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PREFERENCE SEMANTICS FOR DEONTIC LOGIC
PART I — SIMPLE MODELS

LOU GOBLE

Abstract
This paper presents determination results for some deontic logics
with respect to a simple preference-based semantics, in which pos-
sible worlds are ranked by comparative value but none need be sup-
posed to be best or top-ranked among alternatives. This kind of se-
mantics is useful for defining deontic logics that allow for conflicts
of obligation. Monadic standard deontic logic (SDL) is determined
by the class of frames in which the preference ranking is reflexive,
transitive and connected. The weak deontic logic P, which allows
for normative conflicts, is determined by the class of all preference
frames. These results are extended to corresponding dyadic deon-
tic logics that formalize the logic of conditional obligation and the
logic of preference itself.

The preference semantics for deontic logic contrasts with the more familiar
Kripke-style relational semantics derived from normal modal logic. In that
framework deontic formulas OA are interpreted to be true just in case A is
true at all the deontically perfect, or ideal, or normatively best, alternative
possible worlds, where it is always presupposed that there are such worlds
(cf., e.g., [6], p. 163). In the preference semantics no worlds need to be sup-
posed to be ideal or best in any respect. Instead, they are merely compared,
so that some may be deontically better than, or normatively preferable to
others. Then a formula OA is said to be true just in case there is a world
where A is true that marks a threshold, as it were, for A in that there is no
world as good as it is where A does not obtain.

It is widely known that a standard preference semantics is adequate for
standard deontic logic (SDL). Curiously, however, no direct proof of that re-
sult seems to have been published.1 To fill that gap I present such a proof

1 This surprising fact came to light in the aftermath of the conference DEON’98, the 4th
International Workshop on Deontic Logic in Computer Science, held in Bologna, Italy, Jan-
uary, 1998, when Paul McNamara and Henry Prakken were writing their introduction to the
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384 LOU GOBLE

here; that determination theorem is the chief result of Section 1 below. The
argument is quite straight-forward, and I do not claim any special originality
for it. Nevertheless, it helps to introduce the framework of the preference se-
mantics. The subsequent sections explore two kinds of generalization from
the original, standard framework. First, conditions on the preference rela-
tion that make it adequate for SDL can be relaxed. This leads to the deontic
logic I call P that is valuable for analyzing normative systems in which there
might be conflicts of obligation. In Section 2, I demonstrate the soundness
and completeness of P; the argument for this result, which is new, is con-
siderably more complex than that for SDL. The second sort of generaliza-
tion is to introduce dyadic deontic connectives for conditional obligation and
preference; it was for these that the pattern of the preference semantics was
originally developed. In Sections 3 and 4 below the results of the earlier sec-
tions are extended to apply to logics with such dyadic connectives. Section 3
presents a dyadic counterpart of SDL and also a standard logic of preference
itself. Section 4 gives a dyadic counterpart of the weaker logic P, as well
as a corresponding weaker logic of preference; these too are new. All of
these logics are demonstrated to be both sound and complete with respect to
their preference semantics. Establishing these several results is the primary
purpose of this paper. In the proof of completeness for P and its dyadic
counterparts an extension of the preference semantics is briefly introduced. I
call this ‘multiple preference semantics’. That is investigated further in Part
II of this work [4].

The results given here are chiefly formal; I do not try to motivate the logics
discussed, or the pattern of the preference semantics, from a philosophical
point of view. (See my paper [3] for more of that discussion.)2 Furthermore,
this work is meant to be foundational. It is generally agreed that for deontic
logic to do the philosophical work expected of it, it must be more elaborate

workshop’s published proceedings [9]. I suspect it is due to the preference semantics origi-
nally being developed for dyadic deontic logics, logics of conditional obligation, whence its
application to monadic SDL is effected through the postulated equivalence between OA and
O(A/>). Then the completeness of SDL may be extracted from completeness results for
systems of dyadic deontic logic. This can be found, for example, in David Lewis [7], esp.
§6.3, but there it is embedded in far more general concerns. Lewis was one of the pioneers
of this sort of interpretation for deontic logic, especially dyadic deontic logic (see also Lewis
[8]), but even so, his principle proofs were given in terms of other semantic structures, notably
systems of spheres, and only derivatively for preference rankings. Other pioneers in using
preference models in this way for the interpretation of dyadic deontic operators, though with
variations, were Sven Danielson [2] and Bas van Fraassen [12], and, with a somewhat differ-
ent approach, Bengt Hansson [5] (see note 14 below). We examine dyadic deontic logics in
Sections 3 and 4.

2 In [3] I also sketched some of the present results; here I provide alternative, more direct
and simpler proofs, and more in the way of details.
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than we see here. It probably needs to take into account aspects of agency
and action, not to mention temporality and alethic modality, and it needs to
reach beyond the propositional level to include at least first-order quantifi-
cation. None of that is included here; rather the systems that are examined
provide a potential platform for such further sophistication. Also, it should
be said, I present here one basic way to apply the notion of preference in
deontic logic. There are others; I do not try to survey them at all.

1. Standard Deontic Logic (SDL)

All of the logics discussed here are propositional deontic logics, and so their
language consists, as usual, of a vocabulary of atomic formulas, p, q, r . . .
with the connectives ¬, ∧, ∨ and →, understood classically, and, in this
section and the next, the single monadic deontic operator O, with formation
rules as usual. Call this language Lo. Letters ‘A’, ‘B’, ‘C’, etc. are used
as variables for well-formed formulas in Lo. Models for this language are
based on simple preference frames F = 〈W, P〉 where W is a non-empty
set of points, or so-called ‘possible worlds’, and P is a function assigning
each a ∈ W a binary preference relation Pa that ranks points in W as being
better or worse, or more or less acceptable, more or less desirable, more
or less valuable, etc., than others. Thus, ‘bPac’ says that, according to a’s
standard, b is at least as good (acceptable, desirable, valuable, etc.) as c.3

In all that follows, for every preference frame F = 〈W, P〉, all relations
Pa assigned to points a ∈ W are required to be non-empty; i.e. there must
be at least one pair of points b and c such that bPac. Where FPa is the field
of Pa, i.e., {b : ∃c(bPac or cPab)}, it is thus required that for any a ∈ W ,
FPa not be empty. This simply says that every point must be able to see, or
care about, some world, and compare it, for better or worse, to some world.
Relations Pa that are (i) reflexive, (ii) transitive, and (iii) connected on their
fields — i.e., that for all b, c, d ∈ FPa, (i) bPab, (ii) if bPac and cPad then
bPad, (iii) bPac or cPab — will be called standard, and frames and models
all of whose assigned relations Pa are reflexive, transitive or standard will

3 I use the notation ‘Pa’ here, rather than, say, ‘≥a’, in order to prevent some of the
later proofs becoming an optical nightmare. Notice that each a ∈ W has its own ranking
relation, Pa. There could, of course, be frames in which the ranking relations are universal,
in the sense that for every a, b ∈ W, Pa = Pb. Equivalently, one could define a preference
frame as a pair 〈W, P〉 where P is now itself a binary relation on W with the appropriate
properties. Models on such frames would, however, validate principles of the iteration of
deontic modalities, such as the S4 principle, OA → OOA, and the S5 principle, ¬OA →
O¬OA, which go beyond standard deontic logic. Hence, I do not consider this option further.
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386 LOU GOBLE

likewise be called by the same terms.4 In this section we look at standard
models; in the next we consider others.

Given a frame F = 〈W, P〉, a model M based on that frame is a pair
〈F, v〉 where v is an assignment function for atomic formulas, p, such that
v(p) ⊆ W . Formulas are then evaluated in the usual way, so that5

(p) M, a |=
P

p iff a ∈ v(p)
(¬) M, a |=

P
¬A iff not-(M, a |=

P
A)

(∧) M, a |=
P

A ∧ B iff M, a |=
P

A and M, a |=
P

B
(∨) M, a |=

P
A ∨ B iff M, a |=

P
A or M, a |=

P
B

(→) M, a |=
P

A → B iff not-(M, a |=
P

A) or M, a |=
P

B

and in particular, for deontic formulas OA,
(P-O) M, a |=

P
OA iff there is a b ∈ FPa such that M, b |=

P
A and for

any c such that cPab, M , c |=
P

A

That is to say, OA is true just when there is a point to which a’s standard
applies where A is true and there is no world that is as good as it (according
to that standard) where A is not true.

For all the types of models to follow, we say that a formula A holds at
a point a in a model M just in case M, a |= A. A holds on a model M
just when A holds at every point in W in that model. A is valid on a frame
F just when A holds on every model based on F . A is valid for a class of
frames F just when A is valid on every F ∈ F . When every member of
a set of formulas S is valid on a frame F , then F is a frame for S. When
every member of S is valid for a class of frames F , then S is sound with
respect to F , and when only members of S are valid for F , S is complete
with respect to F . When S is both sound and complete with respect to F , F
characterizes or determines S. Similarly, a set S is sound or complete with
respect to a class of models M just in case all, or only, members of S hold
on every M ∈ M. In what follows, we equate a logic, like SDL, with the
set of its theorems.

Standard deontic logic, SDL, is the normal modal logic D (aka KD) for the
operator O; i.e., it is the class of formulas axiomatized by

4 Of course, reflexivity follows from connectednes; it is mentioned separately because it
will have a separate role to play in what follows.

5 Here, and below, I index the sign for the modelling relation, as with the present subscript
‘P’, to indicate what kind of model M is, here a model on a simple preference frame, and
hence the evaluation rule for statements ‘OA’, since later on some different model structures
will be introduced, and this reduces ambiguity.
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(PC) All classical tautologies in Lo

(MP) If ` A → B and ` A then ` B
(K) O(A → B) → (OA → OB)
(D) OA → ¬O¬A
(RN) If ` A then ` OA

Other axiomatizations are also common. Thus (K) might be replaced by the
combination of the aggregation principle

(C) (OA ∧ OB) → O(A ∧ B)

and the inheritance rule
(RM) If ` A → B then ` OA → OB

Likewise, given (RM), (D) could be replaced by
(P) ¬O⊥

(sometimes called (OD)),6 and (RN) could be replaced by
(N) O>

where > is an arbitrary tautology, and ⊥ abbreviates ¬>. All of these are
derivable from the first formulation. They will be useful to have in mind
later on.

We now establish that the preference semantics is adequate for SDL, or
more precisely,

Theorem 1 : SDL is sound and complete with respect to the class of all stan-
dard preference frames.

Proof: Soundness, as usual, is easy to demonstrate, and may be left to the
reader. For completeness, we apply familiar Henkin-style techniques to de-
fine a canonical model. Let F = 〈W, P〉, where W is the set of all maximal
consistent extensions of SDL, and for each a ∈ W , a binary relation Pa is
defined on W so that

Pa = {〈b, c〉 : b, c ∈ W and either O−1a ⊆ b or not-(O−1a ⊆ c)}

where O−1a = {A : OA ∈ a}. P assigns Pa to a. Let M = 〈F, v〉 where

v(p) = {a : a ∈ W and p ∈ a}

Lemma 2 : M is a model on a standard preference frame.

6 Both names are found in Chellas [1], e.g., p. 133, p. 191.
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388 LOU GOBLE

It is easy enough to show that the relations Pa are reflexive, transitive and
connected on W that this can be left to the reader.

Before introducing the key lemma that leads to the completeness theorem,
it is helpful to have this lemma, which is familiar from modal logic.

Lemma 3 : (i) O−1a is consistent; (ii) if OA /∈ a, then O−1a ∪ {¬A} is
consistent.

Proof: For part (ii), suppose OA /∈ a but that O−1a∪{¬A} is not consistent.
O−1a 6= ∅ since > ∈ O−1a because O> ∈ a by (N). Hence, there are
C1, . . . , Cn ∈ O−1a such that ` (C1 ∧ . . . ∧ Cn) → A. For each Ci,
OCi ∈ a; hence OC1∧ . . .∧OCn ∈ a. By (C), O(C1∧ . . .∧Cn) ∈ a. Since
` (C1∧ . . .∧Cn) → A, ` O(C1∧ . . .∧Cn) → OA by (RM). Consequently,
OA ∈ a, contrary to the opening hypothesis. Hence, if OA /∈ a, then
O−1a ∪ {¬A} must be consistent. The argument for part (i) is the same
given that O⊥ /∈ a by virtue of (P).

