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CAUSAL DISCOVERY USING ADAPTIVE LOGICS. TOWARDS A
MORE REALISTIC HEURISTICS FOR HUMAN CAUSAL

LEARNING∗

MAARTEN VAN DYCK†

We shall afterwards take notice of some general rules, by which we
ought to regulate our judgements concerning causes and effects; and
these rules are form’d on the nature of our understanding, and on
our experience of its operations in the judgments we form concerning
objects. [10, p. 149]

1. Introduction

In this article I propose a logic that allows one to derive causal statements
from probabilistic information. Of course, since long philosophers have been
aware that causal statements contain relevant information that is missing
from mere statements about the association between events/facts/(whatever
one likes). To name but the most obvious thing: the relation between cause
and effect is asymmetric. However, this should not be taken as implying
the impossibility of a causal discovery logic, but rather as the warning that
such a logic will not be possible without making further assumptions about
the part of the world one studies — and I will follow large part of the more
recent literature in AI and the philosophy of science in opting for the causal
Markov condition as the most important assumption. I will not focus on the
justification for this assumption, neither inquire in the prospects this leaves
for the hope of ever attaining an adequate characterization, let alone reduc-
tion, of the notion “cause”. But I do believe that this assumption provides
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6 MAARTEN VAN DYCK

a very good starting point from which to clarify some of the reasoning pro-
cesses by which we come to judgements about what causes what. And that
we do come to such judgements in a reasoned way is something that even
David Hume in no way contested (one of the sections in his Treatise is even
entitled “Rules by which to judge of causes and effects” — remark the im-
perative).

The logic to be proposed is an adaptive logic, and I will briefly explain
what this means. Let me for the moment suffice with the remark that as an
adaptive logic it is a member of a larger family of logics, which all serve a
common goal: to get a better grip on real life reasoning processes. This is
particulary important in view of the fact that there exist already automated
data-mining programs for causal discovery (see especially [16, 12]), which
embody the same assumptions as I use (and which served as the main source
of inspiration). Notwithstanding the impressive results these seem to come
up with — although this is not altogether uncontroversial1 — they surely do
not offer much insight in how humans reason from association to causation.
On the other hand, the logic to be presented here will have the advantage of
being constructive (and working in a much more piecemeal fashion).

In his most recent book, The Mind’s Arrow, Clark Glymour claims that
the way humans learn the causal structure of the world is illuminated by the
Bayes net approach, i.e. by exploring the consequences of the causal Markov
condition; at the same time Glymour has to concede that “the algorithms are
unlikely psychological models” [6, p. 34], and it is in this respect that I seek
to improve on the existing accounts.2 In this way I hope to contribute to the
program described by Alison Gopnik and Clark Glymour in a recent article:

The program we propose is therefore not to theorize that children
or scientists are optimal data-miners, but rather to investigate in
general how human minds learn causal maps, and how much (and,
possibly, how little) their learning processes accord with Bayes net
assumptions and heuristics. [7, p. 131]

The main purpose of this article is to show how the Bayes net heuristics can
be reformulated, possibly providing a more realistic model for human causal
learning.

Readers familiar with the Bayes net approach can skip section 2, and might
want to start by having a look at section 6 for the justification of adding the
present article to the already existing literature on causal discovery. Section 3

1 For a very critical appreciation, see [5].

2 See the concluding section, however, for an important caveat with respect to this claim.
There are two possible reasons for claiming the algorithms to be unlikely psychological mod-
els. The reformulation that I suggest in the present paper only remedies one of these.
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CAUSAL DISCOVERY USING ADAPTIVE LOGICS 7

is not supposed to contain anything new for readers already familiar with
adaptive logics. It is to be hoped that the other sections contain something
new for all.

2. Some background on causal discovery

The main problem to be tackled concerns the discovery of the causal struc-
ture of systems. To correctly assess the results it is important to keep in
mind that, no matter how important it may be, this is only a preliminary step
in many investigations. All that one can conclude with the logic to be pre-
sented, is that certain aspects of a system (possibly) have a causal influence
on other aspects. Nothing will be said about the (functional) form of these in-
fluences, not even about the question whether they are positive (contributory)
or negative (inhibitory). This obviously means that the presented results in
no way will be sufficient to answer traditional questions about which causes
are necessary or sufficient etc.3 But still, before any of these questions can be
answered, one first has to discover the causal structure of the system(s) one
studies. This is all the logic will enable us to do: infer (part of) the topology
of the causal mechanisms that are responsible for the observed behavior of
systems. Moreover, this has to be taken quite literally: it is not assumed that
we obtain this information from performing manipulations, but rather from
passive observation. Of course, manipulations — if possible — can teach us
much more — but they aren’t always possible.

Causal structure can be discovered either in just one system, or in a set
of systems that are assumed to share the same structure. An example of the
first case could be that one tries to discover the causal structure of the work-
ings of one particular piece of household equipment (which buttons influence
which functions). A typical example of the second case shows up in medi-
cal investigations where one tries to discover causal mechanisms shared by
all people sharing certain characteristics. In any case, it has to be possible
to gather enough observations about the behavior of the system(s), so that
one can start from premisses stating that certain aspects of the system(s) are
(un)correlated with other aspects (e.g. the temperature of the refrigerator is
statistically independent from the position of the red button, there is a statis-
tical dependency between smoking and having lung cancer). To this end the
characteristic aspects of the modelled system will be designated with vari-
ables (e.g. position of the red button, temperature of the refrigerator, smok-
ing, having lung cancer), so that the state of the system can be represented by

3 For an interesting approach to these questions, from the Bayes net perspective, see
chapters 9 and 10 in [12].
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8 MAARTEN VAN DYCK

assigning a value to these variables (position of the red button=position II,
temperature of the refrigerator=6◦C, smoking=no, having lung cancer=yes).
It is assumed that every system only has a finite number of variables, and that
every variable only has a finite number of possible values.4 As an example,
imagine that we have 180 observations on the behavior of the refrigerator, in
which we check the temperature (which is assumed to be either 3, 6, or 9◦C)
and the position of the red button (either position I, II, or III), and that we
have the findings reported in table 1.

position button temperature number of cases
I 3 20

6 19
9 21

II 3 20
6 20
9 20

III 3 19
6 21
9 20

Table 1. Observations on the refrigerator

Even if these observations do not properly permit such a conclusion, it could
be that one decides on the basis of them that it is true that the position of
the red button and the temperature of the refrigerator are independent vari-
ables. I will immediately give a definition that makes clear what it means
for variables to be independent, but first we need a further extension of this
notion.

