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PROOF THEORIES FOR SOME PRIORITIZED CONSEQUENCE
RELATIONS∗

LIZA VERHOEVEN†

Abstract
Handling a possibly inconsistent prioritized belief base can be done
in terms of consistent subsets. Humans do not compute consistent
subsets, they just start reasoning and when confronted with incon-
sistencies in the course of their reasoning, they may adjust their in-
terpretation of the information. In logics this behaviour corresponds
to the mechanisms of dynamic proof theories. The aim of this paper
is to transform known consequence relations for inconsistent priori-
tized belief bases in terms of consistent subsets, into dynamic proof
theories that are a more faithful representation of human reasoning
processes.

1. Introduction

To handle an inconsistent belief base in terms of consistent subsets, many
consequence relations are available, for a survey see [4] for the flat case and
[5] for the case non-logical preferences play a part — the prioritized case.
They all are defined in terms of a selection of consistent subsets or in terms
of the existence of certain consistent subsets. Because there is no positive
test for the consistency of a set of predicative formulas, these consequence
relations are not decidable either. Some people might conclude that there are
no proof theories for these consequence relations. This conclusion is shown
to be false here for the prioritized case (as it is shown to be false for the flat
case in [2]).

∗The research for this paper was supported by the Research Fund of Ghent University
and indirectly by the Flemish Minister responsible for Science and Technology (contract
BIL98/37).

†I am greatly indebted to Timothy Vermeir for preparatory research on the semantical
characterization.
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326 LIZA VERHOEVEN

In [2] the consequence relations for the flat case are characterized semanti-
cally (by an adaptive logic) and dynamic proof theories are presented. Direct
dynamic proof theories are constructed in [3]. This paper is a sequel to both
[2] and [3]; it handles the prioritized case.

In the last section of [3], it is mentioned that the prioritized Rescher-Manor
consequence relations should be provided with a direct dynamic proof the-
ory, rather than be characterized in terms of inconsistency-adaptive logics.
However, as the adaptive approach is the source of the proof theories, I shall
first present the adaptive characterizations.

Section 2 contains the definitions of the prioritized consequence relations
from [5]. In section 3, I briefly characterize CLuN, a logic that we shall
need in the sequel. In section 4, the prioritized consequence relations will
be characterized in terms of an adaptive logic. These characterizations will
proceed in semantical terms. In section 5, they will be turned into adaptive
proof theories. The direct dynamic proof theories will be presented in section
6. To finish, an example of a human reasoning process is given to illustrate
the use of the dynamic prof theories.

2. Rescher-Manor Consequence Relations from Prioritized Bases: an Over-
view

A prioritized belief base Σ can be expressed as a finite ordered set of belief
levels Σi, where each Σi is a consistent set of well-formed formulas of the
standard predicative language L. These sets can be ordered according to
decreasing priority, so that in 〈Σ1, . . . ,Σn〉, Σi has a higher priority than Σj

iff i < j. Such a Σ = 〈Σ1, . . . ,Σn〉 will be called a prioritized belief base.
A model of Σ is a model of Σ1 ∪ . . . ∪ Σn and a consequence of Σ is a

consequence of Σ1∪. . .∪Σn. A subbase of Σ is an ordered set 〈∆1, . . . ,∆n〉
such that ∆i ⊆ Σi for all i. A subset of Σ is a subset of Σ1 ∪ . . . ∪ Σn.

Definition 1 : π(Σ) = Σ1 ∪ . . . ∪ Σi such that Σ1 ∪ . . . ∪ Σi is consistent,
whereas Σ1 ∪ . . . ∪ Σi ∪ Σi+1 is not.

Definition 2 : A well-formed formula (hence abbreviated as wff) A is a π-
consequence of Σ:

Σ `π A iff π(Σ) `CL A .

Definition 3 : The linear consistent subset l(Σ) is the result of the following
construction:

l(〈Σ1〉) = Σ1
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and for all i > 1:

l(〈Σ1, . . . ,Σi〉) =

{

l(〈Σ1, . . . ,Σi−1〉) ∪ Σi if this set is consistent
l(〈Σ1, . . . ,Σi−1〉) otherwise.

Definition 4 : A wff A is an l-consequence of Σ:

Σ `l A iff l(Σ) `CL A .

To define free formulas, we need to introduce the notion of a maximal
consistent subset.

Definition 5 : A subset ∆ of a set Γ is a maximal consistent subset of Γ iff (i)
∆ is consistent and (ii) for each A ∈ Γ\∆, ∆ ∪ {A} is inconsistent.

Definition 6 : A wff A is free in a set Γ: A ∈ Free(Γ) iff A is contained in
every maximal consistent subset of Γ.

It is this concept that is needed to define the dominant subset of a priori-
tized belief base and the non-defeated consequence relation.

Definition 7 : The dominant subset of Σ is the set Σ∗ = Free(Σ1)∪Free(Σ1∪
Σ2) ∪ . . . ∪ Free(Σ1 ∪ . . . ∪ Σn).

Definition 8 : A wff A is a non-defeated consequence of Σ:

Σ `ND A iff Σ∗ `CL A .

Using the notion of a maximal consistent subset, we can define a strongly
maximal consistent subbase of Σ.

Definition 9 : A subbase ∆ = 〈∆1, . . . ,∆n〉 of Σ is a strongly maximal
consistent subbase iff for all 1 ≤ i ≤ n the set ∆1 ∪ . . . ∪ ∆i is a maximal
consistent subset of Σ1 ∪ . . . ∪ Σi.

Definition 10 : Σ SMC-entails a wff A:

Σ `SMC A

iff for all strongly maximal consistent subbases ∆ of Σ, ∆ `CL A .
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328 LIZA VERHOEVEN

The above consequence relations are all defined in terms of subsets or
subbases of Σ. The definitions of the following consequence relations refer
to the existence of certain subbases.