Lemma 4 : For all formulas A and all a ∈ W , A ∈ a iff M, a |=
P

A.

Proof: By induction on A; we show only the inductive case when A = OB,
supposing the lemma to hold for B. (a) Suppose OB ∈ a. By the preceding
lemma we know that O−1a is consistent; hence it has a maximal consistent
extension, b. Since Pa is reflexive on W , b ∈ FPa. Since B ∈ O−1a, B ∈ b,
and so by the inductive hypothesis, M, b |=

P
B. Now consider any c such that

cPab. By definition of Pa, since O−1a ⊆ b, O−1a ⊆ c, and so B ∈ c. Thus,
by the inductive hypothesis, M, c |=

P
B. These suffice for M, a |=

P
OB. (b)

Suppose, for the converse, that M, a |=
P

OB, so that there is a b ∈ FPa such
that M, b |=

P
B and for any c such that cPab, M, c |=

P
B. Suppose OB /∈ a.

Then, by the preceding lemma, O−1a ∪ {¬B} is consistent, and so has a
maximal consistent extension, c. O−1a ⊆ c, and so automatically cPab.
Hence M, c |=

P
B, and so, by the inductive hypothesis, B ∈ c, contrary to

the consistency of c. Hence, if M, a |=
P

OB, OB ∈ a, as required.

Theorem 1 now follows from Lemmas 2 and 4 in the usual way. If A is not
provable in SDL, then {¬A} is consistent, and so has a maximal consistent
extension, a, in W . By Lemma 4, ¬A holds at a on a standard preference
model, and so A does not hold at a on that model. In other words, if A is
valid in all standard preference frames, it must be provable in SDL.

The preference based semantics offers the opportunity to interpret deon-
tic formulas over worlds where none are maximally preferred, and instead
there may be infinitely ascending chains of worlds. But this is not required.
Indeed, SDL is equally well characterized by the class of frames in which
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there are no such chains. This is a spin-off from the proof of Theorem 1.
Given a frame F = 〈W, P〉, for each preference ranking Pa, define its strict
counterpart Sa so that bSac iff bPac and not-(cPab). (This will be asymmet-
ric and transitive when Pa is transitive.) Then, for any X ⊆ W , say that
b ∈ X is maximala in X iff there is no c ∈ X such that cSab. Let us say
that X is limiteda iff for every b ∈ X , b is either maximala in X or there is a
c ∈ X such that c is maximala in X and cSab. A frame F is limiteda iff for
all X ⊆ W , X is limiteda, and F is limited per se iff F is limiteda for every
a ∈ W .

Corollary 5 : SDL is characterized by the class of limited standard prefer-
ence frames.

This follows from the fact that the canonical frame defined for Theorem 1
is limited. (For any a ∈ W , consider any X ⊆ W . For any b ∈ X ,
if O−1a ⊆ b, then b is maximala in X . If O−1a * b, then if there is a
c ∈ X such that O−1a ⊆ c, then c is maximala in X and cSab. If there
is no member of X containing O−1a then all members of X are maximala
in X .) Indeed, we can say more, for the canonical frame is merely ‘two-
tiered’ in the sense that, for any a ∈ W , all worlds are either maximally
ideal or minimally subideal. Thus, call MAXa = {b : ¬∃c ∈ W (cSab)}
and MINa = {b : ¬∃c ∈ W (bSac)}. (Given that Pa is connected over W ,
every member of MAXa will be maximal in the sense that if b ∈ MAXa

then for all c ∈ W , bPac, and therefore too all members of MAXa will be
equal valued, i.e., for b, c ∈ MAXa, bPac and cPab. Similarly for MINa.
Without connectedness, this need not be so.) Call a frame two-tiered if, for
all a ∈ W , MAXa ∪ MINa = W . (This allows that, for some a ∈ W ,
MAXa = MINa = W .)

Corollary 6 : SDL is characterized by the class of two-tiered standard pref-
erence frames.

This too follows from the proof of Theorem 1 since the canonical frame
there is two-tiered. (MAXa = {b : O−1a ⊆ b} and if there are any points
b such that O−1a * b then MINa = {b : O−1a * b}, otherwise MINa =
MAXa = W .) Thus putting these additional constraints of limitedness or
two-tieredness on frames adds no new theorems to the logic.7

7 Like Theorem 1 itself, these corollaries are well-known. The first is related to what
Lewis called the Limit Assumption; cf. [7] §1.4 and [8]. This will be described more in
Section 3 below. The second is little more than the standard completeness result for SDL
with respect to serial binary relational frames in the familiar Kripke semantics. There MAXa

is the set of points b such that aRb, for R the deontic alternativeness relation.
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2. The Logic P

The pattern of interpretation for deontic formulas in the preference seman-
tics is ungainly compared to the pattern in Kripke-style relational semantics,
and the preference semantics does not have the kind of flexibility that makes
the Kripke semantics such a powerful tool in general modal logic. Never-
theless, it offers a different dimension of variation that is not available in the
customary Kripke-style relational semantics, and which lets it apply to weak
deontic systems that have no Kripke semantics. This is important for deon-
tic logic for it allows the development of systems that accept the possibility
of conflicts of obligation, cases where both OA and O¬A may be true. In
SDL this is explicitly excluded by the principle (D), but even without (D), so
long as the logic contains the aggregation principle (C) and the rule (RM),
such a conflict of obligation would generate the collapse of the normative
structure since it would entail OB for every B. To avoid such consequences,
a deontic logic that allows for conflicts of obligation must therefore reject
both (D) and (C) of SDL (if it preserves (RM) and all of classical logic). A
preference-based deontic logic can do that, while one based on a standard
Kripke-style relational semantics cannot.8

As demonstrated, standard deontic logic is characterized by the class of
all standard preference frames. There the requirement that relations Pa be
connected on their fields is essential to validating both (D) and (C). If such
connectedness is not required, we come to the logic I call P, i.e., the logic
characterized by the class of all preference frames, without conditions on
the assigned preference relations Pa. As it turns out, P is also characterized
by the class of frames in which all relations Pa are reflexive or transitive or
both, but perhaps not connected.

The logic P is the set of formulas axiomatized by (PC) with modus ponens
together with just the rule (RM): If ` A → B then ` OA → OB, and the
axioms (N), O>, and (P), ¬O⊥, that were mentioned above as alternative
postulates for SDL.

P does not contain either (C) or (D). The rule (RN): If ` A then ` OA,
is, however, derivable for P, as are the rules (RMP): If ` A → B then
` ¬O¬A → ¬O¬B, and (RP): If ` A then ` ¬O¬A. Also, as noted in
Section 1, if the aggregation principle (C) of SDL is added to P, the result is

8 As remarked below, the neighborhood models of Segerberg [11], also called ‘minimal
models’ by Chellas [1], Ch. 7–9, provide another way to interpret the language of a system
that allows for conflicts of obligation. Another approach is to extend the standard Kripke-
semantics to include multiple deontic accessibility relations. This is the approach taken by
Schotch and Jennings [10]; cf. also my [3]. In Part II of this work [4] we will see logics
that have a preference semantics within the present framework but neither a neighborhood
semantics nor a multiple relational semantics.
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equivalent to SDL, and since (K) suffices for (C), given (RN), adding (K) to
P also yields SDL.9

P is a non-normal, classical modal logic in the sense of Segerberg [11].
As such, it does not have a simple Kripke-style relational semantics. As a
classical modal logic, it is usually considered from the viewpoint of neigh-
borhood semantics (cf. Segerberg [11] or Chellas [1], Ch. 7–9). Here I will
show the adequacy of the framework of preference models for P. Soundness
is easy enough, but the proof of completeness, Theorem 12 below, is compli-
cated and seems to require a detour through a generalization of the semantics
so far presented. This generalization, which introduces multiple preference
relations, offers opportunities for further extensions of P itself. Those are
the subject of Part II of this work [4].10 For the present, we might wish for a
simpler proof, but I do not know of any.

Let a multiple preference frame F be a structure 〈W,P〉 where, as before,
W is a non-empty set of points or possible worlds, and P now assigns to
each a ∈ W a non-empty set Pa of binary relations P ⊆ W × W . We
assume that every relation in each Pa is non-empty.11 A multiple preference
model, M = 〈F, v〉, interprets deontic formulas, OA, according to the rule:

(MP-O) M, a |=
MP

OA iff there is a P ∈ Pa such that M, P |=
MP

A

where the notation ‘M, P |=
MP

A’ abbreviates

there is a b ∈ FP such that M, b |=
MP

A and, for every c, if
cPb then M, c |=

MP
A

corresponding, for a given relation P, to the original evaluation condition in
the simple, non-multiple preference semantics.

So far, no restrictions are put on the multiple relations P ∈ Pa, except
that they not be empty. If all the relations in Pa are standard, then the frame
will be called standard, similarly if they are all reflexive on their fields or

9 P, or a very similar system, has been recommended by others as a way to accommodate
normative conflicts; e.g., Schotch and Jennings [10]. Van Fraassen, [13], p. 16 and Chellas,
[1], p. 202, propose a variant that lacks (N) and (RN) (though van Fraassen, p. 18, backs
away from this system as being too weak).

10 These multiple preference frames extend the simple preference frames previously de-
scribed in much the way that the multiple relational frames of Schotch and Jennings men-
tioned in footnote 8 extend the simple frames of the Kripke semantics for modal logics; see
also my [3].

11 For present purposes it would be enough to require merely that at least one relation in
Pa not be empty. In Part II of this work [4], however, we will want the stronger condition,
and so it is convenient to incorporate it from the beginning.
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transitive. But these properties are not required. The logic P is characterized
by any of these classes of multiple preference frames.

Theorem 7 : P is sound and complete with respect to (a) the class of all
multiple preference frames, (b) the class of all reflexive or transitive multi-
ple preference frames, and (c) the class of all standard multiple preference
frames.

Proof: Soundness, as usual, may be left to the reader. For completeness we
adapt the argument for Theorem 1. Let F = 〈W,P〉 where W is the set
of all maximal consistent extensions of P, and P is defined thus: For each
a ∈ W and each formula A ∈ Lo, define a binary relation PA

a such that

PA
a = {〈b, c〉 : b, c ∈ W and either OA /∈ a or A ∈ b or A /∈ c}.

Let
Pa = {P : ∃A(P = PA

a )}.

P assigns Pa to a. Let M = 〈F, v〉 where, as usual,

v(p) = {a : a ∈ W and p ∈ a}.

Lemma 8 : M is a model on a standard multiple preference frame.

Proof: Since there are formulas obviously Pa is non-empty. Obviously too,
every relation in Pa is reflexive, hence non-empty, and transitive and con-
nected on the whole of W .

Lemma 3 no longer holds for P since the virtue of this system is that it
allows for inconsistent obligations. In its place it will be helpful to have
the next small lemma. First, though, some notation. I will write ‘[A]’ for
{a : a ∈ W and A ∈ a}; then the key Lemma 10 below will say, in effect,
that M, a |=

MP
A iff a ∈ [A], and thus that the semantics and syntax for

this model are equivalent. To have a similar syntactical counterpart for the
notation M, P |=

MP
A, defined above, let us write ‘P ε [A]’ to abbreviate

there is a b ∈ FP such that A ∈ b and, for every c, if cPb then A ∈ c

Then Lemma 10 will imply that M, P |= A iff P ε [A] to reflect the desired
semantical and syntactical equivalence.