In addition to information about the independency — and its negation,
dependency — of variables, we also need premisses stating that two vari-
ables are conditionally independent given another (set of) variable(s). For
instance, it could be that one finds that the position of the red button and the
temperature are dependent, but that if one looks only at those observations in
which a second, green, button is always in the same position, the position of
the red button and the temperature are independent: in this case it is said that
those two variables are conditionally independent given the position of the
green button. A standard definition for conditional independency between
(sets of) variables is the following:

4 Even if one measures the values of a continuous variable like temperature, the obtained
results will always be intervals, due to the limitations of every measurement. In this way
the relevant scale of temperature will be divided in a finite number of possible measurement
outcomes.
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CAUSAL DISCOVERY USING ADAPTIVE LOGICS 9

Definition 1 : (Conditional Independency) For Λ = {λ1, λ2, . . .} a finite set
of variables, P (·) a probability function over these variables,5 and X ⊂
Λ, Y ⊂ Λ, Z ⊂ Λ, we then say that X and Y are conditionally independent
given Z if

P (X = x | Y = y&Z = z) = P (X = x | Z = z)

whenever P (Y = y&Z = z) > 0, (1)

in which x, y, z stand for all possible values associated with possible config-
urations of the variables in X , Y , and Z respectively.

I will use the standard notation (X q Y |Z) to express that two sets of
variables X and Y are independent conditional on the set of variables Z.
X and Y are unconditionally independent if (X q Y |∅) holds, which for
simplicity I will write as (XqY ). From now on I will also write expressions
like the one in (1) as: P (X | Y &Z) = P (X | Z).

It is clear that this definition only makes sense if the relevant probabilities
are somehow available, whereas strictly speaking all that we can observe
are observational data (as exemplified in table 1). There are well known
statistical techniques which can be used in deciding which probabilistic con-
clusions are warranted, but I will not comment on this. As already men-
tioned, I am primarily interested in the logic behind the reasoning process
from (in)dependency to causality. Moreover, as will be noted in section 6,
humans often guess the presence or absence of correlations, without bother-
ing about the precise statistical information (which may be hard to assess).

The premisses of the logic for causal discovery will consist of statements
about conditional and unconditional (in)dependencies between the selected
variables. It has to be assumed that there are no conceptual relations be-
tween the different variables (e.g. being inside a box and being outside the
same box are not considered to be different variables). The main reason for
this assumption is that we will try to find a causal explanation for every de-
pendency that holds between the variables; if the possibility of conceptual
relations were not excluded, this would imply that there can be cases where
we would search for causal relations whereas clearly there are none.

As already mentioned in the introduction, information about the correla-
tions that hold in the system(s) is not enough to justifiably come to causal
statements. To this end we need some further constraints on the possible
causal structures of systems (constraints, which, as we will see, in some
cases impose a direction on the dependency between two variables). These

5 I assume that conditional probability P (a | b) is defined as P (a & b)/P (b).
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10 MAARTEN VAN DYCK

constraints will then be reflected in the inference rules of the causal discov-
ery logic. In this way it will become possible to derive from the premisses all
causal structures that are jointly compatible with these premisses and those
constraints.

I will follow the important work of Spirtes, Glymour and Scheines [16]
and Pearl [12], in opting for the following three assumptions: the causal
Markov condition, the faithfulness condition, and the acyclicity of all struc-
tures. (The first one is the conceptually most important one, whereas the
other two are to be considered methodological presuppositions which render
the task of causal discovery more feasible.)

2.1. The causal Markov condition

The basic assumption underlying the Bayes net approach is that all causal
structures responsible for the observed dependencies and independencies are
causal Markov chains. This means that the following condition is always
met:

Definition 2 : (Causal Markov Condition) For all distinct variables X and
Y in a causal sufficient variable set Λ, and P (·) a probability function over
these variables, if X does not cause Y , then:

P (X | Y & parents(X)) = P (X | parents(X)), (2)

where parents(X) is the subset of all variables in V that have a direct
causal influence on X .

To fully understand this definition, it is necessary to introduce some fur-
ther specifications on the notion causal structure. To this end it is useful
to represent the causal structure of a system by a set of nodes and arrows
between them. The nodes represent the variables, and the arrows causal in-
fluences (which are always asymmetric). A sequence of nodes connected
by arrows not pointing towards each other is called a path. Only acyclic
causal structures will be considered, i.e. all possible structures satisfy the
condition that there is no path from one variable to itself. It is said that one
variable causes another if there is a path from the former to the latter; that
one variable has a direct causal influence on another if they are connected
by an arrow pointing from the former to the latter. (Of course, effect and
direct effect are the natural complementary notions.) A set of variables is
called causally sufficient when for any two variables in the set which have a
common cause, this common cause is also in the set.

I will not attempt a further characterization of what it is to have causal
influence, but I assume that everybody would agree that pushing a ball has a
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CAUSAL DISCOVERY USING ADAPTIVE LOGICS 11

causal influence on the movement of the ball, that not brushing one’s teeth
has a causal influence on having caries, that the explosion of a star has a
causal influence on its surrounding planets, that the causal influence of my
pushing the light switch on the light in the room is mediated by the influence
of the electric current on the light bulb, etc. Moreover, it is clear that if one
adds the causal Markov condition as a constraint on all causal structures,
this will provide a partial characterization of the notion causal influence. To
further spell out this implication, let us briefly try to understand what this
condition comes down to. It is widely recognized to be a generalization of
Reichenbach’s common cause condition (on this condition, see [13, 15]);
and this condition was meant to capture two ideas: that all correlations have
a causal explanation, and that common causes screen off their correlated
effects.

If the causal Markov condition holds of a system, and if one knows that
P (X | Y & parents(X)) 6= P (X | parents(X)) (as always X,Y are vari-
ables characterizing the system), then one immediately knows that it must
be the case that X causes Y . This is already one case in which we see that
dependency implies causation. As a special case we can immediately see
that if one knows that parents(X) is empty, then it must be the case that
unconditional dependency between X and Y implies that X causes Y . And
ifX and Y are the only variables in Λ, then a correlation always implies that
one causes the other.6 But of course, before one can make these particular
inferences, one first has to know the set of parents of a variable, that is, one
needs enough causal knowledge to start with. And this looks worrisome for
the task of causal discovery, since it might seem impossible to get the dis-
covery process started (if one knows the set of parents, large part of the job
is already done). But let us first go on with our inquiry in the meanings of
definition 2 (and when it comes to meaning, it was already indicated that no
reductive analysis will be attempted — clearly, definition 2 would on first
analysis turn out to be circular in this respect).