Definition 11 : The rank of a subbase ∆ of Σ is the maximal index i for which
∆i 6= ∅.

Definition 12 : A subbase ∆ of Σ is called a reason of rank i in Σ for a wff
A iff

• ∪1≤j≤n∆j is consistent
• ∪1≤j≤n∆j `CL A
• rank(∆)=i.

Definition 13 : A wff A is an argued consequence of Σ:

Σ `A A

iff there is a rank i for which
• there is a reason of rank i in Σ for A
• there are no reasons of rank j ≤ i for ¬A in Σ.

A best reason for a wff A is a reason of minimal rank. Intuitively a best
reason corresponds to the strongest reason. The rank of the best reasons for
a wff A is denoted by Def (A). If there are no reasons for A, Def (A) is
defined as ∞.

To determine the value of a reason, we have to take into account both the
strongness of the arguments in favour of its elements and the strongness of
the arguments against its elements. A reason is considered as safe iff its most
weakly supported formula is more strongly supported than its most strongly
attacked formula.

Definition 14 : A reason ∆ has two value indicators:
• the defeasibility of ∆: Def (∆) = max{Def (A) | A ∈ ∪1≤i≤n∆i}
• the safety of ∆: Safe(∆) = min{Def (¬A) | A ∈ ∪1≤i≤n∆i}.

A reason ∆ is a safe reason iff Def (∆) < Safe(∆).

Definition 15 : A wff A is an SS-consequence of Σ:

Σ `SS A

iff there is a safe reason for A in Σ.
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Another way of assessing is to handle the two aspects successively.
Let hs(Σ, A) be the set of reasons for A in Σ of highest safety.

Definition 16 : A wff A is an SD-consequence of Σ:

Σ `SD A

iff there is an element in hs(Σ, A) such that (i) it has lowest defeasibility in
hs(Σ, A) and (ii) it is a safe reason.

Let ld(Σ, A) be the set of reasons for A in Σ of lowest defeasibility.

Definition 17 : A wff A is a DS-consequence of Σ:

Σ `DS A

iff there is an element in ld(Σ, A) such that (i) it has highest safety in
ld(Σ, A) and (ii) it is a safe reason.

3. Short Intro to CLuN

CLuN is obtained from CL (CL stands for Classical Logic) by just dropping
the consistency requirement. So the truth of A does not entail the falsity of
∼A, and neither does the truth of ∼A entail the falsity of A. The relation of
A and ∼A is only governed by negation completeness: one of them has to
be true. The negation of CLuN is a very weak negation. Even Replacement
of Equivalents and Replacement of Identicals can only be applied outside
the scope of a negation. For more background (the full axiomatization, the
semantics, the proof theory and a completeness proof) see [1]. It is possible
to define the classical negation in CLuN from ⊥, characterized by the axiom
⊥ ⊃ A, namely by ¬A := A ⊃ ⊥. 1

4. Unification: the Sequel

Let Σ be ∼-free and let ΣG = 〈ΣG
1 , . . . ,Σ

G
n 〉 be the Guido-transformation

of Σ, where ΣG
i := {∼¬A | A ∈ Σi} for all i. For present purpose the

1 The straightforward way to add the classical negation to CLuN is of course to add its
axioms: negation completeness and consistency.
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abnormalities of a CLuN-model M may be defined as follows:

Ab(M) = {∼A | vM (A&∼A) = 1}.

4.1. The π-Consequence Relation

Definition 18 : A CLuN-model M of ΣG is normal up to level i iff Ab(M)∩
(ΣG

1 ∪ . . . ∪ ΣG
i ) = ∅.

Definition 19 : M is an ACLuNπ-model of ΣG iff (i) M is a CLuN-model of
ΣG and (ii) for all i (1 ≤ i ≤ n) if there is a CLuN-model M ′ of ΣG such
that M ′ is normal up to level i, then so is M .

Lemma 1 : A model M of ΣG falsifies A ∈ ∪1≤i≤nΣi iff ∼¬A ∈ Ab(M).

Proof. For a model M of ΣG holds vM (∼¬A) = 1 for all A ∈ ∪1≤i≤nΣi.
Hence ∼¬A ∈ Ab(M) iff vM (¬A&∼¬A) = 1 iff vM (¬A) = 1 iff vM (A)
= 0 iff M falsifies A. �

Lemma 2 : M is an ACLuNπ-model of ΣG iff M is a CLuN-model and
M |= ΣG ∪ π(Σ).

Proof. SupposeM is an ACLuNπ-model of ΣG andM is normal up to level
i and not up to level i + 1. As M is an ACLuNπ-model (see definition
19), there is no CLuN-model of ΣG that is normal up to level i + 1. Hence
Σ1 ∪ . . .∪Σi+1 is inconsistent (see lemma 4.4 in [2]). As M is normal up to
level i,M verifies Σ1∪ . . .∪Σi (see lemma 1) and Σ1∪ . . .∪Σi is consistent
(see again lemma 4.4 in [2]). So, π(Σ) = Σ1 ∪ . . .∪Σi and π(Σ) is verified
by M .