Lemma 9 : For all formulas A and B, (i) If PA
a ε [B] then ` A → B; (ii) if

PA
a ε [B] and OA /∈ a then ` B; (iii) PA

a ε [A] iff a ∈ [OA].
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Proof: For (i), suppose PA
a ε [B], so that there is a b ∈ FPA

a and B ∈ b and
for all c such that cPA

a b, B ∈ c. Suppose that 0 A → B. Then {A,¬B} is
consistent and has a maximal consistent extension, c. Since A ∈ c, cPA

a b,
and so B ∈ c, contrary to its consistency. For (ii), suppose PA

a ε [B], so
that again there is a b ∈ FPA

a such that B ∈ b and, for all c, if cPA
a b then

B ∈ c; suppose also that OA /∈ a, but that 0 B. So {¬B} is consistent
and has a maximal consistent extension, c. Since OA /∈ a, automatically
cPA

a b. So B ∈ c, contrary to its consistency. For (iii), (a) Suppose PA
a ε [A],

but that a /∈ [OA], i.e., OA /∈ a. Then, by (ii), ` A, so ` OA by (RN)
and OA ∈ a, a contradiction. (b) Suppose a ∈ [OA], i.e., OA ∈ a. {A}
is consistent (else ` A → ⊥, and then ` OA → O⊥, and so O⊥ ∈ a,
but, by (P), ` ¬O⊥, so ¬O⊥ ∈ a, contrary to its consistency). Thus {A}
has a maximal consistent extension, b. A ∈ b, hence bPA

a b and b ∈ FPA
a .

Obviously, b ∈ [A]. Suppose any c such that cPA
a b. Either OA /∈ a or A /∈ b

or A ∈ c. The first two are ruled out, leaving the third, which suffices for
PA

a ε [A].

Lemma 10 : For all formulas A and all a ∈ W , A ∈ a iff M, a |=
MP

A.

Proof: By induction on A; I consider only the case where A = OB, sup-
posing the lemma to hold for B. (a) Suppose OB ∈ a, i.e., a ∈ [OB].
Then by Lemma 9.iii, PB

a ε [B], i.e., there is a b ∈ FPB
a such that B ∈ b

and for every c if cPB
a b then B ∈ c, but, with the inductive hypothesis, this

yields M, a |=
MP

OB directly since PB
a ∈ Pa. (b) Suppose M, a |=

MP
OB,

i.e., there is a P ∈ Pa and M, P |=
MP

B. P = PC
a for some C. Since

M, PC
a |=

MP
B, the inductive hypothesis yields PC

a ε [B], and so by Lemma
9.i, ` C → B, whence, by (RM) ` OC → OB. Suppose, however,
OB /∈ a. Then OC /∈ a. But then, by Lemma 9.ii, ` B, in which case
` OB and OB ∈ a, a contradiction. Therefore, if M, a |=

MP
OB, then

OB ∈ a.
Theorem 7 now follows in the usual way. Suppose A is not provable in

P. Then {¬A} is consistent, and so has a maximal consistent extension, a.
By Lemma 10, A does not hold at a on the canonical model M . Hence,
A is not valid for any class of models containing M . Since, by Lemma 8,
M is a model on a standard multiple preference frame, that means that A
is not valid for the class of such standard frames (part (c) of the theorem).
But, of course, M is also a model on a reflexive frame, and on a transitive
frame, and on a frame simpliciter; hence A is not valid with respect to those
wider classes of multiple preference frames as well (parts (a) and (b) of the
theorem). By contraposition, if A is valid with respect to any of those classes
of frames, it must be provable in P.
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At the end of Section 1, we noted that SDL is characterized by the class
of limited preference frames. A similar result obtains for P. In the frame-
work of multiple preference frames, let each relation P ∈ Pa have its strict
counterpart be given by bSPc iff bPc and not-(cPb). For any X ⊆ W , say
that b ∈ X is P-maximala in X iff there is no c ∈ X such that cSPb, and X
is P-limiteda iff, for every b ∈ X , b is either P-maximala in X or there is a
c ∈ X such that c is P-maximala in X and cSPb. A frame F is P-limiteda

iff every X ⊆ W is P-limiteda; F is limiteda iff it is P-limiteda for every
P ∈ Pa; and F is limited iff F is limiteda for every a ∈ W .

Corollary 11 : P is characterized by the class of limited (perhaps reflexive,
transitive, standard) multiple preference frames.

This follows from Theorem 7 as Corollary 5 followed from Theorem 1 since
the canonical frame is limited. (For any a ∈ W and any P ∈ Pa, P = PA

a

for some formula A. Take any X ⊆ W and consider b ∈ X . If OA /∈ a,
then b is P-maximala in X . If OA ∈ a and X ∩ [A] = ∅, then again b is
P-maximala in X . If OA ∈ a and X ∩ [A] 6= ∅, then if b ∈ [A] then too b is
P-maximala in X , but if b /∈ [A] then for any c ∈ X ∩ [A], c is P-maximala
in X and cSPb.)12

The multiple preference models that yield Theorem 7 are interesting in
their own right, as we will see in Part II of this work [4]. Here, however,
they serve primarily as a key step toward the principle result of this section,
namely, that the original simple preference semantics over the general class
of frames is adequate for the logic P. This follows because, for any multiple
preference model, there is an equivalent simple preference model. To prove
this, however, is a bit complicated. The complication is required to collapse
the multiple preference relations of the first model into a single preference
relation for the second. This cannot be simply the union of the multiple re-
lations, for that might create connections amongst points where there should
be none. For example, one relation P ∈ Pa might rank b strictly higher than
c, while a different relation Q ∈ Pa ranks c strictly higher than b. In their
union, however, b and c would stand equally. This could change the truth
value of an O formula from the original multiple preference model to the
simple model that is supposed to be derived from it. To prevent that, we will

12 In a similar vein, corresponding to Corollary 6, P is characterized by the class of mul-
tiple preference frames that are two-tiered with respect to each P ∈ Pa, for every a ∈ W .
This follows from the correspondence between the multiple preference semantics described
here and the multiple relational semantics presented in [3] and also given by Schotch and
Jennings [10], just as the simple standard preference semantics corresponds to the simple
Kripke semantics for SDL.
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take the points of the simplified model to be pairs consisting of the worlds
of the original model together with an ordering relation from that model, or
an index indicating it, which will allow for the separation of multiple coun-
terparts of b and c. Given such constructed points, we can define multiple
preference rankings that are entirely disjoint from each other. Those can
then be collapsed without loss into a single preference relation to yield the
result we want. Thus, in the new model there will be distinct points b′ and
b′′ corresponding to b (exactly the same formulas will hold at them as at b
under the original model) and similarly c′ and c′′ corresponding to c, such
that under the relation P′ corresponding to P, b′P′c′, while under the relation
Q′′ corresponding to Q, c′′Q′′b′′ but neither b′P′c′′ nor c′′Q′′b′, so that under
the union of the relations, b′ rates higher than c′ and c′′ rates higher than b′′

but b′ is not equal to c′′ nor b′′ to c′. Instead they are incommensurable.

Theorem 12 : P is sound and complete with respect to the class of all simple
preference frames.

Proof: Soundness as usual. For completeness, let M = 〈F, v〉 be a model on
a multiple preference frame F = 〈W,P〉 in which every P ∈ Pa is reflexive
on its field (which, in light of Lemma 8, could be stipulated to be the whole of
W ). We now derive an equivalent simple preference model M ∗ = 〈F ∗, v∗〉.
First, let each relation P ⊆ W × W bear a distinct index i and let I be the
set of these indexes. For notation, Pj will be the relation that bears the index
j ∈ I . Then, define a set of points W ∗ = {〈a, i〉 : a ∈ W and i ∈ I}. Next,
for each relation Pj ⊆ W ×W , define a corresponding relation on W ∗, thus:

P∗j = {〈b∗, c∗〉 : there are b, c ∈ W such that b∗ = 〈b, j〉 &
c∗ = 〈c, j〉 & bPjc}

We note that, for any j ∈ I , if b∗ ∈ FP∗j , then b∗ = 〈b, j〉, for some b ∈ W ,
and hence, when j 6= k, P∗j and P∗k are disjoint in the sense that their fields
do not overlap.

Observation 1 : For all j, k ∈ I , if j 6= k then FP∗j ∩ FP∗k = ∅.

This is obvious from the definition of the relations. It will play an important
role below.

For each a ∈ W and i ∈ I , let

P∗
〈a,i〉 = {P∗ : there is a j ∈ I such that P∗ = P∗j & Pj ∈

Pa}.

Then let
P∗
〈a,i〉 =

⋃
P∗
〈a,i〉
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We now define F ∗ = 〈W ∗, P∗〉 in which P∗ assigns each 〈a, i〉 ∈ W ∗ the
relation P∗

〈a,i〉. Let M∗ = 〈F ∗, v∗〉 where

v∗(p) = {〈a, i〉 : a ∈ v(p) & i ∈ I}

Lemma 13 : M∗ is a model on a simple preference frame.

Proof: This is virtually trivial, since no conditions are placed on the relations
P∗
〈a,i〉 except that their fields not be empty, which follows immediately from

the non-emptiness of the fields of the relations in Pa. It is worth noting for
later, however, that

Observation 2 : For all 〈a, i〉 ∈ W ∗, (a) P∗
〈a,i〉 is reflexive on its field, and

(b) if every relation Pj ∈ Pa is transitive, then P∗
〈a,i〉 is transitive as well.

Reflexivity is immediate from reflexivity for the relations of Pa in F . Transi-
tivity follows from the transitivity of the relations Pj ∈ Pa and the disjoint-
ness of the corresponding relations P∗j . Thus, if b∗P∗

〈a,i〉c
∗ and c∗P∗

〈a,i〉d
∗,

then there is a P∗j ∈ P∗
〈a,i〉 such that b∗P∗jc∗ and a P∗k ∈ P∗

〈a,i〉 such
that c∗P∗kd∗. But then b∗ = 〈b, j〉 and c∗ = 〈c, j〉 and bPjc, and also
c∗ = 〈c, k〉 and d∗ = 〈d, k〉 and cPkd. Thus, k = j, and so d∗ = 〈d, j〉
and cPjd, whence bPjd by transitivity of Pj . Therefore, 〈b, j〉P∗j〈d, j〉, and
then b∗P∗

〈a,i〉d
∗, as required. Note too that P∗

〈a,i〉 is not connected, since,
for any b, c ∈ W , if j 6= k neither 〈b, j〉P∗

〈a,i〉〈c, k〉 nor 〈c, k〉P∗
〈a,i〉〈b, j〉,

although both 〈b, j〉 and 〈c, k〉 are in the field of P∗
〈a,i〉.

Lemma 14 : For every formula A ∈ Lo, every a ∈ W , and every i ∈ I ,
M, a |=

MP
A iff M∗, 〈a, i〉 |=

P
A.

Proof: By induction on A. Obvious when A = p. We assume the lemma
for all formulas up to A = OB and demonstrate that case. (a) Suppose
M, a |=

MP
OB, i.e., there is a P ∈ Pa such that M, P |=

MP
B. P = Pj

for some j ∈ I . Thus there is a b ∈ FPj and M, b |=
MP

B and for all c

such that cPjb, M, c |=
MP

B. By reflexivity, bPjb, so 〈b, j〉P∗j〈b, j〉 and
〈b, j〉P∗

〈a,i〉〈b, j〉, and hence 〈b, j〉 ∈ FP∗
〈a,i〉. Moreover, M ∗, 〈b, j〉 |=

P

B, by the inductive hypothesis. Suppose then some c∗ ∈ W ∗ such that
c∗P∗

〈a,i〉〈b, j〉. There is then a relation P∗k ∈ P∗
〈a,i〉 such that c∗P∗k〈b, j〉.