6 Remark also that if in this case X and Y are found to be independent — this will be
the case whenever they are not related as cause and effect — their values of course still can
vary (according to the probability distribution they satisfy). This can reflect two possible
situations: either these variables are governed by an intrinsic stochastic process, or there are
external causes responsible for the variation. In the second case we speak of external causes,
reflecting that these causes are no part of the considered system, which implies that they
are supposed to influence at most one variable (the set is causally sufficient). This is another
instance of the fact, mentioned further on in the text, that one needs enough causal knowledge
to start with. (Consult chapter 1 in [12] for the relevant theorems stating that a causal model
is Markovian if all so-called background factors are jointly independent; i.e. each cause, not
included in the system influences at most one variable.) Nevertheless, there also exist some
algorithms for causal inference in the presence of unobserved common causes.
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12 MAARTEN VAN DYCK

Another way of stating the causal Markov condition is that conditional on
its parents, a variable is independent of every other variable except its ef-
fects. In Reichenbach’s language, we can say that the set of parents screens
off a variable and all its non-effects. If for instance a variable Y is a cause of
X , but does not have a direct causal influence on X , then this means that its
influence can be screened off, i.e. rendered superfluous, since it is entirely
transmitted by (part of) the set of parents of X; no further dependency be-
tween Y and X besides the one already holding between parents(X) and
X can ever show up. Hence, we can understand the Markov property as a
consequence of the idea that causal influences are local in space and time.
If one holds fixed (in mind) the direct causes of X , then the values of its
indirect causes will no longer be correlated with the values of X . Moreover,
screening off does not only apply to indirect causes, but also to correlated
effects of a common cause. If two variables share at least one variable in
their set of causes (whether direct or indirect), this will (very often)7 show
up in a dependency between these two variables, even if neither of the two
is an effect of the other. But then, if one is dealing with a causal Markov
system, this dependency will disappear if one conditions on the parents of
one of the two correlated variables. In the simplest case, consisting of only
three variables X , Y and Z, in which Z is a direct cause of both X and Y ,
this means that Z will screen off X and Y . In more complex cases in which
there can be more than one common cause, which moreover can be indirect
causes, sometimes only the complete set of parents will do.

There exists an easy-to-use graphical criterion, called d–separation (con-
sult [12, pp. 16–17], or the appendix of the present article), which allows one
to judge if a set of variables screens off two (sets of) variables (assuming that
one is dealing with a Markov system). The causal intuitions behind this cri-
terion are easily explained. In the causal structure depicted in figure 1, it is
clear that it is not enough to hold fixed B to render the influence of A on
D superfluous, since A also influences D via the path through C. One also
immediately sees that B and C are d–separated (screened off) by A. Often
there will be more than one set of variables that screen off two variables.
Again in figure 1, E and A are screened off as well by the variable D, as
by the set {B,C}. More complex cases are also common. Consider the
structure in figure 2: A and D will only be screened off by the set consisting
of B and C. In this case the reason is more subtle. It is immediately clear
that holding only C fixed will not suffice, but it is also the case that hold-
ing only B fixed will neither. The reason for the latter is the effect known

7 I will give some comments on this caveat in section 2.2
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Figure 1. A screens
off B and C; {B,C}
screens offD andA;
etc.
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Figure 2. Only
{B,C} screens off
D and A

as explaining away: if one conditions on a common effect of two indepen-
dent variables, these two variables will be rendered dependent.8 An example
will make this clear. Imagine a teacher at a girl’s college who has the ten-
dency to favour blond girls and smart girls. If one is told that one of his
favoured pupils is not smart, this will increase the probability of her being
blond. Still, in the total population of his pupils there is no correlation to
be found between colour of the hair and IQ. It is only if one conditions on
the subset of all favoured pupils that such a dependency shows up. The rea-
son is clear: the state of being a favoured pupil is positively influenced by
blondness and smartness, so the knowledge that one of these two factors is
missing increases the chance that the other is present. If we now turn back
to the situation depicted in figure 2, it is clear that by holding fixed B, the
independent variables A and C — that they are independent follows directly
from definition 2.1 and the assumption that we are dealing with a Markov
system — will become dependent, but then, because of the direct influence
of C on D, A and D will also be dependent, so not screened off! Only hold-
ing fixed both B and C will do the job (because when also holding fixed C,
the dependency between A and C will disappear).

In line with reasonings like the one in the last paragraph, we can see how
particular structures of causal influences give rise to distinct patterns of con-
ditional and unconditional dependencies and independencies. The basic idea
behind the causal discovery approach is to exploit those patterns that point

8 Thus, in figure 1, B and C that were independent when conditioned on A will become
dependent again if also conditioned on D. This is entirely compatible with the causal Markov
condition, since this only says that the set of parents screen off from non-effects; it is silent
about any other set of variables.
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14 MAARTEN VAN DYCK

unambiguously to a particular structuring of the influences. Of course, for
this to be a justifiable methodology a justification for the Markov condition
has to be provided. I will not attempt such here, but refer the reader to the
excellent article by Hausman and Woodward [9]. Let me suffice with a few
remarks on this topic. First consider the case of mediated causal influences.
It is clear that many of the ideas associated with causal mechanisms would
fail if indirect causes were not screened off from their effects by intermedi-
ate causes, for it is essentially this fact that guarantees the distinctness of the
involved causal influences. If intermediate causes would not screen off, then
keeping the value of an intermediate cause fixed would still leave the indirect
cause efficacious; but then what would it mean to call this an indirect cause?
To put it another way, the validity of the causal Markov condition guarantees
that if one holds fixed the direct causes of X , then tinkering around with
its indirect causes (or anything else that could happen with them that does
not have any effect on the direct causes of X , except, of course, through the
path from the indirect to the direct causes) will not have any influence on
X . The case of correlated effects of common causes is similar, but more
controversial (the main critiques coming from Nancy Cartwright, e.g. [3]).9

There seems to be something very counterintuitive involved in assuming that
common causes need not screen off. This would imply that causal and infor-
mational relevance somehow would come apart in a hard-to-understand way,
for then the value that one of both effects takes can always provide further
information on the value of the other effect, even if the value of the common
cause was already known, i.e. everything of causal relevance was specified
already. But how would this informational relevance come about if it is not
through causal influences? So it seems that somehow we must be mistaken
in our specification of the situation: either there exists a causal influence of
one of both effects on the other, or there is some missing common cause
that was left unspecified (but that would do the screening off). But this is
exactly what the causal Markov condition tells us. These remarks point to
one other important fact. If one chooses the wrong (or not enough) variables,
the Markov condition will not always hold of causal systems in the world.
Even if it is assumed that all causal systems satisfy the Markov condition,
this will hold only at the right level of description. This is the most important
instance of the fact that one needs a good deal of causal knowledge to start
with. But this does not per se diminish the value of the Markov condition,
which anyway “can play an important heuristic role in discovering causal

9 The quantum-mechanical EPR correlations involved in Bell’s inequalities seem to pro-
vide another important source of suspicion; but then, the perplexities that stem from these
peculiar systems, underline the fact that something like the Markov condition is deeply en-
trenched in our conceptions of causality.
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CAUSAL DISCOVERY USING ADAPTIVE LOGICS 15

structure, in the sense that its apparent failure suggests that one has left out
causally relevant information” [9, p. 580].

To sum up this rather long discussion, let me try to formulate the (for our
purposes) most important property of systems satisfying the causal Markov
condition as succinct as possible. If X and Y are not related as cause and
effect, then they will be independent conditional on their respective sets of
parents. If moreover they have no common causes, then they will also be
independent conditional on the empty set, since in this case their parents
will do no relevant screening off (they are no causal intermediaries between
X and Y , nor can they be causal intermediaries between common causes
and X or Y , or common causes themselves).10 Thus, if the causal Markov
condition holds and ifX and Y are distinct variables, then ¬(XqY ) implies
either thatX causes Y , or that Y causesX , or that they are correlated effects
of a common set of variables in Λ; equivalently, ¬(XqY ) implies either that
X has a direct causal influence on Y , or that Y has a direct causal influence
on X , or that there is a set of variables in Λ that screens off X and Y . Both
statements will be used in building the adaptive logic for causal discovery.