For the right-left direction, supposeM is a CLuN-model,M |= ΣG∪π(Σ)
and π(Σ) = Σ1 ∪ . . . ∪ Σi. By Lemma 1, M is normal up to level i. There
can not be a CLuN-model M ′ of ΣG that is normal up to a level higher than
i, because that would imply that M ′ verifies π(Σ) ∪ Σi+1 (see again lemma
1) and that π(Σ) ∪ Σi+1 is consistent (again lemma 4.4 in [2]). This is in
contradiction with the definition of π(Σ). Hence M is an ACLuNπ-model
of ΣG by definition 19. �

Lemma 3 : If A is ∼-free (Σ is already supposed to be ∼-free), then for all
∆, ∆G ∪ Σ |=CLuN A iff Σ |=CL A.
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Proof. Suppose ∆G∪Σ |=CLuN A for a ∼-freeA and an arbitrary ∆ and that
M is a CL-model of Σ that falsifies A. Let M ′ be a CLuN-model such that
for all ∼-free formulas F , M ′ |= F iff M |= F , and for all other formulas
F ′, M ′ |= F ′ if F ′ ∈ ∆G. M ′ |= ∆G ∪ Σ but M ′

2 A, a contradiction.
Suppose that Σ |=CL A for a ∼-free A and that M is a CLuN-model of
∆G ∪Σ for an arbitrary ∆, that falsifies A. Let M ′ be a CL-model such that
for all ∼-free formulas F , M ′ |= F iff M |= F . By the compositionality of
the CLuN-semantics, M ′ |= Σ but not M ′ |= A, again a contradiction. �

Theorem 1 : For any ∼-free A, Σ `π A iff ΣG |=ACLuNπ A.

Proof. By definition Σ `π A iff π(Σ) `CL A. By Lemma 3, this is equiva-
lent to ΣG ∪ π(Σ) |=CLuN A and by Lemma 2, also to ΣG |=ACLuNπ A. �

4.2. The l-Consequence Relation

Definition 20 : M is an ACLuNl-model of ΣG iff (i) M is a CluN-model of
ΣG, (ii) Ab(M)∩ΣG

1 = ∅ and (iii) for all i (1 ≤ i ≤ n−1) if there is a model
M ′ of ΣG such that Ab(M ′)∩(ΣG

1 ∪ . . .∪ΣG
i ) = Ab(M)∩(ΣG

1 ∪ . . .∪ΣG
i )

and Ab(M ′) ∩ (ΣG
1 ∪ . . . ∪ ΣG

i+1) = Ab(M ′) ∩ (ΣG
1 ∪ . . . ∪ ΣG

i ), then
Ab(M) ∩ (ΣG

1 ∪ . . . ∪ ΣG
i+1) = Ab(M) ∩ (ΣG

1 ∪ . . . ∪ ΣG
i ).

Lemma 4 : M is an ACLuNl-model of ΣG iffM is a CLuN-model andM |=
ΣG ∪ l(Σ).

Proof. Suppose M is an ACLuNl-model of ΣG. It follows from Definition
20 that M |= Σ1 and there are no M ′ for which there is an i (1 ≤ i ≤ n− 1)
such that Ab(M ′) ∩ (ΣG

1 ∪ . . . ∪ ΣG
i ) = Ab(M) ∩ (ΣG

1 ∪ . . . ∪ ΣG
i ) and

Ab(M) ∩ ΣG
i+1 6= ∅ whereas Ab(M ′) ∩ ΣG

i+1 = ∅. This means that at each
level M verifies that level if the latter is (CL-) compatible with the verified
previous levels. So M |= l(Σ).
For the other direction it suffices to see that the implications above can be
transformed into equivalences easily. �

Theorem 2 : For any ∼-free A, Σ `l A iff ΣG |=ACLuNl A.

Proof. By definition Σ `l A iff l(Σ) `CL A. By Lemma 3, this is equivalent
to ΣG ∪ l(Σ) |=CLuN A and by Lemma 4, also to ΣG |=ACLuNl A. �



“04verhoeven”
2005/1/24
page 332

i

i

i

i

i

i

i

i

332 LIZA VERHOEVEN

4.3. The ND-Consequence Relation

Let !A abbreviate A&∼A, let ∃A abbreviate A preceded (in some defi-
nite order) by an existential quantifier over any variable free in A, and let
dab(A1, . . . , An) abbreviate ∃!A1 ∨ . . . ∨ ∃!An. We will also write dab(∆)
when {A1, . . . , An} = ∆.

Definition 21 : dab(∆) is a minimal dab-consequence of Γ iff Γ |=CLuN
dab(∆) and, for no Θ ⊂ ∆, Γ |=CLuN dab(Θ).

Definition 22 : U(Γ) = {A | A ∈ ∆ for some minimal dab-consequence
dab(∆) of Γ}.

Definition 23 : M is an ACLuNND -model of ΣG iff (i) M is a CLuN-model
of ΣG and (ii) for all i (1 ≤ i ≤ n), if A ∈ Σ1 ∪ . . . ∪ Σi and ¬A /∈
U(ΣG

1 ∪ . . . ∪ ΣG
i ), then ∼¬A /∈ Ab(M).

Lemma 5 : A ∈ Free(Γ) iff A ∈ Γ and ¬A /∈ U(ΓG).

Proof. See [2], lemma 4.7. �

Lemma 6 : M is an ACLuNND -model of ΣG iff M is a CLuN-model and
M |= ΣG ∪ Σ∗.

Proof. From lemma 5 it follows that an ACLuNND -model is a CLuN-model
such that for all i (1 ≤ i ≤ n), if A ∈ Free(Σ1 ∪ . . . ∪ Σi) then ∼¬A /∈

Ab(M). This means an ACLuNND -model of ΣG is a CLuN-model M of
ΣG that verifies the free members of Σ1 ∪ . . . ∪ Σi for all i (1 ≤ i ≤ n)
(lemma 1) or equivalently M |= ΣG ∪ Σ∗. �

Theorem 3 : For any ∼-free A, Σ `ND A iff ΣG |=ACLuNND A.