Since 〈b, j〉 ∈ FP∗k, k = j, and so c∗P∗j〈b, j〉, and then c∗ = 〈c, j〉. Given
〈c, j〉P∗j〈b, j〉, cPjb. (It was to enable this conclusion that disjoint relations
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P∗ were formed out of the relations P ∈ Pa.) From this, M, c |=
MP

B,
and so M∗, 〈c, j〉 |=

P
B, i.e., M∗, c∗ |=

P
B, by the inductive hypothesis,

which suffices for M ∗, 〈a, i〉 |=
P

OB. (b) Suppose M ∗, 〈a, i〉 |=
P

OB, so
that there is a b∗ ∈ FP∗

〈a,i〉 such that M∗, b∗ |=
P

B and for all c∗ ∈ W ∗,
if c∗P∗

〈a,i〉b
∗ then M∗, c∗ |=

P
B. With b∗ ∈ FP∗

〈a,i〉, there is a j ∈ I such
that P∗j ∈ P∗

〈a,i〉 and b∗ ∈ FP∗j , which implies that b∗ = 〈b, j〉 for some
b ∈ W , and that 〈b, j〉P∗j〈b, j〉 by Observation 2 above, and so bPjb and
b ∈ FPj . Further, M, b |=

MP
B, by the inductive hypothesis. Suppose then a

c such that cPjb. By definition, 〈c, j〉P∗j〈b, j〉, whence 〈c, j〉P∗
〈a,i〉〈b, j〉, and

so M∗, 〈c, j〉 |=
P

B, which gives M, c |=
MP

B, by the inductive hypothesis.
This suffices for M, a |=

MP
OB, to complete the lemma.

Theorem 12, the principle result of this section, now follows from The-
orem 7.b and Lemma 14. Suppose A is not provable in P. Then there is
a reflexive multiple preference model that falsifies A, by Theorem 7.b. By
Lemma 14 the derived simple preference model also falsifies A, hence A is
not valid in all simple preference models.

Corollary 15 : P is sound and complete with respect to the class of all simple
preference frames that are reflexive, or transitive, or both.

From Observation 2, if all the relations of Pa are reflexive or transitive then
P∗
〈a,i〉 will be reflexive or transitive as well.13

Just as SDL is characterized by the class of limited standard preference
frames, Corollary 5, and P is characterized by the class of limited multiple
preference frames, Corollary 11, so too

13 Reflexivity here is reflexivity on the field of each relation Pa, or, in the proof, P∗
〈a,i〉. To

demonstrate completeness with respect to all frames that are not only reflexive on the fields
of their relations Pa but with respect to all of W , i.e., for the field of each such relation to be
W , modify the proof of Theorem 12 so that, instead of the relations P∗

〈a,i〉 defined there, it
uses relations P#

〈a,i〉, where

〈b, j〉P#

〈a,i〉〈c, k〉 iff 〈b, j〉P∗
〈a,i〉〈c, k〉 or Pk /∈ Pa

Then the proof of the theorem will go through in much the same way, and if all relations in
Pa are reflexive on W (cf. Lemma 8), then P#

〈a,i〉 is reflexive on W ∗, and if all relations in

Pa are transitive then so is P#

〈a,i〉. Thus, at present, it does not matter whether the field of a
point’s preference relation be the whole of W . For the logics of Sections 3 and 4 below this
does make a difference, however. There we do not want to require such a global condition;
hence we have not imposed it here.
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Corollary 16 : P is characterized by the class of limited (perhaps reflexive,
transitive) simple preference frames.

Consider a limited reflexive (and perhaps transitive) multiple preference frame
F = 〈W,P〉, and let F ∗ = 〈W ∗, P∗〉 be the simple preference frame de-
rived from F as for Theorem 12. Then F ∗ is limited. For consider, for
any a∗ ∈ W ∗, any X ⊆ W ∗, and suppose b∗ ∈ X . b∗ = 〈b, j〉 for some
b ∈ W and j ∈ I . Let Y = {c : 〈c, j〉 ∈ X}. b ∈ Y . Since F is
limiteda, Y is Pj-limiteda, and so either b is Pj-maximala in Y or else there
is a c ∈ Y such that c is Pj-maximala in Y and cSPj

b. In the first case,
b∗ = 〈b, j〉 will be P∗j-maximal〈a,i〉 in X , and so maximal〈a,i〉 in X with
respect to P∗

〈a,i〉. For consider any d∗ = 〈d, k〉 ∈ X , and suppose for reduc-
tio that 〈d, k〉S∗

〈a,i〉〈b, j〉. If j = k, then d ∈ Y . Also 〈d, j〉P∗
〈a,i〉〈b, j〉 and

not-(〈b, j〉P∗
〈a,i〉〈d, j〉). From the first, 〈d, j〉P∗j〈b, j〉 and so dPjb. From

the latter, not-(〈b, j〉P∗j〈d, j〉), and so not-(bPjd). Thus dSPj

b, contrary to
b’s being Pj-maximala in Y . If, on the other hand j 6= k, then it could
not be that 〈d, k〉P∗

〈a,i〉〈b, j〉, and so not 〈d, k〉S∗
〈a,i〉〈b, j〉, as supposed. Simi-

larly, in the second case, 〈c, j〉 will likewise be P∗j-maximal〈a,i〉 in X and so
maximal〈a,i〉 with respect to P∗

〈a,i〉, and since cSPj

b, 〈c, j〉SP∗j

〈b, j〉, and so
〈c, j〉S∗

〈a,i〉〈b, j〉, as required for X to be limited〈a,i〉. Since F ∗, derived from
a limited F , is limited, Corollary 11 implies the present corollary. Any non-
theorem of P can be falsified in a model on a limited reflexive (and perhaps
transitive) multiple preference frame F , and so falsified on the equivalent
limited (reflexive, transitive) simple preference frame F ∗ derived from F as
demonstrated above.

3. Standard Dyadic Deontic Logic

Historically, the pattern of the preference semantics for deontic logic was
introduced to give an account of the concept of conditional obligation, state-
ments of the sort ‘given that A, it ought to be that B’. (Cf. the references in
footnote 1.) In this section we demonstrate the adequacy of this framework
to two forms of dyadic deontic logic. On the one hand, we have a logic of
conditional obligation that corresponds to SDL for the monadic obligation
operator. On the other hand, we have a logic of preference itself, that rep-
resents in the object language the relation that makes the models work. The
two dyadic logics are closely related. Both are determined by the class of
standard preference frames, and their fundamental concepts are interdefin-
able. In the next section we will look at weaker versions of these systems
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that are determined by the class of all reflexive and transitive, but not neces-
sarily connected, frames. These stand to the monadic deontic logic P as the
standard dyadic logics of this section stand to SDL.

Let us begin with the logic of conditional obligation. Instead of the mo-
nadic operator O of Sections 1 and 2, let the language, Lco, contain a binary
operator O(−/−) such that O(B/A) is well-formed whenever A and B are.
As indicated above, ‘O(B/A)’ is read ‘given that A, it ought to be that B’.
Such formulas are interpreted in the present preference semantics according
to the rule

(P-CO) M, a |=
P

O(B/A) iff there is a b ∈ FPa such that M, b |=
P

A ∧ B and for any c such that cPab and M, c |=
P

A, M, c |=
P

B

which corresponds to the original monadic rule (P-O) except for restricting
the range of worlds to be considered for preference comparisons to those
where the antecedent A obtains. That is the import of conditional obligation.

One might also be interested in a sense of conditional obligation in which
‘Ought(B/A)’ could be true even when A is impossible or contradictory,
which is excluded by (P-CO). This would allow, for example, Ought(⊥/⊥),
and Ought(A/A) in general, to be valid. For this, one could introduce an
operator O′(−/−) such that

(P-CO′) M, a |=
P

O′(B/A) iff either there is no b ∈ FPa such that
M, b |=

P
A or there is a b ∈ FPa such that M, b |=

P
A ∧ B and

for any c such that cPab and M, c |=
P

A, M, c |=
P

B

O′(B/A) could, however, be defined in terms of O(B/A) thus: O′(B/A)
=df O(>/A) → O(B/A). Alternatively, given O′(B/A) as primitive,
O(B/A) could be defined by O(B/A) =df ¬O′(⊥/A) ∧ O′(B/A). (Cf.
[8] p. 5.) Because of these equivalences, it is immaterial which notion one
adopts. All the results below for logics of O(B/A) apply mutatis mutandis
to corresponding logics of O′(B/A). The same is true in the next section.14

14 The pattern of (P-CO), or (P-CO′), contrasts with another rule of evaluation that is
widely used for conditional obligation, namely that O(B/A) is true iff there are worlds at
which A is true and all the best (maximal) A-worlds are worlds where B is true, or that
O′(B/A) is true iff all the best (maximal) A-worlds are B-worlds. The latter is the form
of rule proposed by Hansson [5] p. 144. (Thus his conditional obligation corresponds to
O′(B/A).) This other kind of rule, however, requires the Limit Assumption (LA), described
below, to be satisfied by all models if it is to produce desired results. Thus, without LA,
the principle of cautious monotony, (O(B/A) ∧ O(C/A)) → O(C/A ∧ B), is not valid
under the Hansson sort of rule, whereas it is valid for all standard models that do satisfy this
condition. By contrast, the present rules (P-CO) and (P-CO′) do not require LA, although, as
will be shown, imposing such a condition would not change the set of valid formulas, unlike
the case with the Hansson forms. For models satisfying LA, the two kinds of evaluation
rules are equivalent; they verify exactly the same formulas. Without the assumption, they
can diverge. The rule for the monadic operator that corresponds to this other pattern of
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Let SDDL (standard dyadic deontic logic)15 be the class of formulas con-
taining PC and closed under modus ponens with the additional axioms and
rules:

(RCE) If ` A ↔ A′ then ` O(B/A) ↔ O(B/A′)
(RCM) If ` B → C then ` O(B/A) → O(C/A)
(CK) O(B → C/A) → (O(B/A) → O(C/A))
(CD) O(B/A) → ¬O(¬B/A)
(CN) O(>/>)
(CO∧) O(B/A) → O(A ∧ B/A)
(trans) ((A ≥ B) ∧ (B ≥ C)) → (A ≥ C)

where in Lco

A ≥ B =df ¬O(¬A/A ∨ B)

A ≥ B provides a way of representing the weak preference ordering in terms
of conditional obligation; such formulas should be read ‘A is at least as good
(desirable, valuable, etc.) as B. Given their definition, these formulas are
evaluated according to the derived rule

(P-≥) M, a |=
P

A ≥ B iff for every c such that c ∈ FPa and M, c
|=

P
B, there is a b such that bPac and M, b |=

P
A

Soon we will explore taking ‘≥’ as primitive and defining O(−/−) in terms
of it. First, however, let us list some principles that are derivable from SDDL;
most of these are useful when establishing the results below.

(D.1) If ` A then ` O(A/A)
(D.2) ` O(>/A) ↔ O(A/A)
(D.2a) ` O(B/A) → O(A/A)
(D.3) ` (O(A/C) ∧ O(B/C)) → O(A ∧ B/C)
(D.4) ` ¬O(¬A/A)
(D.5) ` O(A/B ∨ C) → (O(A/B) ∨ O(A/C))
(D.6) ` O(B/A) ↔ ¬((A ∧ ¬B) ≥ (A ∧ B))
(D.7) ` A ≥ A

interpretation amounts to the rule of evaluation in the Kripke-style relational semantics; OA
would be true just in case all the best >-worlds, i.e., all the best worlds in W , are A-worlds,
where LA implies that there are such worlds.

15 It might be a misnomer to call this ‘standard’ dyadic deontic logic since there is far
less standardization in this area than in monadic deontic logic, and more room for variation.
I call it standard because it corresponds so directly to SDL as manifest through its models,
models on ‘standard’ frames. SDDL is the logic CD of van Fraassen’s [12], where it receives
a similar axiomatization, but a somewhat different semantics. It is also discussed by Lewis,
with a rather different axiomatization, in [7] Ch. 6 (under the name VN) and in [8], where it
is given various alternative — though in a sense equivalent — semantics, including one that
is virtually the same as the present account.
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(D.8) ` (A ≥ B) ∨ (B ≥ A)
(D.9) ` ¬(⊥ ≥ >)
(D.10) ` A ≥ ⊥
(D.11) ` ((A ≥ B) ∧ (A ≥ C)) → (A ≥ (B ∨ C))
(DR.1) If ` A → B then ` B ≥ A
(DR.2) If ` A → (B ∨ C) then ` (B ≥ A) ∨ (C ≥ A)
(DR.2gen) If ` A → (B1 ∨ · · · ∨Bn) then ` (B1 ≥ A)∨ · · · ∨ (Bn ≥ A)

Proofs of these are easy enough that they can be left to the reader. Some, but
not all, require (CK) and (CD).