2.2. Faithfulness

Before inferring causal relations from probabilistic information becomes
feasible, one further complication has to be dealt with. Consider the sit-
uation depicted in figure 3 (‘+’ and ‘−’ stand respectively for contributory
and inhibitory influences). It is clear that, depending on the exact form of the
influences, it is possible that the influence through C exactly cancels the di-
rect influence that A has on B. But if this possibility is allowed for, one can
only make the inference from dependency to causality, not from indepen-
dency to no causal influence. In that case, there would be much more causal
structures compatible with particular patterns of dependencies and indepen-
dencies, and this would severely diminish the prospects for causal discovery.
However, although such a situation is possible, in a large class of cases it is

10 A more formal way to see this. First remark, as already indicated in footnote 6, that
every causal structure for which the external causes — i.e. causes that are not included in
the structure — cause at most one variable, is a Markovian causal structure (consult theorem
1.4.1 in [12]). Then recall that it was remarked already that in every causal Markov structure
consisting of only two variables that are not related as cause and effect, these two variables are
unconditionally independent. Thus: if X and Y (supposedly not related as cause and effect)
are unconditionally dependent, the structure consisting of only these two variables would
be no Markov structure; this would imply that a larger structure containing these variables
would be no Markov structure neither, unless this structure would contain the common cause
that was left out of the structure consisting of just the two variables. So, if X and Y are not
related as cause and effect and have no common causes among Λ, then if the causal Markov
condition holds for the system characterized by Λ, they are unconditionally independent.
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Figure 3. A and B can be causally
related but independent

also highly unlikely to occur. The reason for this is clear: there has to be a
considerable amount of fine-tuning between the different influences before
they will exactly cancel each other. The faithfulness assumption states that
this is so unlikely that we can assume that it does not occur.11 This does not
only hold for two variables where one causes the other, but also for effects of
a common cause; in general one can state the assumption that a probability
distribution is faithful to a causal structure as follows (using the aforemen-
tioned d–separation criterion to judge causal relevance in a structure):12

Definition 3 : (Faithfulness Condition) For all disjoint sets of variables X ,
Y and Z in Λ, if in the underlying causal structure it is not the case thatX is
d–separated from Y given Z, then in the probability distribution P we have
that X and Y are conditionally dependent given Z, where X and Y are not
empty but Z may be.

Judea Pearl opts for the suggestive name of stability: “This restriction
conveys the assumption that all the independencies embedded in [the proba-
bility distribution] P are stable; that is, they are entailed by the structure of
the model . . . and hence remain invariant to any change in parameters [spec-
ifying the functional form of the influences]” [12, p. 48]. Pearl is referring
to the unstableness of any fine-tuning between different causal influences —
remember that they have to cancel each other exactly for an independency
to show up. And indeed, if one is not dealing with goal-directed systems
that were explicitly designed to cancel certain unwanted effects, it seems
that this unstableness of parameter fine-tuning will be good enough a reason

11 There is some controversy about how this unlikeliness has to be interpreted, and hence
about how justified this assumption is; I will not comment on this issue, but refer the inter-
ested reader to [14].

12 I follow the presentation as given in [4].
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CAUSAL DISCOVERY USING ADAPTIVE LOGICS 17

to assume faithfulness (although, sometimes we might be mistaken in doing
so).

The issues surrounding this assumption point to an important problem
with the general strategy behind the Bayes net approach: it is fundamen-
tally sensitive to zero-correlations between variables (whether unconditional
or conditional — see the importance of screening off), but of course this is
extremely hard to establish in practice. Notice that I sidestepped this issue by
assuming that somehow we do have the right probability-distribution at our
disposal (and in doing so skip the step from sample statistics to population
probability).

In conclusion we can say that whereas the causal Markov condition states
that unconditional dependency implies causal relations (whether direct, in-
direct, or through common causes), the faithfulness assumption states that
unconditional independency implies the absence of causal relations. Thus,
Markov plus faithfulness imply an equivalence between variables being un-
conditionally dependent and causally related (possibly through common caus-
es, as indicated at page 15 at the end of section 2.1). Any structure for which
this is valid is called a causal Bayes net. In section 4 I will put these assump-
tions to work, and in doing so hopefully make more clear their usefulness
and strength, but first I will introduce the basic ideas behind adaptive logics.

3. Adaptive logics

Adaptive logics were originally developed to deal with a particular problem
arising when a set of premisses give rise to an inconsistency (for an overview,
see [2]). It is of course well known that classical logic turns out to be com-
pletely impotent in this situation: the consequence set is trivial, following
the classical property of ex falso quodlibet. In view of this, so–called para-
consistent logics were developed; the most obvious way is to drop certain
rules of classical logic (e.g. modus tollens and disjunctive syllogism), so that
ex falso quodlibet no longer follows. These logics, however, have the im-
portant drawback of being rather weak: no application of the dropped rules
remains valid. Consider what this can come down to: if one uses a paracon-
sistent logic that invalidates modus tollens, then ‘¬q’ will not follow from the
following set of premises {q ⊃ p,¬p, r,¬r}. So, avoiding the triviality that
arises from the inconsistency comes at a price; and a price that is hard to pay,
since p and q have nothing to do with the inconsistency! The solution pro-
posed by Diderik Batens in developing inconsistency–adaptive logics was
the following: not the inference rules of classical logic should be dropped,
but certain applications thereof (i.e. the ones leading to triviality). This is
implemented by introducing three basic components for such an adaptive
logic: a lower limit logic (henceforth LLL), an upper limit logic (ULL), and
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18 MAARTEN VAN DYCK

a marking strategy. The LLL contains all the unproblematic rules, and thus
is a paraconsistent logic of some sort, the ULL is made up of the rules of the
LLL plus the problematic rules, and thus is classical logic. The important
feature of the ULL rules is that they are introduced conditionally in an adap-
tive proof: any application of such a rule can be retracted whenever it turns
out that the condition is violated (the sentence that was derived is marked
as invalid, the line of the proof containing this sentence is out). The condi-
tion is the set of formulas that have to behave “normal” for the specific ULL
rules to be applicable; normality obviously being linked with consistency for
inconsistency–adaptive logics, the marking strategy deciding when marking
has to occur. (In the simple example given above, the application of modus
tollens to derive ¬q would have to be retracted if it turned out that ¬p be-
haved inconsistently, i.e. if p would be derived somewhere in the proof —
obviously this can only be the case in the presence of further premises.)13

It is clear that all the rules from the LLL can be treated as unconditional
rules (these being the rules that cannot cause trouble, i.e. that never lead to
triviality in the presence of inconsistencies). But of course, if the sentences
to which one applies such unconditional rules were derived on a condition,
then the sentence that is being introduced at a new line in the proof will also
contain a condition: the union of all the conditions of the earlier sentences
of which it is a consequence (if an earlier line has to be considered invalid at
a certain point of the proof, all its consequences obviously also have to be).

