it is done with
some care.

The general idea is that guesses are introduced as prioritized premises,
whence they are in principle defeasible — see below. No specific form needs
to be imposed on them: a guess may be a generalization, an existential state-
ment, or whatever. This has two important consequences. First, if the prior-
ities are handled in terms of T, as in Section 8, then all CL-consequences of
a guess have at least the priority of the guess itself. This is sometimes desir-
able, but not always. Thus if the guess is a generalization that was introduced
because it was seen as expressing a deep-structure law, and the generaliza-
tion turns out to be falsified, one will not want to retain its consequences, for
example its instances. So one should handle the logic that governs the prior-
ities with great care, and obviously different such logics may be invoked for
different guesses — see [7] for several such logics.

The second remark concerns the status of the guess as a premise. Once
introduced, the conjectures from Section 8 were not revised themselves. I
mean that a statement of the form ♦i∼(∃A ∧ ∃∼A) is never removed and is
never replaced by a statement of the same form but with a different value of
i. The data determine whether the conjecture has any effect, that is, whether
it is defeated or not — if it is defeated ∼(∃A ∧ ∃∼A) is not derivable, but
even then the premise ♦i∼(∃A ∧ ∃∼A) itself is left untouched.

It seems to me that guesses should be handled in a different way. The
justification for accepting them with a certain priority does not depend on
the IL-proof; the question whether they are true is even not evoked by it. As
the researcher may be working on different problems at the same time, may
obtain new information, or may for other reasons change his or her personal
constraints, it seems reasonable that guesses and their priorities are revised
without anything in the proof requiring this. Technically this may be realized
by allowing one to delete a guess from the proof, together with all lines that
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have the guess in their path. Possibly, the same guess may be introduced (at
the end of the proof) with a different priority.

However, a further qualification is required, viz. that sometimes the proof
itself may convince one to remove a guess. Suppose indeed that a guess
of the form ∃x(Px ∧ ∼Qx) prevents ∀x(Px ⊃ Qx) from being derived,
but that it turns out that ∀x(Px ⊃ Qx) is the only generalization (among
some competitors) that is compatible with the data and is IL-derivable, except
that the effect of the guess prevents this. Suppose even that new data were
obtained, which specify the Q-hood of some more P ’s, and that all these
data concern P ’s that are Q. It seems then reasonable to give up the guess
— in practice more considerations may obviously be involved.

11. In Conclusion

Apart from the clarification provided by the BS rule, the main importance of
the previous results seems to be twofold. First, IL leads to a very sensible
analysis of inductive generalization (and predictions derived from general-
izations). In this sense it is better than the considered truisms. Moreover, the
special cases we have met illustrate where the truisms derive from.

A second important set of results concerns the fact that the application
of IL to a set of data, possibly in the presence of background knowledge,
evokes questions which may be answered by tests or by conjectures (in the
sense of Section 7). Thus applying IL according to the procedure guides one
to gather certain empirical data, viz. to make certain observations or to set up
certain experiments. It also guides one to rely on one’s theoretical insights
and background knowledge in order to narrow down the set of suspect ab-
normalities. This will lead to more generalizations and predictions. These in
turn will interfere to evoke more questions, which will suggest further tests
or further conjectures. At the same time, these tests may lead to the rejec-
tion of certain previously introduced conjectures (in that they may prevent
♦i∼(∃A ∧ ∃∼A) from leading to ∼(∃A ∧ ∃∼A)). All this shows that IL
does not merely determine which generalizations are acceptable in view of a
set of data, but moreover provides a guide for both empirical and theoretical
research in the domain of investigation.

I stressed that the application of IL has this effect. What I meant was of
course the application of the procedure referred to in Section 6. Derived
generalizations and their contextual consequences (predictions) may lead to
contradictions, which reveal that some of the derived items are not finally
derivable. But even if no problem is revealed in this way, trying to establish
that a generalization or a prediction relying on a generalization is finally
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derived in view of the present data, leads to new questions, and hence to new
data and new conjectures.
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