The principles of SDDL look like conditionalized versions of the princi-
ples of SDL. The connection between the two is made even closer by defin-
ing formulas OA of SDL as O(A/>). Then it is apparent that the original
evaluation rule (P-O) is derivable from (P-CO) via the definition, and all the
theorems of SDL are derivable in SDDL. Like SDL, SDDL is characterized
by the class of all standard preference frames.

Before demonstrating that, however, it will be useful to bring forward the
logic of preference itself. For this, we take the language L≥ to contain, along
with the vocabulary of classical logic, the binary connective ‘≥’ as primitive,
with A ≥ B well-formed when A and B are. Such formulas are evaluated
according to the rule (P-≥) above, but this is now stipulated and not derived.

Just as ‘≥’ was defined in terms of ‘O(−/−) before, so now we can define
‘O(−/−)’ in L≥ in terms of ‘≥’, thus:

O(B/A) =df ¬((A ∧ ¬B) ≥ (A ∧ B))

and then the evaluation rule (P-CO) will be derivable from (P-≥). Likewise,
the monadic operator O is definable so that OA is equivalent to ¬(¬A ≥ A).

The standard logic of preference, SPref, that corresponds to SDDL is
given by these axioms and rules, in addition to PC and closure under modus
ponens:16

(R.1) If ` A → B then ` B ≥ A
(trans) ((A ≥ B) ∧ (B ≥ C)) → (A ≥ C)
(connex) (A ≥ B) ∨ (B ≥ A)
(≥ ∨) ((A ≥ B) ∧ (A ≥ C)) → (A ≥ (B ∨ C))
(poss) ¬(⊥ ≥ >)

16 This is equivalent to the axiomatization Lewis gives for VN in terms of comparative
possibility, here preferability, in [7], p. 123. Lewis proved completeness for this system in
terms of his systems of spheres, from which completeness in terms of preference rankings
can be derived. Here we prove the result in terms of preference directly.
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Some derivable theorems are
(D.1) ` A ≥ A
(D.2) ` (A ≥ B) ↔ ¬O(¬A/A ∨ B)
(D.3) ` (A ≥ (A ∨ B)) ∨ (B ≥ (A ∨ B))
(D.4) ` A ≥ ⊥
(DR.1) If ` A → B then ` (A ≥ C) → (B ≥ C)
(DR.2) If ` B → C then ` (A ≥ C) → (A ≥ B)
(DR.3gen) If ` A → (B1 ∨ · · · ∨Bn) then ` (B1 ≥ A)∨ · · · ∨ (Bn ≥ A)

(Proofs are left to the reader.) (D.2) here is like (D.6) of the preceding list;
they correspond to the equivalences between preference formulas and condi-
tional obligation formulas described semantically. That is, (D.2) here reflects
the definition of A ≥ B in Lco, while (D.6) earlier reflects the definition of
O(B/A) in L≥. Thus one can move freely between the two regardless of
which language one is in.

It might be useful to note that the connective ≥ allows for the expression
of alethic modalities, or very close counterparts thereto, within the deontic
language. Thus, a formula ⊥ ≥ A will hold at a point, a, just in case A
holds at no points in the field of the relation Pa, and so represents a sort of
impossibility operator. Likewise, necessity, truth in all points in the field of
the relation, is represented by ⊥ ≥ ¬A and possibility, truth in some points,
by ¬(⊥ ≥ A). (These are easily verified.)

Theorem 17 : SPref is sound and complete with respect to the class of all
standard preference frames.

Proof: Soundness is routine and can be left to the reader. It is noteworthy,
though, that only the axiom (connex) requires that Pa be connected; this is
relevant to the next section. For completeness, construct a canonical model
as follows: Let F = 〈W, P〉 with W the set of all maximal consistent exten-
sions of SPref, as usual. For P first define for every formula A ∈ L≥ and
a ∈ W ,

ΠaA = {b : ∀B ∈ b, B ≥ A ∈ a}

Also, for some useful notation, given what was noted above about the notion
of necessity, let us define

Neca = {¬A : ⊥ ≥ A ∈ a}

A world, b, might be considered a possible alternative to a given world, a, if
it contains nothing that a considers impossible, or, to say the same thing, if
it contains the negation of everything impossible, which is to say, it contains
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all of Neca. Hence, let us define,

3ab iff Neca ⊆ b

Preference rankings of canonical worlds will range over possible alternatives
only. Let

Pa =

{〈b, c〉 : 3ab & 3ac & ∀C(c ∈ ΠaC ⇒ ∃B(b ∈ ΠaB & B ≥ C ∈ a))}

Let P assign Pa to a. Let M = 〈F, v〉 with

v(p) = {a ∈ W : p ∈ a}

as usual.
Before establishing that M is indeed a standard preference model and

canonical, it will be useful to have this lemma.

Lemma 18 : For all formulas A, if ⊥ ≥ A /∈ a and X = {¬B : B ≥ A /∈ a}
then X ∪ Neca ∪ {A} is consistent.

Proof: Suppose ⊥ ≥ A /∈ a, and also that X ∪Neca∪{A} is not consistent.
X∪Neca is not empty, for otherwise {A} would be inconsistent and ` A →
⊥, in which case, by (R.1), ` ⊥ ≥ A and ⊥ ≥ A ∈ a, contrary to the initial
supposition. Since X∪Neca is not empty, there are C1, . . . , Cn ∈ X∪Neca

such that ` (C1 ∧ . . . ∧ Cn) → ¬A, and so ` A → (¬C1 ∨ · · · ∨ ¬Cn),
and thus ` (¬C1 ≥ A) ∨ · · · ∨ (¬Cn ≥ A) by (DR.3gen). So, (¬C1 ≥
A) ∨ · · · ∨ (¬Cn ≥ A) ∈ a. Each Ci is in X or in Neca. Suppose that
¬Ci ≥ A ∈ a, and suppose Ci ∈ X . Then Ci = ¬Di where Di ≥ A /∈
a. So ¬¬Di ≥ A ∈ a, hence Di ≥ A ∈ a, and also Di ≥ A /∈ a, a
contradiction. Suppose, however, ¬Ci ≥ A ∈ a, and Ci ∈ Neca. Then
Ci = ¬Di where ⊥ ≥ Di ∈ a. So ¬¬Di ≥ A ∈ a, and then Di ≥ A ∈ a.
But then ⊥ ≥ A ∈ a, by (trans), contrary to the initial assumption. Hence,
in either case, there is a contradiction. Thus, if ⊥ ≥ A /∈ a, X∪Neca∪{A}
must be consistent.

From this completeness will follow quickly.

Lemma 19 : M is a model on a standard preference frame.

Proof: (i) Pa is not empty: Since ` ¬(⊥ ≥ >), ⊥ ≥ > /∈ a. Hence,
by Lemma 18 {¬B : B ≥ > /∈ a} ∪ Neca ∪ {>} is consistent, and so
Neca ∪ {>} is consistent, and thus has a maximal consistent extension, b.
Trivially, 3ab. Since C ≥ C ∈ a for every C, it is obvious that if, for
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some C, b ∈ ΠaC, there is some B, namely C, such that b ∈ ΠaB and
B ≥ C ∈ a. Hence bPab, and b ∈ FPa. So Pa is not empty. (ii) that Pa

is standard, i.e., reflexive, transitive, and connected on its field, is also easily
shown, and so left to the reader. (We note, though, that Pa is not necessarily
reflexive over the whole of W since there could be points c ∈ W such that
not-3ac.)

Lemma 20 : For all formulas A ∈ L≥ and all a ∈ W , A ∈ a iff M, a |=
P

A.

Proof: As usual, by induction on A; we consider only the case where A =
B ≥ C and suppose the lemma to hold for B and C.

(i) Suppose B ≥ C ∈ a and let c be an arbitrary point in FPa such that
M, c |=

P
C. By the inductive hypothesis, C ∈ c. Since c ∈ FPa, 3ac and

so ⊥ ≥ C /∈ a. Hence ⊥ ≥ B /∈ a by (trans). Let X = {¬D : D ≥
B /∈ a}. By Lemma 18, X ∪ Neca ∪ {B} is consistent, and thus has a
maximal consistent extension, b. Since B ∈ b, M, b |=

P
B, by the inductive

hypothesis. To show that bPac, we have first that 3ab since Neca ⊆ b.
Second, suppose some E such that c ∈ ΠaE. Then C ≥ E ∈ a and so
B ≥ E ∈ a, by (trans). b ∈ ΠaB since for any F ∈ b, F ≥ B ∈ a,
otherwise, if F ≥ B /∈ a, then ¬F ∈ X and ¬F ∈ b, contrary to its
consistency. Thus, for any E such that c ∈ ΠaE, there is a B such that
b ∈ ΠaB and B ≥ E ∈ a, which suffices for M, a |=

P
B ≥ C, as required.

(ii) Suppose that M, a |=
P

B ≥ C, so that, for any c ∈ FPa, if M, c |=
P

C then there is a b such that bPac and M, b |=
P

B. Suppose then that B ≥
C /∈ a. ⊥ ≥ C /∈ a, else B ≥ C ∈ a by (trans) since ` B ≥ ⊥ and so
B ≥ ⊥ ∈ a. Let X = {¬D : D ≥ C /∈ a}. By Lemma 18, X ∪ Neca ∪
{C} is consistent, and so has a maximal consistent extension, c. 3ac since
Neca ⊆ c, and thus cPac, and c ∈ FPa. Since C ∈ c, M, c |=

P
C by

the inductive hypothesis, and so there is a b such that bPac and M, b |=
P

B.
c ∈ ΠaC since for any F ∈ c, F ≥ C ∈ a, since otherwise ¬F ∈ X and
¬F ∈ c, contrary to its consistency. Therefore, since bPac, there is an E
such that b ∈ ΠaE and E ≥ C ∈ a. Since B ∈ b, by the definition of ΠaE,
B ≥ E ∈ a, whence B ≥ C ∈ a, contrary to the supposition above. Hence,
if M, a |=

P
B ≥ C, B ≥ C ∈ a, as required.

These two lemmas suffice for the completeness of SPref, Theorem 17, in
the usual way, as for, e.g., Theorem 1.

The preceding also lays the groundwork for the characterization theorem
for SDDL itself.