The foregoing already indicates how the idea of adaptive logics can be
extended to deal with other problems besides the presence of inconsistencies.
Particulary interesting are so–called ampliative adaptive logics. For these
logics, the LLL will often be classical logic, and the ULL will allow one
to go further than permitted by classical logic, where the particular criteria
for marking (and definitions of abnormality) will determine when “further”
means “too far”. Examples are an adaptive logic for induction [1], and one
for abduction [11]. As was already stressed extensively by David Hume,
causal reasoning is a species of inductive reasoning, so it will not come as
a surprise that the adaptive logic for causal discovery will also be of this
kind. All these logics share the interesting characteristic that they allow one
to formalize what makes a particular ampliative argument a correct one (of
course relative to the chosen adaptive logic), which is notoriously impossible
from the viewpoint of classical logic (as Hume taught us).

13 Further complications can arise if one considers the possibility of expressions stating a
disjunction of abnormalities: in these cases a line will sometimes have to be marked when
its condition is present in such a disjunction. So the link between marking and abnormal
behaviour of members of a condition is not always as straightforward as might be thought on
first impression, this being determined by the marking strategy; the adaptive logic for causal
discovery to be presented here will, however, display such a straightforward connection.
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The fact that lines that were already derived can be marked as invalid at
a later stage in a proof gives adaptive logics a dynamic character. The most
interesting dynamics occurs if the normality of formulas is not decidable
from the premisses (remember that the non–propositional part of classical
logic is not decidable!). In this case, all one can do is assume the normal-
ity of a formula until it can explicitly be shown to behave abnormal, that
is, by writing down a line of the proof that expresses the abnormality of
that formula.14 (And even then, more can happen: it can also be the case
that a line that is marked will be unmarked later on in the proof. Those
who are becoming curious or suspicious by remarks like these, should look
for an article explaining the properties of adaptive logics in more detail —
here, I will only expand on those properties that my (simple) adaptive logic
will expose.) But also if one is dealing with a decidable marking criterion,
this dynamic character can arise; if new premises are added to a proof after
part of it was already completed, it can very well be that some consequence
of these premises (maybe together with the old premises) turns out to be
an abnormality for some line that was already derived, causing this line to
be marked. This fact makes clear that adaptive logics are non–monotonic
(i.e. adding further formulas to a set of premises can invalidate some conse-
quences of the original set). The first kind of cases can be called instances of
an internal dynamics (this is linked with the proof theory proper, reflecting
some properties of natural reasoning), whereas the second kind exemplify
an external dynamics (this is linked with the inference relation being non–
monotonic). A combination of both kinds of dynamics of course can arise.
To get a better grip on all these properties, the study of adaptive logics also
incorporates semantic conceptions (see e.g. [2]), but in the present article I
will stay on the proof–theoretic level.

Before turning to the adaptive logic for causal discovery, let me briefly
recapitulate. Adaptive logics always have something like the following proof
format. Every line of the proof consists of five elements (the presence of a
fifth element being characteristic for adaptive logics):

(1) a line number,
(2) the sentence derived,
(3) the line numbers of the sentences from which (2) is derived,
(4) the rule of inference that justifies the derivation,
(5) the set of sentences on the normal behaviour of which we rely in

order for (2) to be derivable by (4) from the sentences of the lines
enumerated in (3).

14 As already remarked in footnote 13, depending on the marking strategy one opts for,
marking can already occur when a line is written down that states a disjunction of abnormal-
ities. As the adaptive logic that I will introduce does not have that characteristic, I will give
no further comments on this.
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20 MAARTEN VAN DYCK

In addition to a structural rule by which one introduces premises in a proof
(always with an empty fifth element), there are two kinds of inference rules:
the unconditional one (being all valid applications of the LLL rules), and
the conditional one (all the applications of the extra ULL rules). The fifth
element of a line, together with the marking strategy, determines when that
line will have to be marked in view of the other lines written down in the
proof.

4. An adaptive logic for causal discovery

4.1. The basics

The basic idea is very simple: the logic for causal discovery will allow one
to commit the classic fallacy of cum hoc, ergo propter hoc — that is, of
inferring a direct causal relation from a correlation between variables; well,
not quite, it allows one to do this unless it can be shown that this dependency
is screened off by another set of variables . . .

It is clear how this will be implemented: there will be a LLL validating
a certain set of consequences from a set of premisses, and a ULL that is
more daring and posits that any unconditional dependency is due to a direct
causal relation. If this turns out to be too daring, that is, if the condition of a
line in the proof is violated — obviously, this will be the case whenever an
unconditional dependency is shown to be screened off — then this line will
have to be retracted. It is the ULL that will allow one to go ahead in inferring
causal relations — and as such will be essential to get the discovery process
started — but, as will become clear, it is the LLL that will help to infer the
direction of the direct influences posited by the ULL.

Before we go on, let me first clarify the notational conventions that I will
use. As indicated in section 2, the objects we are talking about are the nodes
of a causal structure (corresponding to the variables of a system), and the
causal arrows between them. So, any structure can be described with a fi-
nite set of names for the nodes, say Λ = {A,B, . . . , An}, and predicative
expressions like ‘A → B’, which obviously states that the characteristic of
the system denoted by A has a direct causal influence on the one denoted
by B. As meta-variables for A,B, etc. I use lower case Greek letters α, β,
etc. Upper case Greek letters are used for sets of nodes. Besides the ar-
rows, I also have to introduce the symbol (· q ·|·) for stating probabilistic
(in)dependency between (sets of) nodes. That there is a causal path between
α and β will be expressed by the predicate P(α, β), which can be given a
recursive definition (γ is an arbitrary member of Λ):

Definition 4 : (Causal Path) P(α, β) =def α→ β ∨ (P(α, γ) ∧ γ → β).
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A very central place is of course occupied by the notion of screening off;
SOαβ will denote the set of all formulas that state that two probabilistically
dependent nodes α and β are screened off by a non-empty set of nodes in Λ
by:

Definition 5 : (Screening Off) For α and β which satisfy¬(αqβ) : SOαβ =
{(α q β|∆) : α, β 6∈ ∆; ∅ ⊂ ∆ ⊂ Λ}.

The union of all subsets of nodes that screen off α and β is denoted
by Ψ(SOαβ). The disjunction of all formulas that state that α and β are
screened off is denoted by DSOαβ =

∨{(α q β|∆) : α, β 6∈ ∆; ∅ ⊂ ∆ ⊂
Λ} (again this is only defined for probabilistically dependent α and β).

4.2. The Lower Limit Logic

The rules and axioms characterizing the LLL can be divided in two cate-
gories (that together will constitute the unconditional rule of the adaptive
logic)15 . I will only focus on the second kind, since the first kinds is of
course already well-documented: these are rules and axioms characterizing
classical predicate logic with identity. The second kind of rules and axioms
express properties satisfied by all faithful, causal Markov structures, that is,
by causal Bayes nets.