Proof. By definition Σ `ND A iff Σ∗ `CL A. By Lemma 3, this is equivalent
to ΣG ∪ Σ∗ |=CLuN A and by Lemma 6, also to ΣG |=ACLuNND A. �

4.4. The SMC-Consequence Relation

Definition 24 : The set of abnormalities at level i (1 ≤ i ≤ n) of a CLuN-
model of ΣG, denoted as Abi(M), is the set Ab(M) ∩ (ΣG

1 ∪ . . . ∪ ΣG
i ).
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Definition 25 : M is an ACLuNSMC -model of ΣG iff (i)M is a CLuN-model
of ΣG and (ii) for all i (1 ≤ i ≤ n) there is no CLuN-model M ′ of ΣG such
that Abi(M

′) ⊂ Abi(M).

Theorem 4 : For any ∼-free A, Σ `SMC A iff ΣG |=ACLuNSMC A.

Proof. By definition Σ `SMC A iff ∆ `CL A for all strongly maximal
consistent subbases ∆ of ΣG. By Lemma 3, this is equivalent to ΣG ∪
∆ |=CLuN A for all strongly maximal consistent subbases ∆ of ΣG. Now
the CLuN-models of ΣG that verify a strongly maximal consistent subbase
of ΣG are precisely the ACLuNSMC -models of ΣG, so this means we have
ΣG |=ACLuNSMC A. �

4.5. The A-, the SS-, the SD- and the DS-Consequence Relation

The problem with these consequence relations, is that they can not be char-
acterized by ACLuNx-models. The reason is that the sets of these conse-
quences are not closed under CLuN. This means for example for the A-
consequences that there may be formulas that are valid in all CLuN models
of ΣG that verify all A-consequences, but that are no A-consequences them-
selves!

For the A- and the SS-consequence relations, ∼-free CLuN-consequences
of one A-, resp. SS-consequence are again A-, resp. SS-consequences. This
is easily seen in the following way. A `CLuN B entailsA `CL B forA andB
∼-free and by the deduction theorem also `CL A ⊃ B (and `CL ¬B ⊃ ¬A).
In view of the latter a (safe) reason for A will also be a (safe) reason for B,
and a reason for ¬B will also be one for ¬A.

CLuN-consequences of several A-, resp. SS-consequence are not neces-
sarily A-, resp. SS-consequences. The first problem one stumbles upon is
that reasons can not always be combined to form a reason again, because of
the consistency requirement.

For the SD- and the DS-consequence relations, even CLuN-consequences
of a single SD-, resp. DS-consequence are not necessarily SD-, resp. DS-
consequences. That is because whether a formula is an SD-, resp. a DS-
consequence from Σ depends on all possible reasons findable in Σ for that
formula.

For these consequence relations we shall construct a direct dynamic proof
theory in Section 6.
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5. The Adaptive Proof Theories

5.1. Presentation

Once the above semantics are formulated, we can construct the correspond-
ing dynamic proof theories. A line in a dynamic proof consists of five el-
ements: (i) the line number, (ii) the formula derived on that line, (iii) the
numbers of the lines used to derive the second element, (iv) the rule applied
to derive the second element and (v) the fifth element referring to the con-
dition on which the second element is derived. Any line that satisfies this
structure can be added to the proof. When a condition is (unconditionally)
proved not to be fulfilled at a stage of the proof, the lines derived on that con-
dition are marked at that stage. The second element of a marked line is no
longer derived at that line. At a later stage lines can be unmarked again and
then at that stage the formula is derived at that line. So the derived formulas
are to be considered with respect to a stage of the proof.

To formulate the conditions, (∼¬A1&¬A1) ∨ . . . ∨ (∼¬Am&¬Am) will
be abbreviated as Dab(A1, . . . , Am). We also write Dab(Θ) when {A1, . . . ,
An} = Θ. Here are the rules for adding lines to the proof:

PREM If A ∈ ΣG
i for 1 ≤ i ≤ n, one may add a line consisting of (i)

the appropriate line number, (ii) A, (iii) a dash, (iv) PREM and (v) ∅.
RU If `CLuN (B1& . . .&Bm) ⊃ A, and B1, . . . , Bm occur in the proof

on lines i1, . . . , im with, respectively, the conditions ∆1, . . . ,∆m,
then one may add a line to the proof consisting of (i) the appropriate
line number, (ii) A, (iii) i1, . . . , im (iv) RU and (v) ∆1 ∪ . . . ∪ ∆m.

RC If `CLuN Dab(C1, . . . , Cl)∨((B1& . . .&Bm) ⊃ A), andB1, . . . , Bm
occur in the proof on, respectively, the lines i1, . . . , im with, respec-
tively, the conditions ∆1, . . . ,∆m, and C1, . . . , Cl are all elements
of Σ1 ∪ . . . ∪ Σn, then one may add a line to the proof consisting of
(i) the appropriate line number, (ii) A, (iii) i1, . . . , im (iv) RC and (v)
{C1, . . . , Cl} ∪ ∆1 ∪ . . . ∪ ∆m.

Now we define some sets. First we introduce the set Mins(Σ). It contains
all minimal sets {C1, . . . , Cm} for which Dab(C1, . . . , Cm) is derived in
the proof at stage s. Note that the elements of Mins(Σ) will only contain
formulas of Σ1 ∪ . . . ∪ Σn. We also need to define the set Ψs(Σ). Let the
sets ψi contain at least one element from each member of Mins(Σ). Ψs(Σ)
is the set of those ψi that are not supersets of any other ψi. We also define
the rank of an element of Mins(Σ) as the rank of the corresponding subbase
of Σ. Since a condition too contains only elements of Σ1 ∪ . . . ∪ Σn, its
rank can be defined analogously. The rank of a single formula of an element
of Mins(Σ) and the rank of a single formula of a condition are simply the
indices of the Σi to which they belong.
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Here are the marking definitions:
• for π: where Θ is the condition of line i, line i is marked at stage s iff

there is an element ∆ in Mins(Σ) of a rank not higher than the rank
of Θ.