Theorem 21 : SDDL is sound and complete with respect to the class of all
standard preference frames.
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Proof: As before, soundness is routine. For completeness, take the same
model M as for Theorem 17, with the understanding that ≥ is now defined.
It will suffice for present purposes to adapt Lemma 20 to the language of
SDDL, to show the particular case, under the inductive hypothesis:

Lemma 22 : O(B/C) ∈ a iff M, a |=
P

O(B/C)

Proof: (i) Suppose O(B/C) ∈ a. Then ¬((C ∧ ¬B) ≥ (C ∧ B)) ∈ a,
by (D. 6) for SDDL, so (C ∧ ¬B) ≥ (C ∧ B) /∈ a. It follows that ⊥ ≥
(C ∧ B) /∈ a, since ` (C ∧ ¬B) ≥ ⊥, so that (C ∧ ¬B) ≥ ⊥ ∈ a; hence
if ⊥ ≥ (C ∧ B) ∈ a, (C ∧ ¬B) ≥ (C ∧ B) ∈ a, by (trans), contrary to
the opening supposition. Let X = {¬D : D ≥ (C ∧ B) /∈ a}. By Lemma
18, X ∪ Neca ∪ {C ∧ B} is consistent, and so has a maximal consistent
extension, b. Since Neca ⊆ b, 3ab. Hence bPab and b ∈ FPa. Also, since
C ∈ b and B ∈ b, M, b |=

P
C and M, b |=

P
B, by the inductive hypothesis,

so M, b |=
P

C ∧ B. Now consider any c such that cPab and M, c |=
P

C. By
the inductive hypothesis, C ∈ c. Further, b ∈ Πa(C ∧ B), for consider any
D ∈ b and suppose that D ≥ (C ∧ B) /∈ a. Then ¬D ∈ X , and so ¬D ∈ b,
contrary to its consistency. Hence, for all D ∈ b, D ≥ (C ∧ B) ∈ a, which
is to say b ∈ Πa(C ∧ B). Given that, since cPab, there is an E such that
c ∈ ΠaE and E ≥ (C ∧ B) ∈ a. C ∈ c; now suppose B /∈ c, so that
¬B ∈ c and thus C ∧ ¬B ∈ c. Since c ∈ ΠaE, (C ∧ ¬B) ≥ E ∈ a and
so (C ∧ ¬B) ≥ (C ∧ B) ∈ a, by (trans). But that contradicts the original
assumption. Hence B ∈ c, and so M, c |=

P
B by the inductive hypothesis.

That suffices for M, a |=
P

O(B/C), as required.
(ii) For the converse, suppose that M, a |=

P
O(B/C), so that there is a

b ∈ FPa and M, b |=
P

C ∧ B and, for every c, if cPab and M, c |=
P

C,
then M, c |=

P
B. Suppose also, for reductio, that O(B/C) /∈ a. Then,

by (D.6), (C ∧ ¬B) ≥ (C ∧ B) ∈ a. Since M, b |=
P

C and M, b |=
P

B,
C ∈ b and B ∈ b, by the inductive hypothesis, and so C ∧ B ∈ b. Since
b ∈ FPa, 3ab, and so ⊥ ≥ (C ∧ B) /∈ a. Hence ⊥ ≥ (C ∧ ¬B) /∈ a
by (trans) as above. Let X = {¬D : D ≥ (C ∧ ¬B) /∈ a}. By Lemma
18, X ∪Neca ∪ {C ∧¬B} is consistent, and thus has a maximal consistent
extension, c. Since C ∈ c, M, c |=

P
C by the inductive hypothesis. And since

Neca ⊆ c, 3ac. Consider any E such that b ∈ ΠaE. Since C ∧ B ∈ b,
(C ∧ B) ≥ E ∈ a. c ∈ Πa(C ∧ ¬B), since otherwise there would be
an F ∈ c such that F ≥ (C ∧ ¬B) /∈ a, in which case ¬F ∈ X and
¬F ∈ c, contrary to its consistency. Since (C ∧ ¬B) ≥ (C ∧ B) ∈ a,
(C ∧ ¬B) ≥ E ∈ a, by (trans). That suffices for cPab. Hence M, c |=

P
B,

and so B ∈ c, by the inductive hypothesis. But ¬B ∈ c too, contrary to its
consistency. Hence, if M, a |=

P
O(B/C), then O(B/C) ∈ a, as required.
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This completes the lemma, and so the theorem in the usual way.
In the previous sections we referred to frames that have the property of

being limited. This notion came to the fore in David Lewis’s discussions of
the Limit Assumption as applied to logics of conditionals, including condi-
tional obligation, such as SDDL. (Cf. [7] §1.4, and elsewhere.) In the present
framework, this is the assumption that, for any model M , for every formula,
A, the set of worlds at which A holds on M — call that |A|M — is limiteda

(for any a ∈ W ) in the sense defined at the end of Section 1. Lewis, [7]
p. 129, demonstrated that SDDL, among other conditional logics, is charac-
terized by the class of appropriate models that satisfy this assumption, that
imposing it adds no new theorems to the logic. He liked to demonstrate this
in terms of the structures he called systems of spheres, from which the same
result can be derived for models on standard preference frames. Let us now
show this directly, working from the canonical model of Theorem 21.

Corollary 23 : SDDL and SPref are sound and complete with respect to the
class of models on standard preference frames that meet the Limit Assump-
tion.

Proof: All that is required is to show that the canonical model of Theorems
17 and 21 satisfies the assumption. Consider any a ∈ W and any formula
A, and show that for any b such that b ∈ |A|M , b is maximala in |A|M or
there is a c such that c is maximala in |A|M and cSab. Suppose a b ∈ |A|M
but that b is not maximala in |A|M . By Lemmas 20 and 22, |A|M = [A], so
we can move back and forth between these descriptions. Thus, b ∈ [A], and
A ∈ b. If b is not maximala in |A|M , there is a c such that c ∈ |A|M and
cSab, i.e., cPab and not-(bPac). Since cPab, both 3ab and 3ac. It follows
that ⊥ ≥ A /∈ a, since otherwise ¬A ∈ Neca and ¬A ∈ b, contrary to its
consistency. Let X = {¬B : B ≥ A /∈ a}. By Lemma 18, X ∪Neca∪{A}
is consistent, and so has a maximal consistent extension, d. Obviously, 3ad.
Also, d ∈ ΠaA, for consider any D ∈ d; D ≥ A ∈ a since if D ≥ A /∈ a,
¬D ∈ X and then ¬D ∈ d, contrary to its consistency. We now show that
for all e such that e ∈ [A] and 3ae, dPae. Consider such an e, and suppose
e ∈ ΠaE for any E. Since A ∈ e, A ≥ E ∈ a. Since d ∈ ΠaA, there is
thus a D, namely A, such that d ∈ ΠaD and D ≥ E ∈ a, which suffices
for dPae, given both 3ad and 3ae. It follows that d is maximala in |A|M .
For, since A ∈ d, d ∈ [A] and so d ∈ |A|M , and there can’t be any e such
that e ∈ |A|M and eSad, for if there were, then since ePad, 3ae and also
not-(dPae), contrary to what was just established. Hence, d is maximala in
|A|M . Furthermore, dSab, since the preceding establishes that dPab; it also
establishes that dPac. Hence, it cannot be that bPad, for if it were, then bPac,
by transitivity, contrary to the assumption that b is not maximala in |A|M and
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that c is a world that is strictly better than it. Thus, for any b ∈ |A|M either
b is itself maximala in |A|M or there is a d that is and dSab, as required for
|A|M to be limiteda.17

It should be apparent from the preceding discussion that SDDL and SPref
are equivalent in quite a strong sense. Let us make this precise. Map the for-
mulas of Lco, the language of SDDL, into the formulas of L≥, the language
of SPref, by the translation function t: When ∗ is any binary truth-functional
connective,

t(p) = p
t(¬A) = ¬t(A)
t(A ∗ B) = t(A) ∗ t(B)
t(O(B/A)) = ¬((¬t(B) ∧ t(A)) ≥ (t(B) ∧ t(A)))

Then it is easy to establish this

Lemma 24 : For any model M on a standard preference frame and any a ∈
W , for every formula A ∈ Lco, M, a |=

P
A iff M, a |=

P
t(A),

which can be easily proved by induction on A. From this, and the preceding
results of Theorems 17 and 21, it follows immediately that

Theorem 25 : For every formula A ∈ Lco, A is provable in SDDL iff t(A) is
provable in SPref.

The formulas of L≥ can be similarly translated into formulas of Lco, thus:

s(p) = p
s(¬A) = ¬s(A)
s(A ∗ B) = s(A) ∗ s(B)
s(A ≥ B) = ¬O(¬s(A)/s(A) ∨ s(B))

And then

Lemma 26 : For any model M on a standard preference frame and any a ∈
W , for every formula A ∈ L≥, M, a |=

P
A iff M, a |=

P
s(A),

17 This result differs from Corollaries 5, 11, and 16 in that those referred to frames that
were limited, while this refers to limited models. The Limit Assumption is a semantical con-
dition concerned with the interplay of the modelling relation, |=, and the preference relations,
Pa, rather than a structural condition on the relations Pa themselves. We can, however, also
say that SDDL is characterized by the class of limited standard frames given that Lewis, [7]
§6.2, also demonstrated that it is characterized by the class of finite standard frames, and any
finite frame is automatically limited.
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whence,

Theorem 27 : For every formula A ∈ L≥, A is provable in SPref iff s(A) is
provable in SDDL.

This section has demonstrated that the preference semantics is adequate
for both of the standard dyadic deontic logics, SDDL for conditional obli-
gation and SPref for the logic of preference, that may be considered coun-
terparts of the monadic SDL. In the next section the same sort of results are
established for dyadic counterparts to the monadic P.

4. Dyadic P

The logic P was introduced in Section 2 as a monadic deontic logic that
allows for conflicts of obligation. It differs from SDL in containing nei-
ther the aggregation principle (C) (or the distribution principle (K)) nor the
consistency postulate (D). In the semantics this is achieved by allowing the
preference relation assigned to points a ∈ W not to be connected. Just as
there could be conflicts of absolute obligations, so too there could be con-
flicts of conditional obligations, situations in which it ought to be that B,
given that A, and also it ought to be that not-B given the same condition, A.
To accommodate such conflicts, the dyadic logic should reject the principle
of conditional aggregation (D.3) and the postulates (CK) and (CD) of SDDL.

Let the logic DP be the class of formulas in the language Lco that extends
PC and is closed under modus ponens, and these axioms and rules:

(RCE) If ` A ↔ A′ then ` O(B/A) ↔ O(B/A′)
(RCM) If ` B → C then ` O(B/A) → O(C/A)
(CN) O(>/>)
(CP) ¬O(⊥/A)
(CO∧) O(B/A) → O(A ∧ B/A)
(trans) ((A ≥ B) ∧ (B ≥ C)) → (A ≥ C)
(CO∨) O(A/B ∨ C) → (O(A/B) ∨ O(A/C))

These are all contained in SDDL, though (CP) and (CO∨) were there deriv-
able from SDDL’s stronger postulates. As before, A ≥ B in Lco is defined as
¬O(¬A/A ∨ B). Of other principles that were listed as derivable in SDDL,
the following are derivable in DP; several are used to establish results below:

(D.1) If ` A then ` O(A/A)
(D.2) ` O(>/A) ↔ O(A/A)
(D.2a) ` O(B/A) → O(A/A)
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(D.4) ` ¬O(¬A/A)
(D.6) ` O(B/A) ↔ ¬((A ∧ ¬B) ≥ (A ∧ B))
(D.7) ` A ≥ A
(D.9) ` ¬(⊥ ≥ >)
(D.10) ` A ≥ ⊥
(D.11) ` ((A ≥ B) ∧ (A ≥ C)) → (A ≥ (B ∨ C))
(DR.1) If ` A → B then ` B ≥ A

Missing from the earlier list are the conditional aggregation principle (D.3),
the principle of connectedness for ≥ (D.8), and importantly the derived rules
(DR.2) and its generalization (DR.2gen) for conditional obligation.

DP is characterized by the class of all reflexive, transitive frames. Before
demonstrating that, however, it is useful to bring in the logic of preference
that corresponds to DP as SPref corresponds to SDDL. Call this system
PPref. With formulas from the language L≥ as before, PPref is axiomatized
simply by deleting the axiom (connex) from SPref. That is, its postulates
are, in addition to PC and modus ponens:

(R.1) If ` A → B then ` B ≥ A
(trans) ((A ≥ B) ∧ (B ≥ C)) → (A ≥ C)
(≥ ∨) ((A ≥ B) ∧ (A ≥ C)) → (A ≥ (B ∨ C))
(poss) ¬(⊥ ≥ >)

Of the derivable principles listed for SPref, these
(D.1) ` A ≥ A
(D.2) ` (A ≥ B) ↔ ¬O(¬A/A ∨ B)
(D.4) ` A ≥ ⊥
(DR.1) If ` A → B then ` (A ≥ C) → (B ≥ C)
(DR.2) If ` B → C then ` (A ≥ C) → (A ≥ B)

are derivable in PPref, but (D.3) and (DR.3gen) for preference are not since
they require the axiom (connex).