I will first state a list of axiom-schemes and inference rules, then I will
briefly comment on them, and finally introduce some derived inference rules,
which will be at the core of causal discovery. The list of axioms and rules
introduced is not intended to be exhaustive, but suffices for my purposes.

A1 ¬P(α, α)

A2 ¬(α q β) ≡ (α→ β ∨ β → α ∨DSOαβ ∨ α = β)

A2’ ¬(αqβ) ≡ (P(α, β)∨P(β, α)∨(∃γ)(P(γ, α)∧P(γ, β))∨α = β)

R1 DSOαβ,
[P(α, γ) ∧ P(γ, β)] ∨ [P(β, γ) ∧ P(γ, α)] ∨ [P(γ, α) ∧ P(γ, β)]
∨(∃δ)[P(δ, γ) ∧ P(γ, α) ∧ P(δ, β)] ∨ (∃δ)[P(δ, α) ∧ P(δ, γ)
∧ P(γ, β)]

15 However, when giving some examples of proofs with the adaptive logic, I will, for
clarity’s sake, still indicate applications of these different kinds separately. So the fourth
element of a line that is the result of the application of the unconditional rule, will state the
name of specific rules (e.g. CL for all valid applications of a rule of classical logic, DR1 for
an application of that LLL–rule), instead of a generic name.
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22 MAARTEN VAN DYCK

γ ∈ Ψ(SOαβ)

R2 ¬(α q β),
γ ∈ Ψ(SOαβ)

[P(α, γ) ∧ P(γ, β)] ∨ [P(β, γ) ∧ P(γ, α)] ∨ [P(γ, α) ∧ P(γ, β)]
∨(∃δ)[P(δ, γ)∧P(γ, α)∧P(δ, β)]∨(∃δ)[P(δ, α)∧P(δ, γ)∧P(γ, β)]

R3 γ ∈ Ψ(SOαβ)

¬(α→ γ ∧ β → γ)

Axiom A1 states the assumption that all structures are acyclic (so that there
can be no feed-back loops). Axioms A2 and A2’ are clearly not indepen-
dent, but are the two equivalent ways of expressing what I singled out in
section 2 (on pages 15 and 17) as the most important property of faithful
causal Markov systems. Rules R1, R2, and R3 mirror some properties of
the d–separation criterion, and thus express assumptions about causal rele-
vance. R1 looks more gruesome than it really is; it states that if two nodes
are screened off, and if a third node either lies on a path between these two
nodes, or is a common cause of them, or lies on a path from a common cause
to one of both nodes, that then this third node must be a member of one of
the sets that screen off the two nodes. This is clearly in line with the meaning
of screening off that I discussed in section 2. (In appendix A I give a proof of
the fact that R1 follows from the d–separation criterion.) R2 inversely states
that if two nodes are screened off by a third node, then this node either has to
lie on a path between the two nodes, or has to be the common cause of these
nodes, or has to lie on a path from a common cause to one of both nodes.
(A proof is to be found in the appendix). R3 is an immediate consequence
of what was called explaining away on page 13. (See again the appendix for
the very short proof.)

The following easy-to-prove derived rules are of main import for causal
discovery.

DR1 α 6= β,
(α q β),
α→ γ ∨ γ → α ∨DSOαγ ,
β → γ ∨ γ → β ∨DSOβγ

α→ γ ∨DSOαγ ,
β → γ ∨DSOβγ

DR2 α 6= β,
DSOαβ,
γ 6∈ Ψ(SOαβ),
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α→ γ ∨ γ → α ∨DSOαγ ,
β → γ ∨ γ → β ∨DSOβγ

α→ γ ∨DSOαγ ,
β → γ ∨DSOβγ

As one can notice, these rules allow one to infer the direction of causal in-
fluences given the right kind of causal (!) premises; i.e. given the absence
of the third disjunct in the (already partly causal) premisses on lines 3 and
4 (or lines 4 and 5 for the second derived rule) and in the conclusion. To-
gether with R3, which also excludes certain directions, this will make possi-
ble the derivation of (parts of the) causal structures responsible for observed
(in)dependencies. But before we can do that, we have to get rid of the extra
disjuncts; and this is where the adaptive character of the logic comes into
play.

4.3. ALcd

As explained in section 3, an adaptive logic is not only characterized by a
LLL but also by an ULL and a marking strategy, where the ULL incorporates
some presuppositions (“normalities”) not made by the LLL. In section 4.1, I
already introduced the most important idea of the logic for causal discovery,
henceforth called ALcd. The ULL validates cum hoc, ergo propter hoc for
any two nodes, so the presence of a formula stating that these two nodes
are screened off is considered an abnormality. (As indicated this name goes
back to the origin of adaptive logic in inconsistency adaptive logics, so call
it otherwise if you might feel uncomfortable with this name; but it is not an
altogether unnatural perspective to consider “correlation = causation” as a
normality.)

The ULL of ALcd is obtained by adding the following rule to the LLL that
I introduced in section 4.2:

Rc ¬(α q β)
α→ β ∨ β → α ∨ α = β

This rule will always be applied conditionally in an ALcd proof: if a line
is added to a proof as a result of an application of Rc, then this line will
have as its fifth element SOαβ . It is immediately clear from A2 that the LLL
doesn’t make the presupposition that the ULL makes, and that the validity
of the presupposition is enough to guarantee the correctness of the ULL rule
from the perspective of the LLL (a fact known as “derivability adjustment
theorem” in the study of adaptive logics). As a definition for a marked line
we obviously have:
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24 MAARTEN VAN DYCK

Definition 6 : (Marked Line) Where Θ is the fifth element of line i, line i is
marked iff a formula δ is unconditionally derived for some δ ∈ Θ.16

So, from the moment that a line in a proof states that α and β are screened
off, all lines that were derived on the condition that α and β are not indepen-
dent conditional on any variable in Λ have to be marked.

Now, there is one more important thing to remark. If one looks at the
two derived rules of the LLL, it is clear that they give rise to two useful
variants that are valid in ALcd: all lines containing the causal statements
and the disjuncts of screening off formulas (DSO) can be replaced by lines
containing only the causal statements and having as condition the absence
of any formula stating that the nodes mentioned in the causal statements are
screened off. In these variants the interplay between ULL and LLL becomes
most clear: the ULL introduces the conditional lines with causal statements,
and the LLL helps to select causal statements specifying one unequivocal
direction for the causal influences. Finally we have to remark that in view
of the presence of the disjunct α = β in Rc, we will also have to introduce
in any proof premisses stating that two nodes with different names are really
distinct.

5. Some examples

In this section I will present three examples of causal discovery using ALcd.
While giving these examples, I will also comment on an apparent weakness
of this approach, that might already have been bothering some attentive read-
ers; i.e. is the distinction between ULL and LLL really needed? (After all,
if one already knows that there is no screening off, A2 suffices to introduce
causal statements in a proof.)