• for l: where Θ is the condition of line i, line i is marked at stage s iff
the following chain of conditions is not fulfilled. First consider the
elements of Mins(Σ) of lowest rank j. The condition must have an
empty intersection with Σj . Then begin the following recursive pro-
cedure: consider the next lowest rank k of the elements of Mins(Σ)
that have no formulas of the ranks of all previous considered elements
of Mins(Σ), the condition must have an empty intersection with Σk.

• for ND : where Θ is the condition of line i, line i is marked at stage
s iff there is a formula of rank j in the condition that is contained in
an element of Mins(〈Σ1, . . . ,Σj〉).

• for SMC : where A is derived on line i on condition Θ, line i is
marked at stage s iff there is no element ψ in Ψs(Σ) for which ψ ∩
(Σ1 ∪ . . .∪Σj) ∈ Ψs(〈Σ1, . . . ,Σj〉) for all 1 ≤ j ≤ n and that does
not overlap with the condition Θ, or there is an element ψ in Ψs(Σ)
for which ψ∩ (Σ1∪ . . .∪Σj) ∈ Ψs(〈Σ1, . . . ,Σj〉) for all 1 ≤ j ≤ n
and for which there is no line in the proof with A as second element
and a condition Θ′ that has an empty intersection with ψ.

What is considered as finally derived in these proof theories is stated by
the following.

Definition 26 : A formula A is finally derived at line i at stage s of a proof
from 〈ΣG

1 , . . . ,Σ
G
n 〉 iff line i is not marked at stage s and any extension of

the proof in which line i is marked, may be further extended in such a way
that line i is unmarked.

We can also extend the definitions of Mins(Σ) and Ψs(Σ) to the final
stage. Min(Σ) and Ψ(Σ) then refer to the same concepts with respect to
final derivability.

5.2. Soundness and Completeness

Lemma 7 : If Θ is ∼-free and ¬-inconsistent, then ΘG `CLuN Dab(Θ).

Proof. Suppose Θ = {C1, . . . , Cm} is ∼-free and ¬-inconsistent. From
the CLuN semantics follows that ΘG `CLuN Dab(Θ) ∨ (C1& . . .&Cm).
The ¬-inconsistency of Θ implies that (C1& . . .&Cm) `CLuN A for all
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well-formed formulas in the language of CL added with the paraconsis-
tent negation ∼, in particular (C1& . . .&Cm) `CLuN Dab(Θ). So we get
ΘG `CLuN Dab(Θ). �

Lemma 8 : If Θ is ∼-free and ΘG `CLuN Dab(Θ), then Θ is ¬-inconsistent.

Proof. Suppose Θ = {C1, . . . , Cm} is ∼-free and ΘG `CLuN Dab(Θ).
It follows that ΘG `CLuN ¬C1 ∨ . . . ∨ ¬Cm or equivalently ΘG `CLuN
¬(C1& . . .&Cm). By the definition of ¬ this is ΘG `CLuN (C1& . . .&Cm)
⊃ ⊥. The elements of ΘG are all of the form ∼A, whereas (C1& . . .&Cm)
⊃ ⊥ is ∼-free. So from the CLuN-semantics it follows that `CLuN (C1& . . .
&Cm) ⊃ ⊥ and hence C1& . . .&Cm `CLuN ⊥ and C1& . . .&Cm `CL
⊥. �

Theorem 5 : If ΣG `ACLuNπ A, then ΣG |=ACLuNπ A.

Proof. If ΣG `ACLuNπ A, then there is a Θ ⊆ Σ such that ΣG `CLuN A ∨
Dab(Θ) and there is no element ∆ of a rank not higher than the rank of Θ in
Min(Σ). Suppose some Θ′ ⊆ Σ of a rank not higher than the rank of Θ is ¬-
inconsistent. In view of lemma 7 there is a non-empty subset ∆′ of Θ′ (of a
rank not higher than the rank of Θ) for which ∆′ ∈ Min(Σ), a contradiction.
So no Θ′ ⊆ Σ of a rank not higher than the rank of Θ is ¬-inconsistent.
From the definition of π(Σ) it follows that Θ ⊆ π(Σ). We can also write
ΣG `CLuN A ∨ Dab(π(Σ)) or equivalently ΣG ∪ π(Σ) `CLuN A. Taking
into account the soundness of CLuN (see [1]), we get ΣG ∪ π(Σ) |=CLuN A.
The latter is equivalent to ΣG |=ACLuNπ A in view of lemma 2. �

Theorem 6 : If ΣG |=ACLuNπ A, then ΣG `ACLuNπ A.

Proof. Suppose ΣG
0ACLuNπ A. We shall prove that ΣG

2ACLuNπ A fol-
lows. Consider, as for the completeness proof of CL and CLuN (see [1]),
a sequence B1, B2, . . . that contains all wffs (well-formed formulas) of L∼

and in which each wff of the form (∃α)A is followed immediately by an
instance with a constant that does not occur in Σ, in A, or in any previous
member of the sequence. We then define

m = min{rank(θ) | θ ∈ Min(Σ)}

∆0 = CnCLuN(ΣG ∪ {(∼¬C&¬C) ⊃ A | C ∈ Σ; rank(C) < m})
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and for all i ≥ 1

∆i+1 =

{

CnCLuN(∆i ∪ {Bi+1}) if A /∈ CnCLuN(∆i ∪ {Bi+1})
∆i otherwise.