Like DP, PPref is characterized by the class of all reflexive, transitive
preference frames. To prove this, we make the same sort of detour through
multiple preference models that was applied for the proof of Theorem 12 in
Section 2.

Multiple preference frames F = 〈W,P〉 are defined exactly as in Section
2. We assume all relations in Pa are non-empty, and reflexive and transitive
on their fields. They may be connected too, but that will not affect the results
below. Given a model M = 〈F, v〉 on such a frame, formulas O(B/A) in
Lco are interpreted according to the rule:
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(MP-CO) M, a |=
MP

O(B/A) iff there is a P ∈ Pa such that, for some
b ∈ FP, M, b |=

MP
A∧B and, for any c, if cPb and M, c |=

MP
A,

then M, c |=
MP

B

and formulas A ≥ B in L≥ are interpreted according to

(MP-≥) M, a |=
MP

A ≥ B iff, for every P ∈ Pa, for all c ∈ FP such
that M, c |=

MP
B, there is a b such that bPc and M, b |=

MP
A

The first of these rules is the conditional counterpart of the rule (MP-O) and
asks that the basic understanding of O(B/A) obtain with respect to some
relation in the set Pa assigned to a. With this rule and the definition of ≥ in
terms of O(−/−), the other rule (MP-≥) for formulas A ≥ B is derivable.
By the same token, if ≥ is taken as primitive and formulas O(B/A) defined
as ¬((A ∧ ¬B) ≥ (A ∧ B)), then the rule (MP-CO) is derivable. Hence
we should be comfortable moving back and forth between the two dyadic
connectives. In what follows we will treat the two together, letting either
one be primitive as appropriate.

Theorem 28 : (a) PPref is sound and complete with respect to all reflexive,
transitive multiple preference frames. (b) DP is sound and complete with
respect to all reflexive, transitive multiple preference frames. (c) PPref and
DP are also both sound and complete with respect to all standard multiple
preference frames.

Proof: Soundness for both is, as usual, routine and left to the reader. For
completeness we define a canonical model in a way that is somewhat anal-
ogous to, but not exactly the same as, that for Theorem 7. Let F = 〈W,P〉
where W is the set of all maximal consistent extensions of PPref or DP as
appropriate, and P is defined thus: For each formula A in L≥ or Lco, as
appropriate, define

ΘaA = {b : ∀B(if B ∈ b then ¬A ≥ B /∈ a)}

Then for each a ∈ W and each formula A define a binary relation PA
a such

that

PA
a = {〈b, c〉 : 3ab and 3ac, and if c ∈ ΘaA then b ∈ ΘaA}

where 3ab, etc. is defined as for Theorem 17. Let

Pa = {P : P 6= ∅ and ∃A(P = PA
a )}
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P assigns Pa to a. Let M = 〈F, v〉 where, as usual,

v(p) = {a : a ∈ W and p ∈ a}

Lemma 18 that was used to establish that the canonical model for SDDL
for Theorem 17 was indeed a model, and canonical, does not hold for PPref
or DP. Instead we have,

Lemma 29 : For any formulas A and B, if ⊥ ≥ B /∈ a and A ≥ B /∈ a and
X = {¬C : A ≥ C ∈ a} then X ∪ {B} is consistent.

Proof: Assume ⊥ ≥ B /∈ a and A ≥ B /∈ a, and suppose X ∪ {B} is
not consistent. If X were empty then {B} would be inconsistent, and then
` B → ⊥ and ` ⊥ ≥ B, by (R.1), so that ⊥ ≥ B ∈ a, contrary to the initial
assumption. So suppose X is not empty. Then there are D1, . . . , Dn ∈ X
(n ≥ 1) such that ` (D1 ∧ . . . ∧ Dn) → ¬B and thus ` B → (¬D1 ∨ · · · ∨
¬Dn), and ` (¬D1 ∨ · · · ∨ ¬Dn) ≥ B, by (R.1). So (¬D1 ∨ · · · ∨ ¬Dn) ≥
B ∈ a. Each Di = ¬Ci when A ≥ Ci ∈ a, so C1 ∨ · · · ∨ Cn ≥ B ∈ a.
Also, (A ≥ C1) ∧ . . . ∧ (A ≥ Cn) ∈ a, so A ≥ (C1 ∨ · · · ∨ Cn) ∈ a, by
(≥ ∨) generalized. But then A ≥ B ∈ a by (trans), contrary to the initial
assumption. Hence, X ∪ {B} must be consistent.

Lemma 30 : M is a model on a standard multiple preference frame.

Proof: (i) There is a non-empty relation in Pa. Since ` ¬(⊥ ≥ >), and
thus ⊥ ≥ > /∈ a, by Lemma 29, {¬D : ⊥ ≥ D ∈ a} ∪ {>} is consistent,
and so has a maximal consistent extension, b ∈ W . 3ab, and bP>

a b, both
of which are easily shown. Hence P>

a is not empty and P>
a ∈ Pa. (ii) That

every P ∈ Pa is non-empty is part of the definition of Pa; that they are all
reflexive, transitive, and connected on their fields, hence standard, is easily
shown, and so left to the reader.

Lemma 31 : For every formula A and every a ∈ W , A ∈ a iff M, a |=
MP

A.

Proof: By induction on A. We consider the two cases: (a) A = B ≥ C
and (b) A = O(B/C), treating each one as primitive in its context, with the
rules of derivation as given for the system for that connective. Assume the
lemma holds for B and C.

Case (a.i). Suppose B ≥ C ∈ a, and let P be any relation in Pa. P = PD
a

for some D. Let c be any member of FPD
a such that M, c |=

MP
C. C ∈ c,

by the inductive hypothesis. Since c ∈ FPD
a , 3ac; hence, ⊥ ≥ C /∈ a

and so ⊥ ≥ B /∈ a by (trans). Either (1) c ∈ ΘaD or (2) c /∈ ΘaD. If
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(1), then, since C ∈ c, ¬D ≥ C /∈ a, and so ¬D ≥ B /∈ a, by (trans).
Let X = {¬E : ¬D ≥ E ∈ a}. By Lemma 29, X ∪ {B} is consistent,
and so has a maximal consistent extension, b. b ∈ ΘaD, for otherwise there
would be an E ∈ b such that ¬D ≥ E ∈ a and then ¬E ∈ X and ¬E ∈ b,
contrary to its consistency. Moreover, 3ab, for if there were an E ∈ b such
that ⊥ ≥ E ∈ a, then, since ` ¬D ≥ ⊥ and so ¬D ≥ ⊥ ∈ a, ¬D ≥ E ∈ a,
and we have just seen that that is not the case. Since b ∈ ΘaD, it is trivial
that if c ∈ ΘaD then b ∈ ΘaD, and so bPD

a c. Since B ∈ b, M, b |=
MP

B
by the inductive hypothesis. This suffices for M, a |=

MP
B ≥ C. In case

(2), where c /∈ ΘaD, let X = Neca. Again by Lemma 29, X ∪ {B} is
consistent. Let b be a maximal consistent extension of X ∪ {B}. 3ab by
definition. It is again trivial that if c ∈ ΘaD then b ∈ ΘaD. Hence bPD

a c.
Since B ∈ b, M, b |=

MP
B, by the inductive hypothesis, which suffices again

for M, a |=
MP

B ≥ C, as required.
Case (a.ii). Suppose M, a |=

MP
B ≥ C, but also suppose for reductio that

B ≥ C /∈ a. It follows that ⊥ ≥ C /∈ a. For suppose otherwise, then
since ` B ≥ ⊥, and so B ≥ ⊥ ∈ a, it would follow that B ≥ C ∈ a by
(trans), contrary to the supposition above. Since M, a |=

MP
B ≥ C, for all

P ∈ Pa, for every c ∈ FP if M, c |=
MP

C then there is a b such that bPc

and M, b |=
MP

B. Consider then P¬B
a . Let X = {¬D : B ≥ D ∈ a}.

By Lemma 29, X ∪ {C} is consistent, and thus has a maximal consistent
extension, c. c ∈ Θa¬B; for consider any E ∈ c and suppose, for reductio,
¬¬B ≥ E ∈ a. Then, obviously B ≥ E ∈ a, and so ¬E ∈ X . But
then ¬E ∈ c, contrary to its consistency. Hence, for any E, if E ∈ c
then ¬¬B ≥ E /∈ a. Further, 3ac. For suppose otherwise; then there
would be an E ∈ c such that ⊥ ≥ E ∈ a and then B ≥ E ∈ a, since
B ≥ ⊥ ∈ a, contrary to what was just said. Since 3ac and c ∈ Θa¬B,
cP¬B

a c, so c ∈ FP¬B
a . Hence P¬B

a 6= ∅ and P¬B
a ∈ Pa. C ∈ c, so

M, c |=
MP

C, by the inductive hypothesis. Therefore, there is a b such that
bP¬B

a c and M, b |=
MP

B. B ∈ b by the inductive hypothesis. By definition
of P¬B

a , since c ∈ Θa¬B, b ∈ Θa¬B. Hence, by definition, since B ∈ b,
¬¬B ≥ B /∈ a. But, of course, ` B → ¬¬B, so that ` ¬¬B ≥ B,
by (R.1) of PPref, and so ¬¬B ≥ B ∈ a, a contradiction. Therefore, if
M, a |=

MP
B ≥ C, B ≥ C ∈ a, as required.

Case (b.i). Suppose O(B/C) ∈ a. Then ¬((C ∧¬B) ≥ (C∧B)) ∈ a, by
(D.6) for DP, so (C ∧¬B) ≥ (C ∧B) /∈ a. This entails ⊥ ≥ (C ∧B) /∈ a,
since if ⊥ ≥ (C ∧B) ∈ a then since ` (C ∧¬B) ≥ ⊥, (C ∧¬B) ≥ ⊥ ∈ a,
and then (C ∧ ¬B) ≥ (C ∧ B) ∈ a by (trans), contrary to what is given.
Consider the relation P

¬(C∧¬B)
a ∈ Pa. Let X = {¬D : C ∧ ¬B ≥ D ∈ a}.

By Lemma 29, X∪{C∧B} is consistent, and thus has a maximal consistent
extension, b. By the arguments of (a.ii) regarding c, b ∈ Θa¬(C ∧¬B), and
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3ab. Hence bP
¬(C∧¬B)
a b and b ∈ FP

¬(C∧¬B)
a . Thus P

¬(C∧¬B)
a 6= ∅ and

P
¬(C∧¬B)
a ∈ Pa. C ∈ b and B ∈ b, so M, b |=

MP
C and M, b |=

MP
B, by the

inductive hypothesis, and thus M, b |=
MP

C ∧ B. Consider any c such that

cP
¬(C∧¬B)
a b and M, c |=

MP
C. Since b ∈ Θa¬(C∧¬B), c ∈ Θa¬(C∧¬B).

C ∈ c, by the inductive hypothesis. Suppose B /∈ c; then ¬B ∈ c and
so C ∧ ¬B ∈ c. With c ∈ Θa¬(C ∧ ¬B), it follows that ¬¬(C ∧ ¬B) ≥
(C∧¬B) /∈ a, and hence (C∧¬B) ≥ (C∧¬B) /∈ a, contrary to reflexivity,
(D.7) of DP. Hence, B ∈ c, and so M, c |=

MP
B by the inductive hypothesis.