Let me start with a very simple example, just to get the taste of the thing.
Suppose we have a system with the causal structure depicted in figure 4.
This will give rise to the stated premisses,17 which immediately allow us to

16 Those familiar with adaptive logics will notice that I opt for the “simple strategy”, thus
assuming that disjunctions of abnormalities cannot be derived (if they could, one should opt
for another strategy, “reliability” or “minimal abnormality”). The absence of such disjunc-
tions is no matter of principle, but rather of convention. In almost any natural application of
a logic for causal discovery the premisses will consist of statements stating (un)conditional
(in)dependency between variables, as inferred from observations; thus the abnormalities will
almost always be given in a straightforward form. However, it is important to know that the
mere possibility of premisses that would introduce disjunctions of abnormalities in a proof
pose no principled problems, and only require a minimal technical revision of ALcd. (I don’t
incorporate this in the logic presented here, to keep the basic format as simple as possible for
readers not familiar with adaptive logics but rather interested in causal discovery.)
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Figure 4. Example 1

derive the underlying structure.

1 A 6= B – PREM ∅
2 A 6= C – PREM ∅
3 B 6= C – PREM ∅
4 (AqB) – PREM ∅
5 ¬(Aq C) – PREM ∅
6 ¬(B q C) – PREM ∅
7 A→ C ∨ C → A 2,5 Rc SOAC

8 B → C ∨ C → B 3,6 Rc SOBC

9 A→ C 1,4,7,8 DR1 SOAC

10 B → C 1,4,7,8 DR1 SOBC

Now for something more serious. Consider again the structure depicted in
figure 2. The premisses then should be the following:

1 A 6= B – PREM ∅
2 A 6= C – PREM ∅
3 A 6= D – PREM ∅
4 B 6= C – PREM ∅
5 B 6= D – PREM ∅
6 C 6= D – PREM ∅
7 ¬(AqB) – PREM ∅
8 (Aq C) – PREM ∅
9 ¬(AqD) – PREM ∅
10 ¬(B q C) – PREM ∅
11 ¬(B qD) – PREM ∅
12 ¬(C qD) – PREM ∅
13 (AqD|B&C) – PREM ∅
With Rc we can infer the following causal relations, but it is also clear that
in view of the premisses, line 15 immediately has to be marked:

17 That it must give rise to these premisses follows from the assumption that it is a faithful
Markov structure — if this assumption holds, it will immediately be shown that ALcd will
allow us to derive the right structure; if this assumption doesn’t hold, ALcd will clearly fail,
but we knew this already, didn’t we?
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14 A→ B ∨B → A 1,7 Rc SOAB

15 A→ D ∨D → A 3,9 Rc SOAD

√
13

16 B → C ∨ C → B 4,10 Rc SOBC

17 B → D ∨D → B 5,11 Rc SOBD

18 C → D ∨D → C 6,12 Rc SOCD

The fact that we knew in advance that line 15 would have to be marked is
the weakness I mentioned in the beginning of this section. This clearly has
to do with the fact that we are dealing with a decidable marking criterion
(given the premisses, it can always be decided in advance if a line will have
to be marked). But this need not mean that the adaptive approach is empty
posturing for our purposes. It could very well be that the premisses we are
considering are incomplete, and that there is a relevant missing variable that
screens off B and C. This would mean that the Markov condition will not
hold for the considered variables, and that ALcd will give us wrong answers.
But, and this is the important point, this logic has got the resources to adapt
itself to new relevant information, and so to correct for the initial “mistakes”.
It is not the marking in light of already given premisses that is really impor-
tant, but the marking after the addition of new premisses. (In the words of
section 3, ALcd displays an external dynamics.) One can never be guaran-
teed that there is not somewhere a variable that screens off two variables:
an adaptive logic still allows one to go on in a sensible way in view of this
uncertainty. This should be enough to clear up the suspicion that I stated in
the beginning of this section: in reality we never know for sure that there is
no screening off, so ULL and LLL really do behave differently. One could
answer to this that from a logical point of view reality is only illusionary, and
that if the premisses state that two objects are conditionally dependent given
any other object in our language (all variables included in the structure), then
one knows there is no screening off. But even adopting this point of view,
there still remains an important difference between ULL and LLL: whenever
the premisses don’t give all information on the conditional (in)dependencies
holding between two variables — this is not only a logical unavoidable situ-
ation (remember we are talking premisses) but also a very realistic situation
— ULL, but not LLL, assumes that there is no screening off and introduces
causal statements.

Let us now continue the proof (‘CL’ as a fourth element of a line indicates
that this line is the result of an application of rules of classical logic).

19 A→ B 1,8,14,16 DR1 SOAB

20 C → B 1,8,14,16 DR1 SOBC

21 ¬(A→ B ∧D → B) 13 R3 ∅
22 ¬D → B 19,21 CL SOAB

23 B → D 17,22 CL SOBD
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Figure 5. Example 3

24 ¬(C → B ∧B → D ∧D → C) – A1 ∅
25 ¬D → C 20,23,24 CL SOBC ∪ SOBD

26 C → D 18,25 CL SOBC ∪ SOBD

∪SOCD

As one can see, ALcd indeed enables us to infer the structure responsible
for the observed (in)dependencies.18 In this example one can clearly see the
importance of the fact that applications of unconditional rules carry over the
conditions attached to lines of a proof. For example, line 26 will have to
be marked from the moment it is found out that either C and B, or B and
D, or C and D are screened off. This is indeed what one should expect,
since this line was derived by using the axiom scheme stating that there
can be no cyclic paths; if e.g. B and C are screened off, it could be the
case that they are effects of a common cause, but then there could be no
cyclic path anyway; so this could no longer provide any information on the
directionality of the causal influence between C and D. It is this behavior
that justifies the claim that ALcd has got the resources to adapt itself to new
relevant information.

The last example is meant to show the general limitations of the causal dis-
covery approach: not all structures can be recovered using only probabilistic
information (of course, it is always possible that temporal information, or
performed manipulations, provide further clues that can help to solve the
resulting indeterminacy). An example is the structure depicted in figure 5.
Again the premisses follow from the fact that this is supposed to be a faith-
ful Markov system, and the rest of the proof proceeds normally (I will not
introduce the lines that will immediately have to be marked).

1 A 6= B – PREM ∅
18 Of course, I am cheating in my examples, since I start by inferring the (in)dependencies

from the structure. As already remarked, given the correctness of the assumptions of faith-
fulness and Markov property, this is an innocuous strategy — this in no way means that these
assumptions are innocuous, and our examples can surely provide no support for them: this
can only be provided by tackling real–life problems, and showing that one can also recover
the right causal structures there.