Finally we define
∆ = ∆0 ∪ ∆1 ∪ . . .

Each of the following is provable:
(1) ΣG ⊆ ∆.
(2) A /∈ ∆. By the definition of ∆, if A ∈ ∆, then A ∈ ∆0. The

latter, however is impossible. Indeed, if A ∈ ∆0, then there are C1,
. . . , Ck ∈ Σ of rank smaller thanm such that ΣG∪{(∼¬Ci&¬Ci) ⊃
A | 1 ≤ i ≤ k} `CLuN A. The latter can be formulated as ΣG ∪
{Dab(C1, . . . , Ck) ⊃ A} `CLuN A and by the deduction theorem
also as ΣG `CLuN (Dab(C1, . . . , Ck) ⊃ A) ⊃ A. Hence ΣG `CLuN
Dab(C1, . . . , Ck)∨A, where allC1, . . . , Ck ∈ Σ have a rank smaller
than m. This is precisely ΣG `ACLuNπ A, what contradicts the main
supposition.

(3) ∆ is deductively closed.
(4) ∆ is maximally non-trivial. First we prove that (A ⊃ D) ∈ ∆ for all

D. If (A ⊃ D) /∈ ∆, there is a ∆i such that ∆i∪{A ⊃ D} `CLuN A.
Hence by the deduction theorem also ∆i `CLuN (A ⊃ D) ⊃ A,
which implies ∆i `CLuN A, a contradiction. If E /∈ ∆, then there is
a ∆i such that ∆i ∪ {E} `CLuN A and hence ∆∪ {E} `CLuN A. As
(A ⊃ D) ∈ ∆ for all D, ∆ ∪ {E} is trivial.

(5) ∆ is ω-complete. This is warranted by the construction of the se-
quence B1, B2, . . ..

As in [1] a CLuN-model M can be defined from ∆ such that for all C,
M |= C iff C ∈ ∆. So we know that M |= ΣG but that M |= A is
not fulfilled. From lemma 7 and lemma 8 we can conclude that {C | C ∈
Σ; rank(C) < m} = π(Σ). Hence we know that M |= π(Σ) since ΣG ⊆
∆, {(∼¬C&¬C) ⊃ A | C ∈ π(Σ)} ⊆ ∆ and A /∈ ∆. So M is a CLuN-
model of ΣG ∪ π(Σ) or by Lemma 2, an ACLuNπ-model of ΣG that does
not verify A. �

The proofs of the following theorems are analogous to the proofs of The-
orem 5 and Theorem 6.

Theorem 7 : If ΣG `ACLuNl A, then ΣG |=ACLuNl A.

Theorem 8 : If ΣG |=ACLuNl A, then ΣG `ACLuNl A.
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Theorem 9 : If ΣG `ACLuNND A, then ΣG |=ACLuNND A.

Theorem 10 : If ΣG |=ACLuNND A, then ΣG `ACLuNND A.

Theorem 11 : If ΣG `ACLuNSMC A, then ΣG |=ACLuNSMC A.

Proof. Suppose the antecedent is true. For each ψ for which ψ∩ (Σ1 ∪ . . .∪

Σi) ∈ Ψ(〈Σ1, . . . ,Σi〉) for 1 ≤ i ≤ n, there areCψ
1
, . . . , Cψm ∈ Σ1∪. . .∪Σn

such that

ΣG `CLuN A ∨ Dab(Cψ
1
, . . . , Cψm) (1)

and

ψ ∩ {Cψ
1
, . . . , Cψm} = ∅. (2)

Using the soundness of CLuN, we can write ΣG |=CLuN A ∨ Dab(Cψ
1
, . . . ,

Cψm) instead of (1). In view of (2) the Dab-formula Dab(Cψ
1
, . . . , Cψm) may

also be extended to Dab((Σ1 ∪ . . . ∪ Σn) \ ψ), so we get ΣG |=CLuN A ∨
Dab((Σ1 ∪ . . .∪Σn) \ ψ). The latter may also be replaced by ΣG ∪ ((Σ1 ∪
. . . ∪ Σn) \ ψ) |=CLuN A. So we have that for each ψ for which ψ ∩ (Σ1 ∪
. . . ∪ Σi) ∈ Ψ(〈Σ1, . . . ,Σi〉) for 1 ≤ i ≤ n, if M is a CLuN-model and
M |= ΣG ∪ ((Σ1 ∪ . . . ∪ Σn) \ ψ), then M |= A. From the Minimal
Abnormality strategy (see [1]) we know that these models are precisely the
ACLuNSMC -models of ΣG. As every ACLuNSMC -model of ΣG verifies A,
ΣG |=ACLuNSMC A. �

Theorem 12 : If ΣG |=ACLuNSMC A, then ΣG `ACLuNSMC A.

Proof. Suppose ΣG
0ACLuNSMC A, we shall prove that ΣG

2ACLuNSMC A
follows. From the supposition we know there is a ψ for which ψ ∩ (Σ1 ∪
. . . ∪ Σi) ∈ Ψ(〈Σ1, . . . ,Σi〉) for 1 ≤ i ≤ n and for which ΣG `CLuN
A ∨ Dab((Σ1 ∪ . . . ∪ Σn) \ ψ) is not fulfilled. We shall abbreviate (A ∨
Dab((Σ1 ∪ . . . ∪ Σn) \ ψ)) as X . Let B1, B2, . . . be as in the proof of
theorem 6. We then define

∆0 = CnCLuN(ΣG)
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and for all i ≥ 1

∆i+1 =

{

CnCLuN(∆i ∪ {Bi+1}) if X /∈ CnCLuN(∆i ∪ {Bi+1})
∆i otherwise.

Finally we define
∆ = ∆0 ∪ ∆1 ∪ . . .