Therefore, there is a P ∈ Pa such that there is a b ∈ FP and M, b |=
MP

C∧B
and for all c such that cPb and M, c |=

MP
C, M, c |=

MP
B, which is to say,

M, a |=
MP

O(B/C), as required.
Case (b.ii). Suppose M, a |=

MP
O(B/C), but that O(B/C) /∈ a. Then, by

(D.6) for DP, (C∧¬B) ≥ (C∧B) ∈ a. Also, there is a P ∈ Pa such that for
some b ∈ FP, M, b |=

MP
C ∧ B and for all c such that cPb and M, c |=

MP
C,

M, c |=
MP

B. P = PD
a for some D. M, b |=

MP
C and M, b |=

MP
B, so C ∈ b

and B ∈ b, by the inductive hypothesis. Hence C ∧B ∈ b. Since b ∈ FPD
a ,

3ab, and so ⊥ ≥ (C ∧ B) /∈ a, whence ⊥ ≥ (C ∧ ¬B) /∈ a, by (trans).
Either (1) b ∈ ΘaD or (2) b /∈ ΘaD. In case (1), ¬D ≥ (C∧¬B) /∈ a, for if
otherwise, then, by (trans), ¬D ≥ (C∧B) ∈ a, but, since C∧B ∈ b and b ∈
ΘaD, ¬D ≥ (C ∧B) /∈ a, a contradiction. Let X = {¬E : ¬D ≥ E ∈ a}.
By Lemma 29, X ∪ {C ∧ ¬B} is consistent. Let c be a maximal consistent
extension of that. c ∈ ΘaD and 3ac, as with the argument regarding b
under (a.i) above. Hence, cPD

a b. C ∈ c, so M, c |=
MP

C, by the inductive
hypothesis. Then, M, c |=

MP
B, and B ∈ c by the inductive hypothesis again.

But ¬B ∈ c, contrary to its consistency. Hence, O(B/C) ∈ a. In case (2),
X = Neca; X ∪ {C ∧ ¬B} is consistent, by Lemma 29, and so has a
maximal consistent extension, c. 3ac by definition. Since b /∈ ΘaD, cPD

a b,
trivially. As with case (1), C ∈ c, so M, c |=

MP
C and M, c |=

MP
B, so that

B ∈ c. But ¬B ∈ c, contrary to its consistency. Therefore, O(B/C) ∈ a.
Hence, in either case, O(B/C) ∈ a, as required.

This completes the Lemma, and so the Theorem for both PPref and DP
in the usual way. Following the theme of the previous theorems, we can also
say,

Corollary 32 : PPref and DP are both sound and complete with respect to
the class of models on reflexive, transitive (or standard) multiple preference
frames that satisfy the Limit Assumption,

where here the Limit Assumption is generalized to apply to all relations in
Pa for every a ∈ W . That is, it states that for all A, and for all P ∈ Pa,
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every b ∈ |A|M is such that either b is P-maximala in |A|M or there is a c
such that c is P-maximala in |A|M and cSPb. This is established through an
argument very similar to that for Corollary 23, but now, supposing that some
b ∈ |A|M is not P-maximala, when P = PB

a for some formula B, one takes
X = {¬D : ¬B ≥ D ∈ a}. Since there is a c ∈ |A|M such that cPB

a b and
not-(bPB

a c), 3ab, whence ⊥ ≥ A /∈ a, and c ∈ ΘaB, whence ¬B ≥ A /∈ a.
Therefore, Lemma 29 assures the consistency of X ∪ {A}. Take d to be a
maximal consistent extension of that. It fulfills the role of d in the argument
for Corollary 23. (It is not hard to show that 3ad and that d ∈ ΘaB.)

The multiple preference framework introduced for Theorem 28 is only a
stepping stone on the way to establishing completeness in the framework of
simple preference frames. To complete that result, we apply the method that
was used in Section 2 to establish completeness for monadic P, reducing
multiple preference models to equivalent simple preference models.

Theorem 33 : (a) PPref is sound and complete with respect to the class of
reflexive, transitive simple preference frames; (b) DP is sound and complete
with respect to the class of reflexive, transitive simple preference frames.

Proof: We treat the two parts together. Soundness is simple, and left to
the reader. Let M = 〈F, v〉 be a model on a multiple preference frame
F = 〈W,P〉 in which every P ∈ Pa is reflexive and transitive on its field.
Take M∗ to be the model 〈F ∗, v∗〉 derived from M as defined for Theorem
12.

Lemma 34 : M∗ is a model on a reflexive, transitive simple preference frame.

This is merely Lemma 13 of Section 2, enriched by Observation 2 there. We
likewise extend Lemma 14 to apply to the grammar of the dyadic systems.
We assume this to be true for B and C and show:

Lemma 35 : For every a ∈ W , and every i ∈ I , (a) M, a |=
MP

B ≥ C iff
M∗, 〈a, i〉 |=

P
B ≥ C. (b) M, a |=

MP
O(B/C) iff M∗, 〈a, i〉 |=

P
O(B/C).

Proof: The arguments for (a) and (b) are similar.
(a.i) Suppose that M, a |=

MP
B ≥ C, and thus that for every P ∈ Pa, for

all c ∈ FP if M, c |=
MP

C then there is a b such that bPc and M, b |=
MP

B. To
show that M∗, 〈a, i〉 |=

P
B ≥ C, let c∗ be any member of FP∗

〈a,i〉 such that
M∗, c∗ |=

P
C. Given reflexivity for P∗

〈a,i〉, c∗P∗
〈a,i〉c

∗ and so there is a P∗j ∈

P∗
〈a,i〉 such that c∗P∗jc∗, and thus c∗ = 〈c, j〉 for some c ∈ W and cPjc,

so that c ∈ FPj . Also, M, c |=
MP

C, by the inductive hypothesis. Hence,
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there is a b such that bPjc and M, b |=
MP

B. Since bPjc, 〈b, j〉P∗j〈c, j〉
and so 〈b, j〉P∗

〈a,i〉〈c, j〉. By the inductive hypothesis, M ∗, 〈b, j〉 |=
P

B. This
suffices for M∗, 〈a, i〉 |=

P
B ≥ C.

(a.ii) Suppose that M ∗, 〈a, i〉 |=
P

B ≥ C, so that for every c∗ ∈ FP∗
〈a,i〉

if M∗, c∗ |=
P

C, then there is a b∗ such that b∗P∗
〈a,i〉c

∗ and M∗, b∗ |=
P

B. To
show that M, a |=

MP
B ≥ C, let P be any relation in Pa. P = Pj for some

j ∈ I . Let c be any member of FPj such that M, c |=
MP

C. By reflexivity,
cPjc and so 〈c, j〉P∗j〈c, j〉 and thus 〈c, j〉P∗

〈a,i〉〈c, j〉 and 〈c, j〉 ∈ FP∗
〈a,i〉.

Also, M∗, 〈c, j〉 |=
P

C, by the inductive hypothesis. Hence there is a b∗ such
that b∗P∗

〈a,i〉〈c, j〉 and M∗, b∗ |=
P

B. Hence, b∗P∗k〈c, j〉 for some k ∈ I . But
then, since 〈c, j〉 ∈ FP∗k, k = j and so b∗P∗j〈c, j〉. In that case too, b∗ =
〈b, j〉, and then 〈b, j〉P∗j〈c, j〉, which implies bPjc. Moreover, M, b |=

MP
B,

by the inductive hypothesis. That suffices for M, a |=
MP

B ≥ C.
(b.i) Suppose that M, a |=

MP
O(B/C), and thus that there is a P ∈ Pa and

a b ∈ FP such that M, b |=
MP

C ∧B and, for every c, if cPb and M, c |=
MP

C

then M, c |=
MP

B. For such a P, P = Pj for some j ∈ I . With reflexivity,
bPjb and so 〈b, j〉P∗j〈b, j〉; hence, 〈b, j〉P∗

〈a,i〉〈b, j〉 and 〈b, j〉 ∈ FP∗
〈a,i〉.

M, b |=
MP

C and M, b |=
MP

B, so M∗, 〈b, j〉 |=
P

C and M∗, 〈b, j〉 |=
P

B, by
the inductive hypothesis, so that M ∗, 〈b, j〉 |=

P
C ∧ B. Consider any c∗ such

that c∗P∗
〈a,i〉〈b, j〉 and M∗, c∗ |=

P
C. c∗P∗k〈b, j〉 for some k ∈ I , but then

k = j as above. Hence, c∗P∗j〈b, j〉, and then c∗ = 〈c, j〉 and 〈c, j〉P∗j〈b, j〉,
which implies cPjb. Furthermore, M, c |=

MP
C, by the inductive hypothesis.

So M, c |=
MP

Band M∗, 〈c, j〉 |=
P

B, by the inductive hypothesis again, so
M∗, c∗ |=

MP
B, which suffices for M ∗, 〈a, i〉 |=

P
O(B/C).

(b.ii) Suppose M ∗, 〈a, i〉 |=
P

O(B/C), so that there is a b∗ ∈ FP∗
〈a,i〉

such that M∗, b∗ |=
P

C ∧ B and for every c∗ if c∗P∗
〈a,i〉b

∗ and M∗, c∗ |=
P

C

then M∗, c∗ |=
P

B. By reflexivity b∗P∗
〈a,i〉b

∗, so there is a P∗j ∈ P∗
〈a,i〉 and

b∗P∗jb∗, in which case b∗ = 〈b, j〉, for some b ∈ W , and bPjb. Thus b ∈
FPj . Also Pj ∈ Pa. M∗, 〈b, j〉 |=

P
C and M∗, 〈b, j〉 |=

P
B, so M, b |=

MP
C

and M, b |=
MP

B, by the inductive hypothesis, so that M, b |=
MP

C ∧B. Now
consider any c such that cPjb and M, c |=

MP
C. Since cPjb, 〈c, j〉P∗j〈b, j〉,

so 〈c, j〉P∗
〈a,i〉〈b, j〉. Also, M∗, 〈c, j〉 |=

P
C, by the inductive hypothesis, and

thus M∗, 〈c, j〉 |=
P

B. So M, c |=
MP

B by the inductive hypothesis again,
which suffices for M, a |=

MP
O(B/C) to complete the lemma.

The theorem now follows from these lemmas just as Theorem 12 followed
from Lemmas 13 and 14 in Section 2. If A is not provable in PPref or
DP, then by Theorem 28 there is a reflexive, transitive multiple preference
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model M that falsifies A at a point a ∈ W , and so by the present lemmas
there is a reflexive, transitive simple preference model, M ∗ derived from M
that falsifies A at 〈a, i〉 for any i ∈ I , and so A cannot be valid in all such
simple preference frames. Furthermore, just as Corollary 16 followed from
Theorem 12, so too

Corollary 36 : PPref and DP are sound and complete with respect to the
class of models on reflexive, transitive simple preference frames that meet
the Limit Assumption.

This follows from Corollary 32 by an argument very like the one that led to
Corollary 16 from Corollary 11.

From the two parts (a) and (b) of Theorem 33, it follows easily that DP
and PPref are equivalent in the same sense as SDDL and SPref. That is,
with the same translation functions t and s used for Theorems 25 and 27,

Theorem 37 : (a) For all formulas A of Lco, A is provable in DP iff t(A) is
provable in PPref. (b) For all formulas A of L≥, A is provable in PPref iff
s(A) is provable in DP.

This is proved just as were Theorems 25 and 27.

5. Conclusion

This completes the results for this Part. We have shown that the basic pref-
erence semantics for deontic logic introduced in Section 1 is adequate for
monadic standard deontic logic, SDL, when it is assumed that each world’s
preference relation is reflexive, transitive and connected on its field. To
drop the requirement of connectedness leads to the characterization of the
weaker monadic deontic logic P, whose virtue is that it allows for conflicts
of obligation. Similar results obtain for dyadic deontic logics. The class of
standard preference frames characterizes the standard logic of conditional
obligation SDDL and its counterpart logic of preferability SPref, while the
class of frames that do not require that the preference relation be connected
characterizes dyadic logics that correspond to P, namely DP for conditional
obligation and PPref for preferability. These too have the virtue of accom-
modating conflicts of (conditional) obligation. The proofs of completeness
for P and its dyadic counterparts introduced a variant on the original simple
preference semantics, namely, the evaluation of deontic formulas in models
on what I have called multiple preference frames. Although such frames
were introduced here for technical purposes, they also have interest in their
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own right, for they allow for further distinctions to be drawn amongst deontic
modalities. That is the subject of the sequel, Part II of this work [4].18
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