“02vandyck”
2005/7/18
page 28

i

i

i

i

i

i

i

i

28 MAARTEN VAN DYCK

2 A 6= C – PREM ∅
3 A 6= D – PREM ∅
4 B 6= C – PREM ∅
5 B 6= D – PREM ∅
6 C 6= D – PREM ∅
7 ¬(AqB) – PREM ∅
8 ¬(Aq C) – PREM ∅
9 ¬(AqD) – PREM ∅
10 ¬(B q C) – PREM ∅
11 ¬(B qD) – PREM ∅
12 ¬(C qD) – PREM ∅
13 (Aq C|B&D) – PREM ∅
14 (B qD|A) – PREM ∅
15 A→ B ∨B → A 1,7 Rc SOAB

16 A→ D ∨D → A 3,9 Rc SOAD

17 B → C ∨ C → B 4,10 Rc SOBC

18 C → D ∨D → C 6,12 Rc SOCD

19 B → C 5,14,17,18 DR2 SOBC

20 D → C 5,14,17,18 DR2 SOCD

21 ¬(D → A ∧B → A) 14 R3 ∅
22 (A→ B ∧A→ D) ∨ (B → A ∧A→ D) ∨ (A→ B ∧D → A)

15,16,21 CL SOAB ∪ SOAD

It is easy to check that all structures compatible with the conclusions of this
proof will give rise to the same premisses; it is clear that on basis of these pre-
misses alone it is impossible to decide between these structures. So, although
there is considerable number of cases in which our assumptions impose a di-
rectionality on the causal influences between different nodes, it is not the
case that this will always be possible. Nevertheless, when applying ALcd
to model human reasoning in causal discovery, it will immediately become
clear that in practice this reasoning is rich in content-based assumptions that
have to be added to the premisses. These will often claim the impossibility
of particular causal influences, most importantly because of some temporal
information or knowledge about the possible causal mechanisms responsible
for the observed (in)dependencies, and will enable one to further delimit the
possible causal structures.

6. On human causal learning

Recent literature in psychology reports that there is empirical evidence sup-
porting the hypothesis that human adults and even children represent causal
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relationships in ways that can be described as causal Bayes nets, and more-
over that even children might make causal inferences without discriminating
between potential causes and potential effects beforehand [8].

The heuristics proposed in the present article is clearly based on the as-
sumptions underlying the Bayes nets approach, and its final output will al-
ways be a Bayes net (or a disjunction of Bayes nets); at the same time it
works in a completely piecemeal and constructive fashion. The natural way
to derive causal structure using ALcd is as follows: start with the data on
a few nodes and look for the possible causal structure, then consider more
nodes — possibly, it can turn out that some of these provide screening off
conditions of earlier nodes, leading to a revision of earlier formed hypotheses
— and so on. The major way in which the heuristics that is being proposed
here might be an advancement over the usual approaches is that when new
information is introduced, one need not start computing the possible causal
structures again de novo (due to the non-monotonic character of the logic be-
hind the heuristics). On this ground the present heuristics might be claimed
to be a possible starting point for providing a more realistic model for human
causal inference.

It must be stressed that ALcd is a logic for causal inference. It is not meant
to provide an entirely accurate description of human reasoning, but a nor-
mative model against which it can be judged — however, not any model
will do, only a relevant one. A good normative model need not coincide
with the actual reasoning processes used, but must resemble them closely
enough, so that the latter can meaningfully be judged against the former.
As already indicated by the reference to the limited memory and processing
capacity of human reasoners, it is utterly unrealistic to expect from people
trying to uncover the causal structure of a system that they should assess all
data at once; e.g. in common situations, not all independencies are remarked
at once.19 As is clear, this is the kind of situation for which ALcd is de-
signed. It allows reasoners to be daring, without being foolish; i.e. cum hoc,
ergo propter hoc may be applied, but always with a condition attached to the
conclusion. It is important to stress that newly added premisses causing the
revision of a conditional conclusion do not contradict the former premisses,
but nevertheless can invalidate some of the conclusions drawn from them —
an important characteristic off all non-monotonic reasoning; it is not that one
was mistaken, but rather that one was missing some crucial information.

One last caveat: in assuming that we start from the population correla-
tions, I sidestepped one major problem for the discovery of causal structure
in the world. This is another important aspect in which human reasoners

19 The set of conditions attached to a derived conclusion can also play a useful heuristic
role in this, by pointing towards interesting hypotheses to be investigated.
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differ from automated search programs: they often guess population corre-
lations — e.g. by pretending that two observed cases were a two-hundred —
without starting from all numerical statistical information.20 Obviously this
is problem is in no way remedied by the heuristics proposed here. Moreover,
in [8] it is exactly this problem that is singled out as one of the major obsta-
cles for the causal Bayes net approach to provide realistic models of human
reasoning.

Appendix A. R1, R2, R3 and d–separation

The d–separation criterion, as introduced by Judea Pearl [12, pp. 16–17],
reads as follows (adapted to our notation and terminology):

Definition 7 : (d–Separation) Two nodes α and β are said to be d–separated
by a set of nodes ∆ iff for every sequence of arrows and nodes connecting α
and β (not necessarily through a directed path):

(1) this sequence contains a path η → δ → ε or a fork η ← δ → ε such
that the middle node δ is in ∆, OR

(2) this sequence contains an inverted fork η → σ ← ε such that the
middle node σ is not in ∆ and such that no effect of σ is in ∆.

If two nodes in a Markov structure are d–separated, then the two corre-
sponding variables are independent conditional on the set of variables that
are responsible for the d–separation, and the faithfulness condition states the
inverse.

Let us now look at rule R1. The first line states that two nodes α and β
are d–separated, so that there is at least one non–empty21 set ∆ such that
members of this set satisfy the conditions stated in definition 7. If then it is
the case, as stated in the second line of R1, for a node γ that either it lies on
a path between α and β, or it is a common cause of α and β, or it lies on
a path from a common cause to α or β, then it follows that it cannot be the
case that this node is not a member a set of nodes that screens off α and β.
(The second condition of definition 7 cannot be satisfied for the sequences
of arrows and nodes between α and β constituted by these paths; and since
the definition states a necessary and sufficient condition, any node γ that is
such a middle node as mentioned in the first condition will be a member of

20 This guessing could be — partly — corrected by adopting Bayesian learning algorithms
(cf. [17])

21 This does not follow from the definition of d–separation proper, but from the definition
of DSOαβ .
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a set of nodes that screens off α and β, if they were only connected through
these paths. Moreover, since we exclude acyclic structures, these nodes will
be members of a set of nodes that screen off α and β anyhow. Proof: The
only reason that such a node γ would be no member of a set of nodes that
screen off could be that it is positioned at, or is an effect of, an inverted fork
of another sequence connecting α and β; but even this would not be enough,
for if this sequence would contain another inverted fork η → σ ← ε or a path
η → δ → ε or a fork η ← δ → ε, then α and β still can be d–separated by a
set containing γ but not containing σ and any of its effects, or also containing
δ — so only if none of this is the case could γ not be a member of a set of
nodes that screen off; this means that for this to hold we should have either
α→ σ ← β ∧ P(σ, γ) or α→ γ ← β, but then we would have at least one
directed cycle — this can easily be seen by drawing all the possibilities.) So,
it follows that γ ∈ Ψ(SOαβ). QED.

Now for rule R3. If it is the case that α → γ ← β, then by definition 7
it immediately follows that the set of nodes d–separating α and β cannot
contain γ, so that γ 6∈ ψ(SOαβ). QED.
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