Each of the following is provable:
(1) ΣG ⊆ ∆.
(2) X /∈ ∆. By the definition of ∆, if X ∈ ∆, then X ∈ ∆0 and this is

in contradiction with the supposition.
(3) ∆ is deductively closed.
(4) ∆ is maximally non-trivial. The proof is as for Theorem 6, replacing

A by X .
(5) ∆ is ω-complete. This is warranted by the construction of the se-

quence B1, B2, . . ..
As in [1] a CLuN-model M can be defined from ∆ such that for all C,
M |= C iff C ∈ ∆. So we know that M |= ΣG but that M |= X is not
fulfilled. Suppose M |= (Σ1 ∪ . . . ∪ Σn) \ ψ is not fulfilled. M being a
CLuN-model of ΣG should then verify Dab((Σ1 ∪ . . . ∪ Σn) \ ψ). Since
Dab((Σ1∪ . . .∪Σn)\ψ) ∈ ∆ entailsA∨Dab((Σ1∪ . . .∪Σn)\ψ) ∈ ∆, we
can conclude that M |= (Σ1 ∪ . . . ∪ Σn) \ ψ is fulfilled. From the Minimal
Abnormality strategy (see [1]) we know thatM is precisely an ACLuNSMC -
model of ΣG. So M is a ACLuNSMC -model of ΣG that does not verify
A. �

6. The Direct Proof Format

Making use of the results in [3], we can now simplify the proof theories.
First the above proofs are transformed into a normal proof format.

Definition 27 : An ACLuNx-proof from ΣG is normal iff, in the proof, (i)
the only applications of RC derive some A on the condition {¬A} from a
line on which ∼¬A is introduced by PREM, (ii) RU is only applied to lines
i1, . . . , im if all of them are conditional or all of them are unconditional, and
(iii) ∼ does not occur in formulas derived at conditional lines.

In the latter the conditional and unconditional lines are clearly separated.
If A is derived on an unconditional line, then A contains a ∼ or A is a
CLuN theorem. If A is derived on a conditional line, then A is ∼-free. The
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transition from unconditional to conditional lines is restricted to applications
of RC that derive anA ∈ Σi for some 1 ≤ i ≤ n from a ∼¬A ∈ ΣG

i that was
added by application of PREM. All other steps are justified by RU and lead
from lines of one sort to a line of the same sort. In [3], derivability and final
derivability of normal proofs are proved to be equivalent to the respective
notions of ACLuNx-proofs and to the respective notions of the following
direct proof format.

A line in a direct dynamic proof consists of the same five elements as be-
fore: (i) the line number, (ii) the formula derived on that line, (iii) the num-
bers of the lines used to derive the second element, (iv) the rule applied to
derive the second element and (v) the fifth element referring to the condition
on which the second element is derived. Any line that satisfies this structure
can be added to the proof. When a condition is (unconditionally) proved
not to be fulfilled at a stage of the proof, the lines derived on that condition
are marked at that stage. The second element of a marked line is no longer
derived at that line. For the A-, the SS -, the SD- and the DS -consequence
relations, marked lines may still be used for further derivations, because the
marking not only depends on the fifth element, but on the combination of the
second element and the fifth element. Only for the SS -consequence relation,
applications of single premise rules on marked lines make no sense, because
the cause for marking (the fifth element that is not a safe reason) is again a
cause for marking. At a later stage lines can be unmarked again and then at
that stage the formula is derived at that line. So the derived formulas are to
be considered with respect to a stage of the proof.

Here the premises are introduced conditionally and that will be the only
way for conditions to sneak in. The other CL-rules are the unconditional
rules. The marking definitions determine for each consequence relation the
characterizing strategy to organize the dynamics.

The rules for adding formulas to the proof are the following:
PREM If A ∈ Σi for 1 ≤ i ≤ n, one may add a line consisting of (i) the

appropriate line number, (ii) A, (iii) a dash, (iv) PREM, and (v) {A}.
RU If B1, . . . , Bm `CL A, and B1, . . . , Bm occur in the proof on the

conditions ∆1, . . . ,∆m respectively, then one may add a line con-
sisting of (i) the appropriate line number, (ii) A, (iii) the numbers of
the lines on which theBi are derived, (iv) RU, and (v) ∆1∪. . .∪∆m.

What is now needed are the marking definitions. First we introduce the set
of minimal inconsistent shown sets at stage s of the proof from Σ. A subset
∆ of Σ is shown inconsistent at stage s of a proof iff ⊥ has been derived on
the condition ∆. Minics(Σ) is defined as the set of minimal subsets ∆ that
are shown inconsistent at the stage s. We also need to define the set Φs(Σ).
Let the sets φi contain at least one element from each member of Minics(Σ).
Φs(Σ) is the set of those φi that are not supersets of any other φi. We also
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define the rank of a condition ∆ as the rank of the corresponding subbase of
Σ and the rank of a formula of a condition as the index of the Σi to which it
belongs.

Here are the marking definitions:
• for π: where Θ is the condition of line i, line i is marked at stage s

iff there is an element ∆ in Minics(Σ) of a rank not higher than the
rank of Θ.

• for l: where Θ is the condition of line i, line i is marked at stage s
iff the following chain of conditions is not fulfilled. First consider
the elements of Minics(Σ) of lowest rank j. The condition must
have an empty intersection with Σj . Then begin the following recur-
sive procedure: consider the next lowest rank k of the elements of
Minics(Σ) that have no formulas of the ranks of all previous con-
sidered elements of Minics(Σ), the condition must have an empty
intersection with Σk.

• for ND : where Θ is the condition of line i, line i is marked at stage
s iff there is a formula of rank j in the condition that is contained in
an element of Minics(〈Σ1, . . . ,Σj〉).

• for SMC : where A is derived on line i on condition Θ, line i is
marked at stage s iff there is no element φ in Φs(Σ) for which φ ∩
(Σ1 ∪ . . .∪Σj) ∈ Φs(〈Σ1, . . . ,Σj〉) for all 1 ≤ j ≤ n and that does
not overlap with the condition Θ, or there is an element φ in Φs(Σ)
for which φ∩ (Σ1 ∪ . . .∪Σj) ∈ Φs(〈Σ1, . . . ,Σj〉) for all 1 ≤ j ≤ n
and for which there is no line in the proof with A as second element
and a condition Θ′ that has an empty intersection with φ.

• for A: where A is derived on line i on the condition Θ, line i is
marked at stage s iff Θ is a superset of an element of Minics(Σ), or
¬A is derived on a condition of a rank not higher than the rank of Θ
that is not a superset of an element of Minics(Σ).

• for SS : where A is derived on line i on the condition {B1, . . . , Bm},
line i is marked at stage s iff {B1, . . . , Bm} is a superset of an el-
ement of Minics(Σ) or the following condition is not fulfilled. For
each Bj let kj be the minimal rank of the conditions that are not su-
persets of an element of Minics(Σ), on which Bj is derived and let
lj be the minimal rank of the conditions that are not supersets of an
element of Minics(Σ), on which ¬Bj is derived. If there are no lines
with ¬Bj derived, lj := ∞. Then it must be that max jkj < minjlj .

• for SD: where A is derived on line i on the condition {B1, . . . , Bm},
line i is marked at stage s iff one of the three following conditions
is fulfilled (lj and kj defined as above). (i) Line i is marked for SS,
or (ii) A is derived on a line i′ on the condition {B′

1, . . . , B
′
m′} that

is not a superset of an element of Minics(Σ) and minjl
′
j > minjlj ,
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or (iii) A is derived on a line i′ on the condition {B′
1, . . . , B

′
m′} that

is not a superset of an element of Minics(Σ) and minjl
′
j = minjlj

and max jk
′
j < max jkj .

• for DS : whereA is derived on line i on the condition {B1, . . . , Bm},
line i is marked at stage s iff one of the three following conditions is
fulfilled (lj and kj defined as above). (i) Line i is marked for SS, or
(ii) A is derived on a line i′ on the condition {B′

1, . . . , B
′
m′} that is

not a superset of an element of Minics(Σ) and max jk
′
j < max jkj ,

or (iii) A is derived on a line i′ on the condition {B′
1, . . . , B

′
m′} that

is not a superset of an element of Minics(Σ) and max jk
′
j = max jkj

and minjl
′
j > minjlj .

What is considered as finally derived in these proof theories is stated by
the following.

Definition 28 : A formula A is finally derived at line i at stage s of a proof
from 〈Σ1, . . . ,Σn〉 iff line i is not marked at stage s and any extension of the
proof in which line i is marked, may be further extended in such a way that
line i is unmarked.

For the A-, the SS -, the SD- and the DS -consequence relations, the cor-
rectness of the direct proof theory can be seen as follows. The condition
∆ = {B1, . . . , Bm} of a line on which A is derived, indicates which ele-
ments of Σ1∪ . . .∪Σn are used for that CL-derivation. If the condition is not
a superset of an element of Minics(Σ), it is at that stage supposed to be con-
sistent until, at a later stage s′, it is a superset of an element of Minics′(Σ).
So a condition that is not a superset of an element of Minics(Σ), is at that
stage supposed to be a reason for A. In view of this, for each Bj the corre-
sponding kj is at the respective stage the supposed defeasibility of Bj and
the corresponding lj is at the respective stage the supposed defeasibility of
¬Bj . Hence max jkj is at the respective stage the supposed defeasibility
of ∆, and minjlj the supposed safety. The first condition in the marking
definitions warrants the safety of ∆, the second one that ∆ ∈ hs(Σ, A), re-
spectively ∆ ∈ ld(Σ, A), and the third one that ∆ has lowest defeasibility in
hs(Σ, A), respectively highest safety in ld(Σ, A).

7. Illustration

To illustrate that the above proof theories are a more faithful representation
of human reasoning processes, I give an example of a human reasoning pro-
cess in natural language that could fit the π-and the l-mechanism. Imagine a
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person who is confronted with information from different sources on the fall
of the Milosevic regime. In decreasing order of (assigned) reliability of the
sources, he has heard the following.

(1) Many Serbians did not like the regime of Milosevic.
(2) Otpor was set up to fight the regime of Milosevic.

The actions of Otpor attained the fall of Milosevic.
(3) Otpor was financed by US organizations.
(4) The Serbians were set against Milosevic by other nations.
(5) Milosevic wanted the best for the Serbian people.

Having heard the first and the fifth source, he can not believe both. Because
the latter is less reliable than the former, he immediately rejects the latter.
From the second and the third source he concludes that US organizations fi-
nanced the fall of Milosevic. Then, stronger, from the second and the fourth
source he infers (prematurely) that other nations caused the fall of Milose-
vic. But as he remembers the first source, he finds that the fourth source
probably has not given reliable information. It did not appear that Serbians
were set against Milosevic by other nations, they just did not like the regime
themselves. He has to revise the premature conclusion.

The revision of one of his conclusions shows the relevance of marking.
The revision occurred because not all inconsistencies were discovered at
once. A human being can not oversee all the consequences of given infor-
mation and needs the possibility to revise his inferences. (Even a computer
would not be able to find all inconsistencies.) Nevertheless we suppose that
in the course of our reasoning our insight can only have improved and that
we can become more and more sure of our made conclusions.
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